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I. Introduction

Soil scientists have recognized variation in soil from place to place for many
years. They have portrayed the variation by dividing large regions into
smaller parcels each of which is relatively homogeneous, and they have
classified the soil 1o show similarities between soil in widely separated
parcc!s. This proccdure, which may be regarded as standard soil survey
praclice, requires appreciation of the scale of change, the abruptness or
olhcrwg;e of change, the degree of correlation among different soil
properiics, and of relations in the landscape. Yet that appreciation has
almost always been intuitive, Good soil surveyors have needed flair. Rarely
have they gained their appreciation by quantitative analysis.
_ ‘]'hg standard procedure has undoubtedly been successful. It has also had
its clhsappointmems; for example, in small regions wherc there are no
obvious _boundaries and where the properties of interest are uncorrelated
with 'vmplc: ch?nge. Now, because soil scientists increasingly require
quantitative estimates of soil properties for regions of varying sizes and
wish to plan their surveys in the most economical way, standard procedure
must be augmented by more rational and quantitative methods.

. -ln qlhcr contexts, such as advisory work, field experimentation, and
irrigation planning, soil scientists have been very concerned with san;pling
efficiency and the measurements of variation in soil. Beckett and Webster
(1971) reviewed the extensive literature on this and the numerous attempts
to plan sampling strategies. At that time, the only way to increase efficiency
and the precision of estimates seemed to be to stratify the soil first and then
to use standard sampling theory to determine the estimation variances, This
was a simple combination of classical statistics and soil classification.

. The limitations of this classical approach were clear, and some alterna-
live way of representing variation was obviously desirable. Trend surface
anqusas—lhal is, a form of mulliple regression with the spatial coordinates
as independent variables—enjoyed a brief spell of populanty in geology
gspccially for oil exploration (Harbaugh and Merriam, 1968). There were a:
few attempts to apply it to soil. Walker ef al. (1968) had some success using
polynomials over distances of up to 100 m on some segments of landscape
but not others. In general, however, there was no obvious functional
relation between geographic position and soil and no theory from which to
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predict one. Soil properties behaved much more like random variables.
Time series methods scemed much more promising, therefore, and Webster
(1973, 1977), Webster and Cuanalo (1975), and Kozlovskii and Sorokina
(1976) began to explore their value and to adapt them 1o the spatial
disiribution of soil, as had Matérn (1960) to forestry and Gandin (1965) to
meleorology. As it happened, they were overtaken by events.

Matheron (1965), working in the mining contexi, had brought together a
number of isolated results in spatial statistics into a coherent body of
theory, the theory of regionalized variables. His thesis in French was
followed by an English text (Matheron, 1971), but because of the highly
mathematical treatment and unfamiliar setting it was still some time before
earth scientists, and soil scientists in particular, saw in it what they had been
seeking.

This work must be regarded as a breakthrough for soil science,
Regionalized variable theory now provides the basis for describing spatial
variation in soil quantitatively, for estimating soil properties and mapping
them soundly, and for planning rational sampling schemes that make the
best use of manpower. This review shows how each of these is accomp-
lished using the theory with examples from the recent literature. 1t begins,
however, with a description of a much earlier approach to the problem
attributable 10 Youden and Mehlich (1937), one that deserved much more
attention than it received and that still has a proper place in a survey
scheme.

II. Nested Sampling and Analysis

Nested or hierarchical sampling schemes are commonly used in survey
research to distinguish variation deriving from two or more levels of
subdivision of a population. In the present context, the soil of a region
might be divided into districts, farms, and fields, and in a survey on¢ might
wish to measure the variation contributed by each 1o the total variation in
some property over the whole region. By sampling the soil within fields and
identifying the farm and district to which each sampled ficld belongs, the
variance can be partitioned by a hierarchical analysis and components
estimated. Youden and Mehlich (1937) adapted this technique to measure
the variance associated with different spatial scales in Broome County,
New York, as follows. On each of two soil series they chose nine primary
stations {stage 1) approximately 1.6 km apart. Al each station they chose
(wo substations {(stage 2) 305 m apart, and al each of these they chose two
sampling areas (stage 3) 30.5 m apart, in cach of which two sampling
points (stage 4) were jocated 3.05 m apart. They thus had a complete
balanced design, which ensured that the analysis was straightforward. Note
also the geometric progression of the spacings. In one series, the Culvers
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series, a coarse-loamy, mixed, mesic Typic Fragidcherpt, a sample of
topsoil (0 to 15 cm) was taken at cach sampling point and its pH measured.
In the other series, Sassafras, a finc-loamy, siliccous, mesic Typic
Hapludult, the pH of the A and B horizons was measured on samples from
each point. Youden and Mehlich then performed an analysis of variance on

each set of measurements, and their paper presents the results in the usual
tabular form.

The model of variation is
ZUH=“+AI+BU+CW+EUH’ [l]

where 2, is the pH at point / in the kth sampling area in the fth substation
in station i; p is the mean of z in the region; 4,, By, and C,, are random
variables associaled with stages I, 2, and 3 with variances o3, o, and o},
respectively; and €, is & residual term with variance o3, Table 1 shows the
general form of the analysis of variance for a four-stage balanced design
with the contributions 10 the degrees of freedom and mean squares, In this
study ny = $and n, = n, = n, = 2, 50 it is a simple matter to compute the
estimated components of variance o}, ol, o}, and o}, Table 2 gives
these.

The results have several features, In the Culvers series, the largest
component of variance, accounting for almost 409% of the total, derives
from the largest spacing, 1.6 km. The variance in stage 4 from points only
3.05 m apart accounts for 20% and is by no means the smallest. Turning to
the Sassafras series, we see that the 3.05 m spacing contributes even more
variance, 30.2% and 41,5% in the A and B horizons, respectively. In the A
horizon, the 1.6 km spacing contributes nothing to the variance, most of
which derives from spacings between 30 and 300 m,

The results are best appreciated by accumulating the components and
plotting them against sample spacing, as in Figure 1. The variance in ail
three increases with increase in sample spacing, but there the similarity

Yable L. Degrees of Freedom and Mean Squares for a Four-Stage Balanced
Hierarchical Analysis of Variance

Source

{stagey’ Degrees of freedom Components of mean square

1 n -1 of + n,ai + nyn 0 + n, ny nyof
2 an — 1) of + nyof + nyn, ai

3 nymlny — 1) of + n, of

4 wy oy ngng ~ 1) o}

Total nongnyng— 1

“For each stage, g, A, is the number of subdivisions within stage g — | and c} is ils component
of variance.
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Table 2. Components of Variance of pH in Two Soil Series in Broome County, New York
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Figure 1. Graphs of accumulated variance of pH against separating distance of
Broome County, New York.

e_nc!s. In the Culvers series, the variance appears to be increasing without
limit, whereas in the A horizon of the Sassafras series, the variance has
reached a maximum, which we now know as a sill, At the other end of the
scale, two of the graphs appear to be leveling out to appreciable finite
values, not zero, as might be expected. This we also know now io be quite
general and recognize as the “nugget effect,” which will be discussed in
more detail later.

Two further examples illustrate the power of this technique. The first is
fron} a study of soil variation on the 400 ha Ginninderra Experiment
Statgon in the Australian Capital Territory (Webster and Butler, 1976).
‘Agam four sampling stages were chosen, eight primary stations at 180 m
intervals with twofold subdivision at 50 m, 18 m, and 5 m, 10 give 64
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Figure 2. Graphs of accumulated variance of form topsoil propertics against
distance at Ginninderra, Australian Capital Territory.

sampling points at which several soil propertics were measured on 10-cm
diameter cores. Data for larger spacings were available, and these have
been added in the analysis. The estimated components for four propeities of
the topsoil are accumulated and plotted against spacing in Figure 2. The
most striking feature of these results is the difference in pattern between one
soil property and another. For example, most of the variance in potassium
content is contributed from spacings between 50 and 180 m, whereas for
pH it derives from distances between 5 and 50 . For bulk density mosl
variance is present within 18 m, and for phosphorus it lies mainly within 3
m. The region was one for which it had been difficult to make a generally
useful soil map, and these results show why.

The second example is from a study by Nortcliff (1978) in Norfolk,
England. The sampling scheme has a less strict scale of distance. It was
deliberately designed to distinguish major geological formations in the first
stage, since it would have been foolish to have ignored such obvivus
features. Units in the second and third stages were chosen randomly within
squares of S00 m and 100 m sides, respectively, rather than at constang
spacings. The fourth and fifth stages were at 20 m and 5 m spacings.
Nortcliff was especially interested in a strategy for general-purpose survey.
He therefore recorded all the more obvious soil properties and transformed
them to principal components before performing analysis of variance.
Figure 3 presents the accumulated variances for the first six principal
components. 1t distinguishes clearly the long-range variation of the leading
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Figure 3. Graphs of accumulated variance of the six leading principal compo-
nents of soil in Norfolk against distance. From Nortcliff (1978) with permission.

components from the dominantly short-range variation in the higher order
ones. The correlated information seems to relate to the major geological
differences and to be mappable at conventional medium mapping scales—
1:25,000 or 1:50,000—whereas the uncorrelated information is not.

I1I. Regionalized Variable Theory

In the nested analysis, variation is assumed to comprise a number of
independent components, one for each spacing or stage of the hierarchy. If
the spacings chosen increase in geometrical progression, this assumption is
reasonable. Regionalized variable theory, however, takes a different
approach. It considers differences between pairs of values of a property at
places separated by any distance and expresses these as their variances. It
also takes into account direction. Suppose we have the values z(x) and z(x
+ b) at x and x + h, respectively, where x and x + h are positions with one,
iwo, or three spatial coordinates and b is a vector with both distance and
due_ction, usually known as the lag, separating them. Then for this pair the
variance per site is

s? = [2(x) — Z)*+[z(x + b) — T)3, (2]
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where  is the mean of the two values. Notice that s?is half the square of the
difference:

st = %lz(z) - 2(x + B)]% (3]

Regionalized variable theory focused attention first on such differences and
their variances. The quantity s* was therefore called the semi-variance, and
the name has stuck. Nevertheless, it is the variance per site or observation.
If further we have, say, m pairs of observations separated by the same lag,
b, then we can define their average

5= .2_'5‘51 2(x)) — 2(xpt+ D). [4)

This is effectively what Youden and Mehlich did in computing the residual
variance at 3.05-m spacing.

To make use of this simple notion and generalize equation (4], certain
stationarity assumptions must be made. These are as follows.

1. The expected value of z at any place x is the mean, p:

Elz(x)] = p. {5]

2. For any b the difference [z(x} - z(x + b)] has a finite variance, which
again is independent of x:

var [z(x) — z(x + b)) = E{[z(x) — z(x + )]}

2 y(b). 6]

These two assumptions constitute the inzrinsic hypothesis of regionalized
variable theory. They assume the following mode! of soil variation:

z(x) = p, + &(x), {71

where z(x) is the value of the property al position x within a region, p, is the
mean value in that region, and &(x) is a spatially dependent random
component with zero mean and variance defined by

var [e(x) — e(x + h)] = E{le(x) — e(x + w2 = 2 y(h). (8l

In a large region, of course, we know that a soil property will vary from
one part to another. Nevertheless, the property will commonly be locally
stationary within some neighborhood V, and this condition is usually quite
adequate for analysis in which b is limited to some maximum radius 7
within which the relationships apply. It is for this reason that the subscript
V is used in equation {7}.

