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A fractal model for intergranular brittle and ductile fracture surfaces of cracked metals is sug-
gested. It is shown that for small grain size metals, the critical crack extension-force would
rigse rapidly and faster than the Hall-Petch's relationship due to the increase of the true areas

of the irreguiar fracture surfaces,

1. INTRCDUCTION

The fracture surface formed after breaking
off is rough and irregular. Mandelbrot et a.ll’2
showed that the structure of fracture surfaces
of metals was modelled very well bty a fractal
surface, bthough metal fractures are only ex-
sremely crinkly (down to the limits of their
microstructural size range), while fractals are
infinitely crinkly. Their experiments in metal
fracture showed that the fractal dimension D
was very we'l defined for different specimens
of the same metal having similar thermomechan-
ical treatments.

We think that the sizes and orientations of
grains in many polycrystalline metals are "ir-
regular" (the distribution of impurities, de~
‘ects and cother internal stress sources are also
"irregular")., These may be the physical foun-
jation for may metal fracture surfaces being
successfully modelled by fractals.

In this paper, we analyze the grain size ef-
“ects on the fracture of metals with fractal

nodels.

2. THE CRITICAL CRACK EXTENSION FORCE
On the Griffith theory for perfectly elastic
‘ractures 3, it would have to exceed the work

reeded to separate the two surfaces, EYS. In

* Permanent address.

Irwin's approach in fracture mechanics, the

critical strain energy release rate, i.e, the

3

critical crack extension force, G .
crit.

may
be written as

Gcrit, = 275 (for brittle fracture}

and (1)
o =2y, *y (for quasi-brittle

erit. fracture) {2}
where Yp represents the energy expended in
the plastic work necessary to produce unstable
crack propagation at the c¢rack tip.

Unlike in glass, the fracture surfaces in
metals are rough and irregular, The true areas
of the fracture surfaces in metals are actuslly
larger than the data got by macroscopic measure-
ments. The area of the fracture surface per
upit thickness of specimen would be
{L(e)/Lo(e)]-l (in fracture mechanics, we al-
ways simplify the crack as a line in a two-di-
mensional system). Then, instead of Eq.(1l) and
Eq.(2), we have (Fig.la,b).

Corit, = 2(L(e)/LO(e))YS (3}

and
G

2(uaa)_l[Li(el)+L2(€2)IYS 1
(%)

where ei's are the yardstieck lengths. Other

crit.

parameters have been shown in Figs.l,.
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cracks ete, They are all irregular and can be

considered as self-similar and then can he

F—>q

modelled by fractals (Fig.2)., In addition, T
AI believe that the fractal dimension D might

| be well defined for d@ifferent specimens of the

same metal not only having similar thermomecl.-

{a) [ rrry ] anical treatments T but also under the same
temperature condition and loading rate of the
tensile test,

£

FIGURE 1la

Ideal brittle fracture in glass,

&

FIGURE 2

New refined zigzag cracks formed in fractal
medelled metals.,

~Lip-Ls — There are two forms of intergranular brittle

b) fracture (Figs.3a and b). Their fractal dimen-
— 2a — ' sions can be estimated by the formal definition

e 2w — D = log N/log (%J s (s5)

l where N = Li/EOi, r = eoi/LOi (Figs.3}.
o

FICURE 1b

Elastic plastic fracture in metal,

3. A FRACTAL MODEL FOR INTERGRANULAR BRITTLE
FRACTURE SURFACES OF METALS

In the intergranular fracture case, the crack
would propagate along zigzag grain boundaries,
In a smaller scale, the crack would Propagate

along smaller zigzag subgrain boundaries, In a

larger scale, the crack would also propagate
Arger weak passage near by the general

along a larg bassag v g — 10

direction of crack propagation and which would

be formed by irregular distributions of vacancy

clusters, micro-voids, inclusions and micro-

b PR ;3'6.:;,{5’:_".-‘ ::'z:.‘):‘a‘ LT s
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FIGURE 3b

Intergranular brittle fracture.

