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I. MC - MD techniques



Introduction

Realizing the connexion between microscopic and macroscopic properties of matter is an
ambition common to several areas in Physics and in Materials Science. The efforts made in recent
years in this context rely on the use of digital computers and the associated nurmerical techniques
developed by early work [1-5] are often referred to as simulation techniques. Two types of physical
problems are generally handled using simulations: (a) these being by essence probabilistic, due to
our partiat knowledge of initial conditions or of the mechanisms involved in the process e.g. die
games, gallups, population statistical studies and (b) these requiring an estimation of a physical
property for systems with a large number of degrees of freedom but having a purely deterministic
evolution. Although the term simulation is better adapted to the first class of problems it is also
used for the second class 10 which belong all the questions we focus on in what follows.

Central questions in Materials Science arise from the need of determining thermodynamical
properties of perfect and defected systems as well as temperature dependent structural properties
(e.g. phase transitions) and the temporal evolution of equilibrium processes (e.g. diffusion
mechanisms). Equilibrium properties for a system with given atomic interactions are obtained from
statistical thermodynamics in the form of many dimensional integrals over the phase space of the
considered system [6). Since the numerical estimation of such integrals requires a rapidly diverging
computational effort [7], simulation techniques i.e. Molecular dynamics andfor Monte Carlo are
used to this purpose. These techniques have been employed by many groups to establish the
connection between micro and macro “worlds™. Their successful application is related to the fact

that small system properties, comparible with the limited amount of available computer memory,
converge rapidly to their thermodynamical fimit values.

Monte Carlo technique
Trough an adequate variable
transformation, any integral can in

principle be put in the following
form :
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figure. A Monte Carlo estimation - X

of, A, proceeds as follows: 0 1
Let us define the random variables X and Y, uniformly distributed over the interval [0,1] and
Z such as, Z=1if Y<f(X) and Z=0 otherwise. The probability for having Z=1 is simply given by :

A
PZ=1)=P(Y <f(X))= -~
Ix|

For any trial providing a random couple of values (X,Y), p=A and g=1-A are respectively the

chances of succes (Z=1) and failure (Z=0). Z is therefore 2 Bernoulli variable with a binomial
distribution of mean, p=A and variance, G2=A(1-A)

n
o={"pa
X

where, 1, is the total number of trials and, x, the number of successful events (Z=1). By defining:
_ N
=3z,
k=1

according to Khinchine’s theorem, Z{N) converges toward a normaly distributed variable with
mean:

N
BZON) = < D E(Z,) =E(Z,) = A
k=1

and variance:
o= var(Z,) _A(1-A)
N N

On the other hand, the distribution function of Z(N) is given by:

VN N[ z(Nyj—a Y
w0~ gy, z(—_m}}

Let us now estimate the number of trials needed 1o estimate Z(N), with a given error, e=IZ(N) -Al
We have:

b 2
P[IRNi s ?‘] = ﬁ ICXP("%&}RN where Ry = {NM
Y

VA(1-A)

and for A=2 one finds P[IRNIS A] = 0.95. Solving then the equation IRnI=2 we obtain:
4
N=—A(l-A)
E

which leads to N=105 trials if, £=0.001 and A=0.5. The large value of N thereby obtained, explains

why a computer is needed to generate the random variables defined above and to estimate the
numerical value of the integral.



The above integral calculation can be of course much more efficiently achieved using
standard numetical techniques (e.g. Simpson, Gauss...). However, when dealing with multi-
dimensional integrals the computational effort of such methods rises rapidly and the integration is
no more feasible. As an example let us consider an integral with 300 variables : if ten values are
used for each variable, 10300 evaluations of the integrand are needed, a number which obviously
exceeds the capabilities of any existing or futur human computing device. This is the problem
encountered when thermodynamical properties are needed for a system of N2100 particles which is
being solved using the Monte Carlo technique.