Where the intrinsic hypothesis holds, we can expect the same degree of
difference in the soil property at any two places h apart, whatever the
actual values of the property are. In these circumstances, the sample value

o
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s*in equation [4) is an unbiased estimate of the average semi-variance, y(h),
in the population.

A. Relation to Time Series Analysis

There is a close analogy between space and tlime, at least for one-
dimensional space, and the methods of analysis are in large measure
interchangeable. Traditionally, time serics analysis has built on the auto-
covariance and autocorrelation. The auto-covariance of a propeity that
varies in time is defined as

C(h) = B{lz(x) ~ ul {2(x + h) = pl}
T = Elz(x) - z2(x + B)) - @3, (9}

where x and x + A are points in time separated by a time lag A. The notation
is changed slightly since x and A are now single valued in the one dimension.
When h = 0, expression [9] defines the variance, ie.,

C(0) = E[z}x)] — p? [i0]
= g2

The ratio C(h)/C(0) is the autocorrelation, denoted by p(h).
By combining equations [6], 7], and [8] the semi-variance is seen to be
simply related to the auto-covariance and autocorrelation by

y(h) = C(0) — C(h) [11]
a’ {1l — p (W)}

They are complementary. The more similar are values at lag A, the smaller
is the semi-variance and the larger are the auto-covariance and autocorre-
lation. The latter must lic between 1 and — 1.

To make use of this approach requires the assumption of {ull second-
order stationarity. That is, both the mean and variance must be constant. It
frequently happens in earth science that spatially distributed variables
appear to have no finite @ priori variance nor covariance. In these
ciccumstances, the semi-variogram can exist without there being a
corresponding covariance, and it is for this reason that the semi-variance
rather than the covariance is used predominantly in spatial analysis.

H

B. The Semi-Variogram and lis Estimation

Equations [6] and [8] define the semi-variance as a function of b, the lag.
This function is the semi-variogram, y(b). In one dimension, y(h) can be
estimated at regular intervals by sampling along transects. Thus, given a set
of values z{x,), z(x;), . . . Z(x,) we can estimate y(h), where A is any integral
multiple of the sampling interval, by

] A

Y fz(x) — z(x, + W)I*. [12]

Vm— Y iwl

Y(n) =
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Figure 4. Comparisons for estimaling semi-variances on linear transects at lags
of 1, 2, and 3 sampling intervals, (a) for complete data and {b} where some
observations are missing the open circles.

Figure 4a shows the comparisons involved for A = 1, 2, and 3. The result
is an ordered set of values that constitute the sample semi-variogram. These
can readily be plotted, and there are numerous examples now in the
literature of soil science. Some are shown in Figures 6, 12, 13, 20,
and 27

This simple formula for estimating semi-variance is sensitive to extreme
values of the differences z(x) — z(x + h), especially as the squared difference
follows a chi-squared distribution with one degree of freedom, which is
highly skewed. Cressie and Hawkins (1980} investigated more robust
estimators of y(h) and discovered that the fourth root of the usual squared
difference,

y (x) = {lz(x) — z(x + h)}*}*, {13]

had a distribution close to normal with negligible skew. They therefore used
this formula to compute a mean y of m separate y(x). This value must, of
course, be transformed back. Cressie and Hawkins showed that the
expectation

0.494 0.045

TR =
El7*/2 y(h)] = 0.457 +—— + ——5—, {14}

and so the required back transformation gives the estimated semi-variance
s

f(h) = §*/ 2(0.457 + 0.494 m™' + 0.045 m ?). [15]
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This is a recent development in variogram estimation, and there are no
accounts yet of its being used for soil. Soil scientists should be aware of it,
especially when analyzing data that are themselves skewed.

C. Practical Problems

I ormula [12] for the sample semi-variance assumes that there is a value for
every sample point along the transect. More often than not there are
deficiencies in the records that preclude such a tidy computation. The most
common is that observations are lacking where the transect crosses roads,
rivers, bare rock, and the like. The situation is then as illustrated in Figure
4b, and the summation is made over the actual number of pairs, m < n ~
h, that can be compared at lag A. In other instances several transects are
surveyed because it is more convenient or because they cover the region
more evenly than does just one. The semi-variance can again be computed
by pooling the individual sums for cach lag over all the transects and
dividing by total m comparisons.

A more serious difficulty arises where transects have been sampled at
irregular intervals. This can be overcome by choosing a set of lags, &, 1 = 1,
2,...at arbitrary but constant intervals, d, and assigning to each a class
with limits (f — 1)d and /d and A, = ({ — ¥%)d as its mid-point. Every pair of
observations that are separated by the lag k, + d/2 are then used to estimate
y(h,), and each pair contributes to one and only one estimate.

The effect of this procedure is to smooth the semi-variogram: The larger
the increment the smoother will be the result. Some care is therefore needed
to judge a suitable increment, If it is small there might be too few pairs of
observations contributing to each semi-variance, so that the estimates are
very imprecise. If, on the other hand, the increment is large then
information can be lost by unnecessary smoothing. The best compromise
will depend on the amount of data, the evenness of coverage, and the form
of the underlying semi-variogram. Better still is to sample at regular
intervals initially. The soil is accessible at most places, and there is rarely
any good reason for not sampling systematically.

The confidence limits of semi-variances caiculated in this way, whether
from regular or irregular sampling, are uncertain. For a single transect,
however, good practice is to have at least 100 sampling points and to
estimate y(4) for iags up to no more than about one-fifth of the total run,
This is a conservative guide; some workers are prepared to extend the lag to
a third of the total length. If several transects are sampled then they should
be long enough to provide ai least 80 pairs for each estimate.

D. Two Dimeasioas

ln survey we are usually interested in the variation in a plane rather than
in a single direction along a transect. The semi-variogram is then a two-
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dimensional function. A sample semi-variogram can be calculated quite
straightforwardly if we have measured the soil at regular intervals on a two-
dimensional grid. Suppose the grid has m rows and n columns. We eslimate
semi-variances as follows:

i m-p A-¢
Hp. q) = —-—————Zr > iz(i ) — i tp.J+ Q)
2m=p)n=q) =t I l16]
o, -9) = ———l'-“"—f > lz(ig) ~ z(i + p, j + @)%,

2Am—pln—q) iV rerr- |

where p and g are the lags in the two dimensions. These equations enable
half of the semi-variogram to be computed for lags from —g to g and from
0 to p. The semi-variogram is symmetrical about its center, so that if the full
set of semi-variances is needed the remainder are readily obtained as

?(_p: Q) = 7(P- _q)

and
¥(-p. —q) = ¥(p. @)

As in the one-dimensional case there will often be missing data, and,
perhaps more likely, the region of interest will have an irregular shape. So
again the quantity {m — p)un — ¢) in the denominators of equations {16]
must be replaced by the actual number of paired comparisons in each
sum.

The least tidy situation occurs where data are irregularly scattered in two
dimensions. Every pair of observations is then separated by potentially
different distances and directions. This difficulty is usually overcome by
grouping the separations both in distance and direction. A series of lag
distances and directions is chosen, usually to form regular progressions as
in the one-dimensional case described above. A range in each is chosen,
again usually equal to the class interval between successive lags, and
applied so that the nominat lag lies at the center of the range. Each squared
difference then contributes to the semi-variance for the lag class into which
it falls by virtue of its actual separation. Figure 5 shows the geometry of
the grouping. The nominal lag is represented by the line OL of length ! and
the direction 8. The range in distance is w and that in direction .

1. Representing Two-Dimensional Semi-Variograms

Sample semi-variograms in one dimension are readily drawn as in Figures
12, 20, and 27. if desired, the plotted points may be joined by straight
lines, since the functions are continuous.

Displaying two-dimensionat semi-variograms is not so straightforward
since there are three dimensions involved: the two spatial dimensions plus
that of the semi-variance. One way is to present the variogram as an

T
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Figure 5. Grouping of lags by distance and dircction. The striped area shows the
extent of one group (see text),

isarithmic (“contour”) map. Alternatively a perspective block diagram can
be made of the interpolated surface. With a little more ingenuity stereo-
grams can be drawn. As we shall sce later, however, the forms of semi-
variogram in two dimensions are usually simple geometric extensions of
one-dimensional forms, and a cylindrical projection of the sample values
will often serve quite well.

To illustrate these possibilities we take as an example the study made by
Burgess and Webster (1980a, 1980b) of the soil in Cae Ruel, one of the field
at the Welsh Plant Breeding Station, Plas Gogerddan. The topsoil, O to £5
cm, had been sampled at 15.2 m intervals on a square grid. Several
properties, including the stone content, were measured on bulked samples
of 10 cores of 2.5-cm diameter chosen randomly within the 15.2 X 15.2 m
squares around each grid node. There were approximately 450 observa-
tions in all.

In the original analysis semi-variograms were computed for four
directions only: along the rows and columns of the grid and parallet to the
two diagonals. Figure 6 shows the result, Using equations {16], however, a
full two-dimensional semi-variogram can be computed, and as above, this
can then be represented as an isarithmic map, Figure 7, block diagram,
Figure 8, and cylindrical projection, Figure 9. The last shows a spread of
points that expands away from the origin in 8 way similar to that in Figure
6. The semi-variances have been grouped into classes according to their
angular separation. Each class, of which there are eight between 0 and 180
degrees, subtends 22.5 degrees, and is given a unique symbol, The
significance of the oblique lines enveloping the points will be dealt with
later.
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Figure 6. Sample semi-variograms of stone content in the topsoil at Plas
Gogerddan in four principal directions.

2, Anisotropy

We note here that the semi-variogram of the stone content is not the same
in all directions. Its gradient varies substantially from about 2 in direction
7/4 to about 8 in the perpendicular direction. Thus, the stone content in this
field varies anisotropically. This is not an unusual result. There are many
situations in which anisotropic variation is recognized in soil survey. For
example, where the land surface bevels a sequence of sediments the soi at
points along the strike is more likely to be similar than that the same
distance away in the direction of dip. On a point bar deposit or river levee
we usually observe greater similarity in the soil if we travel paralliel to the
river than if we move at right angles to it. More generzlly it is common
experience that variation is encountered more often when crossing the
drainage lines of a region than when traversing along the contours. Thus an
analysis of two-dimensional variation must allow for anisotropy.

E. Size of Support

In material such as soil in which there is spatial dependence, the amount of
variation present within a single core or block depends on the size of the
block: The bigger ils area or volume the more variation it embraces, and the
less there is outside it. This affects the observed semi-variogram, and so a
semi-variogram depends on the size, shape, and ocentation of the
individual samples on which measurements are made. Size, shape, and
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Figure 7. Isarithmic representation and sampk semi-variogram of stone content
at Plas Gogerddan. Border scales are in sampling intervals.

orientation constitute the support of the data. In gencral, measurements
- made on core samples encompass less variation than those made on larger
volumes from pits. They in turn contain less than those made on bulked
samples. Indeed, the aim of bulking is to diminish the variation between
measurements by encompassing more within them. This increase in the
support is known in geostatistics as regularization. Analysts should
therefore realize that their results refer specifically to the particular support
on which the measurements were made, and they should state the support
when reporting their results.
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Figure 8. Pcrspective representation of sample semi-variogram of stone content at
Plas Gogerddan viewed from & position above and to the left in Figurc 7.
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The semi-variogram for one support can be related, at least theoretically,
to that for another. In particular, there is often a practical interest in
regularized semi-variograms. Suppose that y(h) is the semi-variogram for
the support on which measurements were made. We shall consider this 1o
be the punctual semi-variogram. Suppose also that we wish to determine a
regularized semi-variogram, y,(h) for larger blocks of size B. It can be
shown that for a given lag h,

ys(h) = ¥(B, B,) - 7(B, B), : (17)

where ¥(B, B,) denotes the average semi-variance between two blocks of
size B separated by the vector b, and ¥(B, B) is the average semi-variance
within a block B; i.e., the within-block variance. If the distance b is much
larger than the distance across the block B, then ¥(B8, B,) approximately
equals y(h), the point semi-variance. From equation [17] we obtain the
useful approximation

ye(h) = y{h) — ¥(B, B). f18]

Thus for|h| >>\/1_9 the regularized semi-variogram is derived from the
punctual semi-variogram simply by subtracting the within-block vari-
ance.