Beth fractal dimensions of the two forms are

1.26, but the grain sizes are different. The

grain size, d,

d= 1Ly = 173 ¢, = 3.46 €gp s (6}

where Ly = 2 ep, Loy S LT3 6y, Ly, = Ego
Lo = 3 Egpe  From Eq.(3),
Comiy, = 25 10y/T0;] = 2v (L /e, )% (1)
(a) G, = 173926 2y
o) erit 30.26 x 2Ys

We may see that case {a) consumes less en-
ergy than case (b), then it is preferable. The
fractal model in this paper is then based on

case (a).

As the grain size is smaller and smaller,

e true area of fracture surface becomes larger
2

and larger, According to Mandelbrot .
1-D _.D
Li(si) ~F e (F = LO) (8)
. -1 1-D -0.26
;= F ~ -
crit 2Ys“"'i/I"O) EYS FLO & = EYSd
(1.73%+264 4 1
R D=1 . -
hyo= LO = 1, for chocosing LO as a unit
~ength, say 1 cm). Then,
b
G = . =
erit - 2¥g X 10,96 ( for 4 = 107 com)

= x =
Cupiy = 27, % 20 {for a = 10

Gcrit = 2ys x 36.3 (for 4 = 107° cm)

The term related to ' in Eq.(2) is now com=-
parable to or a little smaller than the term
related to Yy (usually Y5 % 10y.) in brittle
fracture; but, it is still not large anough to
improve the fracture toughness of materials.
However, it might be one of the reasons why the
surface energies of metals estimated by low tem-
perature britlle fracture measurements are al-

ways higher than by other methods.

4. A FRACTAL MCDEL FOR THE INTERGRANULAR DUCTILE
FRACTURE SURFACES OF METALS

The fractographic observations on intergranu-
lar fracture indicate that the ductile fracture
surface is composed of microdimples which are
the result of holes forming ashead of the main
crack., These holes are thought to initiate in
practical alloy steels primarily at the site of
precipitated particles in the matrix, Often
the large voids in the medium are connected by
bands of intense shear, which are formed by dis-
location motions. As to our simplified fractal
model, plastic deformations in the grains would
make the grain boundaries ab and be to be
curves, ab' and b'c, Moreover, ab' and b'c
are steeper than &b and be., An additional

angle 6 would appear (Fig.4) after loading

FIGURE L

The additional angle formed by plastic defor-
mation in the grain,

Now, P
= 2e

L
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L, = ?e cos{30° + g)

In thls case, N = 2, v = [5 aog30° & 8y~

D = log2/log(2cos(30° + 8)1] (9)
The value of &g can be estimated ag follows

8 = {pbL}/L = pp y (10}

where o is the linear density of mobile dige
locations, Typical values orf total linear den-
sity of disloeationg range from 106—107/cm for
cold worked crystals to 103/cm for annealed
crystals., With b 3 « 10—8 cm, the range of
& in Eq.(10) is from 13 x 1677 (rad.) +to
9:03 = 0.3 (rad.) (1.7° - 179), Then, the frac_
tal dimensions range from 1.26 to 2.23,

Taking D = 2.23; then,

=1.23
Gcrit ~ EYs d
G € 2y x 8.3 x 10 (for 4 = 107" cm)
crit s *
= 6 - 14=5
Gcrit = 2?5 x 1.k x 10 (for 4 = 10 cm)

The ¢ritical crack extension force estimated by
this fractal model would rise rapidly with the
decrease of grain size, It rises faster than
the Kall-Petch's a™/2 j.0 ip 4. density of

mobile dislocation isg high enough. We noteq

that the grain sizes of almost of the superplas.
tic alloys are very small (% 1074 em}. This

phencmenon probably could be explained by this
fractal model,
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FRACTAL DESCRIPTION OF FRACTURES

C.W. Lung
International Centre for Theoretical Physics, Trieste, ftaly
and

International Centre for Mat. Physics, Institute of Metal Research
Academia Sinica, 110 015 Shenyang, PR of China

