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Abstract

In this paper we compare a set of atomic calculations of interfacial crack structure
snd properties with the predictions of an augmented elastic theory. Our intent is to
critique the elastic predictions, especially the mode conversion and displacement closure
oscillation features of the elastic theory. A simple physical picture is developed based on a
crack stability diagram, using two sets of stress intensity axes. The first set is the normal
applied stress intensity, K, and the second is a local stress intensity factor, k, defined to
describe the physics of the core region. The Griffith condition and dislocation emission
criterion are defined in terms of the local k, and its associated effective core size parameter.
Unfortunately, the physical core size is not a unique parameter in the problem, but varies
directly with the amount of shear in the core. Thus, the effective core size for the Griffith
condition is different from that for dislocation emission. In each case, the effective core
size is much smaller than the physical core size, which means that the mode shift at the
crack tip is considerably larger than would be expected on the basis of linear elasticity.
However, with appropriately defined effective core size parameters, the Griffith condition
is well satisfied, and the emission criterion based on the new Rice unstable stacking fault
condition is also surprisingly well satisfied in the Mode II emission configuration. The
crack is found never to exhibit displacement oscillations, in part, because of the necersary
condition that the Griffith condition be satisfied at the crack tip, and in part becaus the
amount of shear in the core is limited by dislocation emission.



1. Introduction

In this paper we will compare a set of atomic caleulations of interfacial crack structure and
properties with the predictions of the elastic continuum theory.

From its beginning, the subject of interfacial fracture has been bedeviled by the pre-
dictions of the standard theory that oscillations in displacement vccur very near the crack
tip' *. Among the attempts to deal with this physical anomaly, Gao® has suggested that
shear mode conversion at the tip is absorbed by a distributed dislocation contribution,
which keeps the stress tensile, without oscillatory closure. There has also been wark to
include, explicitly, the stresses induced by the closure of the cleavage surfaces behind the
crack®. Achenbach, etal.!® have introduced a Barenblatt nonlinear zone at the crack tip,
with the result that closure does not oceur, and Knowles, etal.}! have carried out a more
extensive study of the nonlinear elastic problem with the same result. The treatments by
Gao and by Achenbach, etal. are closest to our own approach, and we will discuss our
results in the light of their work at the appropriate point.

We shall address the subject of closure in & realistic fashion with a crack on an interface
in a 2D lattice, and show that these oscillations never occur. Beyond this, we will conduct
a fairly exhaustive critique of the standard elastic continuum analysis in its most important
aspects, including the mixing of stress modes at the tip, dislocation formation at the crack
tip, and the fracture criterion. The result of this investigation will be a simple physical
picture of the interfacial crack which is qualitatively consistent with the lattice calculations,
but is couched in the terms of elasticity. That is, we shall show how to “parametrize” the
elastic theory so that it is consistent with the physical requirements of the nonlinear lattice
theory.

The atomnic calculations will be based on the lattice Green’s function analysis, which
we have described earlier'?, in & simple 2D hexagonal lattice. The reason for the hexagonal
lattice is that it is isotropic in the continuum elastic bimit, which allows us to make a
direct comparison with the analytic isotropic results for that case, The feature of the
lattice Green'’s function approach which is unusual for this study is that it allows us to
take a relatively large crack of up to 200 lattice spacings, with a cohesive zone at one end,
of adjustable length, which will normally be 20 lattice positions in length, within which
nonlinear forces can operate. See Fig. 1. The crack is assumed to Lie on an interface
between two hexagonal lattices of identical lattice structure, but with different spring
constants. Further, the bonds between the upper and lower sublattices will be assimed to
have a still different set of spring constants. The bending force range will be limited to the
nearest neighbor distance. We will use two forms of bond energy function, a Gaussian and
& modification of the UBER of Rose, etal.'®, to be described more fully in the body of the
paper. The crack is embedded in a super cel! of 2000 atoms on a side, incorporating 4 x 10°
atoms in total. The super cells are repeated along the x-axis parallel to the interface, thus
making an infinitely long slab 2000 atoms thick. Qur technique thus makes it possible to
study a very large systemn, so that effects at the boundary, and in other neighboring super
cells can be safely ignored. Further, the computations are very fast, so that exhaustive
studies of the relevant parameter space can be made with ease. The details of the method
for finding and using the lattice Green's functions for the interfacial system are given in
our earlier paper!?
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The general motivation behind the paper is to gain generic information, and this is
the reason why we use the simple hexagonal lattice with central forces limited to nearest
neighbors. For this lattice we have exact analytic expressions for the isotropic continuum
limit, and our model is sufficiently general to make & very severe test of this theory. A
more complex model, with a lattice simulating a real bec or fee lattice, or with more
complicated force laws would simply obfuscate the situation we wish to highlight. So
our purpose is to explore the ideas underlying interfacial fracture theory, not to obtain
numbers for a specific material. In this same vein, we only investigate the “Mode II”
emission configuration here, in which the dislocation is emitted on the crack plane. The
reason for this restriction is that Rice’s unstable stacking fault eriterion!*1% is designed to
work best in this configuration. Also, in this configuration, the elastic driving force for the
crack is a purely tensile property, while the dislocation emission is a purely shear property,
which simplifies the physics. A later study will explore the Mode I configuration, where
the emission is at an angle to the cleavage plane.