This is especially pertinent for bulking. If the semi-variogram of a soil
property measured on separate cores is known, then that for samples
bulked over larger areas, the regularized semi-variogram, can be deter-
mined readily from it.

IV. Semi-Variogram Models

Soil varies continuously in space, at least at most practical scales, and so
semi-variograms of soil properties are continuous funciions, The sample
semi-variograms, however, coasist simply of ordered sets of discrete values.
These are estimates and as such are subject to error. They can be joined by
straight lines or curves to give intermediate values, but the result is
inevitably irregular. Nevertheless, a quick look at most well-estimated semi-
variograms of soil will show that generally they approximate simple forms,
and that it should be possible 1o fit simple functions to them. Later we shall
wish to use the semi-variogram for estimation, and so its form is of both
practical and scientific interest.

Figure 10, for one dimension, shows the principal features of semi-
variograms of soil. In most instances it is found that y (k) increases from the
smallest measured lag. In Figures 6 to 9 this increase in y(h) for stone
content appears 1o have no limit: The soil appears to have no finite
variance, This is represented by the solid line in Figure 10a. More often
the semi-variance reaches a maximum at which it levels out, and such semi-
variograms are said to be transitive. This maximum is known as the sill,
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Figure 10. Elements of one-dimensional semi-variogram.

and its value is the a priori variance of the variable. The lag at which the sill
is reached is known as the range. If y{(h) approaches its maximum
asymptotically, then for practical purposes the range may be chosen
arbitrarily where y(h) is sufficiently close to its apparent sill.

The range is of considerable importance. It marks the limit of spatial
dependence. The soil at places closer together than the range is related; at
places further apart it is not, unless there is periedicity. The range may be
interpreted as indicating the average distance across distinct soil types in
some instances (Webster, 1973; Webster and Cuanalo, 1975; McBratney
and Webster, 1981a). Experience to date suggests that at the common
scales for detailed soil survey the range will usually be a few hundred
meters. 1t does, however, depend on the size of the arca sampled, and if the
scale of the survey is changed substantially then the range is likely to do so
too. The range also represents the limiting distance within which inter-
polation is worth attempting, and this will be discussed later.

By definition the semi-variance at zero lag is itself zero. But as can be
seen from Figures 6, 12, 13, and 15, smooth curves approximating
the sample semi-variances in thesc examples are uniikely to pass through
the origin. All appear instead to approach positive finite intercepts on the
ordinate at & = 0. This intercept is known as the nugger variance, and the
phenomenon, which is widely recognized, is known as the nugget effect. The
terms derive from gold mining. In gold-bearing rocks and sediments
nuggets are sparse and small, Their diameters are very much smaller, by at
least one order of magnitude, than the spacing between sampling cores.
Most cores contain none; a small proportion contain one each, rarely more.
Thus, the inclusion of a gold nuggel in a drill core is regarded as a purcly
random event.

Few soil properties of common interest are quite like this, yet in practice
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their semi-variograms usually have distinct nugget variances. Indeed, in
some investigations all the variation appears as nugget even when sampling
as closely as 10 or 20 m. Campbell's (1978) results for the particle size
fractions on both loess and till in Kansas were of this kind, as were several
properties measured by McBratney and Webster (1981a) in noriheast
Scolland, .g., Figure 12. Such results almost invariably mean that there
is a source of spatial variation with a range much smaller than the smaliest
sampling interval. The shape of the semi-variogram in this range can be
resolved only by much denser sampling.

A. Positive Definite Functions

Thus we sec that in choosing a model to represent a sample semi-variogram
we must allow for at least three elements in most instances: an intercept, an
increasing section of potentially varying shape, and a sill. In two
dimensions there must also be provision for anisotropy.

Not any model that appears to fit the observed values will serve,
however, for the following reason. Suppose that Z(x) is a second-order
stationary random function giving rise to the regionalized variable Z(x), {
=1,2,...n, and that its covariance function is C(h) and y(h) its semi-
variogram. And consider the linear combination

Y =3 A2Za), (19)
=1
where A, i = 1, 2,..., n, are any arbitrary weights. This quantity is a
random variable with

var (Y] = i

i=1j

A, C(x,x,). (20]
=1

The variance of ¥ may be positive or zero, but it may not be negative, and
the covariance function on the right-hand side of equation [20] must ensure
that this condition is met. The covariance, C(h), must be a positive definite
function, and only functions that meet this criterion are acceptable.

As we have seen, there are situations where soil properties do not have
definable covariances because their variances increase apparently without
limit. Provided the intrinsic hypothesis holds, however, we can make use of
the following relation. Bquation [20] can be rewritten as

var [¥] = C(0) ,i.. A Z‘a A,

- '.Z! ; 7":1;1(‘:. ‘1)- (21]

The first term on the right-hand side of this equation can be eliminated
provided
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;. A, =0, {22
giving
n n
var [¥] = - :Z le A yix, x,). i23]
af j =

This 160 must be non-negative, and we are left with the constraint on the
semi-variogram that it must be a positive definite function with the added
condition that the weights in equation [23] sum to 0.

Although we may state the above, it is not easy to test whether any
particular model is conditional positive definite, and it can be difficult to
create “data” that will demonstrate that a model is inappropriate (Arm-
strong and Jabin, 1981). The standard approach involves examining the
Fourier transform of the semi-variogram or covariogram, and Christakos
(1984) has listed the conditions that the spectrum must meet for a model to
be acceptable. Dunn (1983) has shown that a simpler test can be applied if
a model is required only for lags at which there are observed data. This,
however, will be too restrictive in many instances.

The consequences of fitting a function that is not positive definite are not
always disastrous. The investigator does not necessarily encounter negative
variances, and so remains unaware of the dangers. The need to avoid such
models is not always appreciated, especially because a function that is
positive definite in one dimension is not necessarily so in two or three
dimensions.

B. Safe Models

This section defines models that can be recommended for semi-variograms
of soil properties. They are defined for one dimension but are safe in the
sense that they are conditional positive definite in two and three dimen-
sions. In the French literature they are often referred to as authorized
models.

1. Linear Models

The simplest model that can be fitted in one dimension is ¢clearly linear. It
has slope w and may have an intercept or nuggel variance ¢g. ks
formula is

yh) = ¢, + wh forh > 0
= Q. 124]

Notice that it has no sill. Figure 11 shows an example. A linear model is
also fitted to the first 15 sample semi-variances of pH in Figure i3.
In the limit w can be zero (Figure 12). The semi-variogram is then said

-
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to show a pure nugget effect. There is no spatial dependence at the scale of
investigation since all of the variance occurs within the smallest sampling
interval.

2. Spherical Models

A model that has been found to fit not only many semi-variograms of soil
properties but also those of mineral deposits of many kinds is the spherical
model. Its definition is

k]

- 3h_L[hA <h¢S
y(h) =eco + ¢ 22 2\a for0 <hZ%a
y(h) = ¢, t ¢ forh > a
¥0) = 0. [25}

Its characteristics are illustrated in Figure 13, in which a is the range, ¢, +
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Figure 11. Scmi-variogram of cxchangeable potassium in topsoil, n}easured in
ug/g and transformed to common logarithms, at Broom's Bam with linear model
fitted (see Websler, 1981).

Quantitative Spatial Analysis of Soil in the Field 23

15
. ® .
~ L b . . ¢ ....L
G| T, T T T T e T
- * L .
!g‘i() . . *
- .
= . .
L
L
c
9 .
T -
-]
T 0S|
£
o
7]
1 1 |
0 200 400 600
lLagi/m

Figure 12. Scmi-variogram of organic carbon in the subsoil, measured as
percentage and transformed to reciprocal, at Tillycorthie, Aberdecushire (see
McBratney and Webster, 1981a).

c is the sill, and ¢, is the nugget variance as before. Its tangent at & = 0 cuts
the sill at % a. Figure 13 shows the sample semi-variogram of pH over
420 m well fitted by the spherical model,

Theoretically, the spherical model derives from a moving average
random process. It is the three-dimensional form of a quite gencral n-
dimensional model (Matérn, 1960). The idea is that in three dimensions a
random function, of which the property measured is a realization, depends
on the volume of the intersection of two spheres of equal radius. If a is the
diameter of the spheres and A the distance between their centers then this
volume, V, is

p==& —-a’h-l--}-;— for h a. [26]

If this is expressed as a fraction of the volume of a sphere by dividing by
ina® we obiain the autocorrelation function,
3ihA 1R
P =13 2+7 o7 (27}
from which the semi-variogram is derived using the relation defined in
equation [11].
Such a function would seem fairly obviously applicable to three-
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Figure 13, Sample semi-variogram of pH in the topsoil at Sandford St. Martin
with linear, exponential, and spherical models fitted by least-squares approxima-
tion.

dimensional rock bodies, and it has indeed proved so. It is less obviously
relevant for distributions in one and two dimensions, and yet it nearly
always fits experimental results from soil sampling better than the one- and
two-dimensional analogs, e.g., Figure 14, which are described later. The
reason is presumably that there are additional sources of variation in soil at
other spatial scales.

Similar interpretations of variograms near Witney (Webster, 1973) and
Sandford (Webster and Cuanalo, 1975), both in Oxfordshire, and of semi-
variograms at Tillycorthie in northeast Scotland (McBratney and Webster,
1981a) led the authors to seek distinct parcels of different soil type with
linear dimensions equal to the range. Ia all instances they were able to find
boundaries at approximately this average spacing using statistical seasch
procedures devised by Webster (1978) and Hawkins and Merriam (1974),
and so confirm their interpretations.

3. Exponential Models
The formula of the exponential model is

y(h) = co + ¢ |1 ~ exp(=h/r)) forh >0
¥(0) = 0. [28]
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The spatially dependent variance and nugget are ¢ and ¢, as before, and r is
a distance parameter controlling the spatial extent of the function. Here
y(h) approaches the sill asymptotically, and so there is no strict finite range.
Nevertheless, it is clear that for practical purposes the semi-variance ceases
to increase beyond some point, and a commonly used rule of thumb is to
take this as the effective range, @’ = Ir at which y(a’) is then equal to
approximately ¢, + 0.95¢. Figure 13 shows the form of the model. The
curve is the best fitting exponential to the sample semi-variogram of pH but
clearly does not represent the sample values well.