ABSTRACT

Recent studies on the fractal description of fractures are reviewed. Some problems on this
subject are discussed. It seems hopeful to use the fractal dimension as

3 parameter for quantitatve
fractography and 1o apply fractal soructures 10 the development of high toughness materials.
L INTRODUCTION

In 1984, Mandelbrot et al. (1] showed that fractured surfaces are fractals in nature and that
the fractal dimensions of the surfapc;s correlate well with the tou i

00 a square lattice and found that the patterns of cracks can be fracta]
due oniy to the inwrplay of anisotropy

the ones found experimentally for stress corrosion. Fractal description
technological importance and also an interesting theoretical problem.

The aim of the present paper is to discuss the problems in recent studies on this subject and
1o show the possibility of applications of fractas o fracrures in materials,

IL FRACTALS IN MATERIALS

1. The range of length in which self-similarity holds is bounded from above by the size of the
object and from below of the size of the smallest building block,

2. They usually appear random, bu are self-similar in a statistical sense.,

R ]
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e,

Fractals in mawrials are more complicated and sometmes not so typical as the sea shore
snow flowers and trees even in a staristcal sense. ’

The range of length tn which self—similarity holds is small. Some authors pointed out thay
a constant value of fracral dimension in 3 certain range of scale is 3 fecessary prerequisite for self.
similarity of a strucnure; e. g the number of generations shouid be larger than three and the range of
scale should be observable for more than one order of magnitude (7],

may be many physical sources of self-similarities in some ranges of scale (Fig.1). The problem is
how 10 find out the main one corresponding to the property you studied
[

1072 102 0 1
logs ——e

Fig.1 log L{z) — log ¢ plot to dewermine fracta] dimension Dpg of 1 line.

Recendy, fractal analysis has been well known and abie to apply to strucrural clemeants in
materials which are usually described by their integer Euclidean dimension, for example, macroscopic

crack lines, or planes, vacancies, dislocations, grain boundaries, dispersoid particles ete. However, 2
fractal sgucture must be geometrically scaling.

Lu(ﬂ) - = l--DPz l o E =Lo
Lu(n) =L{g) =¢ (Lo) , L.(?) (1)

where 1 is the yardstick length, ¢ is the normalized yardstick length with respect to Lo, the length of
the initjator (¢ = n/Le) and Dp is the fractal dimension of the Koch curve., €= 1" ris the reduction
in scale by one iteration n. :

Ifr=1{n=2;thens= F R Two generations are enough ' appear the self-simitariry
in a range of one order of magnitude. However, two gencrations are 0ot enough to be considered as a
fractal at least for measuring the fractal dimension with the slit-island method obviously [8, 9].

Usually, » and r 1ake discrete values; then, from equation 1, the length of the yardsrick
cannot change continously. The measured log Lo(n) ~logn plot would be wavy rather than a saight
line if you change the yardstick length continucusly,

IIL THE RELATIONSHIP BETWEEN FRACTAL DIMENSION
AND FRACTURE TOUGHNESS OF FRACTURED SURFACES

Unlike previous empirical relations, a model based on Linear fracture mechanics theory was
proposed [2].
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In Irwin's approach in fracrure mechanics,
criucal crack extension force, G1e may be written ag

Gie=2n, {for brirtle fracture )
G|c=2

2
Ta* %~ (for quasi — brirge fracture ) (2)

where =, is the specific surfac
necessary w produce unstable

¢ energy and v, represents the cnergy expanded in the plastic work

crack propagation at the crack dp. In the quasi—britte case (or the smal]
scale yielding case) we assume that the plasuc

Zone at the crack tip is very small and the thickness of
plastic deformadon is very thin.