In the next section, we write and extend the relevant elustic continuum equations
needed in the work to follow. In §3 we propose a physical picture which rationalizes the
properties of the interfacial crack in terms of an extension of the idea of a crack stability
diagram which was developed for cracks in homogeneous materials under mixed loads'®. In
§4 we explain our lattice calculation technique. In §5, we report our results, and compare
them with the elastic theory. Finally, we summarize the paper in §6.

2. Continuum Analysis.

We assume a crack lies on the z—axis, is centered at the origin, and extends from z = —a to
z = +a. In addition, we assume that the z-axis is also an interface between two different
semi-infinite elastic media bonded to each other across the z—axis. For such a crack, the
stress function written on the crack plane, 633(z) 4 i 0)3(z) = o(z}, can be obtained from
the analysis of Rice® and Rice and Sih?, for a §-function dipole force, F = F, +1iF; at
position z = ¢, —a < ¢ < +a,
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the center of the crack and y and v are the standard elastic constants. The complex stress
intensity, K = K + iKy, is slightly different from that defined by Rice® and Hutchinson,

etal®, and is defined here so that the stress on the crack plane near the tip has the limiting
value,
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Here r = z — a is the distance along the z—axis from the crack tip, and r < a. This
definition has the standard dimensions for a stress intensity factor in homogeneous fracture
mechanics.

The crack opening, &, behind the crack, again for | <€ @, is given by®
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The crack extension force, G, has the standard form*,
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where ' = p/(1 — v) in plane strain and #' = (1 + v} in plane stress.

To capture the central point characterizing the difference between interfacial fracture
and the homogeneous case, we note that Eq. (2) predicts & phase shift between the load
point and the stresses at the crack tip, so that tension at the load point rotates in the
complex plane into partial shear at the crack tip. For fracture in homogeneous media,
¢ = 1, while in interfacial fracture, { depends on the position, 1, and is singular at the tip.
(There are critical values for elastic mismatch when £ = 1 even in the case of interfaces,
however™.)

In the hexagonal lattice, Poisson's ratio is v = 1/4, and the shear modulus is given by
¢ = ¢\/3/4, where ¢ is the spring constant. Note that » is the same in both lattices, since
both have the same structure. Also, in the 2D simulations, we are strictly in the plane
stress limit. Thus the parameter, ¢, is given by
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In our application of these equations, the term cosh(we) is always very close to unity, and
will be so approximated, In the limit of very large spring constant ratios, € takes the value

im (€)= -21; 1n(11/8) = 0.125 . (6)
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Sinee oscillations in displacement can occur &t atomic distances from the crack tip only
when £ > 7/2, Eq. (3) predicts that our crack lengths must be (in the limiting case of
large cafcy) of order 2 x 10° for closure to occur, which is well beyond the capacity of
our computer. In spite of this, we will find relevant crack length effects are actually well
within our capacity to explore, and we shall be able to make significant comments about
the oscillations problem.

To this end, we need to generalize previous notions of the Griffith and dislocation
emission criteria for the interfacial case. In an earlier paper on the properties of a crack

3

[

o e s ez ol R

in & homogeneous 2D hexagonal lattice'®, we found that the Griffith condition was ap-
proximately independent of the Mode I1 load, except for pathological force laws with large
lattice trapping. We also found that for emission onto the cleavage plane (Mode 11 emis-
sion configuration), the criterion was approximately given by Rice’s unstable stacking fault
condition, written just for the Mode 11 portion of the load. That is, the two criteria for

the homogeneous lattice are
K. = V4I»"'T: (7)
Kire = \/2#")11 >

where 7, is the surface energy and Yu, is the unstable stacking fault. In the case of the
interfacial crack, we will take as our guiding principle that the physics of the processes
occuring in the core of the crack will be governed by the same local core structure and
stress conditions as in the homogeneous case. One might think that because the energy
release rate, §, is independent of the phase shift, {Eq. (4)), that the phases cancel out
of the problem. However, if we attempt to separate the real and imaginary portions of
the stress in the core region, in keeping with our physical requirements for cleavage and
emission in Eq. (7}, both of these criteria become garbled by the phase shift, £.

The problem from the elastic standpoint is additionally complicated by the fact that
there are two quite distinct and separate singularities at the tip of the interfacial crack.
One is the familiar 1/,/7, while the other is the singularity in £ as v — 0. The definition of
the complex interfacial K in Eq. (1) normalizes out both singularities in a mathematically
clean manner. Keeping in mind, however, that we wish to compare the elastic theory with
the lattice theory, we will instead introduce a core cut—off for the phase shift and normalize
the stress intensity factor to the phase at the cut-off distance, ro. Thus, following Gac®,
we define a new core stress intensity factor, k,

k=ki+iky=K e to
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where K is the externally applied interfacial complex stress intensity defined in Eq. (1).
With this form of the stress intensity factor, k; refers to tension stresses at the core,
and ks refers to shear stresses there. In terms of this core—normalized stress intensity
factor, we can then write postulated criteria for cleavage and dislocation emission, which
automatically contain the expected phase effects at the core, and which incorporate the
physical ideas which have proven to describe the critical events in homogeneous fracture.
That is, we postulate that the generalized Griffith cleavage condition should be given by
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where =, is the intrinsic interfacial surface energy and Gy, is a short hand for the square
of the Mode I stress intensity factor. Likewise the Rice criterion for emission in the Mode
II configuration should be given by

k2
Ile = Yus
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The core-normalized stress intensity factor has some of the same physical motivation
behind it as the more standard difference between the applied K and the local k at the
crack tip shielded by dislocations in the homogeneous lattice. For this reason, we shall
refer to it simply as the local k.