The exponential model has an important place in statistical theory. It
represents the essence of randomness in space. It is the semi-variogram of
first-order auto-regressive and Markov processes. As autocorrelation
function it has been the basis of several theorctical studies of the efficiency
of sampling designs, by for example, Cochran (1946), Yates (1948),
Quenouille (1949), and Matérn (1960). Semi-variograms of exponential
form are also to be expected where differences in soil type are the main
contributors to soil variation and where soil boundaries occur as a Poisson
process. Burgess and Webster (1984) and Webster and Burgess (1984a)
found the latter to be so along transects in many instances. If the intensity
of the process is a, then the mean distance between the boundaries is d =
1/a, and the semi-variogram is

¥(h) = ¢ [l - exp(—h/d))
= ¢ [1 — exp(—ah)l. 129]

Oliver (1984), working in the Wyre Forest of England, obtained exponen-
tial semi-variograms for a number of soil propertics all with approximately
the same distance parameter. She attributed their form largely to this

process.

Sisson and Wierenga (1981) found that the rate at which water filtered
into soil varied exponentially with distance and postulated it as a first-order
auto-regressive process. On a very different scale Yost er al. (1982)
estimated the semi-variograms of several chemical properties to 60 km over
the Island of Hawaii and were able to fit exponential models in all cases.
Similarly Xu and Webster (1984) found the pH of the soil in Zhangwu, a
region covering 3500 km? in northeast China, to be distributed exponen-
tially.

4. The Hyperbola

A novel function in this group is that used by Vieira et al. (1981) to describe
variation in infillration across irrigated land in the Ceatral Valley of
California, and shows the strong influence of physical chemistry in soil
science even in this field. The function is & hyperbola,

h
y(h) = PEY TR 1301

Ex)

T
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which is the equation of the Langmuir adsorption of isotherm, with y(A)
replacing the mass adsorbed and A the pressure. The model is transitive: It
approaches the sill value 1/p asymptotically and has a limiting gradient of
1/a at the origin. Nielsen' has stated that it is positive definite in two
dimensions. For iofiltration rate in mm he™! and lag in m, Vieira ez /. found
values for a and B as 1.207 and 0.105, respectively. There was no intercept,
though it would be perfectly in order to add a nugget term,

C. Risky Models

In most instances soil properties appear transitive; The semi-variogram
appears monotonic increasing to a sill, and this is to be expected in a finito
region. The main difference among them is the degree of curvature, The
exponential function curves graduvally. The spherical model curves morg
tightly. But there are instances where the semi-variogram appears (o ¢urve
more tightly still, even abruptly, and the investigator may be tempted to fit
more tightly curving models. We consider two below. '

I. The Circular Model

Just as we obtained the spherical model for three dimensions we can derive
a circular model in two (Zubrzycki, 1957; Dalenius et al., 1961), The area
of intersection of two equal circles is given by

forh<a, {31)

where a is the diameter of the circles and & the distance between their
centers. Expressing this as a fraction of the area of the circle gives

h) & h?
o) o' " o

cos” b

2
plh) =—
n

for the autocorrelation function, and the following semi-variogram:

2
vh)=cp+ ¢ l'-;cos" g— +:—z\/l—h’7a' forO<h<qg
yih) =¢, + ¢ forh>a
¥(0) = 0. [33]

!Personal communication.
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Figure 14, Sample semi-variogram of pH in the topsoil at Sandford St. Martin,
Lincar-with-sill and circular modeis arc fitted by least-squares approximation.

This model and its consequences for plane sampling were explored in detail
by Dalenius er al. (1961). Figure 14 shows it fitted tb the sample semi-
variogram of sand content at Sandford. It clearly describes the results
welt.

2. Linear Model with Sil}
The extreme form of transitive model is linear with a silk:

y(h) =co+ ¢ g forO<hZa
y(h) = ¢ + ¢ fork >a
v(0) = 0. (34)

I have expressed it in this way to emphasize its similarity to that of the
spherical and circular models. Again, by analogy with the spherical scheme
this can arise from lincar zones of influence of equal length but with varying
distance between their centers, A, For a given length, g, the overlap is simply
a—Ah, or as a proportion 1—A/a, provided h<a.

There arc scveral examples in the literature where investigators have used
this form of model for semi-variograms of soil. Figure 14 shows it fitted to
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the same Sandford semi-variances as above, and again the fit is reason-
able.

What, then, are the risks of using these models? They concern the

positive definite condition. The circular model is positive definite in one and
two dimensions, but not in three. This will usually not matter in soil gurvey,

which is essentially concerned with variation in the plane. The lincar model -

with sill is positive definite in one dimension, but not in more. This model
should not be used in soil survey, however well it might appear to fit, unlcss
variation is strictly limited to just the one dimension. Those investigators

who have used the model in two-dimensional contexts have cither not .

examined the variances of combinations of values or have had the fortyne
not to encounter negative variances in practice. P

D. Nested Models , :

This paper began with a study of nested sampling and an analysis based on |

a nested model with variation deriving from several sources with differont

spatial scales. The components of variance measured the amount of |

variance contributed by each scale, and by accumulating them we were able
to show how variance increased with increasing distance. Starting at the

bottom of the hierarchy, the variance at the spacing of level 3 consists of

the sum of components o} and of, that at level 2 consists of 6} + o} + o,
and 5o on. Miesch (1975) showed that this is precisely the same as in the
semi-variogram; The variance at a lag of 2, say y(2), comprises that at lag

1, ¥(1) or o}, plus a component deriving from distances between | and 2, |

say, o3. We have, therefore, oo
y(2) = y(1) + ol (35}

Thus, the cumulative variances from the nested analysis constitute a semi-
variogram.,

Most of the semi-variograms that we have seen so far are already nested
models in the sense that they have nugget variances, They can be
represented by

¥ var [2(x) — z(x + A)) = y(R) = yo(h) + v,(h). [36]

In other words, the semi-variogram is the sum of two functions, one
representing pure nugget, y,(h), and the other a spatially dependent one,
¥,(#). This can be extended by adding further functions.

In studies of mineralization it is often found that one more term is needed
10 describe the variation adequately; thus,

Y{h) = yo(h) + 1.(h) + v,(h). (37

Miae surveyors and geochemists have found the double spherical nested
model especially valuable, and my colleagues and 1 have fitted it to several
sample semi-variograms of soil propertics (McBratney e/ al., 1982;

1

o i

. g e =
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Webster and Nortcliff, 1984), Figure 1.18 is an example. in these v,(#) and
v:h) are separate semi-variograms:

3 h UK} <
réh) =el3 =3l G for0<h<a,
) =¢ _ _ fork>a
3k 1fAa)
= _— i — —{ — <
1h) = ¢, 2, 2\ a forO <k <a,
yoh) = ¢, foch>a; ™ (38]

The two sills ¢, and ¢, arc in general different. The ranges will usually be
very different; otherwise, they are unlikely to be distinguished.

The quantity yo(k) is the nugget variance: a semi-variogram with its
effective range much less than the smallest sample interval measured.

These three semi-variograms comprise the nested model fitted to the
semi-variogram of readily extractable copper content in the topsoil of
southeast Scotland and are shown separately in Figure 15, from
McBratney ef al. (1982). The coefficients are given below. The variances
are in units of (log,o pg Cu/g soil)’ and the ranges in km.

¢, (nugget) 0.0213
¢ 0.0257
¢, 0.0196
a; 2.26
a, 15.5

Recently Burrough (1983b) has postulated a nested structure for soil
variation that arises from independent soil-forming factors that have
operated over distinctly different spatial scales. He mentions the effects of
geology, relief, and earthworms, to which one can add those of tree-throw
and manmade divisions into fields and farms as examples of other scales.
The effects can be ranked according to their ranges, and Burrough
proposed a geometric scale in much the same way as Youden and Mehlich
(1937) did for their nested sampling. As an example Burrough chose
ranges, g, on a scale such that @, = %a, = %a, = %a,. ... Thus in cne
dimension the semi-variogram has the general form of equation [37]
comprised as

h h h h
Y(h)=C|I+C2'a_;+c"5;+€"a_‘+.... [39'
In other words, it consists of a series of linear semi-variograms with sills
that together form a linear spline. Burrough estimates the sill values, ¢, by
solving a system of linear equations and shows how such models fit actual
one-dimensional semi-variograms. The fits are undoubtedly good. His

T
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Figure 15, Semi-variogram of available copper in the topsoil of southeast Scotland,
The three component semi-variograms of the nested spherical model are shown by
the dashed lines (sce McBratney er al,, 1982),

expression for the semi-variogram of pH in the topsoil at Sandford, Figure
14, converted into the terms of equation [34] is

h

v(h) = 0.048 + O.ZOOW forO < A <209
y(&#) = 0.048 + 0.200 forh > 209
y(0) = 0, [40]

which agrees very closely with the model I fitted in Figure 14,

The model is postulated specifically for one dimension. In more
dimensions lincar splines are not generally positive definite, and the
component semi-variograms should be replaced by their two- or three-
dimensional analogs, the circular or spherical models,

E. Models for Anisotropy

As discussed carlier, soil does not necessarily vary equally in all latgral
directions. Figures 6 to 9 showed an example in which the stong content
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varied anisotropically. Another example, Figure 21, appears later, and
McBratney and Webster (1983) analyzed a further case, Figure 17.

The semi-variogram for the individual directions in Figure 6 are very
close to tinear, though with different slopes. The contours of the semi-
variogram, Figure 7, are approximately elliptical, and this suggests that
the semi-variogram can be represented by a simple sinusoidal functioa,
Burgess and Webster (1980a) initially represented this semi-variogram
using polar coordinates by '

v(h, 8) = ¢y + u (8)|b], [41]

u(@ = 4 cos’ (0 ~ ¢) + B sin? (0 — ¢). [42)

The parameters are ¢, the direction of maximum variation; 4, the gradient
of the semi-variogram in that direction; and B, the gradient in the direction
¢ + /2

Burgess et al. (1981) later modified this to

#(0) = [4? cos? (0 ~ ¢) + B sin? (8 — $)ln. [43]

where

This last expression now defines strict geometric anisotropy (David, 1977),
which can be made isotropic by a linear transformation of the coordinate
system. It might help to appreciate this by imagining the land on a rubber
sheet. By stretching the sheet in direction ¢ in the proportion 4 to B the
semi-variogram in that direction will have the same gradient as that in the
perpendicular direction. The proportion 4/B can be regarded as the
anisotropy ratio,

On fitting this model to the sample values, Burgess ef al. (1981) obtained
the following;:

¥(h, 8) = 9.06 + |7.18" cos? (8 — 1.00)
+ 2.40% sin? (6 — 1.00)]* b . [44]

As above, this would appear simply as a series of concentric elliptical
isarithms in plan. On the cylindrical projection it can be represented as a
defining envelope, shown by the lines of maximum and minimum gradient
in Figure 9. These are

v,(R) = 9.06 + 7.18 A
and
y{h) = 9.06 + 2.40 A, [45]

respectively. Where the anistropy is geometric, this form of display contains
all the information in the semi-variogram except the orientation, and that
can be stated.

In the lincar case the quantity u(0) is the gradient in direction 6. In
transitive models the gradient u(8) in equation [42] is replaced by a range
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parameter, say r(8), and 4 and B then represent the maximum and
minimum ranges of the model. No one seems to have encountered semi-
variograms of this kind so far for soil.

A further type of anisotropy of which soil scientists must be aware is
where Lhe property of interest has different sills in the different directions.
This is known as zonal anisotropy (Journel and Huijbregts, 1978). Again
there are no reports of its occurrence in the horizontal plane in the soil
literature. Almost certainly it occurs when the vertical dimension is added,
but no one has analyzed three-dimensional soil bodies or even vertical
planes in this way yet to my knowledge.

V. Fitting Models

x¥
Choosing models to describe observed semi-variances and the procedures
for fitting them are matters of some controversy. Indeed, they are morg
controversial than any other aspect of spatial analysis covered in this
review.