Owing to the crack propagation along a zigzag line, the true areas of fractured surfaces {or
lengths of lines) are acrually larger than the data obuined by MACTOSCOpIC measurements, The area
of the fracrured surface per unic thickness of specimen would be [L,.(r,)/Lo(r,)] - 1 (in fracrure
mechanics, we always simplify the crack as a line in a rwo-dimensional System). Then, instead of
cquatdon 2, we have

Gtc":"f.(fm(ﬂ)/io(ﬂ)) (3)
and
Glc B va(Lu(n)/LO(n)) .
From equations | and 3, we obuain (2, 8]

Ghe = {Gieo (N/Lu)l—Dr {(4)

log Gic = log(Cr)g + (1 — Dx) log(n/La) .

(3
The loganthm value of cndeal crack extension force or facture toughness is linear in reladonship with
¢ i i urtace (Fig.2) This relation, based on fracture mechanism, hoids

In many experimental measurements (8, [0, {1, 12, I3]). .
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log Gy,
ollog Gyo) = —log(n/Lo) >0 (6)
aDp
ducton < 1,

Taking care of the scaling range of the fractal, the relation has been derived agnin recendy
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IV. THE PROBLEM ON THE CORRELATION BETWEEN THE FRACTAL DIMENSION
AND THE TOUGHNESS OF MATERIALS

In previous papers [2. 8] (or

cnucal crack extension force, or the fractyre toughness increases with the increase of fractal dimenston
of fractured surface; i, the correlation between fracraj dimension and fracrye toughness is a posigve
one. Recenr experimental dam verified this conclusion again (20]. However, some experimental daga
showed that the correlanon berween Dg and toughness (dynamic war energy, fractre ughness etc.)
1S 4 negative one [1.10,13, 14]. If 2 high fractal dimension 1S supposed 10 be characteristc of 2 rough
SUrtacs as opposed 10 a Smooth one, we would conclude that the rough surfaces are 1o be associared
with britle matenials. This is conmary o experiences! This, however, is difficul to explain.

V. DIFFICULTIES OF THE SLIT-ISLAND METHOD

dimensions |2, 8, 9]‘. Lung and Mu [8], based on experimencs, pointed out thar the fractal dimension
determined by the stit-isiand method is dependent on the yardstick chosen. The measured value would
not be the real fraca] dimension of fractured surfaces.

The theorencal bage of the slit—island méthod is that the mgg
aple) = [L(e)]M/Pr /¢y (7)

is size independent provided ¢ is constng, However, in practical measurements, we €an only keep
constant. We cannot keep =( = n/Lo) constant due o differeng sizes of the Koch islande ¢ Tg).

For the Koch perimeter,

La(m) = LPr(q) nt-0r

the ratop

La(m)!/0r
ol = ’E%,)‘)Tn‘ = Lo(m) l1=0010r g ()12 (8

Ingeneral, e, () is dependent on the size of Koch island ( Lo). We cannor obtain a linear relationship
between logarithm values of 4,°s and Ly's of different size similar Koch islands with a constane
yardstck kength .

between measured 2, ang the toughness of materials, Indeed, we changed the yardsrick length,
a positive correlation between Do and G ¢ K1)} was obtained (Fig.4). Then, we may draw the
conclusion that the slit-island method is one of the causes of the negative correlation between D
and the wughness of materials,
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We notice that Lot
al 7
= —_ {(Dp=1).
A*(m) d
From (8) )
an(n) = ao Ao(m)'/? An(n)~'/? (1-0n)/Dr

= ag[ Ao (1) /Aa(n)]1/? ftt—Dr)/ Dr

Ao (n) /A.(n) would approach a constant value as n > n, (. ~ 20 for a quadratic Koch island (8];
n. &z 100 for a riadic Koch island [9]) and then a( n) is size i t approximately. We obtain

9

Du(e)|,. =~ Dr. (10)
. Fractals in materials with only several self—similar generations (n < n.) is not enough for
measuring Dy with the slit-island method.