In the example given above, Y
the definitton interval of the
integrand is sampled uniformly.
However, if f{X) is a complicated
function as the one schematically
drawn in the figure, it appears
preferable to sample more often X
values for which f(X) values are
large. Importance sampling allows

the function evaluation to be - X
concentrated in regions of its defini- 0 1
tion space that make important contributions to the integral, The sampling distribution, f1(x), should

follow as close as possible the variations of f{X). In this case we have:

i

1 1
f(X) (f ) 1 f(X)
I= | f(X)dX =|| —— r(X)dX d El—|==)|—
-([ X '([[n()()]“( ) & .4 NE (X))
Let us now consider the computation of thermodynamical averages in the canonical ensemble

(NVT). The average value of a given microscopic observable, A(rN), is defined by [8]:

<A = IA(rN)exp(—ﬂU(fN))di
e IexP(—BU(rn))dfw

where, U(ry), is the potential energy function of the considered system. A Monte Carlo evaluation
of the integral can be made by sampling configurations from a chosen distribution, p,
<A>NYT=<APNVT/P>uials In the case of functions, A(rN), varying in the same way as pNvT,
p=pNvT, Will provide a good estimate of the integral. Among existing methods corresponding to
such a choice [8], the most widely used is the one devised by Metropolis et al. [9]. However, not all
of the thermodynamical quantities can be estimated using impottance sampling. An example is
provided by the Helmoltz free energy, F=-kg TInQNvT, requiring the evaluation of the integral:

Zowr = [exp(-BU(r))dry

Consider the identity:

N

J-{ exp(—PU(r, )dr,

A
U(r, Ndry, =
exp(-BUL )i, ]exp(ﬁ T

NVT
we then obtain:

WS
zZ. =
e '[war exp(BU (r, ndry

The evaluation of the denominator, <exp(bU{rn))>, using Metropolis scheme will obviously fail
since when the integrand, exp{fU(rn)), reaches increasingly significant values the sampling
efficiency decreases due to the shape of the distribution, pyyr. Therefore, cornputations of the free

energy require special procedures [10].
Molecular dynamics

An alternative way of sampling the phase space of an N-particle model system, consists in
time-integrating the 3N coupled newtonian equations of motion [5]. This is achieved numerically
using finite differences schemes one of the most popular being the central difference or Verlet
algorithm [4]:

rt+6t)= 2’;(!)“?’;([-5{)4'&(—[)‘61'1 +0(8") and v,(1) =
m.

r{r+ 6:)2—5:(:— br) L 06
where, rj, vi and F|, are respectively the positions, velocity and force referring to particte i. The
solution of these discretized equations requires initial conditions to be specified, usually provided
by the set of positions corresponding 1o the cristalline state of the considered system and a set of
velocities sampled from a maxwelian distribution at a temperature 1wice as large as the target,
thermodynamical equilibrium temperature. For simulated temperatures lower than twice the
melting point temperature of the cristal, the integration of the above equations is performed using a
time step in the interval, &t £ [10-15,10-14], values corresponding 10 a fraction of the inverse
maximum vibrational frequency in the phonon spectrum of the considered material.

In absence of external forces, the simulation reproduces the microcanonical ensemble
distribution of states, (NVE), this implying that 1otal energy and translational velocity should
remain constant. The conservation of these quantities during a simulation run testifies for the
correct choice of the time step and serves as a test 10 detect program errors.

The above MD technique has been extended 10 allow for simulations at constant termperature
[11], pressure [12] and stress tenser 13} Thus, (NVT), (NPT), (NPH) or (NET) MD simulation
techniques are by now available which permitied the siudy of thermodynamical phase transitions
[13]).



Comparison MC vs. M{)

The estimation of thermodynaniical quantities for a given model system obtained using
Molecular Dynamics and Mente Carlo should iead in principle to identical results, provided the
system under study is ergadic. This is illustrated by Fig. 1 where the potential energy of an n-body
model for capper | 141, at T=1000 K, 15 displayed as a function of MD steps / MC moves. Canonical

MD has been used to allow for this comparison to be made [1].
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Figure 1 - Potential energy of a N=256 particles model of copper as a function of time steps
(canonical MD) or Monte Carlo moves at T=1000 K. Both techniques lead to the same average

values.