Grle =

3. Crack Closure and Lattice Stability.

The physical picture which results from the suggested modifications to the standard
«.astic theory made in the previous section is rather different from that which is now
current. But it has some features which have already been anticipated by Gao® and by
Achenbach, etal.'®. For reasons based on this picture, we believe the “oscillations” issue
is moot. Qur reasons are not the standard argument that when the crack closes, then
additional repulsive forces come into play to keep the material on opposite sides of the
cleavage plane from overlapping®. Instead, there are two interconnected core structure
effects which keep crack closure from ever oceurring.

The first is that the crack core must always be in tension, because the atoms there
must be pulled apart and physically separated in order for a crack to exist in the first place.
The separation of the atoms in the core in tension is therefore a necessary condition for
the existence of any atomically sharp crack, and is expressed quantitatively for the elastic
crack in terms of the local ky. in Eq. (9). The elastic prediction in Eq. {3) of a closure at
the core radius of the crack (at some critical value of crack length) comes about because,
in pure Mode I loading, £; — /2, and the tensile stresses in the core also disappear. That
is, the necessary condition for the existence of the crack is not satisfied.

The second crucial feature of the crack core is that as the shift angle, {o, increases
with growing crack length, eventually the lattice in the core breaks down in shear, and a
dislocation is formed when the emission criterion in terms of the local kyy, is met. Thus, as
a crack grows in length, it can never achieve the condition for closure oscillations, £y = r/2,
but emits dislocations before this can happen.

This state of affairs can be diagramed in a simple manner by appealing to the concept
of a crack stability diagram, which has been introduced for the crack in homogeneous
materials'®1%  The crack stability diagram is simply a graph of the locus of points in
kr/ky; space where the crack is in equilibrium. The diagram is an expression of the
equilibrium dictated by Eqs. (9), (10), with an effective core size for the particular lattice
and force law, and is shown in Fig. 2. Equilibrium, according to Eq. (9), is a vertical
line in terms of the k;/k;; axes, but our results in Ref (15), which will be confirmed for
the present case in the atomic results to be reported below, show that there is some small
curvature induced by k;;. The stability line is, however, limited by the emission points for
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positive and negative dislocations at critical values of k7;. In Fig. 2, we have drawn the
emission points as symmetric about the k; axis, a point of some significance in the atomic
results to be reported below.

The axes corresponding to the applied loading of the crack are those of K /K, rnd
these axes are rotated in the complex plane by the angle, &, relative to the &;/k;r axes,
as shown in the figure. The rotation angle is given by Eq. (8), where rg is an effective core
size, to be determined by the stomic calculations.

More explictly, the crack stability is diagramed, on the basis of this extended elastic
theory, from Eq. (9) as the Griffith line,

Kiccosfo— Krresinfo = 24/t p%s, (11)

limited by the emission points from Eq. (10),

Kirecoséy + Kiesindy = 1‘}2#‘,;‘_{7“3- (12)

Gao® proposed that the Mode II shear at the crack tip be cancelled by continuous
dislocation formation in the core region and subsequent shielding, leaving a pure Mode I
stresa at the crack tip. Under these conditions he showed that the displacement oscillations
would never occur, Our finding is that the shear is not automatically cancelled at the crack
tip, but that it is limited by the emission criterion. As explained above, as the phase shift
angle, £y increases with crack length, dislocation emission intervenes before oscillations can
occur at the point where £, — #/2. Thus, in contrast to Gao, we find that phase shifts
and shear stresses at the crack tip do occur, but are limited by the dislocation emission.

When dislocations are emitted, the shielding of the shear stresses at the crack tip will
be determined by the distance to the dislocations after emission, so that the mobility of
the dislocations becomes a factor in what ultimately happens at the crack tip, in addition
to the mechanics of the crack by itself. That is, the local k is determined by both crack
length and dislocation shielding. Dislocation shielding of interfacial cracks is a subject to
which we shall return in a subsequent paper.

Achenbach, etal.!® put a Barenblatt/Dugdale cohesive zone at the crack tip, and found
solutions with no closure region. The disappearance of the closure zone is apparently due
to the same physical reason that applies to us. That is, the crack is forced into Griffith
equilibrium by the Barenblatt condition.

Therefore, we can summarize by saying that the oscillations are like Alice's famous
Cheshire cat. The cat has gone (no oscillations), but the grin remains (stress phase shifts
are real, and they are important).

We now turn to the atomic calculations, and their comparison with the predictions
from the augmented elastic theory.

