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ABSTRACT

In this paper we have studied the atomic structures of (111} twist boundaries and
investigated the applicability of the structural unit model which has previously been
established for tilt boundaries and (001) twist boundaries by Sutton and Vitek. The
calculations were carried out using two different descriptions of interatomic forces.
A pair potential for aluminium, for which the calculations were made at constant
volume, and a many-body potential for gold, for which the calculations were
performed at constant pressurc. The atomic structures of all the boundaries studied
were found to be very similar for both the descriptions of atomic interactions. This
suggests that the principal features of the structure of (111) twist boundaries found
in this study are common to all fc.c. metals. At the same time it supports the
conclusion that calculations employing pair potentials are fully capabie of revealing
the generic features of the structure of grain boundaries in metals. The results
obtained here, indeed, show that structures of all the boundaries with
misorientations between 0° and 21-79° (£=21) are composed of units of the ideal
lattice and/or the 3¢112) stacking fault on (111} planes, and units of the Z=21
boundary. Similarly, structures of boundaries with misorientations between 21-79°
and 27-8° (£ =13), 27-8° and 38:21° (£=7) and 3821° and 60° (£=13) can all be
regarded as decomposed into units of the corresponding delimiting boundaries.
Therefore we conclude that the atomic structure of (111) twist boundaries can well
be understood in the framework of the structural unit model. A related aspect
analysed here in detail is the dislocation content of these boundaries. This study
shows both the general relation between dislocation content and atomic structure of
the boundaries, which is an integral part of the structural unit model, and features
specific to the dislocation networks present in the (111) twist boundaries.
Furthermore, the dislocation content revealed by the atomistic calculations can be
compared in several cases with transmission electron microscope (T EM)
observations and the resuits arc discussed in this context.

§1. INTRODUCTION
Grain boundary phenomena usually take place in a very narrow region, of the order
of a few atomic spacings, where the two grains meet. Hence understanding of the atomic
structure of grain boundaries is a necessary precursor for the development of
microscopic theories of boundary properties. For this reason the structure of grain
boundaries has been investigated extensively in the last decade, both experimentally
and with the help of computer simulations (see the proceedings of conferences edited by
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306 J. Th. M. De Hosson and V. Vitek

Riihle, Balluffi, Fischmeister and Sass (1985), Ishida (1986), Sass and Raj (1988) and
Yoo, Briant and Clark (1988)). Such calculations contributed very significantly to our
understanding of general features of gram poundary structure cven though they were
usually made using pair-potentials. While this is a crude approximation for most
materials, significant results of these studies have often been found to be very little
dependent on interatomic forces used and are common either to whole classes of
materials or certain types of grain boundaries {for reviews see Balluffi (1982), Sutton
(1984), Vitek and De Hosson (1986), Ralluffi, Rithle and Sutton (1987) and De Hosson
and Vitek (1987)).

One general result of this type is the structural unit model which relates structures
of boundaries corresponding t0 different misorientations of the grains. The model was
originaily developed for periodic tilt boundaries (Sutton and Vitek 1983). It was later
extended to {001) twist boundaries (Sutton 1982, Schwartz, Sutton and Vitek 1985,
Schwartz, Bristowe and Vitek 1988) and recently it was generalized to non-periodic
jrrational tilt grain boundaries {Sutton 1988). In the case of (001) twist boundaries
structures of all boundaries in a certain misorientation range arc composed of mixtures
of three different structural elements. They are the units of two short-period boundaries
delimiting the misorientation range and certain ‘filler’ units. Structures of delimiting
boundaries are contiguously composed of units of one type. Structure of 2 boundary
with the misorientation in between two neighbouring delimiting boundaries can then
be regarded as one of these delimiting boundaries with a superimposed rectangular
network of screw displaoement-shift-complete (DSC) dislocations related to the
coincidence site lattice (CSL) of this delimiting boundary. The structure of the regions
in between the dislocations is composed of units of this delimiting boundary while units
of the other delimiting boundary are placed at the intersections of the dislocations. The
rest of the cores of the DSC dislocations is composed of the filler units. The delimiting
boundaries on the basis of which the whole misorientation range of (001) twist
boundaries can be described correspond to E=1 (ideal crystal), =13, 17 and 5
(Schwartz et al. 1985, Vitek 1988). These boundaries can be regarded as favoured
boundaries according to the definition of Sutton and Vitek (1983). However, (001) twist
boundaries are a rather special case. The purpose of the present paper is, therefore, to
investigate the atomic structure of another class of twist boundaries with the aim of
studying which structural features are common and which are specific to twist
boundaries with different boundary planes. We concentrate hereon the applicability of
the structural unit model and demonstrate that the atomic structures of (111) twist
boundaries can be well understood in this framework. A related aspect analysed here in
detail is the distocation content of these boundaries. This study shows both the general
relation between dislocation content and atomic structure of the boundaries, which is
an integral part of the structural unit model, and features specific to the dislocation
networks present in the (111) twist boundaries. Furthermore, the dislocation content
revealed by the atomistic calculations can be compared in several cases with
transmission electron mMIscroscope (TEM) observations {Scott and Goodhew 1981,
Hamelink and Schapink 1981, De Hosson, Schapink, Heringa and Hamelink 1986,
Forwood and Clarebrough 1985, 1986) and the results are discussed in this context.

§2. GENERAL FEATURES OF THE DISLOCATION CONTENT OF (111) TWIsST BOUNDARIES
The most important symmetry clement governing structural features of (111) twist
boundaries is the [111] threefold screw axis of the cubic lattice, which any dislocation
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network present in these boundaries must possess. The results of atomistic studies,
described in the following sections, show that such networks are either triangular or
hexagonal. [n general, such a network consists of three different types of dislocations
with Burgers vectors b; (i=1,2,3) for which

Y.b;=0. ()

The average separation, d, of dislocations in each set, is determined by Frank’s formula
(Frank 1950). Foilowing Hirth and Lothe (1982), this condition can be expressed most
conveniently by introducing the vectors

N;=N;(nx &), 2)

where n is the unit vector in the direction of the boundary normal and &; is the unit
vector in the direction of the disiocations of type &

-1

where A@ is the misorientation across the boundary away from a reference state and d;
the average separation of dislocations of the set i. Owing to the threefold symmetry

Y N:=0, (@)

and the magnitudes of all three vectors N, are the same. Hence all the average
separations d; are also the same and in the following they are marked d. Noting that the
rotation axis is in this case paralle to the boundary normal, Frank’s formula reads

Vxn=Th(N:V) (5)

where V is an arbitrary vector in the boundary plane.
Using conditions (1) and (4), eqn. (5) can be written as

Vxn=(2b1+h:)(N1-V}+{2b1+bl)(Nz°V), (©)

and since it has to be satisfied for any vector V it represents six linear equations for the
components of the vectors N, and N;. In the coordinate system for which the x axis is
parallel to the boundary normal, n, and the y axis is parallel to the projection of the
Burgers vector b, in the boundary plane, the solution is N, =(1/b)[0, —2/3,0] and
N, =(1/b)[0, —1/3, 1/\/3], where b is the magnitude of the projection of the Burgers
vectors of the dislocations to the boundary plane; owing to the threefold symmetry b is
the same for all three types of dislocations. The Burgers vectors of these dislocations
may have components perpendicular to the boundary but it follows from eqns. (1) and
(6) that these components have to satisfy the conditions byL=byl = —b,1/2.
However, all the dislocations found in the present atomistic studies have Burgers
vectors parallel to the boundary plane.

When the vectors N, and N, are known the average separation of the dislocations
of the network can be found using eqn. (3). In the present case this gives

3b

d=4ﬁn&A9y @
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In the case of regular triangular networks this is directly the separation of the
dislocations forming the sides of the triangles. In regular hexagonal networks
dislocations forming a given set of parallel sides of the hexagons are effectively broken
into segments the total length of which is equal to the one third of the length these
dislocations would have if they were not segmented. Hence the separation of the
dislocations forming a given set of the sides of the hexagons is equal to d/3.

When well localized dislocations can be identified in grain boundaries a significant
elastic energy is associated with such a network. This was first recognized by Read and
Shockley (1950), who evaluated this energy as a function of A©® for pure tilt boundaries
and showed that it is responsible for the existence of cusps on a plot of the energy
against misorientation dependence for misorientations corresponding to certain
special boundaries which serve as reference structures for other grain boundaries. An
exact evaluation of the elastic energy of a tilt boundary as the strain energy of a wall of
edge dislocations is presented in Hirth and Lothe (1982) for the case of isotropic
elasticity. Using the same method, the elastic energy of a rectangular network of screw
dislocations, applicable to (001) twist boundaries, has recently been derived by Vitek
(1987), and we present here a similar calculation for the network composed of three sets
of screw dislocations, which is a good approximation for dislocation networks found in
{111) twist boundaries.