_ The condition that equation 10 holds is n > n; but the problem is how can we know cur
normalized yardstick length is small enough o have sarisfied the condition. It is difficult to judge.

g - . o we

- e e -
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Fun.hcrmorc. in Mmany cases, the scajing Iange in materais Is limited (n< %), and it is no use 19
< use o

surfaces. You should check it by changx'ng the yardstic in a cerain range of scale 1o make sure that
the measyred value D, does not change largely; then Do s near the reaj Dp. It seems laboroys, We

think the best Way 10 measure the fracral dimension of fractured Surfaces May be the relations [2, 21,
19

22,

We may neasure the 1o1a) length of crack Propagation with differen lengths of Yardsticks. Then, Dg
£an be obrained by the slope of the linear rclau'onship between log L.( n) and log n.

logL,.(n)=DplogLo(n)+(l—Dp) logn . ‘ (12)

Lo(n} can ajso be determined after Dp s known, 1t seems hopefu! 1o yge the fracta] di:ncnsion as a
bParameter for quantitatve fl‘nctography.

YL PHYSICAL SOURCES OF FRACTAL SURFACES

The frz urface is the total contribyripng of many clemen
processes. Every i

ctal behaviour of 5 fractured ¢
Y tlementary MiCTOstructyre Contributes its fracey) Or non—fraceyl behaviour ar 3 Cerain
range of scaje (Fig.1). Even in the same nange, there are perhaps severp) clcmcn:nry physical Processes
MiX-up and |ead to muh:ifracmh‘:y.

Alog — log plot Permits an analysis of the fractaj Character of 3 MICTostructuraj fearure, This
experimental MICTOStructyrg) 2nalysis should pe compared with ghe log — log piot of the fractured
Surface and then relates 1o the properties of materials, Unforrunatcly. lintle expenimental data gre
available along this Jine ar the momene.

Some theoretical models have beep Proposed for explanation of the relationship between
acerials,

fractal dimensign and toughness of m

L Intergranyiar fracture modet (2]

Intergranular cracks may pe connected 1o construct 2 Koch curve in a wo—dimensiona)
system (2, 23), According g this model, Gy, (or & 1e) is enhanceq_

Cie = (G )y £'~0r (Gredo(dfLy)~02

where, Dp = 1 26 Itis calcularcd from Beometrical consideration thay “d” is the size of the grain, the

lower limit for the scaling range and Ig is 5 length relaed to the crack Propagation, the upper bound

for the scaling range, which can be determined by equation 11. The enhancement of Gic (or &, Te)
; En plase

Similarly, 5 transgranylar fracture mode] wag Proposed by Xie and Chen 1o predict their
results of fractures jn rocks {16].

2. Segment Rumber effects [23,9;

We suppose thar New segments of microcracks of grain boundaries WETT superimposed on
the Preceding larger Segment between large inclusions (Fig.5).
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Then the fractal dimension may be

Doq = log N/ log[ N sin®(p/2)]'/ 2 sin-'(1 /N

Doy = log N/log[1+ (N? — 1) sin2(yp/2)]172 snT I/ (N+ D cp e n (N = odd)

(15)

Here, we have assumed the angles berween two ad

that the value of the angie ¢ depends on the grain configurations. In this case,

the fractal dimension
* Dp may decrease with the increase of the s¢égment number N,

This effect seems possible under the following condition and argument. High strength ma-
terials may induce much smaller cracks (inclusions) to propagate. This makes the crack propagation
berween two small inclusions easier. Then, the segment number N decreases and hence the fractal
timension increase. The correlation berween D and K 1c i8 therefore negative,

Ledge effects in crack propagation [24]

The vertcal section method is employed to measure fractal dimensions of cross section
ofile of fractured surfaces of 30 CrMnSiNi2 A high strength steel under plane strain conditions,
€ found that the fractal dimensions of Koch curves along the direct
¢ different from that perpendicular w the direction of crack propagaton, D;. A positive correlaton
tween [h and X, is obtained in comparison with a negative correlation between Dy and X le
ig.6).

2,10,

LGOL

Wo 1085 110 1s 120
D

Fig.6 [gK\. vs fractal dimensions D and D,.

However, the correlation between (D + Dy) (approximately equal to the fractal dimension of the
fractured surface) and X 1¢ is still a positive one (Fig.2).