4. The 2D Hexagonal Model. :

Once the lattice Green's functions have been determined for the cracked lattice!?, our
crack modeling begins with the equation

u(l) = G(LI)F(I') + G(L {1}, (13)



where u(l) is the vector displacement of the lattice point at 1, and G(l,I'} is the Green's
function for the lattice field point, I, and source point, ¥. F(I') is the external vector force
dipole applied on the crack open surface at the lattice position I'. {That is, the force is
applied in opposite directions to atoms facing one another across the cleavage plane at
position I'.} f{I'} is the vector force functional acting on the lattice point I' due to the
nonlinear bonds connecting that atom to its neighbors,

In our case, as noted in the Introduction, the force will be assumed to be a simple
central pair force between nearest neighbors. We will use two forms of this force. The
first is that proposed by Rose, etal.!?, modified so that the force goes smoothly to zero at
the cut-off distance, which we take to be the next nearest neighbor distance. This force is

given by
=— —wfo _
f(u) 1 a (8 G) (14)
-(v3-1)/a

cu
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where the force is directed on the line between the two atoms, and u is the displacement
of the two atoms from their equilibrium radial distance from one another, c is the apring
constant, and « is the range of the force. The bond energy, U(u), of such a bond is

Uu) = —l—f-c-‘- (a(u + a)e_"’“ + guz) -~ Uy

ca _ . (15)
u_((f)(f_))

The bond strength is By = —ca?/(1 — a) ~ Uy = v,, where 7, is the surface energy. The
surface energy per lattice spacing is composed of two bonds for the hexagonal lattice (see
Fig. 1). Both of these equations, and all our subsequent work, are normalized in terms of
unit lattice spacing. In the following, we will standardize on a bond strength of Ej = 0.04¢,
which is the bond strength for Copper in the normalized units when ¢ = 1. The second
force law, again a nearest neighbor central pair force, is the Gaussian law,

flu) = —cue'/?
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Here, § is the range, and the bond strength is Ey = ¢f/2.

In all simulations, we will normalize the lower lattice to have spring constant ¢; = 1.
The upper spring constant is ¢z, and the interfacial spring constant connecting the two
lattices is ¢13. Since only the interface will be separated, we need to know the energy
function for the bonding between the two laitices, not the intra-lattice bonding. That
is, we assume the upper and lower lattices always remain in their linear regimes. This
assumption requires all the “action” to take place on the cleavage plane ahead of the
crack. So no branching of the crack and no dislocation emission off the cleavage plane is
allowed.

_— (,id

As noted in the Introduction, the system we start with is a super cell composed of
4 x 10° lattice points. When the interface is constructed along the horizontal z—axis, the
periodicity in the y—direction is lost, resulting in a slab of thickness 2000 lattice spacings
with ap interface running through its middle'?. The slab does, however, retain its period-
icity in the z—direction, with a period of 2000 Iattice spacings. We will perform simulations
of cracks of three nominal lengths, 2a = 181, 2a = 81 and 2a = 21, all with cohesive zones
extending ahead of the physical crack for an additional 20 atom pairs. Within the cohesive
zone, nonlinear cohesive forces act across the cleavage plane between the two sublattices.
That is, these cohesive forces close the crack to form & physical crack tip and core region.
The nominal lengths listed above will be corrected in actual cases for the position of the
physical crack tip within the cohesive zoue, in order to obtain the actual err *k length.
The long crack is still less than 10% of the super cell size, where we begin to pick up
corrections from interactions between cells (see below), and the short crack size is about
at the limit below which lattice effects could become significant, relative to the continuum
elastic predictions.

The simplest loading configuration is to load the free crack at its center, however, even
then the factor (a + £}/{a — t) in the continuum equations must be kept in mind, because
the actual crack tip is not at the start of the cohesive zone. (See below.)

A very important consideration in all our work will be the fact that we study equilib-
rium cracks. That is, the crack configuration will be in complete static equilibrium under
the action of the external loads, and the atomic bonding forces in the core region at its tip.
In the mechanics and elasticity settings, one speaks of Mode II or Mode III cracks, where
there is no opening load. Such cracks would not be in the static equilibrium we sssume
here. The physical requirement that the crack be in rigorous static equilibrium has crucial
consequencies for the conclusions we will draw,

5 Lattice Results.

5.1 The Transition Layer.

The lattice analogue of the pure abrupt interface is that where the bonds between
the two interfaces have the same spring constant as one of the two sublattices. However,
physically, there is no reason why the bonds between the two different atoms facing one
another across the interface should have the same properties as the bonds within either
of the sublattices. That is, one expects that a transition region between the two will
develop with its own interfacial characteristics. In our simulations, we can control the
interface bond independently of the sublattices, and we explored the effect of making the
interface spring constant the same as one sublattice or the other, and for the case where it
was midway between. We found only negligible differences of only s few percent in crack
properties for all cases, so we shall standardize on the following choice of spring constants,
unless noted otherwise: ¢; = 1, 5 = 2, ¢;7 = 1.5, where the subscript (1) refers to the lower
half crystal, (2) the upper, and {12} the interface bond. Because of the scaling properties
of the system, we shall always choose ¢; = 1, even when other choices are made for the
other constants.

Figure 3 shows the result of a simulation, using the above assumptions. It depicts only
the double row of atoms cn the cleavage plane in the cohesive zone (plus one). Specifically,
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the twenty pairs of atoms on the right in the figure represent the atoms facing one another
across the cleavage plane, to which bonds may be attached. The first atom pair on the left
is the first atom pair on the open crack to which bonds are never attached, and is plotted
to assure the reader that the solution is smoothly varying between the unattached atoms
of the open crack and the atoms of the cohesive zone where they may be attached, The
solid circles represent the normal atomic size, and the second circle about each atom shows
the range of the force, such that when the outer circles around two atoms do not overlap,
there is no force between the atoms. The shade of the inner circle indicates the magnitude
of the force exerted on the atom from atoms within its range across the cleavage plane.
Black indicates zero force; white, maximum force. We consider the crack tip to be at that
atom pair where the force is maximum. Thus, the physical crack tip shown is not the
first atom pair in the cohesive zone, but the second {i.e. the third atom pair from the left
because the first pair is outside the cohesive zone). In all our results, we shall compute
the actual crack length by taking account of exactly where the physical crack tip is, but
we will often refer to a nominal crack length, which is simply the length of the total crack
less the cohesive zone. Labels on the figure give the various crack parameters.

