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Introduction

In a companion paper (1), we summarized the energetic factors relevant to stress relaxation by misfit dislocations in
strained layer epitaxy. In this paper, we discuss the kinetic factors relevant to strain relaxation rates. The rate at which
a strained system will approach the equilibrium configuration predicted by equations (1) to (3) of Reference (1) will
depend upon kinetic factors governing the nucleation, propagation and interaction of misfit dislocations. Here, we
concentrate on the physics governing misfit dislocation motion, as the processes governing misfit dislocation nucleation
and interactions are discussed in other papers by Hirth and Freund in this volume. The primary technique we have used
to study misfit dislocation propagation is in-situ strained layer relaxation experiments in a transmission electron
microscope (TEM) (2,3).

The amount of strain relaxation for a given area of lattice- mismatched interface will be governed by the equation:
L = [N(o,)v(o,0dt - (1)

where L(t} is the total length of interfacial misfit dislocation at time t, N(o,t) is the number of growing dislocations at
time t and stress o and v(o,t} is the propagation velocity of threading dislocations at (o,t). The Limits of this integral
are from the start to finish of a post-growth annealing cycle (i.c. at constant epilayer thickness, h) or from the time at
which the MB critical thickness is reached to final substrate cooling during a growth cycle. In (4) we discuss the
detailed derivation of N(o,t), but in the present manuscript we discuss the theoretical modeling and experimental
measurcment of v{g,t). Given that eqn. (1) predicts a linear dependence of strain rclaxation rate upon dislocation
velocity, a detailed understanding of v(g,t) is clearly of great importance.

The Hirth—Lothe Diffusive Double Kink Theory

We have made extensive measurements of misfit dislocation propagation velocities by real-time in-situ observations of
propagating dislocations during annealing of strained layer structures in a TEM (2,3). Experimental details are fully
discussed in (3). A strength of these observations is that several measurements at different temperatures can be made on
the same dislocation, thereby yielding accurate activation energies. We have observed markedly different apparent
activation energies in the regimes of low interfacial dislocation density (dislocations moving essentially independently
of each others’ strain fields) and high dislocation density {dislocation motion strongly influenced by interactions with
other defects). We denote these regimes as non-inferacting and interacting, respectively. In this manuscript, we
concentrate upon the non-interacting regime, where extrapolation should be possible to measurements of dislocation
velocities made in bulk Si and Ge (e.g. 5-7).

In reference (3), we describe our attempts to reconcile our dislocation velocity measurements for Gey 8ij _»/Si(100)
structures with the predictions of the Hirth-Lothe diffusive double kink medel (8). In this model, a dislocation
propagates by nucleation and motion of atomic-length segments of dislocation ("kinks") which lie ransverse to the
general dislocation line direction, as illustrated schematically in Figure 1. Geometrically, these kinks have to form in
pairs in bulk materials. Kinks would also have to form in pairs in the configuration of a propagating threading arm i a
buried strained epitaxial layer, but for uncapped epitaxial layers we have considered the possibility of single kink
nucleation at the free surface (3).
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Figure 1: Schematic illustration of the double kink geometry showing double kink width, w,
and separation, s. The predicticns of the double kink model will be most accurate in the limits

where kinks are well separated (examples 1 or 2) as opposed to overlapping (example 3). In
this illustration the dislocations will propagate to the right by vertical motion of the kink pairs.

The diffusive double kink model predicts for the velocity of the propagating threading arm:
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Here, o, is the "excess stress" driving dislocation motion, as described by Matthews-Blakeslee (9) and Dodson-Tsao
(10) and derived in equations (1)-(3) of reference (1), vp is an attempt frequency for kink nucleation (which we
approximate by the Debye frequency), q is the distance between Peierls valleys, b is the magnitude of the dislocation
Burgers vector, a is the kink jump distance, 2 F’; is the energy required to nucleate a double kink, Ep, is the energy
barrier for kink jumps along the threading line direction, L is the length of the propagating threading arm and X is the
average distance between double kinks given by:

Fi
X = 2ae T - (3

The quantity F’y may be modified by the applied stress, as first described by Seeger and Schiller (10):

v
G(l1+Vv)G,b ¢’
o= - -4
2F% = 2F -1 (Tv)kT ] 4
where Fygq is the limit of F’, at zero applied stress. This correction only becomes significant at applied stresses of the
order hundreds of MPa or greater, which are generally not approached in bulk experiments but which may easily be
exceeded in the strained thin films under study here. The Seeger-Schiller correction should be regarded only as
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approximate: it will work best at intermediate stresses in the hundreds of MPa range, but when G, approaches a GPa ot
more, the effect of overlapping kink arms (i.e. 2w < s in Figure 1) will render equation (4) invalid.

