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1. Introduction

The goal of these notes is to provide an introduction to dynamic fracture. They are not
a substitute for the book by L. B. Freund, Dynamic Fracture Mechanics, but sometimes
cover topics in different ways.

The main achievement of dynemic fracture mechanics s the complete solution of the
motion of a crack in a rather general setting. The steps which lead to this solution are the
following:

1. The stress field which surrounds the tip of a moving crack has a dominant, universal,
singularity, which depends only upon its instantaneous velocity and upon a single
constant, called the stress intensity factor, which sets the overall scale.

2. The flow of energy to the crack tip is completely determined by this singular field. and
therefore by the instantaneous velocity of the crack, and the stress intensity factor.

3. For a semi-infinite crack in an infinite plate, the stress intensity factor is completely
determined by integrals over the known applied forces which cause the crack to move.
As a consequence, the energy flow to the crack tip is a known function of crack velocity
and applied loads.

4. Given a model for how the fow of energy to the crack tip causes it to move, one can
now find an equation of metion for the crack tip.

To deseribe this accomplishment in other words, dynamie fracture mechanics succeeds
in integrating out all the complicated behavior of two-dimensional elastic fields surrounding
a crack, and turning the crack tip into an effective particle which responds to external
driving forces. The crack tip is in fact completely insensitive to its own history, and behaves
like a particle completely without inertia, capable of changing velocity instantaneously in
response to changes of load.

Although this calculation is extremely powerful, it does not answer all questions. For
example, what happens when the bowndaries of the plate in which the crack moves are
included? The notes show that in this case the crack can acquire an effective mass, by
virtite of wave reflections from the boundaries. A more fundamental problem has to do with
the response of the crack tip to energy flux. Dynamic fracture mechanics is incomplete
without specifying precisely how the crack tip is to move when energy comes pouring
in. Experiments show that the crack tip decides to move in mysterious ways. Even in
the most brittle of materials, the energy required for crack motion begins to diverge at
unexpectedly low velocities, and the erack tip becomes unstable. My belief is that these
phenomena have the best chance of being understood within models that do not make a
fundamental distinction between the inside and outside of the crack tip, but treat them
simultaneously on an equal footing, Preliminary calculations along these lines occupy the
last sections of the notes. However, the problem is open.

2 Linear Elasticity

2. Linear Elasticity

Consider a collection of point masses located at points ry, and interacting by a potential
V, so that their energy is

U=Vir). 2.1)

The theory of linear elasticity is concerned with the case in which the potential is minimized
by some collection of equilibrium locations d;, and the masses execute smail motions about
this minimum;

ri=di +u, (2.2)

where u; will be taken to be small., Saying that the u; are small means that it is legitimate
to expand V in powers of the u;. One is expanding about an equilibrium configuration, so
the first order contributions vanish, and the energy of the system is to leading order

= Z iv—-u?u? (2.3)
h= Hufdu] S :

The next goal is to turn this expression into a continuum theory of elasticity. From the
continuum viewpoint, one writes u; = u(x), with the continuous feld chosen so that

u(d;) = u,. (2.4)

In other words, the displacements are indexed by the equilibrium locations. (It would
be equally possible to index the displacements by where they end up, rather than by
where they started, which would use the definition u(r;) = u;.} Adopting the summation
convention, the energy now takes the form

52V

Brea (%] 60 (0] (%) ey (x) (2.50)

Uh = /(ixdx'

= fdxdx'!-Vu-, {x, %) e (%) 1y (). (2.58)

It is helpful to notice a few symmetries of W. Since the system is translationally invariant,
W depends only upon x — x'. From its definition

Wy (x) = Waia (—x). (2.6)

So one can rewrite Eq. (2.5) in k space as
dk
= Wy (k) ua (k) ul (k). (2.7
[ W s Q3¢

To be consistent with the continuum picture, one should concentrate only on the long-
wavelength behavior of the system, which means looking at the bel}a.vior only for small k
through a Taylor expansion. The zero'th order term in k must vanish because of transla.
tional invariance-if it did not vanish. then each mass would act as if it were tied by a set of
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springs to some definite point in space. The linear terms vanish because of the symmetry
Eq. (2.6). So the leading contribution to the energy in k space is

/ 0K g ks 0 () 15 (K). (2.8)
(27)
Inverting this expression to real space, one finally has
dua Ouy
= -— —. 2.9
Un [ dx a%Eaa-,s s (2.9)

Because of the way that E has been defined, it is unchanged after interchange of a with
v or of 8 with é. The theory of elasticity is not normally couched in terms of the shears
Bu, [0z, but instead in terms of the strain tensor

1[&ua  Bug
= o ey £ 10
¢ad =3 [31-3 t a:,] ' (210)

In fact, the energy Uy depends only upon the combinations that appesr in this tensor.

Intuitively, since 5 5
1
vor = 5 [ﬂ - _"1] (2.11)

changes when u is rotated a slight amonnt. the energy cannot depend upon terms of this
sort. To be more explicit, one can perform the following computation. Rewrite U, as

1 3uﬂ, a‘lﬂ % a—“£
35 [517_3 + 'bz_a] [Eaﬁ'rﬁ + Eﬂu‘y& + Emg;.,, + Eﬁa-yé] [8;5 + axT
Up= ]dx 1 [8u ug -a_ul Busl’ (2.12)
-\'-*3—2 {.3_'“6. + E';;] (Eagys = Eavs = Eogsy + Eﬂm,s] [3:5 - Ec_;]

The first term involves only the strain tensor, and the second can be shown to vanish
because it is not rotationally invariant. One consequnce of rotational invariance is that if

the whole system in equilibrium is picked up and twisted through an infinitesimal angle s
about the a axis, so that

e = €240, (2.13)

the energy must be unchanged. Placing Eq. {2.13) into Eq. (2.9} and demanding that the
result vanish gives (don’t sum on a!)

jdx EaBaEuﬁTéé'rén =0 (2.14)

= Eqgv6 — Edayé — Eapsy + Egoqs =0 (2.15)

Comparison with Eq. (2.12} shows that one can write

1
Uy = jdxéeoﬂ Cadyé Cré (216)

—{p—
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with
1
Ccﬂ-;ﬁ = Z [EaB-n‘i + E,&n—-fﬁ + Eaﬂh + E,Gn-'yé] . (217)

The tensor C is invariant under interchange of & with 8, of v with &, and also under the
interchange af «— 6. Therefore, C has at most 21 components.
To find the equation of motion for u, one computes

. _ Uy, 0
o (X) = ~ 5y = 5y 7o () (2.18)
with the stress tensor o given by
Taf = Ca‘gﬁ (27 (2.19)

Since the acceleration of small sections of mass is given by the divergence of the stress
tensor, the stress tensor is physically interpreted as giving the forces that each section of
the body exerts upon its neighbor. Specifically, if one imagines taking a knife and using it
to sever bonds in a small two-dimensional region, let us say perpendicular to the z axis,
then og5 gives the force per unit area required to pull the faces of the region together
along =, and ogy and oz, give the forces per unit area required to stretch the faces in the
directions perpendicular to z so that cach atom is directly across from the atom that was
its neighbor in equilibrium.

Depending upon the symmetries of the underlying lattice, the stress tensor may acquire
additional symmetries. The case we will be concerned with exclusively is the case in which
the equations of motion are rotationally invariant, resulting in

Cogyt = LAY IET I T {5,;.-.,5& + 5.,563.,} (2.20)
Ju Gu Ju
0g = Abaam— — 3. .
= Oof "6:, o (BIH + . (2.21)

The constants g and X are called the Lamé constants, have dimensions of energy per
volume, and are typically of order 10" ergs/em®. The equation of motion Eq. (2.18)
becomes explicitly

&#u

ot*

po2 = (A + )V (V- u)+ V0, (2.22)

originally found by Navier.
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3. Elasticity in Two Dimensions

The tensor structure of elasticity makes it particularly difficult to solve fully three-
dimensional problems, and it is difficult to carry out controlled three-dimensional experi-
ments as well. Fortunately, there are cases in which the theory naturally reduces to two
dimensions, where most of the analytical results have been obtained.

A first case is called anti-plane shear. Imagine one is tearing a telephone book, with
one hand gripping on the left, the other gripping on the right, one pushing up and the
other pulling down. The only non-zero displacement is u., and it is a function of z and )
alone. The only non-vanishing stresses in this case are

Trz = P‘au’ (3 1(1)
dz’ )
and
S Ju.
vz = W 3 (3.1%)
The equation of motien for u, is
2
5o~ v, 32)
where
e= /L ' 3.3)
Iz @

Therefore, the vertical displacement oheys the ordinary wave equation.

A second case corresponds to pulling on a thin plate, and is called plane stress. Let the
z direction be the direction that goes through the plate. If the scale over which stresses
are varying in z and y is large compared with the thickness of the plate, then one might
expect that the displacements in the z direction will come quickly into equilibrium with
the local z and y stresses. When the material is being stretched, (think of pulling on a

balloon), the plate will contract in the z direction, and when it is being compressed, the
plate will thicken. Therefore, one guesses that

= zf (ur,uy), (34)

and that u;, and uy are independent of =. One can deduce the function f by noticing that
¢:; must vanish on the face of the plate. This means that

Su, Ou Ju
AM=E LY st SN
{a.t + 3 }+(/\+2u) 3 = (3.5)
at the surface of the plate, which implies that
O, A du Su
(tg uy) = = = — - R B .

sy} = 5 Hgﬂ{ax-»ay} (36)
So

Jus  duy  Ou, 2u Au Ou

A Tiiel it S s L Rt

ar dy *E A+ 2u { 5z T Oy }’ (37)

K-
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and one can write

o, Ouy Jue | Oug
OTap = z\éag-é-;;' + 4 (-5-;5—,8- + 5;:) ) (3.8a)
where ; 2\
=1 % (3.8)

and a and 4 now range only over z and y. Therefore, a ihin plate obeys the equations of
two-dimensional elasticity, with an effective constant X, so long as u, is dependent upon
u, and u, according to Eq. (3.6). In the following discussion, the tilde over X will usually
be dropped, with the understanding that the relation to three-dimensional materials prop-
erties is given by Eq. {3.82). The equation of motion is still Navier's equation, Eq. (2.22),
but restricted to two dimensions.

A few random useful facts: materials are frequently described by the Young’s modulus
E and Poisson ratio v. In terms of these constants,

Ev E E

At aTaasy ATy AT 2(1+v)

(3.9)

The following relation will be useful in discussing two-dimensional static problems. First
note that '

V-u=(A+24)0as. (310)
Second, taking the divergence of Eq. (2.22), ane finds that
p  0'ua 2 :
P = Vg, )
N+ o Tae @1)

Therfore, V- u obeys the wave equation, with the longitudinal wave speed

A+ 2u

¢ = 312
t P (3.12)
Similarly, ¥V x u also obeys the wave equation, but with the shear wave speed
H
o= ,/—. 3.13
t P (3.13)

The fact that the local thickness of the plate is tied to stresses in the z and y directions
leads to two optical methods to determine stress fields experimentally. The first method
relies on the fact that when light reflects off a curved surface, the reflected intensity becomes
singular at certain points that depend on the details of the geometry. In practice, when
light is shined on a crack tip, a sharp dark spot surrounds the tip, and its shape and size
can be used to deduce the stresses. This technique is known as the method of caustics. A
second method, older and more reliable, relies upon the fact that materials under stress will
typically rotate the plane of polarization of transmitted light. It is possible to determine
the basic structure of this rotation without detailed calculation. The rotation must depend
upon features of the stress tensor which are rotationally invariant, and therefore can depend
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only upon the two principal stresses, which are the the diagonal elements in a reference
frame where the stress tensor is diagonal. In addition, there should be no rotation of
polarization when the material is stretched uniformly in all directions, in which case the
two principal stresses are equal. So the angular rotation of the plane of polarization must
be of the form

A =Koy —a), (3.14)

where ¢; and a3 are the principal stresses (eigenvalues of the stress tensor), and K is
a constant that will have to be determined experimentally. Whenever stresses of a two-
dimensionat problem are calculated analytically, the results can be placed into Eq. (3.14),
and compared with experimental fringe patterns. Fast optical systems have been developed
to carry out this procedure for rapidly moving cracks, although I am not sure to what extent
Eq. (3.7) is obeyed when cracks move at speeds on the order of the speed of sound.

3.1. Static problems in Anti-plane Shear

For an equilibrium situation, the equation for anti-plane shear, Eq. (3.2) takes a par-
ticularly simple form:

Vi, = 0. (3.15)
Since u, is a solution of Laplace’s equation, it can be represented by
wr = ¢ () + ¢ (), (3.16)

where ¢ is analytic, and { = z + iy.
Consider now a sheet under uniform tension at infinity, so that far from the center of
the sheet,
¢=TI¢, (3.17)

with I' complex. At the center of the sheet, cut some sort of hole out and allow the
Soundaries to relax. The goal is now to find the stress and strain fields in the body, as a
result of having cut the hole.

Because the edges of the hole are free, the stress normal to the edge must vanish. If s
is a variable which parameterizes the edge of the hole, so that

[z (s).y(s)] (3.18)

travels around the boundary of the hole as s moves along the real axis, then requiring
normal stress to vanish means that

Ous 0z Ou: 0y _ 0
By 0s Oz ds
Using the representation of u;, Eq. (3.16), one finds that
3¢ 09
=== 3.20
s Os (3.20)

on the boundary, or since ¢ is arbitrary up to a constant,

(3.19)

I3

$(0) =060 (3:21)

=10~
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when § lies on the boundary.