Recently, Zhou and Thomson (25] pointed out that a ledge might be formed by passing a
number of screw dislocations throu

ghd:ecracktiponasiipplanenonnalmmemckline. Ledges,
a few atom spaces in height, will always emit dislocations before the crack will cleave, provided the
angular orientation term is favourable, When a dislocation is emitted or ejected from the ledge crack,
the ledge crack contains one less dislocation than before, and the ledge is one Burgers vector less
D length. If we assume Dy is a measure of the ledge height, D, may give some information on
lislocation emission from the ledge cracks.

Changes in fracture mechanism [26]
Fnctaldimensionofdiffmmpamofa&mwdmnfmofMCrMnSiNiZAmlformed
¥ slow crack propagation induced b

. C y e combining effect of hydrogen and staric bending moment
erc determined by using the method of fractyre profile analysis. The results showed that the fractal

B e s -~

T
-

)<p<® (N =ecven) (14)

jacent segments 10 be equal. We also know

ion of crack propagation, D |



; Imines if
the shape of the ¢rack and consequently the boundary conditig,
and one has 1o discretized the ®quation again (g know which beam
©Xponendal instead of a power |aw was used the SQuct o, __em o,
6is empirical, For N = 1 this growsp lwis inspired by the v Mise
Ot possible 1o derive g from first Principies. The open problem ;
betwee i

Anocther interesting thing is thay ip his calculariong the fracen) €0sion [, depends on
the parameter n. Dy n e know thar the i before yieldin
when n < | This resylt showed thar |ow fracaj dimension Corresponds to bripge fractures. It seems
reaso,

VIL APPLICATIONS TO DEVELOPMENT OF NEw MA'I‘ERIALS

Materiajs wigy fractal strucnyreg Sometimes have ha Propenties; ¢ g dendritic solidificy.
tion in undercooled alloys may Produce scgregarions of impuritieg and o low wughness of
Materialg,

Some Properties may pe cnhanced by fracta) strye The enhancement of tough-
ness by fracta! Surfacey mentioned above isoncexample. Ag:d:erexam le is thar & fibre withﬁ'a:fm!
treesu'ucnntmayincmaxmepull—omencxgyﬁmn Substrare . L energy of a
fibre with e from the bripje hag is found thar an
Increase of the num of ge i mayincreaserheeﬂi of ofpull—ontenergy.
(W,o)./(W,o) Thcfmctaltmeofd:ree Netrations dlbnnclwdlnglesaab more energy
than that of two Eenerations with branched angle 24

m cxpcxmxenthasbeendonebyFueral pull-ou:strmand
cncrgyofasteclwucutcmresmwasm pull-out stress
oauuwithonegencrauonofbnnchangichmaxsﬁ%of ingle wire ang 5
Tee with two gencrations of hed angle 50e EneTgy of a fracral
ree increases TESpectively. It seems possible 1o apply fracta) Structures velopment of high

-l -
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Fig.7a The fibre branches into two Fig.7b Th= relationship of the rato

or three generations, (W0 )a/{ W), with branched angles.
1L SUMMARY

1. Fractals in materials are more complicated than simple ideal models. Careful analyses are
required for studies on fractured surfaces.

2. The relationship between fractal dimension of the fractured surfaces and the fracoure tough-
ness may be derived with fracture mechanics and has been verified by some experimental
results. In general, the correlation between ;. and Dp is a positive one.

3. There are some difficulties for the use of the slit-island method ©0 measure Dp. It is neces-

sary to check the measured value by changing the yardstick length and to make sure it being
yardstick length independent.

4. Fractal fractured surfaces may be formed by various physical sources. More experimental
and theoretical studies are needed on this subject.