5.2 Mode Phase Shifts in the Core.

The phase shift, £ of Eq. (8), is the most critical property of the interface crack, and
we begin our study of the atomic details by exploring how & can be defined in terms of
a shear-neutralized core. From this exploration, a first definition of the effective core size
follows.

Figure 4 is a graph of the relative shear displacements between corresponding atoms
on the upper and lower cleavage plane in the cohesive zone (plus one); i.e. the curve is
plotted from the atom positions displayed in Fig. 3. Two cases are shown. One is for pure
Mode I loading, and the second is for the neutralizing Mode 1I load which as closely as
possible cancels the shear load at the first atom in the core. We can calculate the predicted
alue for this eritical neutralizing load from the elastic continuum equations, by setting
the imaginary part of Eq. {8) to zero, i.e. k;; = 0. Under this condition, the predicted
value of the ratio of Mode 1l to Mode I loads, is given by

1 anty = tan (eln(rg /2.:)). (17)
Fr
In this equation, we have neglected the small terms which come from the phase effects in
the factor in ({2 + £)/(a ~1))* in the definition of K in Eq. (1). In our simulations, ¢ is
small enough that the approximation in Eq. (17) is excellent. We display the results in
Table 1 for & nominel crack length of 2¢ = 181. Columns 3 and 4 show the observed load
values, and column 5 shows the load ratios. In column 6, we use Eq. (17} (and Eq. (8))
to calculate the values of ry which fit the observed load ratios. The computed core sizes
are much smaller than the physical core size, showing that the observed mode shifts in
the core are much larger than expected. {Although the effective core size for the modified
UBER is nearly half a lattice spacing, the actual physical size of the core in that case is
several lattice spacings.)

From the table, there exists a significant difference between the lattice results and the
continuum predictions, with the lattice showing much larger mode converted shear at the
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tip than predicted by the continuum analysis. We naote that the two different force laws
also yield different results, and return to this point in a following paragraph.

TABLE 1
Neutral Core

2a =181 efb1 =2 ¢2f/k1 =15 a=0.1867 4 =0.05333 =004

en €3 Fy Fiy FrfFy ry
Gaussian 1.5 2.0 6.0 -1.70 0.2833 0.182
UBER 1.5 2.0 6.1 -1.45 0.238 0.535

The dependence of the shear on distance from the tip is also available from Fig. 4.
It visibly decreases with distance from the tip as predicted, but most of that dependence
is from the 1/4/r in Eq. (2). In Fig. 5 we show the elastic values of the shear ahead
of the crack from Eq. (1} and compare them with the computed results, both for pure
Mode I loading. We have been careful in Fig. 5 to use the elastic shear predictions for
the finite crack, because the finite crack stress for distances of 20 or more lattice spacings
from the tip differ significantly from the asymptotic results of Eq. (2). The figure shows
that the stresses in the core are two to three times those predicted by elasticity, but
that the atomic crack values approach the elastic shear values quite accurately at large
distances from the core. {We have determined that at the end of the cohesive zone the
ratio between the predicted and computed shear stress is 0.9, which is excellent asymptoiic
agreement at that distance.) Parenthetically, this asymptotic agreement between predicted
and computed stresses on the cleavage plane means that the continuum K concept is well
preserved in the lattice. In these graphs, the elastic crack tip was taken to be the first aton.
pair where the force is non zero—not the atom pair of highest force. There is thus a shift
of the effective elastic crack tip from the tip one would pick on physical grounds. We note
here that the large stresses in the core are propagated well outside the actua! nonlinear
core region into the linear region. At first glance, these large stresses are surprising, as one
expects the elastic core to have larger stresses than the nonlinear core. One can interpret
these resulta in the following way. Suppose we enclose the elastic singularity with an inner
circle on which stresses from the actual atomic core are exerted. In the elastic problem with
such an internal surface surrounding the core, there will be additional terms of order r—3/2
in the Laurent expansion of the elastic potentials for the crack. The actual core is found to
be considerably broader than the elastic core, and throughout this core, the atomic forces
are near their maximum value. Thus, the stresses at the inner circle are larger than the
normal elastic crack solution there, but the elastic stress distribution asymptotically decays
to the dominant K—field solution relatively quickly, once the linear region is reached.

The small &, and related large predicted phase shifi in the core have a physical
explanation in terms of the nonlinear forces of the core. These nonlinear forces lead to
a more compliant core region than predicted by linear elasticity. Thus, for a given stress
level in the core, the shear strain is larger than expected, which in turn leads to a larger
core shear strain. Finally, the large core strain is then parametrized in the elastic theory
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as a small core elastic cutoff parameter, £g.