To illustrate the use of Eq. {3.21), suppose the hole in the sheet is elliptical, and
described by

m
(=w+ =, (3.22)

with w contained in the unit circle. When m = 0, the boundary is circular, and when
m = 1, the boundary is a cut along the resl axis. Considering ¢ as a function of w, one

has
(1
blw) = (;) : (3.23)

since @ = 1/w on the unit circle. This equation can now be analytically continued off the
unit circle. Notice that when w is cutside the unit circle, ¢ must be completely regular,
except for the fact that it diverges as [w for large w. Ome concludes that ¢ is regular
within the unit circle, except for a pole at the origin that goes as I'/w. These being the
only singularities of ¢ and ¢, one concludes that

r
plw)=Tw+ = (3.24)

¢ N -
$(¢) = 1"5 (1 +y1-am/C ) + I‘;z% (1 —y/1—am/¢’ ) . (3.25)

The case in which m — 1 is particularly interesting. The hole becomes a straight
crack along [-2,2]. Notice that ¢ has a branch cut over exactly the same region. The

displacement u, is finite approaching the tip of the crack, but the stress oy, = wlu, /Oy
diverges approaching the tip as 1/vz - 2.

and that

3.2. Muskhelishvili’s Formalism

) In the absence of body forces, the equations of two-dimensional plane elasticity, for an
isotropic medium at rest are found from Eq. {2.22) and Eq. (3.11) to be

60'0,3
P75 =0 (3.26)
vgaao =0 (327)
Au Bu du
o = Mgzt o | ZU4
Faf MiaxT + i (6:,5 + 6%) (3.28)

Th;ese are the equations for plane strain. For plane stress, one must replace A by 2hpf/{A+
2u). :
From Eq. (3.26) it follows that there exists a real function U, the Airy stress function,
such that o '
U gU U
Oz = _ay-3 y Oy = —aray, Tyy = _—61'2 (3.29)

_.”_,
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Using Eq. (3.27), one has then that
VYW =0 (3.30)

This equation is due to Maxwell.
Writing the biharmonic operator as

3 & &
g .Y &~
vVi= 922 9zt
one can argue immediately that since U is real, it must be of the form
1 - TN f
EU (z,2) =Zd (2) + 28 (2) + j dz'yp (') + / dz'y (2'), (3.31)
where : = 7 + iy, and ¢ and ¥ are analytic. Acting on U with
2 2
9 and 2z

=0z 8z’
one finds immediately that
Oue + 0y =2 [0 (D) H T |3 0wy — e+ 2oy = 2[5 (D + ¥ (2)]  (332)
One can also find the displacements in terms of ¢ and . The re'suIt is
2t (g +duy) = <8(z) = 27 - B (3.33)

where
Lo At3u

T A4
A final useful relation gives the force exerted on a boundary in terms of ¢ and ¥. In
particular, if the normal force on a boundary vanishes, then on that boundary

$()+ 28 (z) + ¥ (z) = 0. (3.34)

3.2.1. The stress fleld of a straight crack
Suppose we have a plate under uniform tension,
Tyy =2 Ogr = 0py =0
Orne finds immediately that
2=y =Tz

Next suppose we have an infinite plate with the same condition at infinity, but a crack
stretching from —1 to 1 on the real axis. On the crack we have

()42 () + () =0

10 Motion of & Crack in an [nfinite Plate

Now define ¢(z) to be the analytic function such that
$(z) =d(2)
on the real axis. Define ¢ similarly. Then our boundary condition gives us that

() + 24 (2)+d(z)=0.

Argue that ¢ goes as z at infinity, that it can have a branch cut between -1, and 1, that
as & is arbitrary, the only power of V2% ~ 1 allowed is the first, if & is not to di-erge. The
answer then is

$(z)=T zz—l—gz

w(z)=Tz-T

T

4. Motion of a Crack in an Infinite Plate

4.1. Mott’s Scaling Analysis

The first analysis of rapid fracture was carried out by Mott. It is a scaling analysis
which clarifies the basic physical processes, despite being wrong in many details, and
consists in writing down an energy balance equation for crack motion. Consider a crack
of length I(t) growing at rate v(t) in a plate under stress oo far from the crack. When
the crack extends, its faces separate, causing the plate to relax within a circular region
centered on the middle of the crack and with diameter of order I. The kinetic energy
involved in moving a region of this size is guessed to be of the form

KE = cxl%?, (4.1)

and the potential energy gained in releasing stress from the region is guessed to be of the
form

PE = —cpl®. (4.2)

These guesses are correct for slowly moving cracks, but fail qualitatively as the crack
velocity approaches the speed of sound, in which case hoth kinetic and potential energies
diverge. This divergence will be demonstrated later, but for the moment, let us proceed
fearlessly. The final process contributing to the energy balance equation is the creation of
new crack surfaces, which takes energy '], where I'is a phenomenological fracture energy.
So the total energy of the system containing a crack is given by

E =cxlv? + Eu (), (4.3)

with
Eq(l) = —cpl® +TL (4.4)
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Consider first the problem of quasi-static crack propagation. If & crack moves forward only
slowly, its kinetic energy will be negligible, so only the quasi-static part of the energy, E.,,
will be important. It costs energy for very short cracks to elongate, and in fact such cracks
would heal and travel backwards if it were not for irreversible processes, such as oxidation
of the crack surface, which typically prevent this from happening. That the crack grows
at all is due to additional irreversible processes, sometimes chemical attack on the crack
tip, sometimes vibration or other irregular mechanical stress. It should be emphasized
that the system energy E increases as a result of these processes. Eventually, at length
ly, the energy gained by relieving elastic stresses in the body exceeds the coet of creating
new surface, and the crack becomes able to extend spontaneously. One sees that at Iy, the
energy functional Eg({) has a quadratic maximum, so that Eq. (4.4) can be rewritien

Equ () = Equ(lo) = cp(1 = 1o)*; lo =T/2cp. (4.5)

The whole study of engineering fracture mechanics boils down to calculating Iy, given
things such as external stresses, which in the present case have all been condensed into
the constant cp. Dynamic fracture starts in the next instant, and because it is so rapid,
the energy of the system is conserved, remaining at E.(lg). Using Eq. (4.3) and Eq. (4.5),

with E = Eg,(lo) gives
”(t)=\f§;:‘(1"‘%q)=vmu(l-%o)- {4.6)

This equation predicts that the crack will accelerate until it approaches the speed vmax.
The maximum speed cannot be deduced from these arguments, but Stroh correctly argued
that vmax should be the Rayleigh wave speed, the speed at which sound travels over s free
surface. One needs only to know the length at which a crack begins to propagete in order
to predict all the following dynamiecs.

4.2. Steady States in Antiplane Shear

The goal of this section is to compute properties of a crack moving at steady velocity,
in the case of antiplane shear. The starting point is the equation of motion Eq. (3.2), which
is just the wave equation for the displacement u,. If a crack moves at constant velocity v,
then in a co-moving frame it will cbey the equation

gazu, 62!13
O e

—_—— 4.7
5 T =0 (47)
where
a=/1-vl/e (4.8
Defining the complex variable
=z +iay, {4.9)
the steady state equation can be rewritten as
2
LTI (4.10)
e
—fl -

12 Motion of @ Crack in an Infinite Plate

In other words, u,({) obeys Laplace’s equation, and can therefore be written as

u; = ¢ {C) + ¢ (<), (4.11)
where ¢ is an anelytic function.

To proceed further, of course, one has to specify boundary conditions, and details about
the problem. However, Eq. (4.11) is sufficient to extract important information about the
singularity at the tip of a crack, assuming only the the crack is loaded symmetrically, so
that

ug (y) = us (—y). (4.12)
Letting the crack tip be located at the origin, one can assert the following:
1 The displacement i, vanishes in front of the crack.
2 Behind the crack, u, must flip sign as y goes from negative to positive, .
3 The stress o;; = pdu;/dy just vanish behind the crack, since the crack face is a free
surface.

Just as in the static case, these conditions are met by a square root singularity in ¢.
Freund shows that ¢ must have this form by asymptotic expansion, and later in these notes
an explicit calculation will show that ¢ has this form near the tip in a fairly general case.
So let us take

. K
¢(C)=~;m\/2_”\/f. (4.13)

This equaticn is meant to describe the tip of a crack moving from left to right, which in
the moving frame has its tip at the origin. The branch cut of the square root extends
backwards towards negative . The constant A is arhitrary, and has been normalized in
a peculiar way to accord with convention. but must be real so that o,, vanishes along the
crack surface, for negative z and y — 0. Onc has then the following general structure for
the displacement and stresses near the tip of the crack.

;= “"paijﬂ (\/E_ \/E) (4.14a)

o= [ L L (4.14b)
¥z 2 Jz_n' C JE .
i K 1 1
Toz = Bon [\/E - -\—/.—a] . (4.14¢)
Note that only the constant K is unknown; it is given by
K= lir§1+ Virzo,,, (4.15)
P

and is called the stress intensity factor.

An interesting calculation, first done in a more difficult context by Yoffe. is to imagine
approaching the crack tip and cutting an incision that approaches that crack tip radially
at an angle #. The normal stress required to glie the cuts back together 1s

Tgg = cc.sﬂ-‘?-”—x —si 9?-1-1-i

1
By sin 5= (4.16a)

—I R -
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This stress is to be evaluated at the point
¢ =r(cosf +iasind). (4.163)

Upon evaluating Eq. (4.16) for velocities v < .573..., one finds that the maximum value
of the stress is for & = 0, so it seems sensible that the erack will continue to propagate
forwards. However, for larger values of v, the maximum stress is off at an angle, as shown
in the figures. For v > .573, it seems likely that the crack would become unstable, either
to crack branching, or to some complicated unsteady motion.

20
1.2}
0.4}
-0.41
-1.21

20 -12 04 04 12 20

The stress normal to a cut along  is indicated by drawing a radius vector proportional to the stress for each
angle 8. This picture is for v =2

4.3. Steady States in Plane Stress

These notes show how to find the structure of the singularity around a crack tip in
plane stress.

Begin with the dynamical equation for the strain field @@ of a steady state in the moving
frame,

au

A+ u)V(V -0+ uV%% = (4.17)
Divide 7 into transverse and longitudinal parts so that
i =1 + iy,
with
= o and @ = (FE-32).

[

4 Motion of a Crack in an [nfinste Plate

2.0{

1.2}

0.4
0.4

-1.2}

-2.0I.

20 -12 -04 04 12 20

The stress normal to a cut along # is indicated by drawing a radius vector proportional to the streas for ench
angle #. This picture is for v = .8

It follows immediately that

L 2 2]

{(,\+2y)V - = f=—|uVi-pv 32z % {4.13)
for some function f which must be harmonic (f; — ify is a function of  +iy). We have
then that :

[ 37 ] Vi =0,
‘2
g s
where o
2 _q_ _PY
a*=1 o (4.19a)
2
-1-£ 4.19
g , (4.195)
Therefore the general form of the potentials is
v =1 (z) +of ( } + o} (z + iay) + v} (z + iay) (4.20a)
v = 0 (2} + o8 (2} + v} (z + iBy) + v} (z + iBy), (4.208)

subject to the constraint of Eq. (4.18), wh:ch gwes a relation between vf and vl
In fact, the purely harmonic pieces v, and v? disappear entirely from the expressions
for #. They result from the freedom one has to add a harmonic function to v and v

e
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simultaneously, and can be neglected. Defining ¢(z) = 8v/(z)/0z and #(z) = Bv}(2)/9z
we have for &
ue = #(20) + 9(20) +i8 [ (25) = ¥ (29)| (4.21a)

uy = o [0 (za) = $(z2)] ~ [¥ (20) + 9 20)] (4.218)

where
o =z +iay, zg=2z+ify.
Equation Eq. (4.21) gives a general solution for steady state cracks. Define also ¢ =
8¢(z)/0z and ¥ = B(z)/B2. Then the stresses are given by

zs + oyy = 2(A + 1) [¢(=,)+¢(z.,)] (1~a?) (4.22a)

azs — oy =20 { (1 +2%) [‘P(zo,) +3Tz'§] +2i8 [m (25) = ¥ (35) |} (4.225)
200y =2 {20 [2(20) - B(a)| ~ (B 4+ 1) [ () + 2 Ca) ] (4220

we will also need the rotation, which means

v=gr S (10 [2 () + )] (4224)

It is worth writing down the stresses directly as well:

ryy = = (14 8Y) [8(2) 4 B20)| - 280 (¥ (25) = ¥ (59)
ore = 1 (1420~ 8%) [@(2a) +8(za)| +%Bp LIOR (vs)]

The definitions of & and g in Eq. (4.19) have been used to simplify the expressions.

To solve a general problem, one has to find the functions ¢ and 4 which match boundary
conditions. It is interesting to notice that when v — 0, the right hand side of Eq. (4.22a)
goes to zero as well. Since one will be finding the potentials from given stresses at the
boundaries, ¢ must diverge as 1/v, and the right hand side of Eq. (4.22) will turn into a
derivative of ® with respect to . That is why the static theory has a different structure
than the dynamic theory. In fact, the dynamic theory is more straigtforward.

As 2 first application, we will show that a moving crack under symmetric loading
becomes unstable at a certain speed. We assume the crack to lie along the negative z axis,
terminating at z = 0, and moving forward. The problem is assumed symmetric under
reflection about the 7 axis, but no other assumption is needed. This instability was first
found in a particular case by Yoffe.

We know that in the static case, the stress fields have a square root singularity at the
crack tip. We will assume the same to be true in this case (the assumption is verified in
all cases that can be worked explicitly.) Near the crack tip, we assume that

{4.22¢)

$(2) ~ (Br +iB;)2'*

: 4.23
¥(z) ~ (Dr +iD;} 2*? *29)

[~
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We first appeal to symmetry. Observe that

us (—y)=us(y), uy(-y) = —u(y). (4.24)
Placing Eq. (4.23) into Eq. (4.21) and using Eq. {4.24), we find immediately that B; =
D, = 0. Thus B
'y iD;
()~ ¥~ z,—,;, (4.25)
We also observe that the square roots in Eq. (4.23) must be interpreted as having their cuts
along the negative z axis, corresponding to the crack. On the crack surface, we have two
boundary conditions, which require that ¢, and o,, vanish. Upon substituting Eq. (4.25)
into Eq. (4.22¢) we find that the condition upon oy, is satisfied identically for z < 0,y = 0.
However, substituting into Eq. (4.22d) with y = 0 we find that

ogy = pi {2aB, - (8% + 1) D;} {-\}—;—%} (4.26)

Thus

Dy 2a
BT B+ Y
This relation is enough to find the maximum velocity at which a crack can proceed stably

along the z axis.
Using Eq. (4.27) we find that

_ K 2 2q? _ 3° ! L —da —
T el )

(4.27)

K i L 1 RIS .
= 75D ['“”” {+ fo}+4aﬂ{\/ﬁ+ﬁ§” (428
D SRS (8 S SRS SO B
a"’_\/‘z—nDzm(’gH){ﬁ; Yl zﬁ}
with

2

D=4af-(1+8%

The constant K is again called the stress intensity factor, and is given by
K =limz = 0*V2rzo,,. (4.29)
In order to find the direction of maximum stress, one must approach the tip of the crack

along a line at angle # to the ¢ axis, and compute the stress perpendicular to that line. So
one wants to choose

(4.28b)

Zp =rcosf 4+ riasind, 23 =rcosé + ridsind, (4.30)

and to evaluate the stress
o9y = cos’ B,y +sin’ G0, — sin(26) ooy, (4.31)
When this is carried out, one finds, as in the case of antiplane shear, that above a
certain velocity (for Poisson ratio v = 1/3, the critical velocity is about .61) the direction

of maximury tearing stress points away from the axis, and the crack would presumably
become unstable,
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4.4. Energy Flux

4.4.1. Antiplane Shear

Freund has emphaisized the importance of computing the energy current in fracture

problems. 1t may be found from the time derivative of the total energy. The energy of the
field u, is

L
£= %‘[d::dy;? (i) + (Vu,)z. (4.32)
S
° d€ 1. .
7 = H [ Ftels + Vu, Vi, (4.33)
=p [ @,V + V- (V) — 6,V u, (4.34)
=u | di i, Vu,. {(4.35)
as

So the energy current is ~

J = pte,Vu,. (4.36)

In steady state, the current out of the upper half of the system thorough the z axis is

70 = f d.r%ay,(m), (4.37)

where the integral is taken for y just a little bit above the axis.”