To evaluate the elastic energy of a network of screw dislocations, we consider ina
similar fashion to Hirth and Lothe (1982, p. 740), a pair of such networks of opposite
sign formed in an infinite crystal. The specific energy of formation of such a pair, when
well separated, is then twice the energy per unit area of the network. The average
separation of the dislocations in this network given by Frank’s formula, eqn. (7), is d,
and owing to the threefold symmetry the average length of the dislocations separated
by d is [=2d/,/3. Let us take the plane of the boundary as the zy plane with one set of
dislocations parallel to the z axis. The force in the direction x (perpendicular to the
boundary) per unit length of a dislocation of opposite sign which lies paraliel to the z
axis is —a,4b, where b is the magnitude of its Burgers vector and o5 the corresponding
component of the stress field associated with the network in the zy plane. The energy
per length ! per dislocation in one boundary can then be calcuiated as one half of the
interaction energy of this dislocation with the dislocation network and is equal to

! o
w#j j 623bdxdz, @)
2 [+] ro

where r, is the core radius of the dislocations. The elastic energy per unit area of the
boundary is then

©

where S=12/2,/3=2d%/3,/3 is the area per dislocation segment of length L.

In the framework of the linear isotropic elasticity the stress field associated with the
dislocation network can be evaluated as a sum of the stresses of individual dislocations.
Following the same procedure as employed in the case of the wall of edge dislocations

N —
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by Hirth and Lothe (1982, p. 731), we obtain for the network of three screw dislocations
related by a threefold axis symmetry operation

) 2nx ) 2nx
Gb 2sinh (—d—) sinh (T)

G213=5 - 3
2 cosh (’%ﬁ) —cos (2;1) cosh (gl?) —COS (E(Z_\/?_‘*"_Jﬂ)

sinh ng
(10)

cosh (2-?) —cos (_“(z\/: - J’)) ’

where G is the shear modulus. Aftter inserting eqn. (10} into eqns. {8) and (9) (for y=0)
and carrying out the integration as in Vitek (1987), we obtain

2
G:n;‘/f {In [cosha+(cosh a2 —1)!*] —In(cosha—1)—In 2}, (11

where a = 2rro/d. For small misorientations, when A@« 1, d= 3b/2A60»r,and akl,
we can write cosha= 1+a?/2. Equation (11) then gives, when neglecting in the curly

brackets all the terms of order higher than a,

Ya=

Gb?,/3[ nro 2nr,
TGI—W[T_IH(T . (12)
Using the above expression for d we obtain
_Gb/3[ 2mro 3b
Y=g [ 35 A9+ln(4m0) lnAO]AG (13)

This formula is very similar to that obtained by Vitek (1987) for the square grid of screw
dislocations. It should be noted that the term (2nro/3b) A inside the square brackets in
eqn. (13) cannot be neglected with respect to other terms, in general, particularly when
b« ro; this is often the case for grain boundary dislocations whose Burgers vectors are
usually smaller than the spacing of nearest neighbours, which is a lower limit for ry. No
such term exists in the same approximation when evaluating the energy of a wall of edge
dislocations (Hirth and Lothe 1982, Vitek 1987).
The energy of the grain boundary is then

y=yo+2E b+ Ve, (14

where E. is the core energy (per unit length) of the dislocation and y, is the energy of the
corresponding reference state. This leads to the energy against misorientation
dependence with cusps at A@ =0 (i.c. at misorientations corresponding to the favoured
boundaries, which has indeed been found in the present study).

§3. METHOD OF ATOMISTIC CALCULATIONS AND INTERATOMIC FORCES
The method of calculation was principally the same as in a number of previous
studies and has been described in detail elsewhere (Vitek, Sutton, Smith and Pond
1980). A block consisting of the atomic coordinates of an unrelaxed [c.c. bicrystal,
containing the chosen coincidence boundary, is first constructed in the computer using
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the basic geometrical rules of the CSL. The periodicity imposed by the CSL in the
boundary plane is then maintained during the relaxation. A relaxed structurc is found
by minimizing the total internal energy with respect to all atomic positions and the
relative displacements of the adjoining grains. During the relaxation, relative
displacements of atomic layers parallel to the boundary are also permitted and thus the
net relative translation of the two grains occurs automatically. The relaxation
procedure was a standard gradient method.

Two different descriptions of atomic interactions were used in this paper. One is the
pair potential for aluminium constructed by Dagens, Rasolt and Taylor (1975) on the
basis of the pseudo-potential theory. it possesses long-range Friedel oscillations but it
was shown that these oscillations can be damped (Duesberry, Jacucci and Taylor 1979,
Pettifor and Ward 1984) and thus it is reasonable to limit the interactions to a smail
number of neighbours. In the present case the interaction extends up to the fourth-
neighbour shell. Pair potentials are generally density-dependent and the total energy
contains a large volume term which contributes the major part of the total energy.
Nevertheless, structural features of those defects which do not involve large density and
coordination variation, like grain boundaries in metals, can be successfuily investigated
with the use of pair potentials, but the calculations have to be carried out at constant
volume. In the present study this has been ensured by not allowing any total
displacement of the grains perpendicular to the boundary plane. However, the
complete evaluation of the energy requires inclusion of the density-dependent term and
for this reason we do not report here the boundary energies for aluminium.

The other description of interactions used in the present calculations was the many-
body potential for gold constructed recently by Ackland, Tichy, Vitek and Finnis
(1987) using the general concept introduced by Finnis and Sinclair (1984). In this
framework the total energy of a system of N atoms is written as

1 N 1/2
Em=§"12-l""u)“;(§¢(ru)) 3 (13)

where both ¥ and ¢ are pair potentials fitted empirically to reproduce the equilibrium
lattice parameter, elastic constants, cohesive energy and vacancy formation energy.
The first term in eqn. (15) is the pair interaction which is repulsive at small separation of
atoms while the second term is always attractive and replaces the above mentioned
density-dependent term accompanying the pair potentials.

When using the many-body potentials the calculation can be done at constant
pressure and the energy always fully evaluated. Hence all the calculations employing
the many-body potential for gold were carried out at constant pressure, which means
that an overail expansion was allowed, and the energies of the corresponding
boundaries are reported. However, in all cases studied, the atomic structures found
when using the pair potential for aluminium and the many-body potentials are very
similar and for this reason we only show structures obtained in the pair-potential
studies. For a more detailed discussion of the effect of interatomic potential on
computed structures reference is made to Vitek and De Hosson (1986) and Wolf and

Lutsko (1989).

§4. ATOMIC STRUCTURE OF GRAIN BOUNDARIES
Owing to the threefold symmetry of the [ 11 1] axis and the twofold symmetry of the
[110] axis which lies in the (111} plane, the misorientations for which different
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Misorientations and energies of {111) twist boundaries (calculated using a many-body
potential for gold).
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boundaries are found can be limited to the range 0° and 60°. In fact, it is the symmetry of
the corresponding delimiting CSL boundaries (£ =21,13,7 and 3) which has to be
taken into account, instead of the lattice symmetry. The corresponding CSLs have a
third-order symmetry as well as a second-order one implied by the CSL 180° rotation
axis (Bleris and Delavignette 1981, Doni, Bleris, Karakostas, Antonopoulos,
Delavignette 1985). In this misorientation range we have simulated 21 different
coincidence boundaries. Their reciprocal coincidence site densities, Z, misorientation
O, and energies found when using the many-body potential for gold, are summarized in
the table. The dependence of grain boundary energy on misorientation is shown in
fig. 1. Cusps are clearly visible at misorientations corresponding to Z =21, 13, 7 and 3,
suggesting a special nature of these boundaries. The analysis of structures of these
boundaries, presented below, indeed shows that for 0° <& <21-79° they can be
interpreted as composed of units of £=1 and £ =21 boundaries; in the former case,
units of the ideal crystal or the 2¢112>(111) stacking fauit occur in the boundary. For
21-79° < @ < 27-80° the boundary structures are composed of units of Z =21 and £ =13
boundaries, for 27-80° < & < 38-21° of units of =13 and X =7 boundaries, and for
3821° < & <60° of units of =7 and Z =3 boundaries. Hence, the short period
boundaries corresponding to £ =21, 13, 7 and 3 are the favoured boundaries as defined
by Sutton and Vitek {1983) and we first present their atomic structure and summarize
possible related grain boundary dislocations.