5. Applications to development of new materials are possible. This would draw our attenton
in the near future.
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muiti—scaling fractals has been also discussed.
KEYWORDS: fractals, muiti-range fractals, muiti—scaling fractals, toughness

1. Introduction

Fractals in nature are different from rigorous
models that the range of length in which self-simi.
larity holds is bounded from above by the size of
the fractal object and from below by the size of the
smallest building biock, and ‘that they usually ap-
pear random but are similar in a statistical sense.
Fractals in materials are much complicated. There
are many objects which can form fractal structures,
€.8. macroscopic crack lines or planes, vacancy
clusters, dislocation lines, grain boundaries, dis.
persed particles etc. They are geometrically scaling
in different ranges of scales (1,2].

Mandelbrot et al [3] showed that fractured sur-
faces are fractals in nature and that fractal dimen-
sions of the surfaces correlate well with the
toughness of the material. Along this line, the pres-
ent author and collaborators did some experiments
[4-8]. Experiments showed that in spite of the frac.
tured surfaces are all inter-trans-granularly mixed
character, an approximate constant value of fractal
dimension in double logarithm plots was obtained
in the range 2 s <, <50um [8]. On the other
hand, two fractal dimensions were observed in one
range of yardstick lengths [9). This paper will pro-
pose a model of multi—range fractals to explain the

reason why they are and discuss the relationship of

multi—range fractals with multi—range fractais.
2. TwanctahinaRangeonardsﬁckLengths

The crack line is considered as Koch lines. For
stmplicity, we assume two fractais in 2 range of
yardstick lengths. Two cases should be discussed.

Invited paper presented at the 6th Workshop on Physics of Materi-
als— Frontiers of Advanced Materials, Physics and Techrology,
1992, Shenyang, China

2.1 Two fractals without overlap in the range of
yardstick lengths (Fig. 1)
Lete=n/L, inand L, are the size of the smaller
building block and the length of initiator
respectively. ¢ is the relative length of the smaller
building block normalized with L, . The ¢, is the
normalized length of each of the smaliest line sep-
ments. In Fig.1, we start to analyze the fractal
structures from g = 1. The number of the smallest

segments of the first fractal with dimension D, is
N(e,)=¢ ™ ¢))

The second fractal with dimension D, starts
from &, ; the smallest Scgment of the first fracta] is
the length of the initiator of the second fractal. The
total length of the two combined fractals may be
expressed as follows.

L;(e,)=¢ N, Xe, /2)" ™™
= 3:_D' (e, /2) ™"

=G, /) (e, /5) ™

,=1 @

The fracture toughness G2 or the critical
crack extension force is enhanced by the fracta
structures [4). Then,

F 0 T
G /G =L () o
=G, /g) " (e, /2) " 3

where, Gﬁ:=2y,a‘, i the y, is the specific surface en-
ergy of the material.

For measurements of Dy and D, , we may
measure the total length [L[(e)] of the crack line
with different yardstick lengths (¢ or n/ Ly.

ﬁ—%-’
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Fig.] Two fractals in different ranges of scale

Since

igL{(e)=(1-D)ige (g;<e<egy) (4)

and

IeL{(e)=(1—~D)lg(e, / eH{1-D)lgle / &)
=const.H1-D)lge (g <e<egy) (5)

D, or D, can be determined by measuring the
slope of the straight line in 1gL](¢)—lge plots in dif-
ferent ranges of yardstick lengths.

2.2 Two fractals with overlap in the range of
yardstick lengths (Fig.2)
We introduce a parameter « to express the
width of the overlap range of yardstick lengths. Let

§=e6/ 0 &g (6)

The width of the overlap, Ae, can be expressed
as follows,

As=g—,= &y / 0—aaE, )]

When a=1, Ae=g—¢, , this is the case of two
fractals overlapping each other in the whole range.
When o= (g, / 83}1 72 | Ae=0, this is the case of two
fractals without overlap. When 1 <a<(g/&5)' "% ,
0 <Ag<egg—e; , the two fractals overlap each other
partly.

If the smallest crack line segment is g, , the to-
tal crack line length L[ {e;) can be expressed as fol-
lows. :

- Mo

—

oty

[ 3]

[
g J SR 4

Fig.2 Two fractals with overlap region of scale

LiG)=Pe, " +(1 =P e ®

where P, is the fraction of population of the first
fractal.