When the crack is not loaded on its face, it appears that the current vanishes, since
u, is zero for > 0 and oy, is zero for z < 0. However, right at the tip both of these
quantities are sufficiently singular that they create a delta function which produces a finite
energy flux into the tip. Only the fields right in the vicinity of the tip are important, so
one can use the asymptotic forms Eq. (4.14) for the computation. One has

—1 1 1 KZ
T = o | 22 - 4.38
H[ 4 | lz+ioy z-—iay]| 2ralu? (4:38)

_ vh? ay
= o Lz m a2y2] : (4.39)
One does in fact get a delta function as y — 0. Integrating the current over T gives
tap _ o2 4

J!l 40,“ * (4 0)

This is the energy flux from the top half of the plate into the crack tip. There will be an

equal flux from the bottom half. Therefore, the total energy traveling into the crack tip
per unit time is

-2
tor , DA (4.41)
v 2op° )
am
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4.4.2. Plane Stress

Energy flux may again be found from the time derivative of the total energy. We have

d d 2. . 10uy
m [K+P)= Efd.tdy [Eu.,u., + Ea—naﬂ,g] . (4.42)

The spatial integral is taken over an region which is static in the laboratory frame. So

d iy
] [K+P]= jd:cdy [pt’iod, + alr:;dqg] ' (4.43)

where the symmetry Eq. (2.19) of the stress tensor is used for the last term. Using the
equation of motion Eq. {2.18) we have

8 . N
/d:r:dy Eaaguq + _é.;;aaﬂ ,
= jdzdy-a-i—ﬂ [augﬁn] (4.44)
=f ftoﬂmgng, : (445)
as

where the integral is now over the boundary of the system, and # is an outward unit
normal.

By using the asymptotic forms Eq. (4.78) for o,y and the corresponding expressions
for uy from Eq. (4.21a}, one finds that the total energy flowing into the crack tip per unit
time is
o 1 2

o= u (1 - §%) — - (- 46)
(1-5) 2 daf — (1+ 2)
where K is
K= li!‘(l}l+ Varzoy (z,0) (4.47)
r—
One can also derive
JW = lim 2rokuy (k) oy (—K), (4.48)
—00

which is the corresponding equation in k space.
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.5, Energy flux for crack with arbitrary motion

Consider a crack with tip located at I(t). To the left of the crack tip, one applies known
stresses ¢~ to the crack fsce, and the body is ctherwise unloaded. Consider ¢ and u on

the r axis. Decompose ¢ into
o=at+07, (4.49)

and notice that
u=u", (4.50)

where ot vanishes for = < !(t), o~ vanishes for £ > {(t), and u~ vanishes for z > I(t).
Suppose that ane can obtain a relation of the following form:

Gtro =G »uy, {4.51)

where G*(z,t) = 0 for £/t < vyux, and G~ (z,t) = 0 for /¢ > Vyin, Where vmay and vpin
are the maximum and minimum velocities of the crack. Because of the causal structure
of the Green’s function. one always turns out to have in fact Gt ~ §(z — vpat), and
G~ ~ 6(z — vpint). From Eq. (4.51) one can solve formally for the stress and strain fields
as follows. Consider r > I(¢}. Because u~ is zero ahead of the crack

G ru" = /d:r‘dt"G' (z -2t - t’) u” (z',t’) (4.52)
is certainly zero whenever ' > I(#'). The only chance for the integrand to be nonzero is
for ' < I(t'). In this case e

z—2' > 1{t) = 1(t) = i) (t - 1), (4.53)

where t* is some time between t and t'. However, this means that
-2 > (t =) Vemin (4.54)

so that by hypothesis G—(z — z',t — t') vanishes. The conclusion is that

/ de'dfG (2 - 2\t - #)u= (2,¢) =0 forz > 1(1). (4.55)
An identical argument shows that
/d:c‘dt"G"‘ (x =2t ~t)o? («,t) =0 for z <I(t). (4.56)
Therefore, one can deduce from Eq, (4.51) that
Gtuot=—[Greo”]b(z-1(1), (4.57)

which has now been shown to be true both for z > I(#}, and for z < I(t). But this relation
can be inverted to give

ot = -G e {[GH o] 8(z - 1(1)). (4.58)

~92-
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Since o~ is a known stress to the rear of the crack tip, one has - formal solution in terms
of the decomposed Green function.
Let us now try to find the stress intensity factor. This is th~ limit

K= lirgx Vareo (e +1,t). (4.59)
e—04
Examining Eq. (4.58) one can first assert that
Gtreg~ = [dt'dI‘G+ (-2 t=t)o" (z',1) {4.60}

goes to same finite value at the crack tip, since the applied stress o~ is integrable, and it

is (G"‘)—1 not G* which diverges badlye near the crack tip (this property must be verified
by solving for G, but it is always true, both for strips and for plates.) So

K =— lim {\/;zc’f“ “8(x —!(n))}

=0y

VIGT . a'] . (4.61)
()0

This result is the most general expression of the Kostrov/Eshelby/Freund calculation. It
gives the stress intensity factor for a semi-infinite crack in an infinite plate with arbitrary
time-dependent loading on the crack faces, Suppose one had a stationary crack of length .
Then the first term on the right hand side would give the effect of time-dependent loading,
while the second term would be constant. The second term contains the information on
how the stress field near a crack tip changes because of the velocity of the crack. The form
of the stress field is a universal function of velocity, and loading only affects the stress
intensity factor through a multiplicative term, as shown in Eq. (4.61).

({{th+e.t} [

4.5.1. General Equation Applied to Antiplane Shear

The goal is now to apply the general result Eq. (4.61) to the particular case of anti-
plane shear, and recover the result first found by Kostrov and Eshelby. The starting point
is Eq. (3.2), the wave equation for u,. Fourier transforming in both space and time by

j dz dt g7+t (4.62)
one has that 2
?j"f{ = [ — w?/e? — 2ibw] u,, (4.63)

where an infinitesimal amount of damping has been added to take care of some convergence
problems that will arise later. The result only works for a semi-infinite crack in infinite
plates, so that will be the setting to try here. Only the solutions that decay as a function
of y are allowed in an infinite plate, so Eq. (4.63) is solved by

uy (kyy,w) = e VVR-w/ed-2iboy (p gy (4.64)

Right on the z axis, taking u = u.{y = 0} and o = o,,(y = 0), one has that

G (kyw) = % = —py/k? - w?/e? - 2ibw. (4.65)

<972
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Decompose G as

G-
G= ot {4.66)
with
G~ = —u\ik —iwjc + b (4.67a)
and 1

Gt = m (4.875)
To verify that this decomposition satisfies the conditions of the preceding section, find
dk dw e~thT—iwi
PR ey (468)
dp e g= P2 —iwlt=z/c)

ol Ay (4.69)

Gtiz,t) =

with p =k +w/e
dp e-ipr
=6{t- r/c}f———~——. . 4.7
oyt (4.70)
When z < 0, one must close the contour in the upper half plane, and as the branch cut

is in the lower half plane one gets zero. When « > 0, deform the contour to surround the
branch cut, and get

o0 “.12 o’e—flI _ 1 i
n Ipfb  Jrz (4.71)

Therefore

(4.72)

To find G+~ one must do

-1 db dw .. :
G™7 (wt) = [ —Zemtbriet S T+ b (4.73)

2r 21

=6{t - .r/c)/@c-‘ﬂ\/_iw, b, (4.74)

One cannot legitimately deform the contour to perform this integral, but can instead write

that ‘
a dp e™PE
/ V=irts Tz T—ip+ b (4.75)
obtaining in this way
G e t) = 8(t - m/c)—— [ﬂﬂ 4.76
i ( ')

Returning to Eq. (4.61), there are two integrals to carry out. The singular one is

\/rr_e/d:c]dtlé(h —z/e) {E)-a—?/(}l_}ﬂ(l( Jte—zi —1(t —t1)) (4.77)

—Me -
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_ d‘!‘] aJ 9(1’1)
= v [ [ loe-nli-v/e), (4.78)

since only very small xy are important

_‘/-/d”lg(")(j__u(t)/c)G(l( t)+e—x =ty +v(t) /em), (4.79)

=T—-v(0) /e (4.80)

The next piece which is needed is

R =3 [ derds 1 - /0 f/(:T‘l)a- A =zt~ 1) 4.81)
_,-\/-/d s ‘) o™ (1(8) = 21, — 21 /c). (4.82)

This is as far as one can take matters without an explicit expression for ¢~. However, in
the case of time independent loading, one simply has

f(x
2 [ 4 S (0 - 2. (483)
For the particular case where
a{r) = aef{r), ‘ (4.84)
one gets 4
K= “UO‘E‘/E (4.85)

Notice that Eq. {4.80) reduces to unity when v — 0. This means that in the case of
time independent loading, I is simply the stress intensity factor one would have had if
the crack had been located unmoving at (t) for all time. For the moving crack, we have

=/1-v(t)/cK(1{t). (4.86)

One computes the stress singularity that would have developed if one had a static erack
of the present length, I(t), and multiplies by a function of the instantaneous velocity. It
should be stressed that all detnils of the history of the crack motion are irrelevant, and
only the velocity and loading configuration are needed to find the stress fields sufficiently
close to the tip. As a consequence, one can use Eq, (4.41) to determine the energy flow to
the tip of the crack. It is y

vl —vfe} K*

tot __
Iy = 2o

(4.87)

From this expression, one can deduce an equation of motion for the crack. The rate
at which energy enters the tip of the crack must be equal to vI'{v), which is the {phe-
nomenclogical} energy needed to create new fracture surfaces. There is nothing to prevent
the fracture energy from being a function of velocity, but the notions of local equilibrium
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which have prevailed until now strongly suggest that it should not depend upon snything
eise. So one must have .
_(1—v/e) K (D)

4.88
L) S (4:88)
which mey be rewritten as
ul'm 1-v/c
e =y —— 4.
ale3 1+v/fe (4.89)
or
lo 1-v/c
I~ Yi1+e/c (4.90)

4.5.2. General Equation Applied to Plane Stress

The same analysis may be carried out for thin plates under tension. Everything pro-
ceeds as before, except that it is not possible to display simple analytic expressions, al-
though there are excellent spproximations that can be put in simple form. I will just
record the final result, due to Freund, that gives fhe energy fux to the tip of the crack.
The flux per unit length extension of the crack is to good approximation

(1= v/er) K2(D)

T{v)= i

{4.91a)

BN 13 ) B . (4.91b)
(1-) K2 cR
where cg is the Rayleigh wave speed (the speed at which the function D given in Eq. (4.28b)
vanishes), K is still given by Eq. (4.82), using dyy on the z axis for 0. In the case of time-
independent loading described by Eq. {4.86) one gets

ITD =1-v/c, (4.92)
with .
aTA

L 4.93

lﬁ 40’8 ( )

or if T' is velocity independent,

v =CR (1—-7). (4.94)

Amazingly enough, the exact analysis reproduces the resuit of the simplest scaling argu-
ments, Eq. (4.6).
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5. Motion of a Crack in a Strip

The power of the methods which find a general equation of motion for a semi-infinite
crack in an infinite plate obscures the fact that the problem of crack motion is still not
completely solved. For example, when a crack moves in a system with boundaries. wave
reflections from the boundaries allow the crack to interact with its past history, and it
no longer acts as a particle without inertia. Because of these reflections, it is no longer
possible to write a Green function for the system in the form Eq. (4.51) The equation of
motion for & crack in a strip can only be obtained in the limit where the acceleration is
very small, and the net result is that the crack acquires and effective mass. The techniques
needed to develop this equation provide an example of how to carry out a perturbative
caleulation for dynamic cracks, and also show how to work with energy conservation laws
for cracks in Fourier space.

5.1. Virial Theorem

In order to caleulate the total energy of a moving crack in a strip, it is useful to begin
with a virial theorem. We will find a relation between the kinetic and potential energies
in general. The kinetic energy of a moving crack is

1 ,
KE=3 [ dedy i3, (5.1)
[+ 4
while the potential energy is '
1 Ougy
PE=3 ] d.rdy% L (5.2)

1 a 1 .
=3 j dzdy azﬂ Bt_g [uuaag] -3 j d:cdy; Hotia, (5.3)

where we have used the equation of motion

flg = (5.4)
It follows then that the total energy is given by
1 . \2 . 1 P
E=KE+PE= 3 [ drdy ; [(un) - ua.uu] + 3 Ldn -, (5.5)

with the last integral over the boundaries of the system, and

g = Uglap- (5.6)

We can now use this result to simplify the problem of a crack moving in the steady
state. The time derivatives can all be converted to spatial derivatives, and integrating by
parts we have

ax— Qua 1 P
E—/d:dyc B +2[sd‘n-w. (5.7)

~5%-
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5.2. Crack in a Strip: Antiplane Shear

I will now consider a semi-infinite crack moving at constant speed v in an infinite strip
of unit width. The strip is loaded by a stress o, applied to the crack faces so as to push
them apart, while the upper and lower surfaces of the strip are held fixed. The solution of
a problem in which the upper and lower edges of the strip are clamped at a fixed height

' oo ‘
= 5.8
p (5.8)
while the faces of the crack are not loaded is virtually identical. The equation of motion
is Eq. (3.2), and in a frame co-moving with the crack one has boundary conditions

u(z,y=1)=0 (5.9a)
U (z >0,y =01=0 {(5.95)
O (r<0y=0)= —g.. (6.9¢)

Here pdu,/dy = ay.. The equation of motion in & space is

D u, a2
—az? = ok u,, {5.10)
where
L v
o' =1-- . (5.11)
Therefore
aik} .
ulk,y) = Yo sinh aky + u (k) cosh aky. (5.12)

When stresses and displacements are written without a subscript, it means they are eval-
uated at y = 0. As a consequence of boundary condition Eq. {5.9a), one sees that

1w (k,1)=0 (5.13)
Z8) - _jakcoth ok
= wky T THa coth ok (5.14)