4.1. Structure of favoured boundaries

The atomic structure of the Z =21 boundary is shown in fig. 2. In this and all the
following figures the symbols A, +, O, * represent atoms in four different (111) planes
adjacent to the boundary; the boundary plane is located between layers marked + and
0. The fundamental structural unit of this boundary has the form of a hexagon and is
delineated in fig. 2 by solid lines. The shortest DSC vectors related to this coincidence
are of the type (1/42)[341] and dislocations with this Burgers vector are associated with
a step of height equal to the interplanar spacing of (111) planes (King 1982). On the
other hand no steps are associated with the DSC dislocations having the Burgers
vectors (1/14)[321] or (1/14)[541]. All these dislocations have been identified in
boundaries in the misorientation range 0° <8 <21-79°,

The atomic structure of the =13 boundary is shown in fig. 3, where the basic
structural unit is again delincated by solid lines. The shortest DSC vector
corresponding to this coincidence is (1/26)[431] and no steps are associated with these
dislocations. Two possible atomic structures of the £ =7 boundary were found which
differ in the relative displacement of the adjoining grains by (1/28)[321]; they are shown
in figs. 4(a) and (b) respectively. The shortest DSC vectors ascribed to this coincidence
are of the type (1/14)[321] and no steps are associated with these dislocations. The
structure shown in fig. 4(4) possesses a somewhat lower energy and is found in
boundaries containing units of the Z=7 boundary.

The X'=3 boundary, which is the usual twin boundary in fc.c. crystals, is also a
favoured boundary. It is not shown here for reason of space, since its structure is
commonly known, but units of this boundary are seen in fig. 11. The shortest DSC
vector corresponding to this coincidence is $[211]. Dislocations with this Burgers
vector are associated with a step of height one interplanar spacing of (111) planes.
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Fig. 2

Structure of the =21 boundary.

4.2. Low-angle boundaries 0° <8 <21-78°
A typical example of a low-angle grain boundary is that for X =183(€=17-34°). Its
decomposition into the structural units which corresponds to decomposing the
shortest CSL vector according to

1[5941 42311+ 94[121] (15

is depicted in fig. 5. The hexagons are clearly the units of the Z=21 boundary. The
regions connecting Z =21 units correspond to the cores of grain boundary dislocations
which intersect at the minority £ =21 units, in a similar manner to the case of (001) twist
boundaries (Schwartz et al. 1985). As shown below, these dislocations appear to be the
three partial dislocations of the type 1(112) lying in screw orientations. The triangular
regions between these dislocations are then, alternatively, the ideal crystal and the
stacking fault. The Burgers vectors of the three intersecting partials are: b, =3[112],
b, =4{121] and b, =}{211]. Taking the ideal crystal as the reference structure, the
average separation of the dislocations of the same type in the network is, according to
Frank’s formula (eqn. (7)), d =4-782a,, where a, is the lattice parameter. [t is seen from
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Fig. 3

T * 1/2 [752]

Structure of the X=13 boundary.

fig. 5 that the separation of the dislocations is [}[14 13 T]| =4-782a,, in agreement with
Frank's rule.

For the X = 57 boundary, where the ratio of ideal crystal units and £ =21 units is
1:1, the situation is very similar to the case of X'=183 when considering the ideal
crystal (together with the stacking fault) as a reference structure. The separation of the
1112 distocations is now [}[B71]{=2-669a,, in agreement with Frank’s formula for
A©®=137°. However, at this point the =21 boundary can also be regarded as the
reference structure and the dislocation content expressed in terms of the DSC
dislocations related to this coincidence, as described below for boundaries with
misorientations larger than that of ¥ =57,

When moving to angles larger than 13-17°, units of the Z =21 boundary are in the
majority and the ideal crystal and/or stacking fault act as intersections of the
corresponding DSC dislocations preserving the £=21 structure. An example is the
=43 boundary shown in fig. 6{a). The corresponding network of grain boundary
dislocations, shown schematicalily in fig. 6(b), is quite complex. It consists of screw
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Two alternative structures of ~
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Fig. 5
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Structure of the Z =183 boundary: solid lines indicate £ =21 units whereas the dashed lines
of Shockley partial dislocations form triangular regions.

distocations of the type (1/14)[341] and edge dislocations of the type (1/14)[321]. These
two types of dislocations are both DSC dislocations related to X =21 but the latter do
not contribute to the misorientation because of their edge character. The separation of
the screw dislocations is found to be equal to }|4[138 5]| =2:008a,. Frank’s formula
based on(1/14)[341] and A@ = 6:609° with respect to Z =21 would predict a separation
of 6:023a,. At first sight, this seems to be in conflict but one should notice that the
dislocation network is hexagonal and, as explained in §2, the separation of the
dislocations is then only one third of the average separation given by Frank’s formula,
which is in agreement with the separation determined from fig. 6{a).

4.3. Misorientation range: 21-78° < @ < 27-80°
The structure for £ =467 (A& =2-646 with respect to £ =21} is presented in fig. 7.
The grain boundary dislocations are the DSC dislocations of the type (1/42)[341].

Their separation is |4[16 11 5] = 5-012a,, which is in accordance with Frank's formula
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(a) Structure of the X =43 boundary: so_lid lines indicate X = 21 units. (b) Schematic drawing of the

corresponding network of grain boundary dislocations consisting of (1/ 14)[341] screw
and (1/14)[321] edge components.
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13 units are indicated by solid lines.
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]
(@) Structure of the Z =237 boundary: solid lines indicate =13 units surrounded by DSC

dislocations intersecting at Z =21 units (dashed line). (b) Schematic drawing of grain
boundary dislocations.

(eqn. (7). The intersections of the dislocations are now units of the Z=13
boundary and the dislocation network surrounds triangular areas of the T=121
structures which are alternately on different levels. The reason is that the DSC
distocations forming the network are associated with steps of height it}

Figure 8(a) shows the structure of the XZ=237 boundary. The regions of the
boundary, each composed of three hexagonal units of the £=13 boundary, are
surrounded by DSC dislocations of the type (1/26)[431], relating to the Z=13
coincidence, which form the network shown schematically in fig. 8(b). These
dislocations are not pure screw but each consists of two parts which have edge
components of opposite sign. Their intersections are units and/or parts of the units of
the £=21 boundary. It is seen from fig. 8(q) that the separation of the network
dislocations with the same Burgers vector is |4[10 7 31| = 3-142a,. According to eqn. (7)
we obtain d =9-427a, for these DSC distocations when taking the Z' =13 boundary as
the reference structure; which means three times as much, in accordance with the fact
that the network is hexagonal.

4.4. Misorientation range 27-8° <0 < 382I°

The structure of the I =291 boundary is shown in fig. 9. The composition of this
boundary is analogous to that for £=237. The areas composed of three hexagonal
units are again regions of the stightly distorted X = 13 structure which are surrounded
by DSC dislocations of the type (1/26)[431]. However, the dislocations intersect at
regions corresponding to the £ =39 boundary. The latter can, of course, be regarded as
composed of 1: 1 mixture of units of the £= 13 and Z =7 boundaries. The structure of
the £ =79, showa in fig. 10, is very similar, possessing the same regions of the 2= 13
boundary and the same dislocation network but the (1/26){431] dislocations intersect
at regions of the X =7 boundary.

When the misorientation approaches that of the £ =7 boundary, the roles of 2 =7
and I =13 units interchange. For example, the structure of the Z=201 boundary,
which (for the reason of space) is not shown here, is analogous to that of the £=79
boundary with the structural units of the £ =13 boundary replacing the units of the
T =7 boundary and vice versa. The grain boundary dislocations intersecting in the
regions of the £ = 13 boundary are now the DSC dislocations of the type (1/14)[321],
related to the =7 coincidence.
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4.5. Misorientation range 38:21° <@ < 60°

The structure of the £ =49 boundary has been found to consist of the units of the
¥ =7 structure surrounded by the network of DSC dislocations of the type (1/ 14)(321]
which intersect at the units of the Z =3 boundary. In the Z = 19 boundary the ratio of
the £ =7 and £ =3 unitsis 1: 1 and the structure may be described either as Z =7 units
surrounded by the network of {1/ 14)[321] dislocations intersecting at £ =3 units or as
$=3 units surrounded by the network of DSC dislocations of the type i211]
intersecting at Z =7 units. For the reason of space we do not show these structures here
in detail. The Z = 61 boundary, shown in fig. 1, represenis a typical boundary with the
misorientation close to that of Z=3. The triangular regions of the Z=3 twin are
surrounded by the network of the DSC dislocations with the Burgers vectors of the
type 1[211], which intersect at highly distorted units of the Z=7 boundary. As seen
from fig. 11, the separation of the DSC dislocations in this network is equal to
|1{14 13 13} =4-783a,, which agrees with Frank’s formula (eqn. (7). The alternate
regions of the Z =3 twins are on different levels since 4¢112) dislocations lying in the
boundary are associated with steps of height [111].