MD or MC 7 is an important question stemming first from relative efficiency considerations
of the two methods used in calculations of thermodynamical averages. Usually, MC requires the
computation of potential energy differences only. Thus, MC is faster than MD since potential
derivatives are not evaluated. However, such a conclusion is not valid when the studied problem
involves the compu'ation of stress tensor values. Mareover, the relative efficiency of the two
techniques should be estimated at constant variance for the given quantity of interest. It is not clear
that MC still preserves a clear advantuge over MD in this framework.

In conclusion, MD is used when time dependent quantities are needed e. g. time cormrelation
functions, phase transition or diffusion mechanisms, whereas MC is employed in all other cases, It
is also worth to mention that when diffusion dependent phase transitions are simulated, e.g. order-
disorder transitions in alloys {15], MC is better adapted than MD in view of an efficient sampling
of the phase space to he performed. Indeed, due to the time scale of diffusion events such a

transition may never be observed during an MD simulation [15].

Potennials

The potential is a crucial ingredient of simulations since it determines the stability of the
crystalline structure and more generally the properties of the studied system. Before the last decade
empirical, pair additive potentials have been used in computer simulations. However, these are not
adapted to real materials, €. g. metals, alloys, where n-body effects are of decisive importance.
Indeed, pair potentials fail to correctly reproduce surface and butk dynamical properties [14,16],
defect energetics [17] and melting temperatures [14]. Thus, pair potentials are by now used only in
generic purpose studies, devoted to the validation of theoretical models, or in special cases such as
rare gases and ionic materials where empirical, pair additive potentials (Lennard-Jones (12-6), rigid
ion, shell model) still provide a satisfactory description of the real material properties.

The most promising solution for simulations of real material properties are, beyond any
doubt, ‘ab-initio’ methods combining MD or MC techniques and a simultaneous evaluation of
energy and forces from first principles. Many variants relying on such an approach have been
proposed and tested in recent years [5] among which the first was a combination of MD and density
functional theory due to Car and Parrinello [18]. Despite recent developments, such techniques
require heavy computations and therefore only small size systems (typically N=100) are currently
studied. Since simulations in materials science often imply the use of large systems (N=104.107),
semi-empirical techniques based on the embedded atome method (EAM) [19] or the tight binding
{TB) approximation for transition metals [20-22] became popular. These provide n-body potentials
that have been widely used to the study of properties of metals and alloys.

Among these potentials, those based on the second moment approximation of the tight
binding scheme are the simplest and contain only few adjustable parameters. Thus additional
information is given below on this type of n-body poteatials, particularly well adapted to the case of
transition metals and their alloys,

The cohesive properties of transition metals stem from the large d-electron band density of

states. Early work has shown that several properties are determined by the eftective d-band width,
not on the details of the density of states [20]. Accordingly, the band energy can be written in the

E} = —a{;exp[_zq(;u_ ,H}uz

where, &, is an effective hopping integral, 1jj. the distance between sites i and j and d, is usually

foltowing form:

taken equal to the first neighbors distance. The stability of the system requires also the addition of a
repulsive term, often chosen as a Born-Mayer pairwise interaction [17,20]. Thus the total cohesive

energy of such a system is given by:

w3 {Ze o )]



The parameters A, &, p and g, ure determined by a multidimensional fit of the above formula
to the cohesive energy, the elastic constants and the equilibrium equation of the material of interest.
Many different minimization techniques are available in the literature but one among the most
flexible and well adapted to this type of fit is the MERLIN portable minimization system [23]. In
addition to the above adjustable parameters, the use of such a potential for MD/MC simulations
requires also the introduction of a cutoff radius for the interactions which acts &s an additional
parameter,

As it can be seen from the above given expression, this potential is not of the kind “additive
pairs” due to the presence of the square root functional. The n-body feature is however better
understood upon examination of the force expression:

iei

zexp[-Zq(i - 1)] l'u
F=-VE= '%ZAC*P[—P(%—IHE’—+ 59 = a IR

The force on a given atom does not depend only on interactions with neighbors but also on the
neighbor environment as is indicated by the last term in the above equation.