From the remaining two boundary conditions, one has that

— oo [+
() = ) = g gty 222
e (k) - = ocik)=a"+¢ o™ (k) T (5.15)
ulk)=u"(k),
where
ot = [(I.reikrﬁ(ix}ay, (z,0), (5.16)
and .~ is defined similarly. Define
aik) _ o . .
qu(k] = F(k) = pakcothak, (5.17)
.._a_g‘_
T T T T T e e - ey S
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using Eq. (5.14). It follows that

—u(k)F(k) = [aw.-) - %ﬂ] (5.18)
= —ku~ () F (k) = kot (k) + icw (5.19)
- const.
2u(k)=u (k)= ¥F-(F)
o F (0
= (k)= 517&3% (5.20)

The proper expression when the need to make the Fourier transforms converge properly is

considered is
ExF(0)

(ik + ) F- (k)

and ¢ is infinitesimal. It is in fact possible to carry out the decomposition. One has that

w(kh) = (5.21)

[(l+ick/n)

) = Vo e s T ikasm)

(5.22)

However, this relation is not needed to compnute the energy of the moving crack. The full
expression for u, is

s F(0)

ok F-(R) [coth erk sinh aky + cosh aky]. (5.23)

ur (kyy) =

5.2.1. Energy of Antiplane Shear Crack in Strip

In steady state, the kinetic energy of the crack is
. 1 v? [ Ou
KE = ‘-z-jd.rdyg ( M ) (5.24)

1 fdk, vt ,
= Efg—xd: Zrkus (ks (—kyp). 5.25)

Note that F-(k) _ F~(=k)
F+H{kY ~ F+(-k)

= F {kYF* (=&} = F* (k) F™ (—k) = const.. (5.27)

F(k} = F{~k)= (5.26)

In the expression for u(k, y)u(—Fk,y), the only complicated term is

F-{0)F~(0) _ F(0)
F-(KYF-(=k)  F(k)

(5.28)

-99-
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The kinetic energy then reduces to the following integral,
/‘°° dk il [ainhll-ozk —sinh2ak — 4ak] . (5.29)
—o0

2ralk? pc? sinh 2ak

According to Eq. (5.7), the only other contribution to the energy is a surface integral,
which is

/ dzu;0 (5.30)
={t) oo + j dz {4y - 68 (—1)) 0, (5.31)
measuring [ with respect to some far distant end of the strip,
=1(t)bow + b H (v) (5.32)
where the careful use of Eq. {5.21) shows that
i}
=i = (k . 5.33
H(v)=ig InF (L)L=n (5.33)
To calculate H{v), consider
j k(8 __F(0) ] _FrO (5.34)
2r | (ik+ ) F- (k)] (—ik +¢) Ft (_.k)

_ =29 F(0) ] F+(0) ="1_‘£H
= Tox |[Bv2eF-(—ie)) (=) F+(ie) 28v
On the other hand one can also write this integral as

/dz.-[a F~{0) ]( F(R)F*(0) (5.36)

(v). (5.35)

o7 |Belik+ e} F- (F)] (=ik + &) F~(—F)

_ de 1 l . i P~ (0)F+(0) ] .37
= f’z?ku-e? AR [F- (k) F= (=) (5.37)

dk 11 a1
18 fdkl. 1. 30
=3% ) =R F(H (5.39)

so that ‘
at 1. [F(k0)

Hw)= [ 5 [——F(k'v) . (5.40)

The full energy of the strip, taking both top and bottom halves into account, turns
out tosbe

1{t) 60 + 800 [u% + 1] H(v), (5.41)
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with de 1. [F(k,0)
H(‘U) = /2—#p ln [—""—""F (k,‘u)] . (5.42)

This expression was obtained by techniques that will be demonstrated for plane stress in
a later section. It must be true that if one takes the indicated derivatives of H(v) one will
obtain the expression for the kinetic energy in Eq. (5.29), but in fact I have never checked
for antiplane shear to see that it really works!

In the case where the top edge of the strip is clamped, the energy of the system is
instead

i}
—1{t) 800 + 80 [vs—v- - 1] H{v). (5.43)
One has therefore the equation of motion for the crack
T(v)v —vdoy + i!&om-a— v—(?— ~1| H{v)=0. (5.44)
v | Ov '

This expression shows explicitly how acceleration robs the crack tip of energy. It should
only be valid in the limit of adiabatic acceleration, and these expressions can be recovered
as the result of perturbing about steady state motion, with acceleration as the small
parameter.

5.3. Crack in a Strip: Plane Stress

Consider now the problem in which a semi-infinite crack under plane stress moves at
constant velocity v through a strip of half-width 1. The calculation will differ from the
preceding one because it will be carried out for plane stress rather than antiplane strain.
We are interested in two related problems. In both cases, the symmetry of the problem
allows one to restrict attention to the upper half plane alone. The first problem, which
we shall refer to as problem (A) since all the stresses are after the crack, features a crack
moving in steady state at velocity v in a strip obeying boundary conditions

u, (z,1) =46 (5.45a)
uz(2,1)=0 (5.45b)
ory (2,0} =0 {5.45¢)
oy (z,0)=0forz <0 (5.45d)
uy{z,0) =0 for z > 0. {5.45¢)

The second problem (B) differs from the first only because one subtracts from stress and
displacement fields the solution for a uniformly stressed plate without a crack; now all
stresses are behind the crack. Stresses in a uniform plate may be found from the constitu-
tive equations Eq. (2.21) and are

up=0; u, = by

Oy = pbe} = Gooi Oz = P8 (cf - QC?) i Oz =0. (5.46)
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Subtracting these fields is equivalent to imposing boundary conditions

uz(z,1) =0 (5.47a)
uy(z,1)=0 (5.4Tb)
Gy (2,0) = 0 (5.47¢)
uy(2,0)=0forz >0 (5.47d)
oy (2,0) = -0, for £ < 0. (5.47¢)

It is most convenient to employ the Wiener-Hopf technique on problem (B); all of our
equations for stress and strain will be for problem (B), and if we wish informetion of
problem (A), we will add the required fields explicitly.

The equations of motion for an elastic medium may be expressed in terms of two scalar
potentials which obey the wave equation. One of them is a potential for longitudinal waves,
the other is the potential for transverse waves, and they have been derived in Eq. {4.20).
From them one may derive the displacements, by

=V +Vxuy (5.48)
In the steady state one has
0y Py
a3 a7 + 5 = O’
9a? = oyt (5.49)
ﬁgazv. + 6%, =0 ‘
9z T gyt T r

where as in Eq. (4.19) o =1 -¢%/¢}, and 2 = 1 —}Jgjéfj‘Then one can write

v = A, (k)sinhaky + Ay (k) coshaky

v = Ay (k)sinh fky + A (k) cosh Bhy (5.50)
In terms of these constants one has
wr =Acr (k) Bk sinh fhy + Ay (k) Bk cosh fky
—ik (A, (k)sinhaky + Ag (k) coshaky) (5.51a)
ug =ik ( Ay (k)sinh Bky + A (k) cosh Fky ) 5510

+ady (k) Esinhaky + ady (k) kcoshaky

One can work out the stresses using Eq. (5.50) and Eq. (5.51).
Three of the coefficients Agy(k)... Ay(k) can be found from the three boundary con-
ditions which apply to all z, and hence all to all k, (Eq. (5.47)a'-c). Define

u (k) = uy (k,0). (5.52)

Then
i(2af8s, 55 — 2cqeg+ 82 +1)ulk)

Aglk) =z ag(Bu(k) = B ()

(5.53a)
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({B%+1) 5095 ~ aB (1 + B%) cacg + 208 ) u(k)

= = 5.53b
Ad adu(k) GB(k) ( )
A= k) = 2iu (k) 553
ot = aqt (k) = (ﬁz-—l)k ( C)
(B +1)u(k)
Ay =agqu(k)= (aﬂ2 —a)k (5.53d)
with
B(k)=(8%-1)k(casg—afisacg). (5.53¢)
We have used the abbreviated notation
3g = sinhak; sg = sinh Bk; ¢y = coshak; ¢y = cosh Gk. {5.54)
One now uses the Wiener-Hopf trick. Define
o0 ) 0 .
ot = / gy (1.0)e¥*%dz; 0™ = / ayy (2,0} e**dz, (5.55)
0 —00

with ut and u~ defined similarly. One should note that o~ has no poles in the lower half
plane, a% no poles in the upper half plane. Similarly u* has no poles in the upper half
plane, and u~ has no poles in the lower half plane.

One writes that

a(k)=a++a"=cr"'-—%
' u(k)=u".
Then defining o
F{k)= -= (5.56)
we have o
—F{kyu==ao% - ﬁ (5.57)

The point of defining F(k) lies in the fact that since it is a ratio of two quantities expressible
in terms of the A, ... Ay, the unknown function u(k) which appears in all of these does
not matter. The function F(k) is

Sudg {(,t92 + 1)2 + 4(05)3} - cocgarfl {(,62 + 1)2 + 4} +4af (F* + 1).

F(k):kpcg a(l—ﬂz)(aﬂsamg—casa) ( |
5.58
For small &, )
F= fD = pel, (5.59)
while for large real k
k 2
F = [k|foo = "—_’a(lﬂ'lzp?n {(ﬂ2+1)2—4aﬂ}. (5.60)
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Let us suppose that we can write F{k) in the following way, as

F~ (k)

k)= 5y

(5.61)

where F~ has no poles in the lower half plane, and F* has no poles in the upper half
plane. Then we can write

—kF~ (k)u™ = kot F* (k) + ioa F (). (5.62)

One has set equal an expression with no poles in the upper half plane to one with no poles
in the lower half plane. Therefore, both must equal a constant. The constant can be fixed
by examining the behavior of the expressions for k —+ 0. Notice that

limu -6- |
i ik’ (5.63)

this statement follows from the fact that u vanishes for large positive z and goes to § for
large negative x. So one has

§F—(0)

(b 0)=u" (k) =u(k)= ikF- (k)

(5.64)

The problem is now solved, apart from the difficulties of decomposing F into F+ and F-.
The following equation is frequently useful. We have that

F-(k) F-(-k
F(k) = F(-k) > _IH% -E E_k;
= F~ (k) F*(=k) = const.

The constant is arbitrary, since F+ and F'~ can always both be multiplied by any constant
and still satisfy al! the properties that define them. A simple choice is

F™ (0 = Frpgye (5.65)
which implies that
F~(0) = vfo. (5.66)

For many purposes the limiting forms of F for large and small ¥ are sufficient. One

can write
Fk) = 1/&'—' A+ 12, (5.67)

where fo, and f; are chosen to get the two limits right for real k. Then one has

~ (1) e i + 1
F (k)= /fo+ ikfu, F¥(k)= = (5.88)

These forms are adequate for studying behavior near the tip, where only large k is impar-
tant, and interpolate sensibly to large distances, although on the wrong length scale.
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5.4. Perturbative solution for accelerating plane stress cracks

Consider a crack in a strip which accelerates slowly. The location of the crack tip is
given by I(t), and the dimensionless parameter indicating when acceleration is sufficiently

slow is .
bijcd <1,

where b is the half-width of the strip. The velocity of the crack is required to change slowly
over the timescale in which sound communicates with the boundaries. Then to leading
order the potentials for the crack are given by

da (T, y,t) = $3(z = {(1),y,v), (5.69)

where ¢2 is the steady-state potential appropriate for a crack moving at constant velocity
v =1, and @ = l,t can give either the longitudinal or transverse potential. However to be
consistent to order © = I, for an accelerating crack, one must write

¢E(I|yvt) = ¢:;{I - [(f),y,‘u) + oD, (T — l(t)ayvv)'

In the accelerating frame of reference ' = £ — I(#) one has
2l Lo 2
at|, = atl, " B

so the second time derivative of the potentials is given by

( 2
at
_ 8¢ P 3ba 180

= Toor Vo T mn (570)

In the accelerating frame, the potentials depend upon time only through their dependence
upon v(t). Therefore

Iy

) 2
’ —v(t)a_;) da

r

8,9

at " "ov
Inserting Eq. (5.69) into Eq. (5.70) and working only to lowest order in O gives
Bzda 2 62 l 1 . 32 3 s [ L png
61!_; . =voa (62 (z', 4, v) + Ada (2 L v)] = EUW +35 62 (2',y,0)+O(bo/ef)".

We now are ready to write down the wave equation to order ¢. Fourier transforming so
that 2’ — k one finds that

2
cl2 {"02k2 (62 + Ada] + ik’lvﬁ%ﬁ + if-'inﬁ;’.} - [gy_z _ kz] 162 + Ada).

Since $3(k,y,v) is defined by the fact that it obeys the wave equation for each velocity v
one can simplify this last expression to read

2 )2 L
[% - (1 - L—q)] Agy = 'i‘—‘ (2;;585 + 1) é. (5.71)

a
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One may construct a solution of this inhomogeneous equation as follows: consider

a2 4 v?
e (-g)wne

6‘3 az . va .
#ﬁ[ﬁ—k (I_C_E)]d’“:o

P (. N\ & ., K[ 8 ,
= [ay,z -k (1 -c—a)] Eﬁéa ——2;2— (-Ua*‘l) ¢¢.

[

Comparison of this last equation with Eq. {5.71) shows that

i 1@, .
%= 3k G % \&72)

is a solution of the inhomogeneous equation Eq. (5.71), The complete solution of the
problem

Ay = Ad), + Agh

is obtained by adding a function which satisfies the homogeneous wave equation on the left
hand side of Eq. (5.71) so as to bring the result into accord with the boundary conditions.
The boundary conditions must be written down fairly carefully. Let the sample extend
from —L to L in the laboratory frame, and choose a small convergence factor ¢ such that
el. < 1. The boundary conditions in the accelerating frame are

uy (2,1) =0 {5.73a}
uy {2',1) =0 R (5.73b)
oay (', 0) = (5.73¢)
uy (2',0) =0,for 2’ > 0 (5.73d)
oy fr',0) = e for ' < 0. {(5.73¢)

The inclusion of ¢ makes all the Fourier transforms well defined, but causes the fields to
decay negligibly within the physical boundaries of the sample.