§5. DiscUSSION

In this paper we have studied the atomic structures of (111) twist boundaries and
investigated the applicability of the structural unit model which has previously been
established for tilt boundaries and (001) twist boundaries (Sutton and Vitek 1983,
Schwartz et al. 1985). The calculations were carried out using two differing descriptions
of interatomic forces, namely a pair potential for aluminium, for which the calculations
were made at constant volume, and a many-body potential for gold, for which the
calculations were performed at constant pressure. The atomic structures of all the
boundaries studied were found to be very similar for both descriptions of atomic
interactions. This suggests that the principal features of the structure of (111} twist
boundaries found in this study are common to all f.c.c. metals. At the same time it
supports the conclusion, discussed in a previous paper (Vitek and De Hosson 1986),
that calculations employing pair potentials are fully capable of revealing the generic
features of the structure of grain boundaries in metals. In general, large differences
between calculations carried out using many-body potentials and pair potentials arise
only if the coordination of atoms in the core of a defect is substantially different from
that in the ideal crystal, andfor when large local expansions of contractions occur.
Otherwise, the many-body potentials can be well approximated by effective pair
potentials, as first pointed out by Finnis and Sinclair (1984). This suggests that in twist
boundaries studied here neither large expansions nor large deviations in coordination
occur, as has also been confirmed by detailed inspection of the calculated structures.
This is also in full agreement with the recent study of Wolf and Lutsko (1989), who
carried out calculations of the structure and energy of a number of different twist
boundaries using many-body potentials of the embedded atom type (Daw and Baskes
1984) and the corresponding effective pair potentials, and found no substantial
differences in these two cases. Nevertheless, the use of many-body potentials is
advantageous in that the calculations can be carried out straightforwardly at constant
pressure, and when evaluating the energy the uncertainties arising in the case of pair
potentials due to the density-dependent term are alleviated. .

The structural unit model, which establishes a relationship between structures of
grain boundaries with different misorientations and relates the atomic structures and
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corresponding dislocation contents of the boundaries, is an example of a generic result
deduced on the basis of atomistic studies of grain boundary structures. Hence it is likely
to be applicable to various types of tilt and twist boundaries. The results obtained here,
indeed, show that structures of all the boundaries with misorientations between 0° and
21:79° (X =21) are composed of units of the ideal lattice and/or the (112 stacking
fault on (111) planes, and units of the Z=21 boundary. Similarly, structures of
boundaries with misorientations between 21-79° and 27-8° (£ =13), 27-8° and 38-21°
(£=7) and 38-21° and 60° (£ =3) can all be regarded as decomposed inte units of the
corresponding delimiting boundaries. The delimiting boundaries cannot be
decomposed into any other structures and are thus favoured boundaries as defined by
Sutton and Vitek (1983). In terms of the dislocation description the minority units can
always be identified with intersections of dislocations forming a network possessing a
three-fold symmetry and surrounding regions composed of majority units.

The dislocations present in the (111) twist boundaries are in most cases the DSC
dislocations with the shortest possible Burgers vectors related to the CSL of the
favoured boundary, the units of which are in the majority. There are, however, two
notable exceptions. First, there are the low-angle boundaries in which the dislocations
are the partial dislocations with Burgers vectors of the form 3{112}. As first suggested
by Amelinckx (1964), the low-angle (111) twist boundary could be regarded as a
hexagonal network of 4¢110) dislocations. However, in a {111} plane these
dislocations can, of course, dissociate into Shockley partials and it has been proposed
by Scott and Goodhew (1981) that it is more favourable for every other node of the
1<110) dislocations to dissociate, thus forming a triangular network of ${112) partials.
This is indeed what has been found in our calcuiations and observed in goid using
TEM (Scott and Goodhew 1981). This is also consistent with the earlier TEM
observations of Schober and Balluffi (1969). Nevertheless, it should be mentioned that
the int=rpretation of the contrast from dislocation networks in low-angle boundaries is
complicated by the superposition of strain contrast from the network and interference
(moiré) effects associated with the misorientation at the boundary. It has been shown
(Hamelink and Schapink 1981, De Hosson et al. 1986) that, depending on the exact
diffraction condition, the superposition may give rise to a hexagonal as well as a
trianguiar type of contrast. This implies that the observation of a triangular network
contrast cannot necessarily be interpreted in terms of the dissociation of a hexagonal
network of screw dislocations as suggested by Scott and Goodhew (1981).

The second exception is the Z=43 boundary in which the grain boundary
dislocations with the Burgers vectors (1/14)<541) and {1/14){321} are present, rather
than the DSC dislocations with the shortest possible Burgers vector related to £ =21,
(1/42)(541). The latter dislocations, while having a small Burgers vector, are associated
with a large step of height $(111) and it is, apparently, energetically more favourable
when no steps are present in the boundary, even though the corresponding grain
boundary dislocations must have in this case larger Burgers vectors. However, this
feature of the grain boundary structure is not general, indeed, the (1/42){541> DSC
dislocations have been found in the Z =67 boundary. Whether dislocations possessing
a short Burgers vector but associated with a step, or stepless dislocations with a longer
Burgers vector, are energetically more favourable depends on the core structure of
these dislocations. The present calculations suggest that for misorientations close to
that of Z =21, DSC dislocations without a step will be present for misorientations
smaller than 21-79°, whilst dislocations associated with a step will be present for
misorientations larger than 21-79°. Unfortunately, no electron microscope
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observations of dislocations in (111) twist boundaries with misorientations close to that
of £ =21 have been made,

Steps are similarly associated with $(112) DSC disclocations present in the
boundaries with the misorientation close to that of Z =3, as seen, for example, in the
case of the Z =61 boundary (fig. 11). A number of experimental TEM observations of
{111} twist boundaries with misorientations close to that of the Z=3 twin have been
reported (Erlings and Schapink 1977, 1978, Hamelink and Schapink 1981, Scott and
Goodhew 1981, De Hosson et al. 1986) and the observed dislocation configurations
generally agree with the present calculations. Experimentally a triangular network of
secondary GBDs with dislocation spacings in the range of 10-80 nm was observed in
artificially fabricated bicrystals of gold. In the recent study of the Burgers vectors of
secondary GBDs in high-angle grain boundaries near =9, 27 and 81 in specimens
prepared from a bulk polycrystalline Cu-6at.; Si alloy (Forwood and Clarebrough
1985, 1986), several twin boundaries near X = 3 twin were observed to contain networks
of secondary GBDs with spacings of 300nm. In contrast to the aforementioned
observations and to our calculations, the latter coarse networks are hexagonal and
triangular cells were not observed. However, as pointed out by Forwood and

“Clarebrough (1986), the steps associated with the hexagonal network could involve a
small departure from the {111) plane giving a tilt component to the boundary.

The calculated misorientation-dependence of the grain boundary energy is in full
agreement with the dislocation picture deduced on the basis of the atomic structure.
Following the Read-Schockley type model described in §2, cusps occur at
misorientations corresponding to the reference structures, and, as seen from fig. 1, these
can be identified with the favoured boundaries found from structural considerations.
As discussed in a previous study of the (001) twist boundaries (Vitek 1988), the shape of
the cusps depends strongly on the energy, E,, and the core radius, ry, of the grain
boundary dislocations. These have been determined in detail for the (001} twist
boundaries but not in the present case, since an accurate determination of these
quantities would require detailed atomistic calculations of much longer period
boundaries with large values of Z, as was done for the (001) twist boundaries (Vitek
1988). The depth of the cusps depends principally on the energy of the reference
structure, yo. A very deep cusp occurs, therefore, at the misorientation corresponding to
I =3, since the coherent twist boundary possesses much lower energy than the other
favoured boundaries. Nevertheless, the cusps associated with other favoured
boundaries are well defined. This is in contrast with the case of (001) twist boundaries
where the cusp of the same type is observed only for Z =5, while for the other favoured
boundaries (£ =13 and 17) the cusps are either very shallow or appear as inflections
rather than as well defined minima on the energy against misorientation curve. Hence
any experimental study depending on the presence of cusps, such as the rotating ball
experiments of Sautter, Gleiter and Biro (1977) or rotating particle experiments of
Chan and Balluffi (1985), should reveal their presence for twist boundaries on (111)
much more readily than for (001).
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Abstract—Pair potentials are employed to investigate the similarities and differences between the
boundaries in pure metals and L1, ordered compounds of the A,B type. Symmetrical X =5 (310} and
(210) (001} tilt boundaries have been studied in detail. In addition, a limited study of the £ =73 (830)
boundary has also been performed. It turns out that the concepts of structural units and multiplicity of
boundary structures, originally developed for pure metals, are still applicable. In general, the atomic
structurcs of the boundaries in A, B-L1, compounds appear to be topologically similar to the structures
of the boundaries of the same type in single-component f.c.c. materials. However, the multiplicity of
boundary structures is much more extensive compared to pure materials since structures may differ not
only topologically but also compositionally. The structural units in the stoichiometric boundaries are, in
general, more distorted than those of either A or B rich boundaries (with respect 1o A, B stoichiometry).
Away from stoichiometry the structures resemble more closely the corresponding structures in single
component systems. Possible consequences of these structural features for the grain boundary brittleness
of the L1, compounds are discussed.