The choice of model will obviously be governed by the gencral graphic
appearance of the sample semi-variogram. For example, one will choose a
function for pH at Sandford that turns more tightly than the exponential
curve, Figure 13. But not any function that appears to fit will do: As above,
functions must be positive definite.

An investigator will also be influenced by what is already known about
the soil of a region—by the form that the semi-variogram is expected to
take. The investigator may wish to interpret the semi-variogram in terms of
some physical process or geological origin, and a model that makes this
possible is likely to be preferred to one that does not.

The choice of model will also depend on the purpose for which it is
wanted. The criteria for choosing models for estimation or interpolation
might be quite differeni from those used for illustration or explanation. An
investigator may also fit different models for different-sized regions
depending on the maximum lag that is of interest (Webster and Burgess,
1984b).

Having decided the form of the model and the lag over which it is to be
fitted, there is then a choice of fitting procedure. The linear model is, of
course, easy to fit by simple regression. Usually the number of pairs of
comparisons in the estimated semi-variances differ from one another, and
so the regression should be weighted accordingly. Some models can be
made lincar by transformation and the parameters estimated again by
regression. The Langmuir isotherm, for example, in the form given in
eguation [30] can be transformed to

% = a + BA, [46]

from which « and P are readily found.
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Most of the useful models are non-linear, and so a less straightforward
approach must be adopted. Journel and Huijbregts (1978) recommend
procedures for finding the nugget variance and sill of transitive models.
Many sample semi-variograms are approximately linear over the first few
lags, and so by fitting straight lines and extrapolating intercepts on the
ordinate can be found. As Figure 13 shows, this value is much the same as
that obtained by non-linear least-squares approximation of the whole
curve.

Their recommendation for finding a sill is less sound, mainly because of
misunderstanding among readers. It will pay, therefore, to make a
digression at this point 1o clarify matters. h

The basic notion of transitive variation is that there is a distinct range
within which variation increases with increasing lag distance, 4. Beyond
this range y(h) remains constant, however much larger the lag. In principle
the semi-variance remains constant to infinity at what is known as the a
priori variance of the property of interest. One aim in sampling and model
fitting is to estimate this @ priori variance by the sill of the semi-
variogram.

If we were able to sample in infinite space then the spatial dependence
that occurs within limited lags would be negligible. We coutd disregard it.
The a priori variance would be equivalent to the population variance, o, of
classical statistics, which we could estimate in the usual way by
l Z lz (x) — 2], (47]

n- 15

st =

where 7 is the sample mean. Of course, we never have an infinite space in
which 1o sample, but if the region, B, is very large in relation to the range of
the semi-variogram, the regional variance, say o}, and our estimate of it, 63,
might be so close to the a priori variance that it will serve.

In practice, however, we are more often concerned with situations in
which the range of the semi-variogram is a considerable proportion of the
distance across the region. Now the population variance of a finite region,
or dispersion variance as it is known to geostatisticians, is the average semi-
variance within that region. Formally it is

ol =?f{jf (x - x') dx dx’, [48]
A

where x and x’ are (wo points that describe the region independently. It is
represented in Figure 16 by the area under the curve. Clearly, this is less
than the area beneath the sill. In fact the dispersion variance, which one
would estimate by equation [47] from a sample is that value which makes
the two hachured arcas equal. It must be less than the sill, unless the semi-
variogram is pure nugget at the working scale. Thus, the practice of

Ty
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Figure 16. Transitive semi-variogram and dispersion variance of a finite region.

estimating the sill by the sample variance within a region is not to be
recommended.

A. Recommended Practice

Despite the criticisms of automatic least-squares fitting made by Journel
and Huijbregts (1978) and others, my colleagues and 1 have found that it
works well where there are sufficient data. For non-lincar models we first
obtain values for the non-linear parameters, notably the range, iteratively
and then fit the remainder by solving a matrix equation. We weight the
semi-variances by the number of pairs of comparisons used to estimate
them. We use the Maximum Likelihood Program, MLP, written by Ross
(1980) at Rothamsted for this and program our own models into it, Other
sound suggestions are made by Armstrong (1984) in a recent discussion of
the problem. She clearly favors a weighted area method involving Laplace
transforms that is especially well suited for exponential semi-variograms.
Kitanidis (1983) discusses the problem further and proposes a true
maximum likelihood solution for fitting parameters to the whole set of
covariances among the data. It is likely to be restricted to fairly small sets of
observations, however. Readers wishing to analyze spatially distributed soil
data should read these papers and also that by Delfiner (1976).

V1. Fractal Representation

We have already remarked on the nested nature of soil variation, We noted
that soil can apparently vary increasingly without limit as the area
increases. At the other end of the scale most semi-variograms recorded on
point supports have nugget variances. There always seems to be some
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variance within the smallest sampling interval, and more to encounter if we
go further afield. It is clear, therefore, that the semi-variogram obtained in
any study depends very much on the scaie of the study. There is no absolute
semi-variogram for a soil property.

Gajem et al. (1981) illustrate this dependence on scale well. They
examined a region of 85 ha at three scales by sampling on transects at 20
cm, 2 m, and 20 m intervals and increasing the lengths of the transects in
proportion. As the length of transect increased so did the variance and the
range of dependence.

Such facts led Burrough (1983a) to consider whether soil exhibited true
similarity at different scales and to explore its representation by fractals
(Mandelbrot, 1982). He took as starting point the stochastic fractal of
linear Brownian motion,

2(x) = z(x + h) + &, (491

where ¢ is a Gaussian random deviate. Its semi-variogram has the one-
dimensional form,

Ellz(x) - z(x + B’} = 2y(h) = A™, (501

where H = 0.5. If the sampling interval is divided by any arbitrary positive
value r and the result rescaled in the ratio ¥ then the new semi-variogram
will be identical with the old one. In this sense Brownian motion is a self-
similar or fractal process,

In ordinary Brownian motion the successive values of e are totally
independent, Mandelbrot, however, showed that by increasing H in the
range 0.5 to 1 he could generate a family of trails smoother than Brownian
motion in which successive values of € were positively correlated. Con-
versely, if he diminished H between 0.5 and O so that the € were negatively
correlated, then the tracks were noisier than those of Brownian motion.

At the limit H = | the semi-variogram is a parabola and variation
is smooth and differentiable. At the other extreme H = 0 indicates pure
noise, which seems impossible in continuous space. Indeed, Journel and
Huijbregts (1978) preclude these limiting values: The function y(b) = —His
not conditional positive definite. Following Orey (1970) and Berry and
Lewis (1980} Burrough points out that H is related to the Hausdorft-
Besicovitch or fractal dimension D by # = 2—D, and by plotting the semi-
variogram on double logarithmic graph paper he estimates D from the
slope, m = 4 — 2D.

Burrough estimated D for a number of soil properties in several different
regions and obtained values ranging from 1.5 to 2, His values of H
therefore lay between O and 0.5, suggesting that soil varied in a way more
random than Brownian motion. While this may be so, Burrough concluded
that the different independent factors that affect soil variation combine in a
way that overshadow any self similarity. The fractal Brownian model
seems less appropriate for soil than the nested models described above
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(Burrough, 1983b). Nevertheless, the fractal representation should be
borne in mind by soil scientists, and D values of soil properties computed
for reference against those of Brownian fractals (Burrough, in press).

VII. Cross Correlation

So far we have considered the spatial correlation of a soil property with
itself; i.e., its autocorrelation. The same concepts extend to two propertics,
so thalt the values of the one depend in the statistical sense on those of the
other at other places nearby, Where this is so the variables are said (o b
co-regionalized or cross correlated.

If we adhere to the intrinsic hypothesis as the strongest assumption then
we can express the spatial interdependence of two variables, say ¥ and v, by
their cross semi-variogram, v,,(h). The cross semi-variance is defined by

Yuv(h) = E{{zu(l) - "'la(x + h)] IZr(!) - Z,(l + h)]}l [51]

and is estimated like the auto semi-variance by

Niw}

i :
Tulb) = 2y 2 12000 = 2,05, + B [2,6x) = 2., + )],
(52

where M(h) is the number of pairs of comparisons that can be made at lag b,
Sample cross semi-variograms can be computed in one dimension from
transect data and in two dimensions from grids, and the same devices can
be adopted for dealing with missing data and less regular sampling as are
used for single variables.

There is, however, one feature of cross correlation that does not occur
with single variables. It concerns the symmetry of the relation. If we assume
that the two properties are second-order stationary and coasider their
Ire.lalions in one dimension, then we can define the cross covariance C, (h) at
ag h as

C.(h) Ellz(x) ~ T lz,(x + h) - Z,}}. (53]
The cross correlation is then
puv(h) = Cuv (h)/ {Cuu(o) b C',,(O)]’, {541

and the cross semi-variance is related to it by

27,,(h) = 2C,(0) — C(h) - C..(h)
= 2Cav(0) - Cn(_h) - Cru(_h)- [55]
If we interchange # and v in either equation [51] or equation [55]) for y.(h)

it makes no difference. If, however, we interchange them in the equation for
the cross covariance, equation [53], we obtain a different result in general.

3
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The value of C,, (h) is only incidentally the same as C, (h). Small
differences in their estimates can be regarded as sampling effects, but any
large difference means that one variable lags behind the other. In these
circumstances the coregionalization can be represented fully only by the
€ross covariogram.

The same rules for fitting models apply to cross semi-variograms as (o
auto semi-variograms. The models must be such that any linear combina-
tion of values,

*

Y= 2 Aazdx), (561
(Y]

has a non-negative variance for kX = 4 and k = v, and indeed for any other
variables in the model. This implies that at any lag h the cross covariance
matrix of the variables is positive definite. The matter is somewhat complex,
and readers who wish to delve more deeply should consult Journel and
Huijbregts (1978).

Vauclin et al. (1983) and McBratney and Webster (1983) have analyzed
co-regionalizations of soil properties, and the following example from the
latter paper illustrates the techniques.

McBratney and Webster examined the cross correlation of particle size
fractions in the topsoil and subsoil of a 10.6 ha field on the Woburn
Experimental Station in central England. The field had been sampled at the
nodes of a 10 m square grid, and cores 6 cm in diameter were taken from 0
to 20 cm and 40 to 60 cm depth, The percentages of sand (2 mm to 63 um),
silt (63 um to 2 pmy), and clay (< 2 pm) were determined on every subsoil
core but on only every fourth sample of topsoil. The percentages were
transformed to logit (in[p/(100 — p)] where p is a percentage) to stabilize
variances.

As might be expected there was some strong simple correlation among
the fractions. This was, however, restricted largely to the sand and silt, for
which correlation coefficients were all larger than 0.8 in absolute value.
There was also a marked anisotropy, and a part of the analysis was
concerned to establish the extent 1o which this was common to all the
particle size fractions.

All the semi-variograms were lincar, at least to 100 m, and so had the
form of equation [44]. Table 3 lists the coefficients: ¢ the angle of
maximum gradient, 4 the gradient on that direction, B the gradient in
direction ¢ + n/2, and ¢, the nugget variance. The table introduces a feature
of cross correlation that does not occur with autocorrelation: The semi-
variances can be negative, Figures 17, 18, and 19 show threc examples
from the possible 15 cross semi-variograms, the three that the authors later
used for co-kriging. In two of them the semi-variances are negative.