All of the fields « and ¢ can be obtained from the potentials ¢, by action with linear
operators. Therefore, the fields u and ¢ may be written in the form

g = Up + AU,
T = Ogg + 0A0g,

where the first term is the steady state result appropriate for velocity v, and the second is

derived from the A¢,’s. Since the steady state fields already obey the boundary conditions
Eq. {5.73), the perturbations must obey

Au, (2, 1) =0 (5.74a)

Buy (1) =0 (5.74b)

Aoz, (21,0) =0 (5.74c)

Auy (2,0) =0,for 2’ >0 (5.74d)

Aoy (2',0) = 0.for 2’ < 0. (5.74¢)
e T
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Since the inhomogeneous solution Eq. (5.72) is formed from the steady state solution by
the action of a linear operator, one can find all the fields Aug, Aoy, which result from
the inhomogeneous solution merely by acting on the steady state solutions with the same
operator:
. &,
du

1 . — —
= 3k G (5.75)
i 1 62 ’ ’
Aaﬂﬂ = 'é't_k‘a_via ol

These fields are close to being the needed solution. The steady-state solutions satisfy all
of the boundary conditions Eq. {5.73), and it is easy to verify that the solutions Eq. (5.75)
satisfy the first three of Eq. (5.74). However they do not obey the last two equations, so
we will need to add some solution of the homogeneous problem.

Before doing so, 1 would like to recall the solution of the steady-state problem, but
taking care with e. After transforming the final two boundary conditions of Eq. {5.73) into
Fourier space one finds that for fields as a function of k and evaluated at y =0,

- =00 +
-F{Muy” = e + 0y,
_ - Fridew _ [F+(k)—F+(i¢)] + 2+
= —F7(k)uy™ + tre o T re (—0)+ F7 (k)oy,™.

The left hand side is free of poles in the lower half plane; the right hand side is free of
poles in the upper half plane, so the two must equal a constant. Checking the asymptotic
behavior of either side as k — 0 one finds the constant to be zera. So

o o= _ F*{ie) v
Y= T Gkt o F- (k)
§ F-(ie)
T (k+e F-(k) 619

to order ¢. With this background we now return to the problem of finding Auy. As before,
we evaluate all functions at y = 0. We have that

Aug = Au; + Au;,'.
Since fields with superscipt h obey the homogeneous equations we must have that

- +
_F(E)Aut” = —F(k)Aub = Acy,” = Ady,.
Thus we find immediately that

. .
_F(k)k [Au,,- - auy| =k (a0 * - a0}y J-

Multiplication by k on both sides is necessary to get rid of the poleat k =0 which appears
in Eq. (5.75). As before we find that

kF~ (k) Auy — kF~ (k) Awy” =C

~3F-
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- C

= § —
= Auy = Auy +kF'(k)'
Using Eq. (5.76) and Eq. (5.75) one has that

18 _§ Flig C
%k 0o (ik + €) F- (k) | KF- (k)

Auy =

To find the constant C, one can look at the behavior of Auy 28 k — 0. There can be no
pole there, so

lim Aup = i _.1_32__6___5‘_ (), _C

Sty = P 2k 8 (e) - (0) | kF-{0)
§ _q_"'_ [F‘ (ie)]

C=-=
2 &t ¢

Since F~(0) is independent of v, one can write to order « that

& [F ()] _ ey &
= [EH] - rogEe,
with P
H@ =igrnF ()] - (5.77)

The general rule concerning ¢ is that it must be kept in any term such that for some value
of k the term can become infinite Finally we have that

F-(0) 6 &

1 &
Au, (k,U) = mwu;(k,ﬂ) - F‘-_(—k)2ik~a-v'—gﬁ (v) (5.78)

= Mug (k,0),

where ) "
18 F(0ik+e[&
M=o ~ F-Ge) 2iF [auﬁH(”)] '

1 8 ik+e[&?
S %ka 20k [37,‘5” (”)] (5.19)

to relevant order in ¢. In general one can find any field by application of the operator M
to the appropriate steady state fleld. For example,

ayy (ko y) = ol (koy) + 9Mal, (k,3)

gives the full stress field to first order in acceleration.

- 3% -
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5.4.1. Energy Flux

We now turn to the task of computing the total energy flux into a strip containing a
slowly accelerating crack, beginning with problem A. The result comes straight from the
stress intensity factor. For large k, Eq. (5.78) shows that

NART
Uy ~ by (1 - EEJH(U))

s v 8°
Tyy ~ Oyy (l - EﬁH (U)) .

Therefore the energy flux from the tip of an accelerating crack must be

o §° :
(1 - 5@5’ (v))

times greater than the flux from the non-accelerating crack at the same velocity. The
steady state energy flux is
—bo0,

so the flux in the presence of acceleration is

—bov [1 - irg-:-:;H(u)]

L[ 8
= —b00 + 60'“,:;5 [ua - 1] Hv)

which implies that the total energy of the plate is
g
(1) bow + 80 [va - 1] H(v).

Of course, one can also go through a long and painful computation to verify that this
works. It is easier to begin with problem (B). In the accelerating reference frame one has
to compute

) L=I{t) , ;] 3 \ ,
’1'1_1;1:‘1) _2./_L..l(i)dI [(—u-g; + é—t-) uy (= ,y.t)] ayy (23 1).

In passing from Eq. (4.45) note first that o.y(z',0) = 0, and passing to the limit y — 0
carefully shows that this term can in fact be neglected. Second the factor of two comes
from the fact that we are integrating over the surface of only the upper half of the plate.
Third, the contributions from the far vertical boundaries at +L can be neglected, since uy
is exponentially close to § at the back and to 0 at the front regardless of crack velocity.
The last equation can be rewritten

SRS NI : ,
2/-00 dz [(—v@ + a) uy (z ,y,t)] o (', 1.1) . (5.50)
- lim 2 ” dz’ (-v—g-* + 8 uy (2, 9, t) | oy (&' 18)
=0 Joo 8z " at) Y ¥ RCET J
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Inserting the asymptotic behavior of the fields into the first term gives

2]4 t(:)dm [( aa' 3)55“]( o) e

= VOl (5.81)
since eL « 1. Writing the second term of Eq. (5.80) in % space, one has

-2 hm/ Kakv-i- ;)uy (k,¥)

= -2lim gf [(ikv + g—) u;(k,y)] oy (—kyy)

Tyy ( kv U)

y—0
dk v &
—"}g}j -zkvu (k y)[ Y ag, (—k.y) — (1+ )a,,( k")auﬂ v)]
. dk, d
~2im [ Sikoogy (- ‘”’[okam sw0-3 (1 F)u;(k.y)mﬂ(v)]

There are six terms to be calculated. They are

—‘Hlm/-ahru {k,y)oy, (—ky)

_ —2/§ikvu;(k,0)a;v(—~k,0)
dk
- —2/E-;ikvu;(k,mu;(—k,o)(—F(k))

=_9 ——zkv = 0. (5.82)

In fact, I have checked that this integral vanishes by symmetry for all values of y. This
integral is the only one for which their is any difficulty involved in passing to the limit
y — 0. In what follows, the limit will be taken immediately, and

dk - 5 L]
/ g—wtk uy (K, 0) oy, (—F,0)

will be set to zero when it appears again. Next:

_e[““[g”m)] ot (—k,0)

dk[. 8 , .
= AQ/E ["a“y(k-o)] ayy (—%.0)

‘)[ﬁ[ d  §F~(ie) [ —0oF (k) ]
= Mmoo 0] Tkt g F- (=)

]lﬂ -
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Here I have used F +( k) = 1/F~(k). Continuing, the integral has cne pole in the lower
half plane, at & = —ie. Evaluating the residue at this pole gives

2(—-211) d [ 8F (ie) ]—am
2x Ov |2eF- (—ie)

—t

= 25%13%}1 (5.83)

Next:

dk 3 Lk dk.  bF(ie) 3 —oxF (k)
j Uy g ew (k) = /EF""(:'He)F—(k)auﬁ(-ikH)F-(—u)
8 F(—ie)

~ ST F (o) ~ (5.84)

Next:

2
/—u (k, 000 (=) oy, (- LO)!Lv(l-f— )%H(v)

. 32
- -—ji}'-evu;(k,())a;y(—k,o)ﬁH(v)
dk eéam 3

—f;waaw a:za' (v). (5.85)

Next:

dk [ &  8F~(ie) ] )]
_/_U Vaut (ik + €) F- (k)] (=ik + €) F~ (—de)
{=2mi) . 8(—000) B F~(ie)
TTar VT S vl 2R (—ie)

32
= ﬁvéo’mmfi (v). (5.86)

Finally:

: 2
_ ﬁ‘ﬁu 'k, 0)5 (=)l (= LO)MU( 1)%511'(0)

/—wu (k.0)o, (_kvo)%H(U)

dk o OF

Voo & pe 5.87
= —EvvéawavzH(t). ( )

Y i .
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Adding all of the terms of (9.4} together gives

v60°°+t')60m[ :v‘-' +_a]H(u)

= 0600 + 0600 [%] [ % + 1] H(v). (5.88)

So the total energy of the plate for problem (B) is

1{t) 600 + 6000 [v-e% + 1] H (v},

if H(v) is chosen so that H(0} = 0. Comparison with previous work showe that
L(v) - Z(0) = foc H {v).

This implies that
K(v)= —éawv H(v)

Both of these relations are borne out numencally. 1t is not necessary to carry out the
Wiener-Hopf decomposition in order to calculate H(v). Consider

F={0) ] F*(0)
6u(zk + e} F- (k)] (—ik + €) F+(—F)
_ =2mi i F-{0) Ft) .18
T 21 | Bu2eF-(—te}] (—i) F* (i) T 25
On the other hand one can also write this integral as

dk[@ _ F~(0) ] F(k)F+(0)
/2« Bu (ik + ¢) F- (k)] (—ik + €) F~ (—F)

- H(v).

de 1 1. 2 [F" O)F"'(O)]
j2wk2+el2 (k v [P~ (BYF- (k)
dkt 11
21rL32F( )&[F{k)]
16 fdkl 1
=350 f ke F(k)

so that dk 1. [F(k,0)

2 F R (R )]

To move to problem A one must add a uniform stress to yy. Therefore, to the resuits
for problem B one must add

LK 8 B
-2 1{1_{!3 (ikv + %) uy (b, y) o + 2/_@ dz [(-—-UE;, + E) Uy (z',y)] 0o
—0

H{v)= (5.89)

2 -
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- — Lkt ,
= Lim (ﬁ..v + = ) (-2 -)6o°°-7-£1—('q— + 2] dt' o (—-v%&e“ ) .

3=t (tk + ) F- (k) oo oz
_ _3_. F~ (ie _
B _)GaweF_ Gl -

= =20, [O%H (v)+ v]

So the total energy for problem A is

—l(t)éa,,; + 6000 [v% - 1] H(v),

in agreement with the previous result.

6. A One-dimensional Model

Consider the one-dimensional model

dz?

This can be considered the limit of & two-dimensional strip model, where & very thin and
very massive bar is pasted right over the region which will fracture. The function f(z)
represents the cohesive force at the crack tip, and it may be chosen to include complicated

dependence upon the field configuration u. The cohesive force must be taken nonzero if
steady states are to be possible.

i =

Ay—uf{1-u)— f(x,t)}. (6.1)

68.1. Steady States

The first task is to find the steady states of the model. The particularly simple cohesive
force will be used, one which makes dissipation proportional to the speed of the crack, and

depends upon temperature (for the moment held constant) but acting over an exceedingly
small range:

Flz, ) =Tus (1 — u). (6.2)
In a frame moving at velocity v, Eq. (6.1) becomes

1 2
-a-Tt; (1~ uz) —e(u—A)—uf(l -u)+ v-é-:Té(l -u) =0 (6.3}

Taking the fracture to move from left to right, consider the solution to the left of the point
where u = 1, which may be taken to be x = 0. In the left region

u=A+ A q =e7, (6.4)
where 1
= = (6.5)
T V1= vl
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In the right hand region,

U=t + Are™ g = -/ 1 + €2y, (6.6)
with
14¢€ :
By assumption one has that
u(0) =1 (6.8)
50 that
Ar=1-A (6.9
and
Ar =1 = uge. (6.10)
By integrating Eq. (6.3} from a little before z = 0 to a little after, one finds that
(A,rqr — Arg) {1 — %) = 0T, (6.11)

which may be solved to give

(A - A [\/éﬁ_rhe]
\/A5T2 (-4 [ﬁﬁ+e]2
Ae=Vi4e? 0 (6.125)

Notice that if T — 0, v tends to the wave speed 1 except very near the critical strain A..
As a next task, consider the linear stability of these steady states. Adopt a coordinate

(6.13)

which is defined to be the location of the crack tip, ¥ = 1. In this coordinate system,
dropping the primes, one has

o=

(6.12a)

T
' =z — vt — et

& & wt O N
{a—i_; -2 [v + Gewtw] v au’e t-(,)—;:- + (vz + 2vawe ‘) 5;} u

*u

(6.14)
=57 Flu—A)—ub(l-u)— ((—% ~ [v + wae] 3%) uT§(1 —u)

Let
u = uy + aiie”!, (6.15)

where u, is the steady state solution at some velocity v. Then using the fact that the
coordinate system has been defined to keep the crack tip at r =0, one has

a 2] [Ous
[21:«.:3:r —-w ] [ax --u]
i n 2. -
=—— (1 - v} - €8 — i8(~z} - wTé(z)

I

(6.16)
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It ig clear by inspection that @ = ?: is & solution except for difficulties near the crack tip,
where @ must be zero, but is not. The correct solution is therefore seen to be

Gy, = Ayeqr, €59 - e2fir] (6.17)
where ( )
. \/u5+e!1—v- —vw
qr = 1 o (6186)
. Vo (e +1)(1—v?¥) +ow
Gr=- ( 1 _)1(,2 ) . (518b)
The discontinuity of the derivative of i at z =0 is determined by
[Aeqr (@ — &) — At (@ — @)} (1 = v7) = wT + 200 (0 4r — qr ). (8.19)

Any solutions of Eq. (6.19) where w has positive real part will correspond to unstable
modes, However, the solutions always occur for w negative and real, so the steady state
cracks are quite stable. There is at most one such solution. This fact may seem to
present a problem, since solutions of the linearized problem about the steady states should
constitute a complete set of functions. The resolution is that when w is purely imaginary
and sufficiently large, one or both of g, will be purely imaginary, in which case the solution
Eq. (6.17) is not sufficiently general, since both signs of ¢, become acceptable. Thus an
arbitrary perturbation about the steady state is resolved in terms of undamped traveling
waves. These waves correspond to vertical oscillations of the whole strip, and cannot be
regarded as characteristic of the crack motien, although they couple to it.