Résumé—Nous utilisons des potentiels de paire pour étudier les similitudes et les différences entre les joints

- dans les métaux purs et les points dans les composés ordonnés L1, du type A,B. Nous avons étudié en
détail les joints de flexion symétriques I = 5 (310) et (210) {001]. Nous avons également étudié, mais de
fagon moins approfondie, le joint =73 (830). Il ressort de ces études que les concepts d'unités
structurales et de multiplicité de structures des joints, développés initialement pour les métaux purs, sont
encore applicables. En général, les structures atomiques des joints dans les composés A, B-L1, présentent
la méme topologie que les structures des joints du méme type dans les matériaux cfc 3 un seul constituant.
Cependant, la multiplicité des structures de joints est bien plus élevée que pour les matériaux purs, car
les structures peuvent différer non seulement en topologie, mais encofe en composition. Les unités
structurales dans les joints stoechiomeétriques sont en général plus déformées que les unités dans les joints
riches en éléments A ou B (par rapport 4 la stocchiométrie A,B). En dehors de la stoechiometrie, les
structures ressemblent davantage aux structures correspondantes des systémes d un seul constituant. Nous
discutons les conséquences possibles de ces caractéristiques structurales sur la fragilité intergranulaire des
composés Li,.

Zasammenfassung—Die Ahnlichkeiten und Unterschiede zwischen Korngrenzen in reinen Metallen und
in L1,-geordneten Legierungen vom Typ A, B werden mit Paarpotentialen untersucht. Ausfiihriich wurden
symmetrische Komgrenzen £ =5 (310) und Kippkorngrenzen (210) [001] analysiert. Die Korngrenze
E =73 (830) wurde auBerdem kurz untersucht. Es ergibt sich, daB dic Konzepte der strukturellen
Einheiten und der Multiplizitiit der Korngrenzstrukturen, die urspritnglich fir reine Metalle entwickelt
worden waren, noch anwendbar sind. Im allgemeinen scheinen die atomaren Strukturen der Korngrenzen
in A;B-L1,-Legierungen topologisch den Strukturen der Korngrenzen desselben Typs in einkom-
ponentigen kfz. Metallen zu &hneln. Dagegen ist die Multiplizitit der Korngrenzstrukturen gegeniiber
denen in reinen Metallen viel ausgepriigter, da die Strukturen sich nicht nur topologisch sondem auch
in der Zusammensetzung unterscheiden kdnnen. Die strukiurellen Einheiten in stdchiometrischen
Korngrenzen sind im aligemeinen stirker verzerrt als dicjenigen in den A- oder B-reichen Komgrenzen
{bezogen auf A,B-Stéchiometrie). AuBerhalb der Stochiometrie entsprechen die Strukturen den entspre-
chenden Strukturen der ginkomponentigen Systeme besscr. Magliche Konsequenzen dieser strukturellen
Eigenschaften fiir die Korngrenzspradigkeit der L1,-Legierungen werden diskutieft.

1. INTRODUCTION extensively using computer simulations in which

In recent years the atomic structure of grain bound- blgcks of many atoms are relaxed to attain the
aries in metals and ionic crystals has been studied minimum energy configuration under the condition
that a chosen boundary is present in the middle of the
tOn leave from Department of Materials Science and blqck (for rf:views see e.g. [1-3]). In these calculations
Engineering, University of Pennsylvania, Philadelphia. pair-potentials are usually employed to describe the
PA 191046272, US.A, interatomic forces. While this approximation is not
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generally sufficient for evaluation of total energies
of solids, calculations employing pair-potentials are
capable of revealing important structural features
which are insensitive to the details of interatomic
forces [6]. Such features are either related to the
crystallography of grain boundaries and adjoining
grains, though not determined purely crystal-
lographically, or show possible trends and vanability
of the boundary structures in different materials. An
example of the former is the structural unit model for
the low coincidence boundaries [2—4, 7-9) and of the
latter the recently discussed multiplicity of boundary
structures [10-12]. Furthermore, features common to
grain boundaries in different materials crystallizing in
the same crystal structure can be found on the basis
of these studies. Many structural features revealed
by such calculations have been confirmed experi-
mentally (e.g. [1,2, 12-15]) and their results repre-
sent, together with crystaliographic approaches such
as coincidence site lattice (csl) and O-lattice theory,
the principal source of our present understanding of
the basic features of the atomic structure of grain
boundaries {1, 15].

Most of the atomistic calculations of grain bound-
ary structures were made for single component
sy.tems. However, many important boundary
phenomena are strongly affected by alloying. For
example, it has been known for a long time that in
disordered alloys segregation of afloying elements
and impurities to grain boundaries often strongly
increases their propensity to fracture (e.g. [16]). Re-
cently, it has been found that in fc.c. based LI,
compounds, such as Niy Al, which are ductile in single
crystalline form, are very susceptible to intergranular
fracture (e.g. [17, 18] and other papers in [19, 20]).
This is rather unfortunate since they are attractive
materials for high temperature appiications. It has
been suggested by several authors {18, 21,22] that
brittleness at grain boundaries is an intrinsic property
of these compounds, in contrast with pure metals and
disordered alloys where intergranular fracture is
always induced by segregation of impurities and/or
alloying elements. At the same time it was found that
variation of the stoichiometry of intermetallic com-
pounds [21, 23, 24] as well as doping, for example, by
boron in the case of Ni;Al, may affect dramatically
their ductility [17-26]. These strong compositional
effects can be related either to electronic [21-24] or
structural changes in the grain boundary region and
investigation of the latter is one of the goals of this
paper.

From the structural point of view, grain bound-
aries in L1, compounds have been studied in the last
few years crystallographically, employing the CSL,
O-lattice and group theoretical analyses [27-32]. A
number of geometrical and symmetry related features
which distinguish boundaries in compounds from
those in mono-atomic materials, have been pointed
out. One of these features is the structural multiplicity
arising from possible different distributions of the
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two elements forming the compound, on different
sublattices in the adjoining grains. This multiplicity,
and its further enhancement by changes in stoichi-
ometry, are also investigated in the presenl paper.
Studies of the atomic structure of grain boundaries in
LI, compounds which take into account the atomic
interactions and thus the energetics of the system,
have so far been very limited. A model in which
the atoms of the two different species forming the
compound are treated as hard spheres of different
radii, has recently been developed by Farkas and
Rangarajan [33] and atomistic computer simulations
have been performed by Chen et al. [34,35] and
Foiles [36)].

A necessary precursor of any atomistic study is a
physically reasonable description of interatomic
forces. When a detailed description of properties of
a specific material, e.g. a Ni~Al alloy, is required this
can only be achieved in the framework of a full
quantum mechanical treatment, for example, by em-
ploying the local density functional theory (c.g.
[37, 38]). However, this treatment is still beyond the
realm of present computers when considering ex-
tended defects which require that a large number of
atoms is included in the relaxed block. On the other
hand, a more modest aim, such as investigation of
those boundary properties which are common to all
the compounds crystallizing in the L1, structure may
succeed even when employing a much more simplified
description of interatomic forces. This approach was
adopted in many atomistic studies of lattice defects
(see e.g. [6] and papers in [39, 40]). For the case of
L1, alloys such calculations were carried out using
interatomic forces described by pair-potentials con-
structed such that the L1, structure is stable both
mechanically and when compared with the corre-
sponding disordered fc.c. alloy, to study stacking
faults, antiphase boundaries and dislocation cores
[41-43]. Results of these calculations were then em-
ployed to explain very comprehensively the complex
high and low temperature yielding behaviour of these
materials [44-46]. The same philosophy has been
adopted in the present paper. The pair potentials,
constructed in {41] and used in the dislocation studies,
are employed here to investigate the similarities or
differences between the boundaries in pure metals
and L1, ordered compounds of the A, B type. For this
purpose, symmetrical £ = 5 {310) and (210) [001] tilt
boundaries have been studied in detail and a limited
study of the Z = 73 (830) boundaries has been per-
formed. The structures of these boundaries in a
mono-atomic f.c.c. lattice were studied in the past by
several authors (e.g. [t, 2, 10]} and a comparison of

‘the corresponding structures is made in the present

paper. ‘The structural differences arising from the
ordering tendency are then the principal topic of
interest, At the same time we follow in more detail the
structural multiplicity associated with different distri-
butions and local concentrations of the two alloy
components in the boundary region. Finally, we
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Fig. 1. Interatomic potentials of

discuss possible consequences of the structural fea-
tures specific to the L1, compounds for the grain
boundary brittleness.