The shear in the core is also a function of the total crack length, as predicted in Eq.
(8). We have explored this functionality, first, in an extreme case, where a large difference
exists between the two sub lattices, i.e. ¢; = 1.0, €3 = 1.0, ¢ = 100.0, in order to explore
the maximum phase angle dependence in the function, o2z + 1013, at the crack tip. We
show the equilibrium configuration for this case in Fig. 6a for pure Mode I loading, with
nominal crack length 2a = 21. The figure shows that the atoms on the top layer (part

‘of the stiff sublattice) are not strained, and that all the strain is in the soft layer on the
bottom. The shear now is quite large in the core—in fact, near to lattice breakdown. As
the crack length is increased, the core of the crack does break down, and when nominal
crack length, 2¢ = 101, a dislocation is produced on the cleavage plane, Fig. 6b. We
will explore dislocation effects, per se, in the next section. Here, we simply note that the
lattice is not able to sustain the shear at the crack tip which the mixing of modes st the
crack tip produces, even when the load is pure Mode I One would like to compare the
neutralization shear load for this case, as we did earlier, but the atomic configurations in
the core are not so easily interpreted for the extreme mismatch case. The shear varies
rapidly, and with the added complexity of the nonlinearity, we are not ahle to determine
a unique neutralized state.

The quantitative exploration of the crack length dependence is more easily determined
for the modest mismatch case where ¢z = 2 and ¢12 = 1.5. In Fig. 7, we show plots of the
neutralizing ratio, Fr;/F; for three nominal lengths of crack, from 2a = 21 to 2a = 181.
We also plot curves of Eq. {17) with rp picked to make the curve go through the long
crack values. The values of core size to provide a fit in each case were drawn from Table
I: Gaussian, rg = 0.182 and UBER, ry = 0.535.

In both cases, the fit is surprisingly good for the two longer cracks. The short crack
result is expected to deviate from the elastic case, and does so in & reasonable direction.
The smaller effective core size for the Gaussian law is also expected, because it is shorter
range, and gives rise to a smaller physical core size, as well.

In summary, the lattice results show that the qualitative elastic prediction of & mode
shift in the core is correct, but the effective core size to achieve numerical correspondence
between atomic and elastic results is about an order of magnitude less than the physical
core size. The asymptotic form of the phase shift as a function of the distance from the
crack tip (Fig. 5}, and as a function of crack length (Fig. 7) both conform with the elastic
predictions.

5.3 Griffith Criterion Under Mixed Mode Loads.

Our results for the Griffith criterion are displayed in Table I1. The first two columns
give the model parameters for the loads. Gy is calculated from Eqs. (8) and (9) with the
effective values of the core size, ro, taken from Table I for the two different force laws. The
surface energy is v, = E;. In the last column, we present the total classic crack extension
force, G, as given in Eq. {4). Values are given for the neutral point, the pure Mode I load
point, and for the extreme values of Fy; where the lattice breaks down. Lattice trapping
is significant for the Gaussian force law, but not for the Modified UBER. For this reason,
we have two rows for the neutral point for the Gaussian, for the upper and lower trapping
points. The trapping at the extreme values for Fi; disappears, so only one set of values
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for Max Fy; and Min Fi; are given. For the Modified UBER, the difference in upper and
Jower k;. was about 1%, and is neglected. A perusal of the results shows that there is a
marked shift of the loads for the critical Griffith state, and that the addition of positive
Fy; increases the Fy required for cleavage, For negative Fyj, the result is the opposite.
Thus, qualitatively, the phase shifts at the crack tip are in the right direction as predicted
by the continuum elastic results. However, there are very interesting quantitative features.

First, the values for G in the last column are intriguing. The classical fracture me-
chanics argument is that § should be constant, and equal to the surface energy. The actual
values at equilibrium are not constant, and show a minimum in the vicinity of the neutral
point.

Our proposal to associate the Griffith relation with the properties of the tension load
at the core, and with ky., appears to fare rather well, though with some deviation from
» simple application of Eq. (9). ¢rc basa maximum value in the vicinity of the neutral
load, and is equal at that point to the value of total G. Gye significantly deviates from its
maximum value, however, when shear stresses are present in the core. This behavior is
exactly what we found in the lattice studies for the homogeneous lattice'®. In that case,
also, we found that the crack stability line was curved, with a maximum value of k;. for
pure Mode L.

The Griffith value for the neutral point is roughly 15% above the theoretical neutral
point and the critical values of k;. are too high by about 7%. The reason for this is that
the crack length is beginning to get beyond the infinite approximation which we have used.
That is, the crack is beginning to interact with the free surfaces, and the other cells. When
we decrease the crack size to 81 from 181, the Griffith prediction for ¢, comes to within
shout 6% of the theoretical infinite crack result. Knowing this, we continue to give results
for the long crack, but the reader is cautioned that predictions for critical values of k are
going to be high by about 7% in all cases.

TABLE II
Criffith Relation Under Mixed Mode Loading.

26 =181 c3=2 cz=15 a=0187 F=005333 e= 0.04

F Frr Gre 2y, g
Gaussian Force Law, rp = 0.182 § = 0.2761
Max Fir 6.20 +2.50 0.0645 0.08 0.104
Min Fyj 4.40 -4.65 0.0702 0.08 0.0951
Neutra! Load* 6.50 -1,70 0.105 0.08 0.105
Neutral Load™ 5.60 -1.70 0.0795 0.08 0.0794
Mode 1 Load 6.2 0.0 0.0825 0.08 0.0892
UBER Force Law. rp = 0.535 £ = 0.2333
Max Fi; 6.20 +1.70 0.0738 0.08 0.0959
Min Fy; 4,95 -3.85 0.0756 0.08 0.0912
12



Neutral Load 6.1 -1.45
Mode I Load 6.2 0.0

0.0912
0.0843

0.08
0.08

0.0912
0.0892

We associate k;. with the necessary condition for existence of an equilibrium crack!%:16,
and the total G with the energy absorbed when a such a crack moves during a state of
mixed load. The fact that § is a minimum at the neutral point shows that energy con-
servation is satisfied in such a picture. If a crack under mixed load in the core satisfies
the equilibrium condition, then it will accelerate under the excess driving force supplied
by G. That is, such a crack would accelerate to high apeed #s soon as it is created. (In
our computer simulations, we load under a decreasing K configuration, so this unstable
run-away condition does not occur, even when lattice trapping is small.)