6.2. Coupling in Temperature

The model of the previous section may be generalized slightly by allowing temperature
to evolve dynamically. The idea of the calculation is thet if the crack speeds up, it should
heat up the region in front of it (actually, experiment shows precisely the opposite—see
Fuller, Fox, and Field! In fact, there is a temperature drop lasting for about 5 ps when
the crack approaches, which corresponds to a frequency of 200 kHz. The drop may occur
for the same reason that rubber cools when you stretch it. Could this be the answer? It
would be disappointing, since it would be particular to polymers....}) The equation for the
crack is 2

ii=g-x—t;—-eg(u—t))—uﬂ(l—u)wg(T)iuf(l—u), (6.20a)

where g is an arbitrary function of temperature, and temperature evolves according to
aT .
- (@), (6.21)

Analysis of this system of equations is little changed from the previous case. The velocity

is now determined by )
(Argr — Aigp) (1 = v*) = vg (Ta). (6.224)

where v

To = —3q,.43, {6.23)
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and stability of the solutions is determined by

[Argr (gr — &) — Argr (@i = @] (1 = v*) = wg (To) + v (To) To2vw (3 Ar ~ qr ), (6.24a)

with .
= +(gr ~ Gr)v
Too=vAl 3{""___ . 8.25
0 =UvAQg, w—(qr+§r)v ( )

The solutions of Eq. (6.24a) only occur for w with negative real part, unless ¢'(Ty) is nega-
tive. In the case where ¢ is negative, it means that fracture energy is a decreasing function
of temperature, 5o one has settled on a steady state which is unstable against a continually
accererating (brittle) solution. The algebra is manageable, although complicated when w
is very small and is set up in crack/langer/baby.therm2.nc.

The lesson seems to be that when a crack accelerates the biggest effect is immediately
in front of it, not at some distance, causing it to start slowing down immediately and
killing off oscillations.

6.3. Alternate Version

Instead of including dissipation only at one point at the tip of the crack, one can

include it throughout. In this case, one has the equation o
2 - F— -
i= 2% 2o A) - ub(1 - u) - b, (6.264)
2
which has a steady state solution given by Eq. (6.4) and Eq. (6.6) as before, except that
now
(vb)’ + 463 (1 — v?)
=- 27
a vb+J 2(1_02) (6 )
and ‘
a (vh)* +4 (2 +1)(1 —v?)
& = —vb— \[ e (6.28)

Now the derivative of u must be continuous across the erack tip, so the velocity is deter-
mined by
ad = q:'Aro (629)

which is too easy to solve numerically to be worth further analytical struggles.

-
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6.4. Using the Wiener-Hopf Technique

It is a good exercise to solve Eq. (6.3) using the Wiener- Hopf technigue. To make sure
that the Fourier transform is well defined, it is best to rewri:c the equation as

2
g';; (1-0%) —¢ (u - Ac-ulkl) —ub(l—u)+ v%rga -u)=0, (6.30a)

with o taken to zero at the end of the caleulation. Fourier transforming Eq. (6.30a), one
has that

; 1 1
(1 — oD w2 ut T =
(1-v*)u—-eu+ea a+ik+a—ik ut —vT =0, (6.31)
where
oo .
ut = f u(z)e** (6.32)
0

and has no poles in the upper ¥ plane. Defining 1~ similarly, one has that

u+[k'-’(1-v'*‘)+e2+1]+u-[g-2(1—u9)+e3]=e-a{ L +a—1—ik}_”T (6.33)

o+ ik
2 1 1 vT
+ 4 Pk = — { -
Fw PR =\ eI e sk TR e (6.34)
where bt i) (ki
F(k)_( +igd(k —1q) (6.35)

(k+idgr) (k- iQr]’
the roots g¢r and g; having been defined by Eq. (6.4) and Eq. (6.6). The secret of the
Wiener-Hopf procedure lies in transforming Eq. (6.34) so that on the left hand side are
functions which are completely regular in the lower k plane, while on the right hand side
are functions which are completely regular in the upper k plane. Two such functions can
be equal only if they are both equal to a constant &', and once that constant is found the
problem is solved. In the present case, this whole procedure can be carried out explicitly.

One first writes that F- (k)
F(L)_F*'(k)' (6.36)
where F~ is regular in the lower half planc, and F* is regular in the upper half plane.
Such a decomposition always exists. One then has that

Ftut 4+ Fru™ = G(k), (6.37)

with

G(k) =

e 1 1 vT
ral © {a-l-ik + m} B wr sy ey rem SR

The terms involving a form a delta function, so it is legitimate to evaluate anything which
multiplies them at k = 0, and the last term was rewritten using Eq. (6.4) and Eq. (6.6).

Finally, one has to write
G(k) =Gt (k) + G (k), - (6.39)

_[_’_:,t_
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where as usual G* is regular in the upper half plane, and G~ is regular in the lower half
plane. Then Eq. {6.37) can be written as

Fu" 4G  =-F*u* -Gt (6.40)

= Fu +G =K, (6.41)

with K, as announced, an unknown constant. The necessary decompositions can be carried
out easily after one recalls that ¢. has negative real part and ¢ has positive real part:

_ [k ~igp)

= (k+7g:) {6.42.)
F*= Ei;:i,)) (6.425)
'.‘A 1
ZA 1
G*= e;+1 (%) a—ik ;‘(q,vz‘qr)ki,-q‘l_lvz (6.42d)
Therefore
iR = _:*'Al (%) aizk((itz(r;; i((;!rUT 9:}k—1iq11—1v2 E’;:-l—-:‘;; (6.43a)

For large k, Eq. (6.43) goes as I plus terms that drop to zero. Therefore K must be zero,
or else u(z) will have a delta function at the origin, and one has finally that

A [ g 1 {k+ig) vT 1 1
B = o . 43
k) €2+1(qr)0+ik(k—iqt)+f(qr—¢11)k—iqa1"’ﬂz (6.43)

Inverting the Fourier transform and requiring that u(z) =1 at z =0 one finds that

qr vT 1
PSR . Wy o
ar gr —q 1 —v? (8.64)

which after a certain amount of manipulation reproduces Eq. (6.22).
While the Wiener-Hopf technique can hardly be recommended for solving this problem,
it is good to have a list a cases where the technique can be carried through explicitly
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8.5. Green's Function Approach

The gon! of this subsection is to find a general equation of motion for cracks in this
one-dimensional model. It will be necessary to make an approximation similar in spirit to
the small-scale yielding hypothesis, but otherwise all results will be exact.

To begin, I need to find the Green function

(2 Zividve]ote-si-0msle-su-0). a0

The damping constant b is assumed small in comparison with the elastic constant e. To
find this function, one has to do the integral

dk dw c—a’l‘:—l’wt

Ik + e —wk b (6.46)
Doing the integral over w gives
dk _u.z_ulasint\f kz + Cz bt 62/4
- = 2 é(t), .
/2‘”: e T (t) (6.47)
and changing variables to
k= ¢sinho (6.48)
with
P ey (640
gives
do 2 g=ic sinh a+ite’ cosha _ —ize' sinho—ite' cosh o
— [ 38 ®e 5 (6.50)
Using the identities
tcosho — zsinho = 1?2 — 22 cosh (¢ — ag) (6.51a)
tcoshe + rsinho = 2 = 22 cosh (e + ap) (6.51b)
if |t} > |z| and
t+z
oo =1n P (6.52)
while
tcosho — rsinho = Vz? — t?sinh (o - ap) (6.52¢)
tcosho + zsinho = /12 — 22 sinh (¢ + o) (6.52d)
if 2| > |t} and
t+z
0'6 = ln " —1 (6‘53)
gives p
—8(t) 8t - |z|) e~ / B%Sin Vi — 22 cosho (6.54)
so that

Ge(z,t) = -c—_:‘ﬁf?(ﬂ Bt —|z|) Jo (\/i2 —alye - 52/4) - (6.55)
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8.8. Solution of Boundary Value Problem

The goal is now to solve Eq. (6.28) in as much generality as possible. Note firat of all
that

[l(‘)dz'G(z -z, t—t) %‘5" (="}

- [G(z—:c',t—t')%— i@ | / Eu(2,0) 276 (e -7, :(.62)
Next define TV(z') by
T (z') = max (I"* (") ,0) . (8.57)

Then - 8"
] - '.t—t' u
[p &G (s -7\t-t) 27

-Gz -7, t—T')g-:—:+ +Gz -7 t—T‘)+j dtu(z‘)—G(z-z t-t).
(6.58)
Also P
/dz/ Gz -2, t—t)at:; .
=~ dtl(t)[ (z—1(t"),t - t)——-— (I(t')t)]
0
- j::)d::G(:r—z t) = at' v %%;“-ou(x’,l]) . (6.59)

+ d.‘jm dt' —G x—z’,t—t’
[ » u(#) G )

Therefore, taking Eq. (6.26), multiplying by G(z — ', t - ¢")8(I(t'} — ' )8(t') and integrating
over space and time gives

/dz‘dt‘a(t')s(: (¢)-)G(z -2\t - [5:75 az" +é ]

=fdammu@q_zqaw)a@~z,p4quxzm)+éa)

_/dt’dz’ﬁ(z' ')){ *)[G—— g:' gg }

../dfmm(zt)—zﬁfﬁﬂ[GEF ]

(6.60)

=u(z,t)8(I(t) - 2)

(6.61)
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One now uses that u({(t'),#') = 1 is the definition of ! to find that for z < I{2),

fdt{lwf"’ gu, B—G I(t')&t'}

A
u(:ht)-;: +-/:mdr {Gaal;o (fo } (6.62)

+ f de'dt'd (1(t') - ') f (', ¢) G

The only unknown quantity in Eq. (6.62) is 8u/8z', which needs to be known at at the
crack tip. To solve for it is an unpleasant numerical task. Insteady, I will invoke a fracture
mechnics type assumption. The time scale for material ahead of the crack tip is 1, whereas
the time scale behind it is 1/¢; these are the typical times needed to establish steady states.
Therefore, I will assume that the field u always adopts the steady state configuration ahead
of the crack tip, and that one can take

B 14,0 = Ara, (6.63)

as given by Eq. (6.10).
As a check of these results, it is good to reproduce the steady state solutions. Using
the indentity

! ot 4 = 1 (z-vi)q
/dtG(:c vt 1) = TR _ (6.64a)
'[dt‘ G (:E - ’Uf t— f‘) ﬁi—vz—)e(t_"‘)q’ (6645)
dt' G( R QL .t 6.64c)
T -v = 2(1—v2)e (6.64c¢
fdz'dt’v& (vt —2)G(z~vt' t 1) = E—l—fv—z)me(""')‘“ (6.64d)

Putting these results into Eq. (6.62), ignoring the terms evaluated at t' = 0 since their
influence eventually decays to zero, using Eq. {6.2) for f, and setting u{l(t),t} =1, ives

& [grar 1 Tv
u(l{t),t)— 5= [ % + 5 + _mq;(l — vg)] (6.65)
= (Argr — (1 - A)g) (1 —v?) =oT. (6.66)

Equation Eq. (6.66) is precisely the same as Eq. (6.22).

7. Discrete Models

5]~
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7.1. Discrete One-Dimensional Model

As shown by Slepyan, it is possible to find steady state solutions of discrete frac-
ture models. In this section, I will find steady states for the discrete analog of the one-
dimensional model, Eq. (6.26a). The physical idea is that the passage of a crack through a
lattice involves a periodic forcing, applied to successive lattice sites, and at time intervals
1/v. This periodic forcing will always excite at least one resonant mode of the lattice,
which will create a wave either ahead of or behind the erack, depending on whether the
group velocity of the wave is less than or greater than the velocity of the crack. The
resonant modes appear in the formalism as roots of the lattice dispersion relation, and the

group velocity appears in the course of deciding which half of the complex plane the roots
belong to. The starting peint is the equation

fim = Umt1 ~ 2um + Um_1 = € (tUm = A) — um8 (1 — um) — bti, (7.1)

the lattice version of Eq. (6.26a). In one respect, the lattice equation must be taken to be
simpler than the continuum equation, since the dissipation b must always be assumed to
be infinitesimal for the following arguments to go through.

There is no unique way to define a steady state for a lattice model, but the simplest
possible assumption is that a state traveling at velocity v completely reproduces itself, apart

from translation of one lattice spacing, at time intervals of 1/v. Stated mathematically,
one has that

Uma (t+ 1/} = um (#) = tum (t) = ug{t — mfv) = u(r). (7.2)

?
All information about this state is contained in the behavior over time of any single lattice
site. More complicate candidates for steady states could be constructed, in which for
example the state reconstructs itself only after passing two lattice sites, but I have been
uniable to solve them. The equation for the steady state takes the form

i = u(r +1/0) = 20+ u(r = 1/v) — Sut fAe™ —uh(—r) - bi,  (73)

with a to be taken to zero at the end of the caleulation. It should be mentioned that
Eq. (7.3} does not quite follow from Eq. (7.1). For 7 very large compared with 1/a, u falls
back towards zero, and the step function should jump back up to one at this point. In
the limit as a — oc, this second crack tip can be neglected; or one may choose to view
Eq. (7.2) as the starting point.

Taking the Fourier transform of Eg. (7.3), by

u{w) = /dru (r)e™r, {7.4)
and defining
utw) = /d‘rﬂ(:i:‘r)u(r) e (7.5)
one obtains
F(w)u++G(w)zl—=-A¢2{ 1_ + 1. } (7.6)
o+ W o —-iw
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with
F(w) = w? — 4sin’ (w/20) — € + 1wb, (7.7a)
and
G(w) = w® — 4sin® (w/20) - € = 1 +iwb. (7.7%)
Letting
F = —.F_"', an = a‘:, (7-8)

where & superscript + indicates whether it is in the lower or upper half plane that the
function is regular, one can use the argument of Wiener and Hopf to see that

F-(w)G*(0) A
G- ) FF(0)atia (7.9a)

FHw)GH(m) A
GHw)FH{D)a —iw’
The feature of the discrete model which is quite different from the continuous model lies
in the fact that F and G have roots lying almost exactly on the real axis, pushed off it
only by the infinitesimal damping 5. These roots turn into real poles of u, and therefore
correspond to traveling waves, and because of this special significance, ane should separate
them out. Let f;'k be the real roots of F, with the % sign indicating whether the root will
belong to F~ or F* (7 will have an infinitesimal imaginary part above the real w axis),
and let g be the corresponding real roots of G. One can tell which camp a root belongs
te by computing, for example,
.4 puting P 1dF ()

fi dw

If this quantity is positive, the root in question belongs with F*, and otherwise it belongs
with F~. Next, define

u” (w) =

ut (W) = (7.95)

(7.10)

F(w) G (w)

Fw)= - 75 and G (w) = o a8y (1.11)

The formal reason to divide out the roots in this manner has to do with the identities
F(w;b) = F{—w;—b); (7.12a)
Glw;b) =G (—w;—b). (7.12)

The roots of F and & will enly move infinitesimally if b changes sign: and so long as the
roots are away from the real axis, this will not matter. So one can write

F(w) = F(~w); (7.13a)
G (w) = G(~w). (7.13b)
These last identities are valuable because employing Eq. (7.8) one can see immediately
that . -
> F-(w) _ F~(-w)

2 == (7.14)
Ft(w) FH{-w)
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= F~ (w) F* (—w) = F* (w) P~ (~w). (7.15)
Since F+(—w) is regular in the lower half plane, on the lefs side of Eq. (7.15) is a function
which is regular in the lower half plane, on the right hand side a function which is regular
in the upper half plane, and both sides must equal a constant. The most convenient form
in which to express this relation is

P~ (w) E¥ (~w) = B~ (0) F+ (0); (7.16a)
G (W) G (—w) = G~ (0)G*(0). (7.168)

Similar identities do not hold for F and G because when b changes sign, the real roots flip
between belonging to F~ and F'*, and so have to be treated separately.