2. INTERATOMIC POTENTIALS AND METHOD OF
CALCULATIONS

The pair potentials used here, shown in Fig. 1, were
not constructed to reproduce physical properties ofa

" particular alloy but to describe a stable L1, structure

with a relatively high ordering energy. They corre-
spond to the potential set C-1 of Ref. [41] and the
details of their construction are described in this
paper. All three potentials are truncated with zero
slopc and curvature at r/a = 1.219, where a is the
lattice parameter of the alloy. This is very close to the
third nearest neighbour separation in the L1, struc-
ture. In the ideal L1, lattice the energy per atom A
is E,= —0.629eV and the energy per atom B is
Ep= —14¢eV. The Cauchy relations for the elastic
constants are satisfied when these potentials are used
and thus the density dependent term which generally
occurs in the expression for the total energy of the
system, can be set equal to zero. As shown in [41],
these potentials ensure the mechanical stability of the
L}, lattice with respect to both large expansions of
the lattice and large shears on low index crys-
tallographic planes. Furthermore, recent calculations
of energies of antiphase boundaries on a variety of
crystallographic planes, in which these potentials
were used, show that these energies are always posi-
tive, though less anisotropic than what is commonly
assumed [47].

The minimum of the potential describing the A-B
interaction is at rfa =0.679 a distance about 4%
shorter than the separation of the first nearest neigh-
bours. This potential is deeper than any of the two
potentials describing A—A and B-B interactions and,
clearly, formation of A-B pairs at nearest neighbour
separations is energetically favourable. Hence, in this
model ordering is favoured due to the nearest neigh-
bour interactions, which is a common assumption in

A-A, B-B, and A-B interactions.

theoretical studies of ordering. The ordering energy,
evaluated according to Ref. [48], is —0.924eV and
the corresponding critical temperature of ordering is
then 1719 K. This is a relatively high ordering energy
but not unreasonable for materials which do not
undergo an order—disorder transformation before
melting, such as Ni;Al, the melting temperature of
which is 1670K.,

The minimum of the B-B potential is at ria =
0.758 and the difference between the positions of the
minima of B-B and A-B potentials can be taken as
a measure of the difference between radii of atoms A
and B. In the present case this difference is about
12% and thus the potentials describe an L1, structure
composed of species the atomic radii of which differ
by this amount. As discussed, for example in [33],
such a difference in atomic sizes is a reasonable
assumption in Ni;Al but it is expected to be much
smaller, for instance, in CujAu.

Using these potentials we have also calculated the
energy changes associated with creation of antisite
defects in the L1, structure. These correspond to the
replacement of one of the A atoms by a B atom and
vice versa. When evaluating the energies of antisite
defects we have taken into account the relaxation that
occurs in their vicinity. This calculation was carried
out using the same relaxation procedure as in the
studies of grain boundaries. Hence, a widely sepa-
rated periodic array of antisite defects was always
considered. The energies of the antisite defects calcu-
lated in this way are, when A is replaced by B, Ega=
—1.55eV, and when B is replaced by A, E,5=
+2.213eV. Although Ej , is negative ordering is still
favoured since pairs of anti-site defects occur in the
disordered state and the energy of a pair of such
defects is positive. The positive value of E,_g implies
that in the bulk, it is energetically unfavourable to
deviate away from the stoichiometry towards the
surpius of A while the negative value of Eg , implies
that the deviation away from the stoichiometry which
leads to the surplus of B, is energetically favoured.
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This is the same trend implied, for example, for Nij Al
from the measured concentration dependence of the
enthalpy of mixing in Ni-Al alloys [45).

The method of calculation was basically the same
as in a number of previous studies and has been
described in detail elsewhere [8, 50]. A block consist-
ing of the atomic coordinates of an unrelaxed L1,
bicrystal, containing the chosen coincidence bound-
ary, is first constructed in the computer using the
basic geometrical rules of the CSL. The periodicity of
the CSL parallel to the boundary plane is then
maintained during the relaxation. A relaxed structure
is found by minimizing the total internal energy with
respect to all atomic positions subject to the con-
straint that the total volume of the block is constant.
The relaxation procedure utilizes a standard gradient
method. During the relaxation relative displacements
of atomic layers parallel to the boundary, as well as
individual atomic relaxations, are permitted and net
relative translation of the two grains parallel to the
boundary may occur. Different starting configur-
ations corresponding to different distributions and
concentrations of A and B atoms in the boundary
region were used in order to investigate the variation
of the boundary structure with local deviations from
ideal stoichiometry.

In this paper we concentrate purely on the struc-

_tural features and do not give values of their energics.
The reason for this is two-fold. First, as explained
above, the potentials used here do not represent any
particular material and thus the absolute values of
energies are not meaningful. Secondly, in ordered
alloys, unlike in mono-atomic systems, the choice of
the reference system with respect to which the energy
is measured, is not unique if deviations away from the
ideal stoichiometry are allowed.

3. CRYSTALLOGRAPHY OF GRAIN BOUNDARIES

The crystallographic, geometrical characteristics of
grain boundaries in the L1, structure were studied by
several authors [27-32] and we summarize here only
those features which are important for the grain
boundaries treated in this paper. The basic difference
between grain boundaries in L1, and fc.c. materials
is that in the former case, boundaries with identical
atom locations are different if the same atomic posi-
tions are occupied by different species. In any A;B
alloy with the L1, structure, there are two types of
crystallographic planes: (i) planes which all contain
three quarters of A atoms and onc quarter of B
atoms; (ii) planes, haif of which contain only A atoms
(« planes) and the other half an equal number of A
and B atoms (§ planes). The planes that meet at a
boundary with a regular repeating structure must
always be either type (i} or type i) [32.51]. All
the crystallographic planes that are parallel to the
[001] direction are of type (i) and, therefore, in the
case of {001] tilt boundaries the planes parallel to
the boundary are always of this type [32].

STRUCTURE OF GRAIN BOUNDARIES IN A,B COMPOUNDS

When neglecting the identity of atomic species, the
L1, structure becomes the f.c.c. lattice. The fcc
lattice can be regarded as composed of four simple
cubic sublattices and the L1, structure is then ob-
tained if A atoms are placed on three of these
sublattices and B atoms on the remaining one. When
considering the crystallography of grain boundaries
in L1, alloys, the approach adopted, for example in
[27,32], was to start from the boundary in the
underlying f.c.c. structure and distribute then atoms
A and B in all possible distinct ways onto the
corresponding simple cubic sublattices in the upper
and lower grains, respectively. In general, there is a
maximum of 16 combinations but some of them may
result in identical boundary structures. It was shown
in [32] that there are eight distinct configurations in
the case of [001] tilt boundaries. Four of these
configurations are such that the stacking sequence
of planes parallet to the boundary is everywhere
...aPapap... so that stoichiometry is preserved in the
block. However, in two of these configurations the
stacking sequence ...afaxzfaf ... occurs in the bound-
ary region and in the other two the sequence
...aPapBap ... is found. In the former two structures,
obtained fi. by inserting an a plane into the stoichio-
metric sequence, there is a surplus of two A atoms
in the boundary region, relative to the ideal stoi-
chiometric situation. In the latter two structures
obtained by removing an « plane from the stoichio-
metric sequence, there is a lack of two A atoms per
period. Examples of these structures are shown in the
following section.

In the crystallographic treatments of the boundary
structures, it has been implicitly assumed that when
considering either the lower or the upper grain sepa-
rately, each of them is an ideal L1, single crystal. This
condition determines uniquely the possible boundary
configurations summarized above. However, the
grain boundary region is topologically different from
the ideal lattice and thus there is no a priori reason
why in the vicinity of the boundary the A and B
atoms could not be positioned such that deviations
away from the ideal LI, structure occur in several
planes adjacent to the boundary. Similarly, larger
deviations from ideal stoichiometry than those men-
tioned above may occur locally. Which of these
structures are stable and represent energetically
favourable configurations can only be determined by
atomistic simulations. This has been explored in the
present study by varying distributions of A and B
atoms as well as altering the local stoichiometry in
initial boundary structures used as starting configur-
ations in the relaxation calculations. Possible vari-
ability of the atomic configurations which involve
various distributions of A and B species is very
extensive and only a small number of all the possible
configurations were considered here. However, gen-
eral structural features associated with changes in
local stoichiometry, appear to be well revealed by the
cases studied here.
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Fig. 2. (a,b) Structural units in the £ =5 (310) tilt boundary in f.c.c. material.
i
4. ATOMIC STRUCTURES OF GRAIN Two alternative structures which differ in the relative i
BOUNDARIES translations of the grains and possess somewhat
diff . . A
41, T-5 tilt boundaries ifferent energies, were found in both cases; they are

shown in Figs 2(a, b) and 3(a, b), respectively. In

The atomic structures of the £ = 5 (310) and (210) these and all the following figures, the triangles and
tilt boundaries in a mono-atomic f.c.c. material were  crosses distinguish between the two (002) planes in
calculated in a number of studies (e.g. [8,10,52]). each crystal period along the [001] tilt axis. The lines
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Fig. 4. (a,b) T =5 (310) boundary structurc in AyB-L1, with the stoichiometric composition.

drawn in Figs 2 and 3 indicate suitabic units of these
boundaries which contain sufficient numbers of
atoms to typify the boundary structure. Corre-
sponding units in other boundaries shown in this
paper are denoted similarly. These units can then be
found in high X long period boundaries the struc-
tures of which are composed of units of low X
short period boundaries following the structural unit
model [2, 8, 10].