Table 3 shows that the anisotropy ratio A/B was very similar for sand
and silt at both depths, and that the directions of anisotropy were much the

LRl
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Table 3. Coefiicients of the Geometric Anisotropic Semi-Variogram for Sand and
Sil,, Equation (41], Found by Fitting the Model Independently 1o Each Variable

Topsoil Subsoil
Sand Sih Sand Sik
Nugget variances, ¢,
Topsoil sand 0 QO 0 Q
silt 0 0 0
Subsoil sand 0.0675 -0.0665
silt 0.0968
Maximum gradients, £
Topsoil sand 00128 -0.0145 0.0198 ~0.0239
silt 00172 =-0.0230 0.0285
Subsoil sand 0.034]1 -0.0418
silt 0.0547
Minimum gradients, 8
Topsoil sand 00080 -0.0087 00118 -0.0138
silt 0.0107 -0.0132 0.0159
Subsoil sand 0.0230 -0.0272
silt 0.0342
Anisotropy ratios, A/B
Topsuil sand 1.590 1.671 1.680 1.731
silt 1109 1.739 1.788
Subsoil sand 1.483 1.538
silt 1.570

Weighted average 1.590

Directions of maximum

variation,

Topsoil sand 1.148 1.147 1.166 1.188
silt 1.151 1.176 1.208

Subsoil sund 1.165 1.163
siit 1.192

Weighted average 1.172

e LT 4
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Figure 17. Semi-variogram of subsoil silt and sand at Woburn. Here and in Figures
18 and 19 the symbols for the semi-variances show the different directions and the
oblique lines the enclosing envelope of the fitted model (see McBratney and
Webster, 1983).

same. It scemed that the values obtained were estimates of common values
for the two parameters. Weighted averages of them were therefore
computed, giving 4/B = 1.59 and ¢ = 1.17 rad. With these held constant
the model of equation [44] was fitted afresh to give the coefficients listed in
Table 4. The authors alsc presented model coefficients for clay auto semi-
variograms. The anisotropy ratios were fairly similar, but the angles of
orientation were different, especially that for the subsoil.

VIIL Changing Drift
Most of the semi-variograms that we have seen so far have had nugget

variances, and all have been either linear or convex upward. Occasionally,
hawsver we mav encounter semi-variogzrams of soil prooperties that



40 R. Webster
03[
Silt  Topsoil and Subsoil /
+
o
v
+)l' v
X
02 X
X
3 /‘5 v o
c
c x
C Yo //
g " g
+ //.
= -~
3 ’ -
o A o _ ¢
0t <
A i
-~
Ko 1, 70
-
pr s
-
o
~
-~
-
o
1 i 1 1 1
0 30 &0 90 120 150
Lag/m

Figure 18. Semi-variogram of silt in the topsoil and that in the subsoil at
Woburn,

approach the origin and are concave upward, approximately parabolic
there. This shape should immediately signal a departure from the assump-
tions of the intrinsic hypothesis. It is a sign of smooth continuity in the
measurements of the soil, so that there are local trends,

Figure 20 shows an example in which the electrical resistivity of the soil
wits measured al 1-m intervals (Webster and Burgess, 1980), and Figure 2]
presents the semi-variograms for the four principal directions of the grid.
There are a few places where the resistivity appears fairly constant apart
from point-to-point fluctuation; e.g., around 52 m and from 94 m onwards
in the upper graph. Eisewhere, however, there are local trends extending
over 4 m Lo about 10 m. The expected value of resistivity is not constant,
even within small neighborhoods, but changes with position. I is a function
of position, thus

Blz(x)] = m(x). (57
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Figure 19. Semi-variogram of topsoil silt and subsoil sand at Woburn,

Our model of the soil for the stationary case, equation {7], must be changed
by replacing u,, the mean, by the more general m{x}, giving

z2(x) = m{x) + e(x). {581}

The quantity m{x) representing the trend is known in regionalized variable
theory as the drift. The term is well entrenched, and despite possible
confusion with material transported by ice we shall adhere to it.

A. Structural Analysis

Where the drift changes, rearranging equation {58) gives e(x) as the
deviation from the expectation

e(x) = z(x) — m(x). [59]

In these circumstances equations (6] and [8] are not equivalent. The raw
semi-variance no longer estimates the expected squared difference between

s
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Table 4. Coefficients of the Geometric Anisotropic Semi-Variogram for Sand and
Sill, Equation {41], with Commeon Anisotropy Ratio, 1.59, and Direction, 1.172
rad

Topsoil Subsoit
Sand Silt Sand Silt
Nugget variances, ¢
Topsoil sand 0 0 0 0
silt 0 0 0
Subsoil sand 00715 —0.0668
silt 0.0998
Maximum gradients, A
Topsoil sand 00128 -0.0143 0.0195 -0.0233
silt 0.0169 -0.0224 0.0275
Minimum gradients, B
Topsoil sand 0.0080 —0.0090 0.0122 —0.0146
silt 00106 -0.0141 0.0173
Subsoil sand 0.0215 —0.0263
silt 0.0338

the residuals at two places, and we need an analysis that will reveal both the
drift and the deviations from it. This is by no means straightforward.
Nevertheless, it can be important since it forms the basis of universal
kriging.

The aim of the analysis, then, is to estimate the semi-variogram of the
residuals, equation (8], The problem arises because, as equation [59]
shows, these residuals depend not only on the measured values, z(x,), but
also on the drift values, m(x), which we do not know. The problem is
compounded because the semi-variogram must be known in order to
estimate the drift. Thus, for a given set of data we could compute a semi-
variogram if we knew the drifts, which we could calculate if we knew the
semi-variogram. This apparent impasse is resolved by a structural analysis
that combines trial and error with good judgment. Its solution owes much
to Olea (1975) for an English text that leads step by step from the theory to
its practical use. Olea (1977) has also provided a computer program for the
analysis.

We proceed as follows, We first assume an expression for the drift;

m(x) = ;i-:o a, f{x)

where a,j = 0, 1, 2... k are unknown coefficients, and J; (x) are known

(60)
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Figure 20. Electrical resistivity along two transects at Bekesboumne, England
(see Webster and Burgess, 1980).

functions of x. We also assume a theorctical semi-variogram and use it to
evaluate the coefficients a, in equation (60}. This gives us value for m(x).
Using these estimates of the drift we obtain residuals betwegn them and the
data and compute the semi-variogram of the residuals. This should match
the theoretical semi-variogram.

Deriving the coefficients in equation [60] is lengthy and need not concern
us here: Olea {1975) gives the full details. In practice we can usually keep
the task fairly simple by sampling initially on a regular grid, by analyzing
one direction at a time, and by restricting the neighborhood over which we
consider the semi-variogram as in the stationary case. Given these
restraints, the expression for the drift need never be more complex than a
second-order polynominal, and the semi-variogram can be well approxi-

mated by a straight line,
v(h) = wh, {61l

usually without a nugget variance.
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Figure 21. Semi-variograms of electrical resistivity in the soil at Bekesbourne
England, for four directions. .

Equation [60] for the drift then takes one of the following forms:

m(x) = a,
m(x) = gy + ax
or m(x) = ap, + ax + a;x?, [62]

where x relates to an origin within the neighborhood. These expressions can
be combined with a linear semi-variogram that can be changed by
lengthening or shortening the neighborhood over which it applies.

The copstanl a, cannot be calculated from the semi-variogram, but in
any case is not needed since the semi-variogram of the estimated residuals
does not depend on it. Olea shows that for regular sampling the other
coefficients are given by

. = z(x,) — z(x,)
'Y en -1 631

for linear drift, and for quadratic drift:

z(x,) — z(x,
a, = “c—(;;':fi)il —{n—-1)ax [64]

_ 302 )~ z(x))
S I ) TR ) c:’ ' (65]

.
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Here x, and x, arc the extreme sampling points in the neighborhood, ¢ is the
sampling interval, and Z is the mean of the sample in the neighborhood;

i.e.,
7=

‘iﬂ 2(x). 166

-

When residuals are calculated from either linear or quadratic drift their
semi-variances are biased estimates of the semi-variances of the true
residuals (Olea, 1975). The bias can be calculated by assuming that the
semi-variogram is linear and that its slope is well estimated by the slope of
the semi-variogram of the estimated residuals at the origin—effectively the
slope over the first lag interval. .

For linear drift the slope is

n—1
w =77 Vsl), (674

where v¢ (1) is the estimated semi-variance at lag 1. The bias at lag A is then
given by

wh? i6
-1y 8l
and the semi-variances of the true residuals are
wh?
y(h) = v (h) + =iy 169]

For quadratic drift the slope of the true semi-variogram is estimated from
e (1) by

-1
w =z ye (D), 70]

and the full semi-variances are then

whilc? (2nt — 2n — 1) — 2cnh + R’
Y (h) = 'Ya'(h) + (n — 2)(!1 -1 ne? .

A choice is first made of combination of drift power and neighborhood
size, and the analysis is performed. If the experimental semi-variogram
matches the theoretical one well then the combination is judged an
appropriate model to describe the variation of the soil propesty in the
region. If, however, the match is poor then either the expression for the drift
or the size of neighborhood or both are changed and the analysis is
repeated. It is not always casy to decide whether a particular match is good,
and even if the match seems good there might be better ones. So the
analysis is repeated with successively larger neighborhoods, first for linear
drift and then for quadratic drifts, and the results compared. The best fit is

(71]

e
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chosen by inspecting graphs of the results, and there may be more than one
equally good combination.

YVc'b‘sler and Burgess (1980) performed a full structural analysis on the
resistivily data whose raw semi-variogram is shown in Figure 21. Figures
22 to 25 show examples for neighborhoods of just five and nine terms
egual to 4 and 8 lag intervals. Note, however, that an interval across the:
diagonals is \/5 times that along the rows or columns of the grid. In the
figures the circles represent the assumed linear semi-variogram and the
stars the actual semi-variograms of the residuals.

As might b_e expected the agreement between assumed and actual semi-
variograms is good for both linear and quadratic drifts when the
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Figuee 23, Semi-variograms of residuals from linear drift over nine terms.

neighborhood is restricted to five terms. When enlarged to nine terms the
agreement is still good for the quadratic drift, but somewhat less so for the
linear drift, especially in the north-south direction. Webster and Burgess
found that on increasing the drift from these the agrecment became steadily
worse. Further, because they wished to use the semi-variogram for kriging

(see later) across large gaps in their grid of data they chose the.lincar model

in preference to the quadratic because the latter was inadequately
constrained there. .

On fitting equation [43) for geometric anisotropy to the semi-variograms
from the linear drift over nine terms the following is obtained:

y(h, 8) = [3.913} cosi(® — 0.416) + 3.029° sin? (6 —~ 0.416)}" [h!,]
72
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Figure 24. Semi-variograms of residuals from quadratic drift over five terms.

Table 5. Slopes in {ohm m)> m™! of Semi-Variograms Assuming Constant Drift
and of Residuals from Linear and Quadratic Drift

Constant drift Linear drift Quadratic drift

average slope slope slope
Direction S5terms 9terms S terms 9 terms 5 terms 9 terms
NW to SE 5.82 6.88 292 3.12 2.75 273
SW 1o NE 442 4.03 s 3.69 348 349
NioS 5.59 4.60 360 1% 3.00 345
WioE 491 5.26 3.30 3.23 2.86 305

P e G AL« RO, 1N S — s —a v

oD

ST

O T

Quantitative Spatint Analysis ot Soil w Uie rield s

where & = |b| is in meters and  is in radians. Table 5 compares the
calculated slopes, w, and values given by the fitted model, and shows good
agreement between the two.