The most interesting calculation to perform, as emphasized by Slepyan, is of the amount
of energy emanating from the crack tip in the form of traveling waves. Faor ahead of the
crack, there is an energy per site

2
Ebead = ';'“go + %(A —t)’ = ';‘A"om (7.17a)
using Eq. (6.7), while far ahead of the crack, there is an energy per site of
1
Enehind = 31 (7.178)

which is the total energy needed to bring the lower spring from zero to failure. Any
difference between these two quantities
’
1 o
Ervgiation = 2 [Atg - 1] ’ (7.17¢)

must be energy carried by traveling waves.
The way to proceed is to calculate u(r = 0), since for the steady state equation Eq. (7.2)
to follow from the original model Eq. (7.1), one must have

u(r=0)=1 (7.18)

Imposing Eq. (7.18) will force a particular choice of A, which when used with Eq. (7.17)
will give the desired result. One needs only to find the behavior of u~ for large w, since
at r = 0, u=(r) jumps from 0 up to u(0). Such a discontinuity is produced by Fourier
transforms that fall off as 1/iw for large w, so that comparing with Eq. (7.9) one sees

immediately (00} G* (0)
~ (o0 (
) H(T=U)=mF+(U)A. (7-19)
Since from Eq. (7.7) one has
G(oo) _
Floo) = 1, (7.20)

using the identities Eq. (7.16) it is not hard to show that
F~(o0) _ [F-(0)F+(0)
G- (c0) V G-(0)G+(0) (.21

—Sip—
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Using this expression together with the definitions of F and G in Eq. (7.11) gives

F(0 A
u(r=0)=A E-%‘/H%__—;:;, (1.22)

so that finally the energy invelved in snapping the spriﬁgs is

1, 1 frer 1
—ul(r=0)==4 Lg% 2
su' (7 =0)= 58us ] Ay (7.23)
and the energy carried off in radiation is
1 [yp food
§ [H f:.g:_ - 1] = El‘ldilli@ll (724)

7.1.1. Physical Interpretation of Lattice Results

In order to understend these results, it is useful to consider the modes that are excited
in a picket fence by a boy dragging a stick across it. In other words, one considers periodic
forcing which jumps ahead by one lattice point during each period. As the basic equation,
consider

i = tmt) = 2um + tmot — 44%Um + 3 Smab(t = n/v). (7.25)
n
Defining
up =y e, (7.26)
m
and Fourier transforming in time as well, one has that
[4.A2 +2~2cosk - w"’] ugp = Z gikntiwn/v (7.27)
n
& (k
= up = 2mé ( +w'/v) (7'28)

4A? 42— 2cosk —w?’
From Eq. (7.28) it is apparent that one can excite at least one resonance in the system at
any velocity v, The resonances are given by the roots of F(w), which has already appeared
in Eq. (7.7). Of course, at low velocities it is possible to have large numbers of poles in
Eq. (7.28). The wavelengths of the oscillations may be quite large, since w ranges roughly
between A and VAT + 1, but when v is small k may end up being mapped almost anywhere
in the Brillouin zone. In particular, the group velocities of the excited waves can assume
all allowed values. The group velocities have particular physical importance because they
determine whether the resonant wave will form before or behind the banging stick. At
wave numbers where the group velocity is greater than v, the resonant wave will form
ahead of the forcing function, otherwise it will form behind. The group velocity is

sink sinw/v

- y (7.29)

W w

v (w) =
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Discrete Models 53

and so requiring the group velocity to be greater than v gives

sinw/v
————v >0, (7.30)

This equation is identical with Eq. (7.10), which was used before determine whether certain
roots belong with F* or F~. It is now apparent that the roots were being assigned

according to the value of the relevant group velocity.

7.1.2. Asymptotic Results

It is possible to evaluate the product
+
W
PA) =[x (7.31)
i
where for generality w; is the root of

w? — 4sin® (w/2) - 442 (7.32)

analytically in certain limits. In the limit of low velocity, it is helpful first to write the
condition that Eq. (7.32) have a root as

w = usin™! \Jw?/4— 42, (7.33)

In the limit of low velocity, by looking at a graph of Eq. (7.32), one sees that the roots are
given approximately by

wh =2y [(no +i}mr —sin”! (\/zﬂ [ng + 4] 72 - Az)] ) (7.34a)

w] = 2v [(nu +i)m +sin~! (\/v2 [0 +4)% 72 — Az)] ) (7.34b)

and that there is always one more positive root w} than there are positive roots w]". The
starting integer ng is given by

A = 2ungr (7.35a)

(one will have to fiddle around with » a bit to make this precisely true) and the largest

value of i is ny, given by
VAT +1=(no+ns)or (7.35b)

(this comes close to the truth in the limit of small v).
For the moment, let us restrict ourselves just to the positive roots of Eq. (7.32). Then

) ny—1 {ng+i)x —sin~} (\/ﬂz [no +|']2 't —A’)
slnP(4)= 3 In
* i=0 {ng + )7 + sin~? (\/02 [np +i)% 72 — -42)

+1n {(no + ny) 7]

(7.36)
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ny=1 1 (

=i

=0 |1 4sin7! (\/vﬂ [no + P 72— Az) [(no + i}
ny~1

=3 (~2)sin™! (\/u2 [no + 4] 72 - A’) /(no + i) +1n [(no + ny) 7] (7.38)

im0
VATH -2\ sin~! VzZ - A2
= /A d (-ﬂ-) T (VA1) (7.39)
and integrating by parts gives

—sin™! \/03 fng + iPPa? - A’) [{no+t)n

+In [(nu + ﬂf) 1r] (7.37)

lInP(A)_lnl+.2./'Az+l zlozds 7
2 =t . Eeasrals (7.40)
which after the change of variables z2 = A? + sin® § becomes
1 15 rar 2
P{A) = SEexp [;/o In (A% +sin 9]] dé. (7.41)

In the particular case of Eq. (7.24), one wants to evaluate
(A)z = _.—-—___-._P( Lte /2) = ex [lftln [—————-—‘2/4"" 1/4 + sin’4 ] d8 7.42
A - Py TP kb €2/4 + sin? 8 . (7.42)
Gradshteyn and Rizhyk have the integral (4.399)

f dzln (1 4 asin’z) = 2rin (l_t..a}_'_t_f) . {7.43)
0 -
This gives finally
A Jei41/a+ Y1+ 2/4+1/4 (1.44)
A /2 + /1 +€/4 ' )
In the limit ¢ — 0, one has that
A _1+V5
_— =1.6180..., 7.45
A 5 (7.45)

the golden mean, in agreement to-three places with the direct evaluation of the roots in
Eq. (7.24). One has that a stationary lattice crack in a noiseless environment will not
begin to move until the driving strain exceeds by this amount the strain that would be

predicted in a continuum model. ‘ o
At velocities that approach 1, there is one root f* and one root g*. In the limit of
small ¢, and for v = 1, g* = 1.91892. One finds f* = \/2v/3¢ + 12(1 — v). Therefore
1.91892
AfA -+ J —_— (7.46)

J2vBe+12(1-v)
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Figure 7.1: Diagram showing the lattice considered in this section, and
the way its points are indexed.

7.2. Crack in a Square Lattice: Antiplane Shear

Consider a strip of material made from a square [attice of mass points. The motions
of the mass points will be constrained to a single direction, and therefore describe mode
I fracture. Letting u{m,n) describe the displacement of the mass point indexed by m
and n, the equation of motion for u{m,n,t) is

+u(m,n+1)
G (myn) = +u(m—1,n) +:::1(,r:,3)1) +u(m+ 1,n)] (1.47a)
—bii (m, n}
ifn>1/2 and
+u(m,n+1)
almom) = [Mm T e St 1,..)] » (4

- bi(m,n)+e(m,t)
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for n = 1/2, where o(m, 1) is the external force causing the crack to propagate, and
Flu] = ub{ue - |u]) (7.48)

describes a bond which is linear until it fails at extension u;. At the top of the strip there
is the boundary condition

u(m,N +1/2)=0. (7.49)

The goal of this section will be to calculate properties of steady state cracks moving
in this lattice. This calculation is very close to the one originally performed by Slepyan,
although his calculation was in an infinite plate, rather than a strip. Apart from this
minor difference, however, it appears that he neglected the contribution of a branch cut
that arises in the course of the calculation.

In the case of steady state motion, one has

u{m,n,t) =u{m+1,n,t+1/v). (7.50)
= u(m,n,t)=u{ln,t—m/v). (7.51)
It will only be necessary to carry out the calculation for n > 0 because of the symmetry
u(m,n)=—-u(m,—n). (7.52)
Because of this relation, one needs only to know u(0,n,t) = ugy{t), and the index m will

be dropped from now on. Of course, a steady state will only come to pass if the appliec
force is of the proper form too:

e(m,t)=0c(m-tfv). (7.53

Rewriting Eq. (7.47) for the case of steady motion, one has

tng ()
i () = [+un (t+1/v) _;:i::.l((?) +‘un(t - 1/v)jl (7.54a
= biia (t)
forn > 1/2 and
tn41 (t)
iin (1) = [M" e _}?E;;:,Et&)] unlt 1/'))} (7.54

= bitn (£) + Fooe ™M

for n = 1/2. The symmetry Eq. (7.52) has heen used to simplify part of the expressior
and the force is taken to be of a particularly simple form, with a assumed to be very smal
This problem is equivalent to one in which no force is applied to the crack faces, but th
top and bottom of the strip displaced instead. One moves from the first problem to th
second by adding the solution of a problem where a static strip has its top and bottor
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displaced, but forces —aq are applied to the layers at £1/2 so that these layers end up
not moving at all. That is, let

+v{m,n +1)
0= |+v{m-1n) —4v{m,n) +uv(m+1,n) (7.55a)
+v(m,n—1)
fn>1/2 and
+v{m,n+1)
0= [+v(m-1,n) =3v(mn) +v(m+1,n)| —0e, (7.558)
+0
for n = 1/2 so that
v(m, n) =amm~%'°. (7.56¢)

Then u(m, n)+v(m,n) can replace u(m, n) everywhere in Eq. (7.54), and one will still have
a sotution, hut the force on the crack face has disappeared and the top strip of particles is
displaced by an amount Nog. This pracedure works because v(m, 1/2) = v{m, =1/2) = 0.
The force on the crack surface actually only disappears within a distance v/« of the crack
tip, but in the limit that @ — 0, this technical point will not be important.

Fourier transforming Eq. {7.54) by

Un (W) = / e“lun (1) . (7.56)
turns the steady state equations to

Unst (W) + tno (W) + (200800 — 4 + b g (w) = ~wHity (w) (71.57)

for n > 1/2. Define
u(w) =uy,(w). (7.58)

Then since displacements must vanish for n = ¥ 4 1/2, where N is the number of vertical
layers making up the strip, one has from Eq. (7.57) that

sinh k(N +1/2 —n)

tin (w) = u(w) Soh N (7.59)
provided that k is chosen to satisfy
w? 4 ibw + 2cosh k + 2cosw/v — 4 = 0. (7.60)
Instead of using &, one can alternatively define
2 =2 — coswfv —w?/2 — iwb/2 (7.61)
and
y =", (7.62)

—)—
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so that
y=zr+y/22-1 (7.63)

and

tn () = u{w) [ (1.64)

yl¥+1/2=n) _ | —IN+1/2-n)
yN - y—N

In using the variable y, I will stick to the convention that v/z% — 1 is positive if it is real,
and that its imaginary part is positive otherwise. Using this solution for u for n > 1/2,
one can write the equation governing u(1/2,w) = u(w) as

[N~1] _ , =[N=1]
v y _ 2ar
u (w) [T_U:N— -2 4+ 1] -2 (W) = —04 [m] . (7.65)

This expression follows from Eq. (7.54b) after decreeing that ¢ = 0 is the time at which
the bend at u(0,n,t) breaks, defining

0
ww = [ ume, (7.66)
—00
and specializing to an external force of the form
o (1) = qoe M. (7.67)

I will always work in the limit where o € 1. Since ¢ = 0 is the time at which the bond at
m = ( snaps, later on when the solution is found I will have to choose g, properly so as
to insure that in fact 2u(1/2,t) did equal u, at the critical instant.

Writing
u(w) =ut (W) +u" (v), (7.68)
rewrite Eq. (7.65) as
1 1
u+(w)F(w)+u“(w)G(u)=—a'm{a+iw+a_'.w}, (7.69)
with y[N-ll _ y‘[N‘I]
F(w) = 5 2z 41 (7700)
¥y -y
and
[N=1) _ ,—[N-1]
Gw)=Y y”—:'” —2-1. (7.70)

Eq. {7.69) is identical with Eq. (7.6), although the particular forms of F' and G are differ-
ent. Therefore, all of the formal development that followed Eq. {7.6) can immediately be
transferred, The only difference between the present case and the former one is that now
both F and G have poles as well as roots along the real axis, and these must be divided

out as well. Therefore, letting u,f;i be the real poles belonging to F* reapectively, wf_;-:i:
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be the real roots belonging to F%, and with analogous notation for the real roots and poles
of G, one has following the path that led to Eq. (7.22)

0 1 H w:‘i-wfi+wg+wfi__ (7 71)
t= = — — . .
u(t=0)= 0\ FG0) \ L oF uf TG W

First, the prefactor in this expression can be understood by appealing to energy bal-
ance. Far ahead of the crack, mass points are located in the vertical direction by

oo Ton
= e — 7‘72
U= TN ( ‘ )

while far behind they obey .
ity = Foo (N + -2-) — oon (7.73)

for n > 0. The bond between 1y and 4_y /3 is stretched much further than all the rest,
to a distance

Uy Moy = UgoN/ (2N + 1) (7.74)
The energy per bond length before the erack, counting both halves of the strip, is then
N[ 0w 17,1 oN 1
o N[ gw 1 1, 2|, 7.75
Epetore 22[2N+1] +31° 2N+11 (7.78)
while the energy per bond length after the crack is -
. o
Eatter = 2§a§°N. (7.76)
The energy supplied by the external forces on the faces of the strip is
Coo 2N
= -\ . 7.77
Erxternal 2 [ﬂooN D) (2N ¥ 1)] Too ( )

The maximum energy (for given 0o ) that could possibly be stored in the bond which
breaks at ¢ = 0 is therefore .

o2N¥s3
Eldess = EBetore + EExternal — Eafter = _._9.9.2 N1 (7.78)

This energy corresponds to an ideal case where no energy is lost to dissipation or traveling
waves, and is the energy of a bond that breaks when u(1 /2) reaches the ideal length

Neow

Uidal = T (7.79)
Using Eq. (7.70), one can therefore write that
wF.-wf‘.+wG.+uG._
u(t=0) =umen\lu%- (7.80)
i Wi Wy Wpi ey
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Figure 7.2: The function F(w), for v= 5N =10, and b = .01. For lower
values of v, the structure can become more complicated, with more than

one group of positve poles, and for larger values of N the poles become
more finely spaced.