A number of stoichiometric (310) boundary struc-
tures have been studied. The starting configurations
were geometrically constructed boundaries in which
the sequence of layers parallel to the boundary is
...afafafi..., as well as structures in which this
sequence is ...afaxfifiaf.... Several of these struc-
tures were found to be metastable. However, in the
relaxed structures, atomic layers paraliel to the
boundary are, in general, no more distinct in the
boundary core but interpenetrate, and, therefore,

similar structures often resulted when starting with
different initial configurations. Two typical struc-
tures of the stoichiometric boundaries are shown in
Fig. 4a, b). The circled symbols in these and all the
following figures represent A atoms; B atoms are
denoted by single symbols. The structural units of
these boundaries are again denoted by solid lines. In
the following we shall consider two structural units as
topologically equivalent if they contain the same
number of atoms, regardless of the type of species,
each of which possesses the same number of nearest
neighbours. The separations of the neighbouring
atoms in topologically equivalent units are, however,
generally different. Hence the units of the boundary
shown in Fig. 4(a) can be regarded topologically as
distorted units of the structure shown in Fig. 2(b),
and the units of the boundary shown in Fig. 4(b) as
distorted units of the structure shown in Fig. 2(a).

Typical (310) structures with surplus of two and
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Fig. 5. £ =5 (310) boundary structure in A;B-L1, with a surplus of two A atoms per period (a) and of
four A atoms per period (b) relative to the stoichiometric concentration,

four A atoms per boundary period are shown in
Fig. 5(a) and (b), respectively. Structural units of
these boundaries are topologically, similar to the
units depicted in Fig. 2(a) and 2(b), respectively.
Typical structures with a lack of 2 and 4 A atoms per
boundary period are shown in Fig. 6(a) and 6(b),
respectively. The structural units of these boundaries
are again topologically similar to the units shown in
Fig. 2(a,b). When increasing the concentration of
either A or B in the boundary even further the
structures have been found to be topologically more
and more similar to those shown in Fig. 2.

The atomic structures of (310) tilt boundaries of
L1, ailoys appear to-be in most cases topologically
similar to the corresponding structures in [.c.c. mate-
rials. However, large distortions away from these
structures occur for stoichiometric boundaries and
the distorted structures usually contain large “holes”
(e.g. Fig. 4). As scen from Figs 5 and 6, the dis-

AM. 36/ 10—G

tortions then decrease and boundaries in L1;, in
general, resemble more closely those in f.c.c., as the
surplus of cither A or B in the boundary region
increases. However, the decrease of distortions is not
a monotonous function of the surplus of A or B {see
¢.g. Figs 5(b} and 6(b)], in particular at not too high
values of the surplus.

The structural characteristics of (210) boundaries
have been found to be very similar to those of (310}
boundaries but the distortions away from the corre-
sponding f.c.c. structures are, in general, smaller.
Two typical (210) boundary structures with the stoi-
chiometric composition are shown in Fig. 7(a, b).
The starting configuration of the structure shown in
Fig. 7(a) was constructed geometrically as described
in the previous section. In this case the sequence of
the planes paralle to the boundary is ...afufaf. ..
and the relaxed structure is similar to the unrelaxed
one. The starting configuration of this structure can
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Fig. 6. £ = 5 (310) boundary structurc in A,B-Ll, with a lack of two A atoms per period (a) and a lack
of four A atoms per period (b) relative to the stoichiometric concentration.

be found in Ref. [7] [Fig. 4a)] and the same relaxed
configuration of this boundary was also found by
Chen et al. [34]. It is seen that the basic structural
units are topologically similar to the units shown
in Fig. 3(b). In the structure shown in Fig. 7(b}
the order of the planes parailel to the boundary is
...af(@f)exffaf .. .and it does not correspond to any
of the .geometrically constructed structures. (Inter-
penetrating planes in the relaxed configurations are
set in parentheses). Structural units of this boundary
are topologically similar to those of Fig. 3(a).

A structure with a surplus of two A atoms per
period relative to the stoichiometric concentration, is
shown in Fig. 8(a) and a structure with the surpius of
four A atoms per period relative to the stoichiometric
concentration is shown in Fig. 8(b). In all these
structures and in another one (not shown here) with
the surplus of eight A atoms per period, the struc-
tural units are topologically similar to those shown in

Fig. 3(a, b). A structure with the tack of 2 A atoms
per period relative to the stoichiometric concen-
tration, is shown in Fig. 9. Its structural units are
topologicaily similar to those shown in Fig. 3(a). A
structure with the lack of 4 A atoms per period has
also been calculated and it was found to be topo-
logically very similar to that of Fig. 8. Topologically,
the structural units of these boundaries are similar to
the units shown in Fig. 3(a) but structures with units
similar to those shown in Fig. 3(b) have also been
found.

4.2. T = 73 (830) boundary

A large number of high Z {001] symmetrical tilt
boundaries in an f.c.c. material have been studied in
{10]. Their structures all conform to the structural
unit mode] but an extensive multiplicity of the struc-
tures of these boundaries arises due to multiplicity of
the corresponding delimiting boundaries. For ex-
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Fig. 7. (a,b) £ = 5 (210) boundary structures in A,B-L1, with the stoichiometric composition.

ample, following the structural unit model, every half
period of the £ =73 (830) boundary consists of two
units of the Z = 5 (310) boundary and one vnit of the
Z =5 (210) boundary. Since there are two different
structures of each of these delimiting boundaries (see
also Figs 2 and 3) there are eight possible structures
of the CSL periodic (830) boundary. All these struc-
tures were found to be metastable [10]. If the condi-
tion of the CSL periodicity is relaxed many long
period structures and even non-periodic structures
may be envisaged [11, 12]. However, the structures of
these boundaries are still composed of well defined
units of the delimiting boundaries and are not, there-
fore, random. In the case of an L1, alloy, the variety
of possible structures of the delimiting boundaries is
much larger since different structures do not differ
only topologically but also compositionally. Hence,
an even more extensive multiplicity of long period
boundaries can be expected.

In the present paper only one long period bound-
ary, Z =73 (830) has been studied, and even then
only a small number of its possible structures. Three
typical structures of the I =73 boundary which

differ both topologically and compositionally, are
shown in Fig. 10(a—). The structure in Fig. 10(a)
corresponds to the ideal stoichiometry in the bound-
ary region while structures shown in Fig. 10(b) and
{c) correspond to the surplus of two A atoms and 'a
lack of two A atoms per period, respectively. Ig is
seen that every period of the (830) boundary consists
of two groups of units each formed by two units of
the (310) and one unit of the (210) boundary. Theg;c
units correspond topologically to the units shown in
Figs 2 and 3. Hence, the structure of the (830)
boundary fulty conforms to the structural unit model
and can be decomposed into the units of the de-
limiting (210) and (310) boundaries in the same way
as in the f.c.c. case. The multiplicity of the type
described in detail in Ref. [10] is observed. For
example, while the boundary shown in Fig. 10(a)
contains (310) units of the type seen in Fig. 2(a), the
boundary shown in Fig. 10(c) contains both (310}
units of the type seen in Fig. 2(a) and in Fig. 2(b). The
multiplicity is, however, further enhanced since topo-
logically identical units differ, in general, compo-
sitionally so that (310) and (210} units found in the
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(b

Fig. 8. =5(210) boundary structure in A; B-L1, with a surplus of two A atoms per period (a) and four
A atoms per period (b) relative to the stoichiometric concentration,

structures shown in Fig. 10 are, in fact, all different.
While some of the units are only slightly distorted
when compared with those shown in Figs 2 and 3,
others are distorted severely and large “holes™ are
formed in the boundary. As already pointed out in
the case of (310) and to a lesser extent (210) bound-
aries, this appears to be a general feature of stoichjo-
metric boundaries and boundaries in which the devi-
ation from stoichiometry is only small. In addition,
calculations of (830) boundaries with larger surpluses
of A or B indicated that as the concentration of either
A or B in the boundary increased the corresponding
structural units became less distorted. This is again
the same trend as observed in the case of (210) and
(310) boundaries.