5.4 Dislocation Emission and a Second Definition of £o

We have already mentioned dislocation formation on the cleavage plane in terms of
the lattice breakdown limius for the Mode II shear in the core. This emission is depicted
in Fig. 8 for both positive and negative dislocations. The figure shows the critical point
just before the dislocation is emitted, and indicates both Mode I and Mode II loads for
these critical values. The simulations are shown for the modified UBER force law, with
the standard parameters used earlier.

We will interpret these results on the basis of Rice’s unstable stacking fault criterion'*,
Eq. (10). Based on this idea, the emission ctiterion expressed in terms of the local core
k11 should be symmetric abont zero, because of the symmetry in the unstable stacking
fault itself, for this lattice. In the homogeneous lattice!®, we did, in fact, observe strict
symmetry relative to positive and negative dislocation emission, However, if we use the
definition of £; defined in §5.2, which was successful in explaining the Griffith condition
in §5.3, we would find an asymmetric emission condition in the focal stress intensity axes.
That is, kg;. for positive disloction emission would not be the same as k;;. for negative
emission. This result implies that the choice of o may be incorrect, and this suggestion
is confirmed by the physical results in Fig. 8 that the core of the crack just before shear
breakdown is considerably different, and larger than the neutrat core of §5.2. That is, the
dislocation etnission criterion must be specified in terms of a different effective core size
than that which charaterizes the neutral core. Thus, in this section we define s second
€o and effective core size, such that the dislocation emission is symmetric in the local
stress intensity factors.(The reader is reminded that the midpoint of the range between
the emission of the positive and the negative dislocation is not a neutral core, Thus, the
physics of the emission process, in this respect, is not what one would expect, a priori.)

TABLE III
Dislocation Emission.
22=181 c&fe1 =2 cipfer =15 o =0.1867 §=0.05333 €= 0.04

Fi. Fyy. o ro

Gaussian Force Law.

k[le g“’e Tus
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N
Max Fire  6.20 4250  0.200 +1.22 0217 0.0328  0.0363
Min Fyg. 4.40 -4.65 0.200 -1.22 0.217 0.0328 0.0363
UBER Force Law.
Max Fyj, 6.20 +1.70 0.191 1.55 +0.168 (3.0195 0.0221
Min Fy;, 4.95 -3.85 0.191 1.55 -0.168 0.0195 0.0221

Our results are shown in Table III, with some of the same parameters already displayed
in Table IL. The first two columns correspond to load values at the maximum and minimum
points. The third and fourth columns give the new values of o and ry for emission as
discussed above. The remaining columns give the derived kije, Grre, and the relaxed
Yue''® for the interface. Specifically, the 7., calculation is performed by shearing two
blocks of material past one another (relaxed in the teusile direction), with force laws
corresponding to the interfacial bonds.

The results of the table show that the Rice criterion for emission is satisfied at roughly
the 10% level—a remarkably accurate prediction, in our opinion. The fact that the atomic
results are somewhat lower than the prediction is probably not significant.

It is disappointing that the core size is not & unique quantity for the crack problem,
but the atomic results show clearly that the structure of the core changes with the amount
of shear present, and that the size is larger near lattice breakdown than near the neutral
point. Compare Figs. 3 and 8. In view of this physical result, it is expected that the
effective core sizes should also be significantly different.

The core sizes and structure also depend on the form of the force law, as one would
expect. The fact that the atomic emission criteria track quite accurately the very different
values of the unstable stacking fault for the two different force laws is very satisfying.

The discussion in this section has focussed on the physics of the crack core. From
the more phenomenological and macroscopic point of view of the applied loads and the
K picture, we see that as the crack grows in length under pure mode ! load, it becomes
increasingly easy to emit positive dislocations, more difficult to emit negative dislocations,
and at a critical length, spontaneous positive dislocation emission begins to take place.

8. Conclusions.

By exiending the elastic equations in physically reasonable ways, we find that a simple
picture of interfacial cracking can be constructed which is consistent with lattice calcula-
tiona carried out with an interface in a hexagonal lattice. This physical situation can be
graphically displayed in a crack stability diagram with two sets of K-space axes. One set
of axes is the stress intensity localized at the crack core, and the other set is the applied
stress intensity. The stability of the crack is determined by the local stress intensity, and
the load point axes are rotated relative to the former by the angle, &.

The Griffith conditien in terms of the local core stress intensity factor, k;., and the
effective core size is satisfied when account is taken of the finite cell size of the system.
There is a small dependence on Mode 11, as in the homogeneous lattice case, but this Mode

I1 dependence is not the quadratic dependence given by the standard continuum mechanics
total G in Eq. (4)'%,
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The unstable stacking fault criterion for dislocation emission is not satisfied with the
effective core size computed from the neutral point in the core, because the emission is
not symmetric about zero ki If a different effective core size is defined such that the
emission is symmetric, then the unstable stacking fault criterion for emission is satisfied
surprisingly closely.