IX. Extension to the Power Spectrum

The semi-variogram and the co-variogram both express the spatial
dependence of a property in the spatial domain. In time series analysis they
express variation in the domain of time. Many temporal phenomena are
periodic, and the semi-variogram will itself then show periodicity. In these
cases it can be helpful to transform the semi-variogram, or better the co-
variogram or correlogram into the frequency domain by Fourier analy-
sis.

The transformed function is the power spectrum, or simply the spectrum.
It expresses the distribution of variance with frequency. By definition the

spectrum is given by

r() = tim E[G()] =I C(h)e *V*dh, [73]

N0
where f denotes the frequency, G is the spectral density for a finite series of

length n, and j is \/— 1. If C(h) is replaced by the autocorrelation then the
transform gives the spectral density, which is

r a
p=td) f o (R)e-hdh, (14]

o]

oo

and this, like the autocorrelation, no longer depends on the scale of
measurement.

Estimating the spectrum is a large subject in its own right and still a
matter of some controversy. Readers who wish 10 use the technique should
consult one or more of the standard works by, for example, Chatfield
(1980), Jenkins and Watts (1968), and Kendall and Stuart (1976).
Basicaily, the requised (ransform of the co-variogram is

r) = ;:- &(0) + 2;": &) cos kS |, {751
=

with the generally agreed value for 4 of 2r. The value of m is the maximum
lag over which the summation is performed. Estimates so obtained,
however, are subject to substantial error, and therefore they are usually
smoothed. There are several methods for this. They involve viewing the

e
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Figure 25. Semi-variogram of residuals from quadratic drift over nine terms.

spectrum through a window, the width of which can be chosen as desired:
The wider the window the greater is the smoothing, though the larger
becomes the risk of bias in the estimates. The ideal width is the one that
achieves the best compromise between precision and accuracy in the
estimates. The shape of the window can also be varied.

An example to illustrate this extension of spatial analysis is taken from
Webster {1977). A trunsect had been sampled at 4-m intervals across gilgai
terrain on the Bland Plain in ¢astern Australia, and at cach sampling point
several soil properties had been recorded. Among these was the electrical
conductivily at 30- to 40-cm depth, measured in a 1:5 soil:water extract.
There was a total of 355 observations over 1420 m. The measured values
were strongly skewed, and they were therefore transformed to logarithms
to stabilize the variances, and on this scale the series secemed fully second-
order stationary.
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The coerelogram was computed. It is shown as its complement, the semi:
variogram, in Figure 27. It was then transformed to its spectrum using
the Bartlett window as smoothing function (Bartlett, 1966). This function is
defined for the frequency domain &s

sin fin \*

W) =m T , {76!

where m is the maximum lag of the transformation. In computing, however,
it is usuaily applied to the correlogram in the spatial or time domain as a fag
window, w(f}, which is simply

w(f)=1-k/m fork =m "~ -
w(f) =0 for k > m. 1771
This then gives the computing formula for spectral density as
i g
R() =—| 1 +2Y pk) wik) cos LN 1781
2n k=1 L

where f'is the frequency ranging from 0 to ¥ cycle and L is the number of
steps by which fis incremented. A half cycle corresponds to two sampling
intervals and is the limit, often known as the Nyquisi [requency. If the
spectrum is needed for shorter wavelengths, then sampling must be more
intensive. In this study the frequency therefore ranged from 0 to 1/8 cycles
per meter (wavelength 8 m) and L was sel to 100.

The spectrum was computed with m sct to four different sampling
intervals, 10, 25, 40, and 60. Figure 26 shows the results. With a lag
window of 10 the spectrum declines smoothly over the frequency range. As
m is increased, however, more detail becomes apparent, and in patticular a
strong peak emerges at 0.12 cycles. This frequency, 0.12 cycles per 4 m,
corresponds to a wavelength of 33.3 m, ora little more than eight sampling
intervals. It signifies periodic fluctuation in the conductivity with this
wavelength, a result that matched the morphological evidence.

In the criginal study no attempt was made to mode! the correlogram, and
the semi-variogram was not computed. In the light of the foregoing sections
it is worth secing how the modern geostatistical approach treats such
periodicity. The conductivities in their logarithmic form are stationary, and
so the sample semi-variogram is a mirror image of the co-variogram. 1t (oo
is periodic, therefore, and some kind of angular function is needed as a
model of it. Journel and Huijbregts (1978) suggest some appropriale
models and their limiting values to ensure that the semi-variograms are
positive definite. In this instance an angular function alone is not sufficient
because the semi-variogram clearly increases from a smail value at lag 1 1o
much larger values, reminiscent of a sill about which it thereafter fluctuates.
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Figure 26. The spectrum of electrical conductivity of the soil at 30 to 40 cm on
the Bland Plain computed with Bartlett lag windows of four widths (see Webster,
1977).

This additional component seemed best modeled by an exponential term.
The best fitting model finally chosen was

2nh
y(h) = ¢ + b exp (—h/a) + u sin ,; + v cos| — forh >0
¥(0) = 0, (79]
with its six parameters estimated by
4=20.723 i = 0.00937
b = 0,220 ¥ = 0.00833
é=10.188 1= 8.89.

Figure 27 shows the sample semi-variances and the fitted function. Note
especially the estimated wavelength, /, of 8.89 sampling intervals, which is
sensibly the same as that found by spectral analysis.

In geostatistical parlance any semi-variogram whose increase is not
monalonic is said to exhibit a “hole effect.” This signifies some kind of
repetition in the regional distribution of the variable. It was evident in
Webster and Cuanalo’s (1975) original correlograms of the soil across the
Jurassic limestones, sandstones, and clays of north Oxfordshire when
extended to lags of 600 m. McBratney and Webster (19814) found similar
hole effects in some semi-variograms, again to 600 m, of soil on the drift-
covered Buchan Plateau in northeast Scotland. Where the periodicity is as
strong as it is at Caragabal on the Bland Plain, however, a more
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Figure 27. The semi-variogram of electrical conductivity of the soil at 30 to 40 cin
on the Bland Plain with a periodic model fitted.

connotative term is desirable, and I suggest that such semi-variograms be
described as periodic.

X. Optimal Estimation—Kriging

One of the prime reasons for obtaining a semi-variogram is to use it for
estimation, and no review of modern spatial analysis would be complete
without some account of how this is done. In soil survey we can recognize
two main kinds of estimate. In the one we may wish to estimate the average
value of a soil property within some defined region. The other is
interpolation: We may wish to predict the values of a property at places
that we have not visited. If such places are few we could go there and
measure them, of course. In principle, however, they are infinite, and we
may wish to predict the values at any or all of them and to make an
isarithmic (“contour™) map of the propesty.

If the region of interest is sufficiently uniform then the mean of an
unbiased sampie estimates both the population mean and the value at any
one place. Usually it is not, and in these circumstances surveyors classify
the soil so that they can use class means as predictors for individual sites.

]
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Their model is that the value of a property z at a place i in class f is the sum
of three terms:

zy=pta e, (80]

where i is the general mean of the property in the whole region, a, is the
difference between the general mean and the mean of class /, and g is a
random component with zero mean and variance o2, usually assumed to be
normally distributed. This is the model underlying the sampling studies by
Thornburn and co-workers in lilinois (Thornburn and Larsen, 1959; Morse
and Thornburn, 1961) and the research on spatial prediction by Beckett’s
group at Oxford (e.g., Webster and Beckett, 1968, Beckett and Burrough,
1971).

Following classical procedure class means are estimated by sampling
each class and computing

I
z,=ul=7“-z; z,. (81}

Associated with i, is its standard emor or the square, the estimation
variance. The latter is defined as

0‘2*:1 = E[(ﬂj - ﬂ;)zl = 03../", [82]
and estimated by
]
. ] : -
G%} = 325_,. = _"_—Z (Zu - z})z. [83]

If the soil has been classified at the same categoric level throughout the
region, then the variances within all the classes should be the same, Ui, =
al.
The pooled within-class variance should therefore be well estimated from a
large sample.

The estimation variance for predicting a point, assuming the class is
known, is the within-class variance plus the estimation variance for the
mean of that class, thus:

o}, = o, + ol/n, [84]

We note that in classical procedure the errors associated with prediction or
interpolation ar¢ determined very largely by the size of the within-class
variance: o}, cannot be less than o2, no matter how intensive the sampling.
The quality of the classification is paramount, and this is the statistical
reason for devoling so much effost to creating a good classification in
traditional practice.

The dependence on classification for improving prediction and the
inability to take into account cither the intensity of sampling or its
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configuration are serious weaknesses of traditional practice. Regionalized
variable theory provides an alternative, and we devote the remainder of this
review 1o it. It is a large subject, and we can examine only the broad
principles and some of its simpler forms.

A. Kriging Defined

The method of estimation embodied in regionalized variable theory is
known in earth sciences as kriging, after D.G. Krige, who devised it
empirically for use in the South African goldfields (see Krige, 1966). 1t is
essentially a means of weighted local averaging in which the weights are
chosen so as to give unbiased estimates while at the same time minimizing
the estimation variance. Kriging is in this sense optimal.

Consider a typical situation in which we have measured a property at a
number of places, x;, within a region to give values z(x),i=1,2...n From
these we wish to estimate the value of the property at some place B. The
place might be a “point,” that is, an area of the same size and shape as those
on which the measurements were made, Alternatively it might be a larger
area or biock. The procedures for estimation in the two instances are
known as punciual kriging and block kriging, respectively. Punctual
kriging can be regarded as a special case of block kriging, and we shall treat
it so here. In either event our estimate at B is the lincar sum

F(B) = hz(x) + Az(x;) + ... t A,z(x,), |85]

where the A, are the weights associated with the sampling points.
We want our estimate to be unbiased; ie.,

E{(z(B) ~ £(B)] = 0, 186]
and this is assured if the weights sum to 1:
Y a=1. i87]
1=

The estimation variance at B is the expected square difference between our
estimate and the true value, and is

oi(B) = E{l2(B) — £(B)*) = 2 Z A, 7 (x,, B)

-3 ,i. AM, 1(x, %) — (B, B). (88]
Here y(x,, x) is the semi-variance of the property between x, and x,, laking
account of both the distance, x, — x,, separating them and the angle, ¥(x,, B)
is the average semi-variance between x, and all points within the block, and
¥(B, B) is the average semi-variance within the block; i.c., the within-block
variance defined as in equation [48] earlier. In punctual kriging this last
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term is zero—there is no variance at a point—and the quantity ¥(x,, B) is
Just the semi-variance between x, and the point to be estimated.

The eslimation variance is minimized, subject to the constraint that A, =
1, by finding the partial derivatives with respect to each A, and introduces a
Lagrange multiplier, y. The minimum is obtained when

[Zl Ay(x,x) +y=F(x,B) forj=1,2,...n. [89)

There are thus n equations in # unknowns plus a set of unbias conditions
from which to determine y. These are best represented in matrix form by

A[l]=b, (90]
v

Y(xp, x0) ¥(xy, x5} . .. y(x,, x;) |
A= v x) ¥ X)L v, x) 1]

where

Y(xn: xl) 7(xu: xi) O Y(x.‘: Xn) i

i 1 - l 0
1'l ‘Y(xh B)
A; ¥(x,, B)
$ =  landb = : . [91]
A, A(x,, B)
"} 1

Having solved equation [90] to find the weights, the estimation variance is

obtained from
2 T l ry
el=0b vl ¥(B, B). (92]

Kriging thus provides not only uabiased estimates of minimum variance,
but also a measure of the estimation variance, In this respect it is superior to
other methods of interpolation.