The results of the calculations for (830) boundaries
conform to the general rules of the structural unit
model and structurai multiplicity and the distortions
of the structural units are of the same type as in the

D] ® © ©

) ® © ©

Fig. 9. Z =5 219 boundary structure in A;B-L1, with a

lack of two A atoms per period relative to the stoichiometric
concentration.

corresponding short period delimiting boundaries.
Hence, it is safe to conclude that other long period
structures would exhibit the same basic features as
does the (830) boundary and the conclusions based
on this limited study are likely to be valid for general,
low coincidence, long period boundaries.

5. DISCUSSION

Two important concepts were established on the
basis of the results of atomistic studies of grain
boundaries in single component systems [1-6]: the
structural unit model which relates the structures
of boundaries corresponding to different misorien-
tations [7-9] and structural multiplicity [10-12] which
suggests that while boundary structures are not
unique they are still composed of well defined struc-
tural units. The present calculations dealing with the
atomic structure of grain boundaries in AB-L1,
compounds, show that both these concepts are also
valid in the ordered compounds. However, an extra
variability is introduced because of the fact that two
kinds of atoms are present. In most cases the atomic
structures of grain boundaries in the compound
appear to be topologically similar to the structures
of the boundaries of the same type in single com-
ponent fc.c. materiais including the possible muiti-
plicity of structures. The variety of possible structures
may differ not only topologically but also compos-
itionally, Consequently, the multiplicity in the ailoy
system is much more extensive compared 10 the single
component system.

However, the more extensive muitiplicity of
boundary structures is not the only difference be-
tween boundaries in the single component systems
and L1, compounds. The present calculations show
that structural units of the boundaries in the LI,
compound are often significantly distorted when
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Fig. 10. (a) £ = 73 (330) boundary structure in A, B-L1, with the stoichiometric composition. (b) £ =73
{830) with a surplus of two A atoms per period. (¢) I =73 (830) with a lack of two A atoms per period.

compared with the corresponding units found in the
fc.c. case. These distortions are particularly large in
the case of stoichiometric (310) boundaries and,
correspondingly, (830) boundaries which contain
(310) units. The physical reason for these distortions
is directly related to the ordering tendency. This is
described in the present model by a strong preference
for formation of nearest neighbour A-B pairs which
is evident from the pair-potentials describing the
atomic interactions. Comparison of Fig. 4(a) with
Fig. 2(b) and Fig. 4(b) with Fig. 2(a) shows that the
distortions are of such a type that an aimost ideal L1,
lattice is preserved in both the upper and lower grains
up to the boundary, so that the above mentioned
coordination of the first nearest neighbours is at-
tained as much as possible. Clearly, this would be
much disturbed if the undistorted structure of the
type shown in Fig. 2 prevailed. The distortions of the
stoichiometric (210) boundaries are of the same type,
as seen by comparison of Fig. 7(a) with Fig. 3(b) and
Fig. 7(b) with Fig. 3(a), but they are appreciably
smaller than in the (310) case. The reason is, pre-
sumably, that the period of the (210) boundary is

shorter which restricts the extent of possible atomic
relaxations.

The calculations presented in this paper also show
that when deviating away from stoichiometry, either
to the surplus of A or surplus of B, the distortions of
the structures away from the corresponding struc-
tures found in the f.c.c. case, diminish (cf. Figs 5 and
6 with Fig. 2). However, while this is a general trend,
in some cases substantial distortions prevail even in
non-stoichiometric boundaries [see e.g. one of the
units in Figs 5(b) and 6(b)] but they are becoming less
frequent as the deviation from stoichiometry in-
creases. Thus it can be calculated that on the average
the distortions of the structural units of grain bound-
aries are the largest at stoichiometric concentration
whereas the further the boundary concentration of A
and B deviates from the stoichiometric one the more
ctosely the boundary structures resemble the corre-
sponding structures in the single-component system.
An exception to this general rule may be some special
low X short period boundaries, such as X =5 (210)
tilt boundaries, the structure of which will always be
only slightly distorted. This trend is entirely consis-
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“tent with the above explanation of the distortions in
stoichiometric boundaries. As the amount of either A
or B in the boundary region increases it is obviously
less and less possible to form in both upper and lower
grains the nearest neighbour environment which is
identical to that of the L1, structure. Furthermore, at
sufficiently high concentrations of A or B in the
boundary, the boundary region becomes practicaily
composed of only A or B atoms and the boundary
structure must become the same as in pure A or B.
Since it is the ordering tendency which appears to
determine the principal features of the boundary
structures in L1, compounds it is unlikely that their
characteristics are in the framework of central forces
strongly affected by details of interatomic inter-
actions. Some important differences might, of course,
be expected if directional bonding was dominant but
this is unlikely in metallic matertals. Indeed, struc-
tures calculated in Ref. [34], where many body,
embedded atom type [62], interatomic forces were
employed, show very similar general features. The
reason why structures found in the present study and
in Ref. [34] are often different is that in most cases
different multiple structures were found in the two
studies due to different starting configurations. How-
ever, when the same starting configuration was used,
such as for the structure shown in Fig. 7(a), the
relaxed configurations are practically the same.
- In spite of the similarities between A-rich and
B-rich boundaries as far as the structural features are
concerned, there still exists an important assymmetry
when considering segregation of A and B to the
boundaries. The reason is that in the framework of
the interatomic forces used here a replacement of B
by A in the bulk is energetically unfavourable
whereas a replacement of A by B in the bulk is
energetically favourable. It means that in the bulk it
is unfavourable to deviate away from the stoichi-
ometry towards the surplus of A while the opposite
is true in the case of surplus of B. Consequently, if
there is a surplus of B it might rather stay in the
lattice and boundaries would still be practically stoi-
chiometric or possess only a very small surplus of B.
On the other hand, if there is a surplus of A it will
segregate to the boundaries and A-rich boundaries
will be created. It follows than that in A-rich alloys
the boundary structure will be similar to that in pure
A even at relatively small deviation from stoichi-
ometry in the bulk while in B-rich alloys it will stay
more or less the same as in the stoichiometric case,
i.e. possessing significant distortions away from the
corresponding structures in pure B.

This asymmetry of the grain boundary structures
when deviating away from the stoichiometric com-
position of A,B compounds may have implications
for grain boundary brittleness. It is known that
polycrystalline f.c.c. metals or disordered alloys gen-
erally do not fail by intergranular fracture. This
suggests that grain boundaries for which the structure
of which is similar to that of single-component

STRUCTURE OF GRAIN BOUNDARIES IN A;B COMPOUNDS

systems are not susceptible to cracking. It can be
speculated that boundaries in A-rich LI, compounds
will ailso be much less likely to break in a brittle
manner than in stoichiometric or B-rich compounds
since in the former case they will become A-rich and
thus relatively undistorted, while in the latter case
they will possess stoichiometric, highly distorted
structures. This suggests that the most important fact
in ductilizing A,B-L1, compounds is the deviation
from stoichiometry towards A-rich aifloys. This is,
indeed, in agreement with results of a number of
experimental studies. For example, Co, Tt was found
to be ductile when rich in Co but brittle otherwise
[22, 24]. Similarly, Ni,Al and Ni,Ga could only be
made more ductile by addition of boron when these
alloys were Ni-rich [24, 26, 53].

The reason why the boundaries possessing dis-
torted structures are more susceptible to brittle frac-
ture may be sought in related changes of electronic
structure and cohesion. However, the process of
cracking is very complex in metallic materials it either
tnvolves competition between bond breaking and
dislocation emission (e.g. [54, 55]) or concomitant
bond breaking and local irreversible shear defor-
mation at the tip of the propagating microcrack
[56-57). It is likely then that the local resistance to
shear and/or to the transmission of slip through grain
boundaries, is much higher in the distorted than in
the undistorted boundary structures. It has been
suggested recently [58, 59, 61} that in Ni,Al boron
attracts nickel and when it segregates to the grain
boundaries this attraction enhances the content of Ni
in these boundaries. Such an enhancement has been
detected using X-ray spectroscopy [61]. It was then
suggested that resuiting compositional disordering in
the boundary region leads to an increase of the
mobility of grain boundary dislocations making thus
the propagation of the slip through grain boundaries
easier [59,60,32). Similarly, if Ni is attracted by
boron to grainboundaries, it can be concluded on
the basis of the present results that the beneficial
effect of boron upon the ductility of NiyAl is related
to the formation of undistorted structures in Ni-rich
boundaries which are then likely to be less resistant
to local shear, similarly as boundaries in single
component f.c.c. metals. However, for a full
understanding of the propensity of grain bound-
aries to fracture it is necessary to take into account
the interplay between the local changes of cohesion
and resistance to irreversible shears and, for this
purpos¢, much more detailed calculations are
needed.
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