The picture presented here in terms of the crack stability diagram is appealing in
its physical simplicity, and, furthermore, the quantitative aspects of interfacial fracture
can be parametrized by the lattice theory. However, the core size of the crack is not &
unique quantity, but depends cn the amount of shear in the core. This physical result is
also reflected in two effective core sizes in our work-——one for the description of the shear
distribution near the neutral point and another for dislocation emission when the core
breaks down in shear. Both definitions of effective core size yield values which are smaller
than the physical core, and the first definition is about an otder of magnitude less. These
small effective core sizes mean that the mode shift for the physical crack is much larger
than one would expect on the basis of the linear elastic theory.

Thus for any specific material, and for a specific core-sensitive process, the effective
core size must be determined by considerations which lie beyond linear elasticity.

We therefore believe that it would be a very useful excercise to return to the more
sophisticated continuum models of crack/dislocation structure typified by the approach of
Achenbach, etal'® for the pure interfacial crack and of Beltz and Rice!” and Anderson,
etal!® for the dislocation emission problem. In these more extended elastic approaches, it
might be possible to get a semi-quantitative understanding of the large phase shifts we
have found in the lattice modeling.
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Figures

Fig. 1. Crack configuration in the hexagonal lattice used in the atomic simulations.
The orgin is at the center of the crack. The lower lattice is connected by springs of strength
¢; and the upper lattice is connected by springs of strength c;. The springs between the
upper and lower lattices have springs of spring constant c12. The right side has cohesive
forces turned on in B “cohesive zone” in the tip region. The nonlinear bonds are shown as
wavy lines. The load is shown as a force dipole acting at the center of the physical crack
(i.e. original crack minus cohesive zone).

Fig. 2. Interfacial crack stability diagram. The crack stability is determined by
the Griffith relation for the crack in the lattice, limited by the points where dislocation
emission occurs. The upper limit is for positive dislocation emission, and the lower for
negative emission. These criteria and limits are determined in terms of the local stress
intensity axes, k;/k;;. The load point stress intensity axes, K,/Kj; are rotated by the
angle, £y, relative to the local axes.

Fig. 3. Configuration of the atoms in the cohesive zone of a erack in equilibrium under
the action of its bonding forces {modified UBER potential) near the tip with a pure tensile
load, F; = 6.2, exerted at the center of the crack. This crack has an open cleavage length of
& total of 181 atom pairs extending to the left of the atoms displayed in the figure. The last
atom pair of this open cleavage plane is the first pair shown on the left. The remaining
20 atom pairs shown are those in the cohesive zone whose bonding forces are switched
on, and will form bonds whenever the distance between any two atoms facing one another
across the cleavage plane is within range. The shade of gray depicts the magnitude of force
on an atom exerted by atoms across the cleavage plane. Black corresponds to zero force;
white to maximum force. The solid circle represents the radius of the atom (equilibrium
interatomic distance), and the second open circle about an atom gives the range of the
force law (second neighbor distance). The configuration shown indicates a self consistent
solution in that the first atom pair, whose bond forces are always turned off are not within
force range of any atoms across the cleavage plane. The atom pair defined to be the tip of
the crack is that where the force is greatest.

Fig. 4. a) Plot of the relative shear across the cleavage plane for the configuratic n of
Fig. 3, for pure Mode I load F = 6.20. The nominal crack length is given by 2a = 81,
€12 = 1.5, ca = 2, and the force law is the modified UBER with o = 0.1867. b) shows the
same case with the Fy = 6.1 and a neutralizing Mode II load, Fy; = —1.45. The Mode I
load had to be modified, in order to achieve the same general core configuration for the
equilibrium crack.

Fig. 5. Plots of the shear and tension siresses across the cleavage plane for the
crack of Fig. 4a. (Modified UBER potential.) 8) The shear stress, computed from the
x-component, of force transmitted across the cleavage plane for an atom pair, is plotted
(dashed line) as a function of the distance from the start of the cohesive zone. We averaged
the x—component force for each atom of a pair to obtain the stress. Using the computed
k values, the finite crack stress from Eq. (1) is plotted as & full line for comparison. b)
A similar plot is shown for the normal tension component of the force transmitted across
the cleavage plane. Again, the lattice values approach the full elastic line, asymptotically.
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Fig. 6. High mismatch configuration in Mode . {a) The nominal crack length is only
2a = 21, with mismatch ratio ¢; = 100, ¢;3 = 1.0, and modified UBER force law with
a = 272 and E, = 0.04, and yet the equilibrium crack has almost sufficient shear stress
in the core to cause lattice shear breakdown and dislocation formation. (b) For 2a = 101,
the crack breaks down with dislocation emission.

Fig. 7. Crack length dependence of shear phase angle. Curves are shown for the
shear neutralizing ratio Fy;/Fy, as a function of total nominal crack length, 2a. Curves
are drawn separately for the two force laws. We have also plotted logarithmic functions as
predicted by Eq. (8} to fit the points at 2a = 181, from which an effective crack core size
can bhe determined. Crack sizes simulated were for 2a = 21,2q = 81, 2a = 181,

Fig. 8. Critical configurations for emission of (a) positive and (b) negative dislocations
from an interfacial crack. Crack parameters are given in Table III.
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