The product of roots and poles contains complete information about energy carried by
traveling waves. In fact, the poles of F and G will occur at precisely the same spot, so they
will cancel out and turn out not to have been necessary in Eq. (7.80) after all. However,
they are very useful in organizing the product, and will not drop out of the argument
altogether. Second, the question of precisely which roots to include in the product on the
right hand side of Eq. (7.71) hinges on the relationship between the damping constant b
and the strip height N. In the limit b < 1/N, F(w) looks as in Fig. 7.2. However, in
the limit where b 3 1/N, the poles now visible along the real axis merge into a branch
cut. On physical grounds, the relationship between b and 1/N is important. When b is

_ small, physically one has a situation where waves travel to the top boundary, reflect and

return to the crack line many times. When b is larger than 1/N, one has by contrast
a situation where waves damp out before reflecting off the top boundary: it is this case
which corresponds to the infinite plate considered by Slepyan. It is fairly easy to calculate
the contribution of the many roots in the case where b < 1/N, but in the opposite limit I
do not now see how to carry through the calculation, and Slepyan seems to have ignored
the matter altogether, just focusing upon the real roots.

Physically, whether & root belongs to F+ or F- is determined by whether the group
velocity of the corresponding wave is larger or smaller than the velocity of the crack.
Mathematically, note that as b increases from zero, the change in the location of a root w
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is given by
Ow
dw=105—==<| .
ab|p
Since F is a function of z alone, one may rewrite Eq. (7.81) as

dw _, 0z/0b,
ob Oz/6w,’

(7.81)

dw =5 (7.82)

_ iwb/2

T 0z/6w

So if wdz/8w, is positive, the imaginary part of the root is positive, and the root belongs
with F'~, while otherwise it belongs with F'*. Whether a pole belongs in the + or — group
is determined by precisely the same condition. Since F and ¢ have the same poleag' they

will from now on be denoted simply by wp;, and since wpj will be very close to wy; and

wf’;, one can evaluate Eq. (7.83) at w,; to determine whether roots belong to F* or F-.
Considering the limit where ¥ 3» 1, one can then rewrite Eq. (7.80) as

(7.83)

o i

. , ¢
w(t = 0) = upgey exp [% E f—:-z-%-;—*—g‘::;llog (“’1!‘)] : (7.84)
F]

wpiOz/Owp;|  wp;

G _,F
1 (zfj - zrj)
= Uldeal ©XP [5 Z —__pr B2 | (7.86)
I

In Eq. (7.86), z;‘; means z(wf;-; that is, the value of z for which w is the j'th real root of
F. It was assumed that wF. is very near to wg—, and this will soon be shown to be true.
Expression Eq. (7.86) is valuable because it remains true in more complicated lattices,
where the dispersion relation is different.

Dealing with discrete real roots as they occur is relatively trivial, but in the Limit
N — oo one needs to deal with the forest of roots that is apparent in Fig. 7.2. To organize
them, it is best to look first at the locations of the poles. There is a pole both in F and in

G every time

G £
1 . oWy — Wi
S [; Z lw;a:(?l/awp_, ( J r3 J ) (7.85)
s

yN = y-N (787)
= yp; = TN (7.88)

with 7 varying between 1 and N ~ 1. There is no pole when j = 0 or § = N because
of a cancellation between the numerator and denominator in F or G. Each value of Vi
corresponds to

zp; = sinjn/N, (7.89)

and also to wp;, which however cannot be written down in simple form.

564_
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The roots of F and G can also be found fairly explicitly. Selving Eq. (7.70a) for y
when F' =0 gives that

Tz -1y (7.90)
-1
W _ Y -1
2y = — (7.91)
from Eq, (7.63)
=y = (7.92)
By convention, the imaginary part of y is positive, so
ys = M-/ (2N +1) (7.93)
for1<j<N
= zf; = cosf(2j - )=/ (2N +1)]. (7.94)
Similarly considering & one finds instead of Eq. (7.92) that
y? ¥+ = (7.95)
= S = cHIHHIN+) (7.96)
forl<; <N
= z,G;- = cos[2jx/(2N + 1)]. {7.97)
Since o G
19:2 1 8z%
G F ool o 2]
g Iy = 2 a] = 2| 63 (7.98)
one can finally write for Eq. (7.86) that
1 [ dw
w(t=0) = wawerp [ [ 001~ 15} (7.99)

This expression bears an interesting relationship to the one found by Slepyan. In the limit
N — o0, F and G appear to pass through zero just as the branch cuts begin; these points
correspond exactly to the places where |z| = 1. So treating these points as real roots, and
using them in Eq. (7.86), one would obtain precisely Eq. (7.99), except that the factor of
1/4 would need to be replaced by a factor of 1/2. Accounting for the branch cuts properly
gives a result that 1s the square root of the apparent result.

(5~
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Figure 7.3: Diagram showing the lattice considered in this section, and
the way its points are indexed. .

7.3. Crack in a Triangular Lattice: Antiplane Shear

The triangular lattice can be treated by methods very similar to those which solve the
square lattice. In this section, I will solve the problem of a triangluar lattice in antiplane
shear. Let u(m,n) describe the displacement of the mass point indexed by m and n, as in
Fig. 7.3, and let

0 ifn=1/2,5/2...
gn=141 ifn=23/2,7/2.... (7.100)
mod (n —1/2,2) in general

Then the equation of motion for u(m.,n,t) is

i(m,n) =
+u(m+ gap) —Ln+ 1)+ u(m+gasr,n+1)
% +u(m=1,n)-Bu(mn)+u(m+1ln) (7.101a)
+u(m+go—1 =1, =1)+u{m+ ga_1,n—1)
—bti (m, n)
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if n>1/2, and

d(m,n) =
+u(in+gn+1 -ln4+ 1)+u(m+gn+1,ﬂ+ 1)
+u{m-1,n}—du(m,n) +u(m+1,n)

FFu(m+ gat = 1o = 1) u(m,m)] = Fu(m + gos,n — 1) — u(m,n)]
— ba{m,n) + o (m,t)

1

(7.101d)
if n = 1/2, with F given as before by Eq. (7.48). The boundary condition on the top of
the strip is that

u{m,(N +1/2),t) =0 (7.102)
In steady state, one has the symmetry
u(m,n,t) =u(m+1,nt+1/v) {7.103a)
and also
u(m,n,t) = —u{m,-n,t —[1/2~g,] fv) (7.103b)

which implies in particular that
u(m,1/2,t) = —u(m, =1/2,t — 1/2v}. (7.103¢)

Specializing to the force given in Eq. (7.53), one can eliminate the variable m, defining
un(t) = u{0,n,t) and write the system of equations in steady state as

+itayr [t — (g1 ~ 1) /v) + tnt1 (t — gn41/v)

1
iy () = 3 dug (t+ 1/v) — un (8) +ua (t — 1/v) (7.104)
oy (=~ (gn—1 — 1) FADE P {t - ga-1/1)
—biig
ifn>1/2, and
iy (t) =
Fugp (1) + ugp (t — 1/v)
l +u”2 (t+1/v)-—4u”2(t)+u”2(t - l/v) . (7'1045)
+ w2 () = vy (1)) 8 (=) + [u_yya (t = 1/v} - uyp(8)] 8(2/(2v) 1)
= by t+ ame"'lll

The time at which the bond between u(0,1/2,t) and u(0, —1/2,t) breaks has been chosen
to be t = 0, so that by symmetry the time the bond between u(0,1/2, t) and u(l, -1/2,1)
breaks is 1/2v. The problem described by Eq. (7.104) is equivalent to one in which the
top and bottom of the strip are held at displacements N, since u(m,n, t) + vim,n) still
solves Eq. (7.104), where vy, is given by Eq. (7.55).

G-
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For n > 1/2it is easy to solve the linear set of equations Eq. (7.101). Using Eq. (7.103a)
to eliminate the variable m and Fourier transforming in time gives

lu“_“ (w) [eiw(v.,+1-1)lv + ciw(ﬂnﬂ)/”]

2
. 1 ‘ )
—wiu, (w) = thw + Fun (w) [clw/u — 6+ c""""’] (7.108)
%un,l {w) [e‘”(v--t-l)/v + ei"-'(v..-:)lv]
Defining
M =unl) (7.106)
let
Un (w) =i {w) ek(a—ll?)—iwg,.f(?o)' (7-107)

Substituting this expression into Eq. (7.105), and noticing that gn + gny1 = 1 gives

%ﬁ (w) et [e‘“’(g"+1+9" =20/(20) 4 giwl{gni +v=)l(2v)]

- - 1 . .
—w?i (w) = ihwi (w) + 58 () [e'“/" —6+ e-'“f"] (1.108)
%,;,—k (w) [efw(en-m-.—z)/m) + ,iw(y..-m..)/(:v)]
= w? + ibw + 2 cosh (k) cos (w/ (2v)) + cos (w/v) — 3 = 0. (7.109)
Defining Lo
_3—cos(w/v) —w? —ihe
= 2cos (w/2v) (7.110)
one has equivalently that
y=z+vzl-1, (r.111)
with
y = e*. (7.112)
Therefore,
‘ [N+1/2—n] _, —[N+1/2-n}
tn (w) = i (w) e~ "sn/2 ¥ L 7.113
y¥ —y=¥ (1113)
In order to Fourier transform the line of points where n = 1/2, define
w(t) = 1122 () —21*-1/2 (t) _tipM)+ u12/z (t+ 1/2")_ (1.114)
Then rewrite Eq. {7.104b) as
. Fugp(t) +uyp (t - 1/v)
N = t {2 — 44 it —
Sty = 2 +E{t+ /v) —4a{ty+ a(t — 1/v) (7.115)
~2u(t)8(—t) - 2u(t - 1/20)8(1/ (2v) ~ 1)
- bii 4 ame"'m

— %
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Fourier transforming this expression using Eq. (7.113) and Eq. (7.66) now gives

i (w) [{w - 2:} cos (w/2v) + 1] - (1 + e‘”lﬁ") u(w) = _a,,m?"_

y¥ —y¥ +a?’
(7.116)
Finally, use
(1 + e-iw/Zu)
ww) = () (r.117)
to obtain
[N-1} _ ,—IN-1]
u (w) [{yy—ﬂ_:_—ﬂ_ - 2:} cos (w/2v) + 1| — 2 (cos? w/dv) u~ (w) = aamﬁ%.
(7.118)
Decomposing u as in Eq. (7.68) gives
+ _ 1 1
W) Fw) + 17 (w) G(w) = -0 - 4 — 3, (7.119)
a4+ a-—w
with
yV=11 _ - ¥-1]
F(w) = W - 22 % cog (w/2v) +1 (71200)
and
ylN=1] _ =¥-1]
Glw) = W ~2z—1pcos(w/2v). (7.1208)

Eq. {7.120) is identical with Eq. (7.69), except for the fact that F, @, and z have been
redefined. In the limit where N is large, the derivatives of F' are completely dominated by
the portion of F' which depends upon z, end one has in anslogy with Eq. (7.83) that if

weos(w/2v) 8z/8w (7.121)

is positive, the corresponding root belongs to F'~ or G, and to the other camp in the
opposite case. Since F(0) and G{0) are exactly the same as previously, one can proceed
to write as before that

_wpa(t=0)—uypn(t=0)

u(t=10)= . (7.122)

= Ulgeal €X) lz cos (w/2v) (zf;-zf;-)
= Uldeal EXP 2 5 Icos(ulzv)HijaZ/aWp‘i,l‘ 3

(7.123)

essentially copying Eq. (7.86), with Eq. (7.121) in mind, and retaining the definition of
Uldeal Eiven in Eq. (7.79). Eq. (7.123) compared to Eq: (7.86) The poles of hoth F and
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G are in the same location as for the square lattice, and the roots of 7 are in the same
location as well, However, the roots of F' are now determined by the implicit equation

v, —con(w/2e)
¥y

i(2i=1)x /(2N +1)+n [W] ,r(m-n).

W =¢ (7.124)
Therefore
. F
F_ (2j -1 1 y,j—coaw/2v
Zrj "“[ s a1 TN D |, (cosw/2w) - 1 (7.1250)
G 2j1r
zrj =08 |57 | (7.1258)

yf — cosw/2v

and G
dz 1 1
6 _F e 2|l L ‘
Fri T e | 8 [2 2m I {yrj (cosw/2v) -1 }] (7.126)

This expression is really the farthest one can go in finding the energy fux for the trisngular
lattice. It would seem that one could consider the large N limit and write

1 f dw cos{w/2v) 1 y — cosw/2v

=0 =useers |- [ i (-7 1“{<vmu/2v) m 1})] ‘

. (7.137)
Unfortunately this expression is false because not all roota of F' occur for |z] < 1, and there
is no simple rule describing when some root - corresponding to an isolated surface mode
- will miraculously appear. However, Eq. (7.125a) can be made the basis of a very fast
numerical procedure for finding all the roots. One first finds all the places where |z| = 1.
Next, in each subregion where |z| > 1, one checks to see if F has a zero; F has no rapid
oscillations in these subregions, so the search is rapid. Finally, one finds the roots in each
subregion where {z| < 1. The way to do this is to look for the roots of

BRI [ ¢ Rt L 1 y — coaw/2v
Qy=s=e [2N+1 +i(2N+1)ln{y(oosw/2v).-1}] (7.128a)

for each j ranging from 0 to N + 1. For a given j, and in each connected region with
|2] < 1, there is at most one root of @Q(w). This procedure is vastly faster than a direct
one which attempts to find the roots of F.