TB potentials provided results in excellent agreement with experimental data for bulk
[14,17,24] as well as for surface properties [14,16,17]. Moreover, they reproduce satisfactorily the

propenties of transition metal alloys [15, 25] and, rather unexpectedly, those of noble metals
[15,17].

Limirations
Atomistic simulations suffer from several limizations the causes of which ure:

» Potential imperfections
» Time scale

+ Space scale

These influence seriously the quality of the results and have 10 be seriously examined in order to
guarantee the validity of the simulation. Potential imperfections are peculiar 1o the model of
cohesive energy that is used and are in principle well known. Their consequences have to be
established in detail by comparing simulation tesults and experimental data e. g. melting point,
defect formation enegy, surface relaxations... No perfect model is available and therefore, although
sometimes simulations lead to very realistic resufts, the conclusion still have a more or less
pronounced generic character.

As has been already mentioned above, the time step in MD simulations is chosen equal to a
fraction of the inverse maximum vibrational frequency in the cristalline siate of the studied
material. Given the performances of nowadays computers, the maximum number of iterations for
the integration of the equations of motion equals 107 or, equvalently, the real time duration of the
simulation amounts, 8T=1 ns. Thus, phenomena having relaxation times larger than this limit
cannot be studied using MD. An example is provided by diffusion processes involving complex
defects or the emission in the bulk of point defects from sources such as surfaces, grain boundaries
or dislocations. The vibrational properties of the simulated system are also affected since the
propagation of phonons cannot be studied when their frequency is lower than a critical cutoff
related to the above limit. Finally, phase transitions implying bulk diffusion may not be observed in
MD sirnulations, even if the model includes surfaces or other possible sources of point defects. This
limitation can be bypassed using instead MC simulations where the result of diffusion, i. e. the
exchange of atoms, can be incorporated in the Markov chain | 15].

The spatial scale is an additional limitation which interferes with the time scale problem.
Indeed, the larger is the simulated system, the larges is the CPU time per MD step/MC move. The
real time duration of the computer “experiment” in M or the statistical accuracy in MC are greatly
affected by the system size. Given that there is no mean 1o simulate a physica! system containing a
number of atoms of the order of Avogadro number, periodic boundary conditions (PBC) are asually
employed to avoid surface effects. The latter are known to affect the phase diagram of small
systems with respect to the bulk [26]. However, in a system with fixed linear dimensions, L, and
PBC, a cutoff is introduced in the phonon dispersion since no vibrations corresponding 1o a wave
length, A=Amax=L can propagate in the simulation box. Similarly, collective displacements of atoms
may be artifacts rising from unphysical interactions between the simulation box and its periodic
images. As a consequence of the above remarks, the mean square disptacements (MSD) of atoms

are size dependent and convergence 1o the thermodynamical limit vilues appears only for systems



containing, N>2000 pacticles {17] 1tis worth to emphasize on this result since MSD are often used
in validations of potential models by compitring them 1o experimental values obtained from neutron
scattering. Such comparisons intend to establish that the potential is well behaved ar temperatures
different from T=0 K and that the expected melting point of the mode! is not very different from the
expernimental value.

In the specific case of grain boundaries, PBC impose the presence in the simulation box of
two defects being one the mirror image of the other. According to St Venant's principle, the
perturbation due to a grain boundary extends into the bulk over a distance characterictic of its
periodicity. Thus, in order 10 preserve in the simulated system a bulk-like region, its linear
dimension along the direction normal to the interface should equal at least six times the
characteristic length associated 1o the periedicity of the defect [27]. In addition, the constraints
introduced by the PBC correlate the behavior of the two interfaces e. g. with respect to gliding and
migration.

The recent development of antisymmetric, Mébius-like, boundary conditions applied to the

study of grain boundaries is an interesting solution allowing for a reduction of the computational
cost and allowing for the study of an isolated defect [28].

II. The mesoscopic scale
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Atomic structure

III. Simulation results
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