B. Example

Applying these equations to the stone content on Plas Gogerddan will
reveal several interesting features of kriging, The semi-variances are taken
from equation [44].

Quantitative Spatiul Analysis of Soil in the Ficld 57

0.032 0.00¢6 ~0.001

-0.002 0.006 0038 0079

¢
Figure 28. Weights for kriging stone content at a point, P, at Plas Gogerddan.

Suppose we wish to estimate the stone content at a point P. Figure 28
shows P lying one-third of a sampling interval from the bottom and right-
hand side of a grid cell. The sampling points are at the nodes of the grid, and
the nearest 16 are shown. The values at the nodes are the weights. The
nearest is much the largest, and the ones in the outer shell are much smaller
in absolute value. Notice especially that those in the bottom left and top
right corners are so small as to be negligible. The figure also shows the
effect of anisotropy. Variation is greatest approximately in the direction of
these points and least in the perpendicular direction. As a result points lying
in the latter direction carry more weight than those in the former for the
same distance.

The particular weights depend of course on the semi-variogram,
especially the size of the nugget variance, and on the configuration of
sampling points and place to be predicted. Nevertheless, the fact that near
data carry much weight and far data none of consequence is quite general
and very important. It means that kriging is essentially local, and conforms
10 our intuitive notion of a sensible estimation procedure. It also means that
for kriging the semi-variogram needs (o be well estimated oaly to the lag of

the furthest point to carry effective weight. In many instances the semi- .

variogram will be linear to this lag, and so fitting a model is casy (sc¢ Figure
13). Of course, there must be ample data within the range of the semi-

T
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variogram if it is transitive, since any beyond it are spatially independent of
the point being estimated. Local estimation, or interpolation, is not worth
attempting with spatially independent data.

The local nature of kriging is computationally important, for it means
that we rarely need more than 16 observations from which to krige one
estimate, and matrix A need not be larger than 17 X 17, This does not
matter when kriging just one point or block, but to make a map might
require thousands of matrix inversions if the data are irregularly scattered.
The size of the matrix is then very serious.

Applying the procedure to the whole of the field at Plas Gogerddan gives
the results shown in Figures 29 to 33, Figure 29 is an isarithmic map drawn
by interpolating a 3 X 3 square grid of points within each original grid cell
and then threading contour lines through the grid. Notice in particular the
discontinuity around many of the original grid nodes. These are due 1o the
nugget effect and the minimum variance criterion. The latter ensures that
the interpolated value at a sampling point is the observed value there, The
presence of a nugget variance means that the semi-variogram is effectivety
composed of two distinct functions, one, v,(h, 8) = w(6) A, describing the
spatial dependence, and the other the purely random function, y, = c,, that
represents the discontinuity. Its effect appears even more dramatically in
Figure 30, a block diagram of the interpolated surface.

A user of a map will often want to know not about points but about small
blocks, of, say, 1 to 10 ha. In these circumstances a block kriged map
should be made. Figure 31 shows such a map made from the same data.
Each block was 30.5 X 30.5 m, and again there were nine estimates for
each original grid cell on a 5.1-m mesh. The result is smoother than the
punctually kriged map. Note, however, that the aim is not primarily
cosmetic: it is to provide the best estimates for 30.5 X 30.5-m blocks.

As mentioned above, kriging provides estimates of the estimation
variances. These themselves can be displayed in the form of a reliability
map. Where both sampling and interpolation are on regular grids, as here,
the estimation variances have a regular pattern that is repeated. Figure 32
gives the estimation variances for grid celis in the central part of the map,
(a) for punctual kriging and (b) for block kriging. A block diagram of the
block kriging variance for the whole field, Figure 33, is interesting in
emphasizing the way in which the error increases sharply near the edge of
the field, beyond which there are no data. The small bump near the bottom
is caused by a missing value,

The above is just one example to illustrate the power and reliability of
kriging for local estimation and mapping. There are now a number of
examples in the literature of soil science (Burgess and Webster, 1980a,
1980b; McBratney er al., 1982; Yost et al, 1982; Vieira er al.,, 1981;
McBratney and Webster, 1983).

Before leaving the topic we should be clear that a kriged map of a soil
property can be a misleading representation of reality in one respect. Even a
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Figure 29, lsarithmic map of stone content made by punctual kriging at Plas
Gogerddan.

0

Figure 30. Block diagram of stone content estimated by punctual kriging.
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Figure 32. Variances for punctual and biock kriging of stone content. Valucs are

T * 20 . =} ) 0 | in (pereent)?. For punctual kriging the block discs are sampling points and open
circies the interpolated oncs. In the lower figure they represent the ceniers of the
Figure 31. lsarithmic map of stone content made by block kriging. ' estimated blocks.
punctually kriged map shows smooth variation between sampling points. largely to Burgess er al. (1981) and McBratney ef al. (1981), and this
Yet if there is a nugget variance, then we know that the soil does not vary . account is taken largely from their work. )
smoothly at our working scale. If we wish to represent the soil with allits ! To understand the basis of this application consider equations [88] and
variation from sample data then we should simulate it in a way that retains ¢+ [92] for the kriging variance. We can see from these that the errors of
all the characteristics of the semi-variogram, Kriging, by averaging, does estimation depend on the semi-variogram and through it on the configura-
not do this. Readers who wish to follow the matter further should consult | tion of sampling points in relation to the block to be estimated. They do not
Journel and Huijbregts (1978). t  depend on the observed values themselves. So, if the semi-variogram is
known then the kriging variances can be estimated before performing the
sampling.

XI. Designing Sampling Schemes The kriging variance is not constant from place to place as Figure 32

. . . i shows. Rather, it tends to increase the further the estimated point or block
A second way in which the results of spatial analysis can be used is in is from the data, at least where the semi-variogram is a monotonic
designing optimal-sampling schemes for surveys of soil properties. This  jncreasing function, which is usually so for soil. The kriging variance can be
potential application of regionalized variables theory 1o soil survey is due diminished on average by sampling more intensively, For any given

s
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Figuare 33, Diagram of the block kriging variance,
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Figure 34. Graphs of maximum variance for punctual kriging of thickness of
cover loam against sample spacing at Hole Farm, Norfolk, on square and triangular
grids.
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intensity, however, the maximum kriging variance will stifl occur where the
data are furthest from the estimated point. One criterion of a good sampling
scheme is that it minimizes the maximum kriging variance, say, szm,,- If
variation is isotropic then it can be achieved by sampling on a regular
equilateral triangular grid. For unit sampling density, the side of the triangle
is 1.0746 and the maximum distance, d,,,,, between a sampling point and a
point to be estimated, at the center of a triangle, is 0.6304. Any other
sampling scheme, especially random and other irregular schemes, will have
some larger values of d,,, and therefore Iarger maximum kriging variances.
Nevertheless, a square gnd wnth o l/\/2 = (.7071 for unit sampling
density will generally give o’ ke, OOy a little Iarger than than that for the
triangular scheme, and for reasons of convenietice in indexing computer
management, site Jocation and logistics will usually be preferred.

In planning a survey this information may be used in one of two ways. If
the budget for the survey is fixed then so is the sampling intensity, The
maximum estimation variance is determined by solving equation [92]. For
punctual estimates it is solved just once for the centers of the gnid cells. For
block estimates, however, o%_,, can occur where the block is centered over
a grid node: It depends on the size of the blocks in relation to the grid mesh.
The equation must therefore be solved twice to find the maximum,

If, however, funding depends on the precision required, then a maximum
tolerable error may be specified for the survey. In such a situation the ain is
to determine the sampling intensily that provides just the required precision.
The aim is achieved by solving equation |92] for a range of spacings. A
graph of ¢”, _ against sample spacing is plotted and the required spacing
read from the graph The survey can then be performed most economicaily
by sampling at this intensity.

An example from Burgess et af. (1981) illustrates the procedure where
variation is isotropic. It derives from a study at Hole Farm in eastern
England where crop performance had been found to depend on the
thickness of cover loam. In one field of {8 ha the thickness had been
measured by boring on a 20 m square grid to give some 450 observalions.
Semi-variances were calculated to 300 m and an isotropic spherical model,
equation {25], with the following coefficients fitted:

nugget variance ¢ = 187.0 cm?
sill-nugget ¢ = 603.8 cm?
rangea = 101.2m.

Figure 34 shows the graph of maximum kriging variance for punctual
estimates against sample spacing for square grids. For comparison the
graph for the equilateral mangular conﬁguratmn is also plotted, and shows
that there could be a small gain in efficiency usmg it. Note that the kriging
variance cannot be less than the nuggel variance, however dense the
sampling, and that it reaches a maximum somewhat greater than the sill
value. This maximum is in fact the sill value plus the Lagrange multiplier, v,
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of equation [90]. The spacing at which it is reached is /2 times the range of
the semi-variogram for the square grid. At this spacing the interpolated
point at the center of a grid cell becomes independent of the data. The semi-
variances in equation [90] equal the sill and all weights are equal to 1/a.
The Lagrange multiplier takes the value 6*/n and represents the additional
uncertainty in estimating the value at a place from local data rather than
the whole population, and in these circumstances cquation [92] is
equivalent to the classical equation [84]).

Examples of graphs for block kriging from the same semi-variogram arc
shown in Figure 35 for twa sizes of block. As above, two graphs can be
drawn, one for blocks whose centers lie in the centers of the grid cells and
the other for blocks centered over grid nodes. At most spacings the kriging
variances are largér for the former, but there is 8 small range of spacings
where they are the smaller of the two, and this is evident for the 100-m
square blocks.

A reasonable maximum for the kriging variance is perhaps 100 cm?,
equivalent to a standard error of 10 cm. For 40 X 40-m blocks this gives a
grid spacing of approximately 40 m and about 75 m for 100 X i00-m
squares.
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Figure 38, Gruphs of maximum variance for kriging cover loam thickness over
40 X 40-m and 100 X 100-m blocks at Hole Farm. The solid lines are for square
grids with the blocks centered over the grid nodes, the broken lines are for blocks
centered in the centers of the grid squares.
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Figure 36, The relation between punctual kriging variance of stone content a(

Plas Gogerddan and sample spacing in the directions of maximum and miniinum
variation,

A. Effect of Anisotropy

Equilateral sampling grids are best where variation is isotropic, and there
are many regions in which this is so. As above, however, the soil can vary
anisotropically, and in these situations some modification is needed. If the
anisotropy is geometric the modification is simple.

The problem of determining the optimal intensity is treated initially as
though variation were isotropic with the semi-variogram for the direction,
$, in which the gradient or distance parameter is greatest. In the lincar case
this gives

y(h) = co + A|b], 193l

from equation [41]. The graph of o’kw against intensity is drawn and the
oplimal intensity read from it. This gives the spacing, m, in that direction.
This can be repeated for direction ¢ + /2. Figure 36 shows such graphs
for punctual estimation for the stone content in Cae Ruel whose semi-
variogram is given earlier. However, the second graph is not needed since
the spacing for this direction is casily compuled by multiplying m by the
anisotropy ratio A/B.
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66 R. Webster

Thus, the optimal strategy is to sample along parallel transects aligned in
the direction of maximum variation. The spacing on the transects is m and
that between them mA/B. It is the familiar pattern of soil survey.

If costs are fixed then the best strategy is still as above. The sampling
intervals are now such that the product m X mA/B equals the reciprocal of
the sampling intensity.
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