The limits of eqn. (2) are (i) L >> X, where kinks generally run into each other before reaching the end of the
propagating dislocation. In this case, which is generally assumed for bulk materials, the numerator of the exponential
becomes (F'y +E) and the ratio LAL+X) disappears. (ii) L << X, where kinks generally reach the end of the
propagating dislocation before annihilating each other. In this case, which may well be approached for thin epitaxial
films, the exponential numerator becomes {2F‘, +E,, ) and the ratio LAL+X) tends to L.

The diffusive double kink model, although generally invoked for dislocation motion in semiconductors, does not
provide good quantitative agreement with measurements of dislocation velocity in bulk semiconductors. For Si and Ge,
for example, the prefactors obtained from experiment are about two-three orders of magnitude higher than predicted by
equation (2). This may be due to uncertainties in estimating the attempt frequency (although it is difficult to physically
understand how this could be orders of magnitude higher than the Debye frequency!), or to obstacles to motion
(constrictions, point defects etc.) along the dislocation line (at first sight these would appear to slow the experimental
velocity with respect to theoretical prediction, but if they, for example, affected the experimentally determined
activation energy, they could bring the prefactor into error).

Experimental Observations

We have been able to reconcile the Hirth-Lothe diffusive double kink model with our experimental observations (3) of
dislocation velocities in Ge, Sij _,/Si(100) layers with x in the range 0.10 < x < 0.25 by (i) incorporating the Seeger-
Schiller correction, eqn. (4), (ii) modeling single kink nucleation at the surface of thin uncapped epilayers and (iii)
assuming a value of Fiy = 1.0 eV (which is intermediate to the range of available estimates of this quantity for 51 in the
literature). The overall dislocation glide activation energies we measure are consistent in the limit of low applied
stresses with the values of ~ 1.6 eV and ~ 2.2 eV obtained for bulk Ge and Si respectively (¢.g. 5-7). For x greater than
about 0.25-0.30, the velocities we measure are lower than the Hirth-Lothe/ Seeger-Schilier predictions because eqn. (4)
over-estimates the lowering of the kink nucleation energy. Examples of experimental measurement and theoretical
modeling of dislocation velocities in capped Ge, Sij_y layers are shown in Figure 2.

Other measurements of dislocation velocities in Ge, Si; _,/Si(100) heterostructures have been made (12-14), and in
general similar absolute velocities are obtained from measurements by different groups, see Figure 3. Tuppen and
Gibbings (12) were able to model their data for dislocation velocities in thin capped Gey Sij_x layers by assurting a
dependence of disiocation velocity upon the length of the propagating threading arm, consistent with eqn. (2) in the
regime where the epilayer thickness approaches, or is less than, X. The expected accompanying increase in activation
energy was not, however, observed.
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Figure 2: Measured dislocation velocities, v in am.s™ ', for different Ge, Si)_, layers (x and
epilayer thickness, h, given in legends) buried bencath 300 nm Si caps. The solid lines show
the predictions of the Hirth-Lothe diffusive double kink model, with Fyp = 1.0 eV and
incorporating the Seeger-Schiller correction, equation (4).
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Figure 3: Misfit dislocation propagation velocities measured in (Si)Ge, Si| _/Si(100) as a
function of excess stress. Velocities are interpolated from experimental data to a temperature
of 550°C. Data are from references by Hull et al (3), Tuppen and Gibbings (11), Houghton
(12) and Nix, Noble and Turlo (13).
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Figure 4; Variation of measured dislocation velocities at $50°C (v in nm.s~ 1) vs excess stress
(o in MPa) for dislocations at Ge, Si; _,/Si(100) and (110) interfaces. Curves A and B
correspond to raw velocity data for (100) and (110) structures respectively. Curves C and D
correspond to (100) and (110} data respectively, with velocities normalized to the activation
energy for motion in Si (by reducing the raw velocities for Ge, Si;_, in curves A and B by
cxp[0.6x(eV¥/kT]). Curves E and F correspond to curves C and D respectively, but now further
normalized by the length of the propagating threading arm lengths, L.

We show in Figure 4 an investigation of the effects of stress and propagating dislocation length upon disiocation
velocity for structures grown upon (100) and (110) surfaces. In curves A and B, we show the variation of In(v) with
In(0,;). The trend of increasing v with increasing ., is evident. Note that the gradient, m=2.9, of the interpolation
lines implies a significantly greater than linear dependence of velocity upon excess stress in the prefactor of eqn. (2). A
similar effect has been previously pointed out by Houghton (13), who observed that m~2, but we believe this non-linear
dependence upon excess stress to be at least partially due to the general increase in Ge concentration (x in Ge, Si —x)
for the higher excess stress films. The lower glide activation energy of Ge with respect to Si then increases the
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