The critical crack extension force is enhanced
by the two fractals,

Gle/ Go=Ll(ey) ©)

For measurements of D, and D, , we should

. use the following equations.

L;(e)=sl_9' (e, <e<e,) (10—1)

-b 1-D,

Li@=Pe " +(01—P)e" "¢
(£2<s<£|) (10—2)

1-p,

L:;(s) = Plai_p' +(1- Pl)aD‘ Py

(¢, <e<s,) (10-3)

Figure 3 shows the caiculated curves for
a=1,3 and 5. In LONG’s experiment [8], an ap-
proximate constant fractal dimension was obtained
in spite of the fractured surfaces are all
inter—transgranularly mixed character. This is the
case of = 1. The calculated curve is approximately
linear as the D, and D, differ not too large. In
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Fig.4 Multi—range fractals and multi—scaling fractals

MU’s experiment [9], two fractal dimensions were
observed. It seems to be the case of =5 or 3 in
which the two fractals never overlap or overlap
partly.

We notice that Eq.(10-3) is not so simple as
Eqs.(10~1), (4) and (5).

Ly@=a+86'""% (. <e<s) (1)

In this case, we introdyce 4 parameter for de-

termination of D, ,

Yie)=Ll(e)~4 (12)

then,
Y(e)=Be' ™ (13)
lg He)= const.H1~D,)lge (14)

D, can only be detremined by the slope of the
line in Ig¥(e)ige reiationship figure. However,
usually experimentalists draw lgL{{(eXige figure. It
would be wrong, because

1gL,’;(a)¢const.+(1—D,,)1gas

To determine both the values of D, and D, in
the overlap region is not S0 easy. We should yse
Eq.(10-2). However, it js possible to solve jt
numerically,

3. Multi—scaling Fractals in Multi—range Fractals

In fractures, muliti-range fractals even with
overlap regions are not necessary multi-scaling
fractals. If Gic. (transgranular) differs greatly from
Gle (intergranular), the transgranular crack anpd
intergranular crack would not mix. At lower stress
level, the grain boundaries break at first. When the
stress raises to a high value, transgranular cracking
follows. Each kind of crack has its own self—similar
System. They only superpose in the material (Fig.4).
However, if Gi is near G, , the probability of
intergranular cracking is near the same as the
transgranular one, these two processes may mix
and form one multi—scaling self-similar fractal Sys-
tem.

In our case, the physical quantity which we
want to measure is the fracture toughness of the
complex system. In fracture mechanical analysis, it
is equal to two times the specific surface energy
multiplied by the crack surface area; or the length
of crack line in 2-p fracture mechanical problem.
The fraction of the tota) physical measure includes
two factors, ie. the probability of intergrapular
cracking, P, =G / (GIc+GT) and the length of the
segment. According to Feder [10] and assuming
parameters from LONG's experiment (8], the spec-
trum  of fractal dimensions, D(q) for the
multi-fractal measure of GF./ G on a geometri-
cal set D(0)=1 (a straight line) can be obtained
[11].
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Up till now. we only discussed the case of two
fractals. Expressions for N fractals can be found in
Ref.[11].

4. Summary

(1) Unlike the original theoretical model of
fractals with infinite number of generations,
fractals in nature are bounded from above by the
size of the initiator and from below by the size of
the smallest building block. There are a number of
multi—-range fractals existing in materials. In order
to study the relationship between fractal structure
and property, we should make sure which fractal
structure is in relation to the property at first.

(2) Multi—range fractals with overlap regions
in the range of yardstick lengths are not necessary
to be multi—scaling fractals. However, only if the
probabilities of different physical mechanisms are
nearly same, processes may mix and form one
multi—scaling self-similar fractal system.

(3) The concept of multi—range fractals would
be possible extended to other processes; e.g., the
fractal cluster growth, surface dynamics and etc.
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