INTERNATIONAL ATOMIC ENERGY AGENCY
UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION m

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

&

LC.TF., P.O. BOX 586, 34100 TRIESTE, FTALY, CApLE: CENTRATOM TRIESTE

SMR.708 - 27

COLLEGE ON SOIL PHYSICS

(6 - 24 September 1993)

“Soil Hydrology”

M. Kutilek
Czech Technical University
Hatedra Hydromelioraci
Fakulta Stavebni
Thakurova 7
166 29 Prague
Czech Republic

These are preliminary lecture notes, intended only for distribution to
participants.

hIREK KUTI - E K

I_EéTuﬁE NOTES
(COLLEGE ON S/l PHYS/OS)
ICcTFP

EX: Soll HYDROLOGY "
K RY
M. feuTiLEK R DON R.NIELSEN

(To 3& PURLISHED (N 1994
-3¢ GA'TENA)



1 SOILS IN HYDROLOGY

Soil is a very thin layer of the earth when its thickness is compared to the
dimensions of the atmosphere or geosphere. Even the average depth of water in
the oceans is orders of magnitude greater than that of soil. In spite of its slim
dimension, soil is indispensable for life on continents. Without soil, our planet
would not be green and all life would be restricted to the oceans.

Hydrologically, soil is an important reservoir of fresh water. Owing to the
action of this reservoir, non conlinuous rainfall or snow are transformed into a
continuous flow of water to the roots of plants. Together with ground waters,
soil transforms discontinuous precipitation inte continuous discharges
recognized as streams and rivers. Without soil, the face of our planet would
have continents wrinkled by dry wadis conducting water only during and
immediately after each rainfall event. The retention capacity of soil able to
sequester rain water is approximately the same as the capacity of all lakes.
Moreover, the amount of water in soil equals one-third of all fresh water in
lakes {including artificial reservoirs) and is one order of magnitude larger than
that in riverbeds. On the other hand, the volume of ground waters is
substantially greater than that in soil. Soil water together with ground water
exceeds by more than two orders of magnitude all surface fresh water (Dyck and
Peschke, 1983). Transport of water soluble materials occurring naturally or
anthropogenically is linked to hydrologic processes. For example, without water
as a transporting agent, anthropogenically derived chemical pollutants would
remain at the location of their deposition provided they were not carried into
the atmosphere by diffusion or the wind. The distance and rate of their motion
on and below the soil surface depends upon hydrologic events. Because soil is a
chemically and biologically active medium, pollutants are partly retained,
released and transformed with the boundary of the pollution transposed in both
time and space. Similarly, naturally occurring constituents within soil are
mobilized and transported as a result of precipitation and irrigation. The quality
of continental water resources in space and time is therefore greatly influenced
by séil hydrology.

1.1 SOILS
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INCEPTISOLS (-ept) Soils with a diagnostic cambic horizon having no
aridic hydric regime. They correspond to Cambisols (FAQ) with some Great
Groups equivalent to some Soil Units of Luvisols (FAQ), e. g. Ustochrepts
being equivalent to Calcic Luvisols.

MOLLISOLS (-oll) Soils with a deep mollic humus horizon. Borolls with a
frigid témperature regime and Ustolls with an ustic (nearly dry) moisture
regime correspond to Chernozems (FAQ) while Udolls with a udic
(humid) moisture regime are equivalent to Phaeozems (FAO). Argiudolls

and Argiborolls with an argillic (clay) horizon correspond to Greyzems
(FAQ).

OXISOLS (-0x) Soils with an oxic horizon characterized by kaolinites in the
clay fraction and few weatherable minerals. They are intensively leached.
Their Suborders and Great Groups are equivalent to Ferralsols, Planosols
and Gleysols of FAO.

SPODOSOLS (-0ds) Soils with a diagnostic spedic horizon corresponding to
Podzols (FAO).

ULTISOLS (-ulits) Soils with a diagnostic argillic (illuvial, rich in clay)
horizon having a small base saturation. Their Great Groups correspond to
Acrisols and Nitisols (FAQ).

VERTISOLS (-ert) Soils equivalent to Vertisols of FAO.

1.1.3 Soil Mapping

The basic element of a soil and that of a soil map is the pédon. It is a three-
dimensional body having a geographical surface area of 1 to 10 m2. We usually
describe its morphology on a two dimensional vertical cross section of a soil
profile, i. e. on the wall of an excavated pit. The positions of individual pedons
are usually identified on maps of scale 1:2000 or 1:5000 with abbreviations of
important properties. With the pedon dassified according to the lowest level of
the taxonomic system, we obtain the abstract form - a pedotop. On
geographically large scale maps (1:2000 is larger than 1:20000) we approximate
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the boundary of the domain of each pedotop either by simple interpolation or
with the help of geostatistics. The term polypedon is used to include the
variation of pedons within one basic pedotop. The domain of one pedotop
typically contains inclusions of polypedons of a neighboring pedotop. In such
cases a pedotop is polymorphic. A monomorphic pedotop has no inclusions of
neighboring pedotops.

The mosaic structure of pedotops are defined as pedochors or pedocomplexes
which are characterized by an areal distribution of individual pedons including
their extremes and frequency. In a given pedochor, the occurrence of
polypedons frequently depends upon topography, e. g. hydromorphic soils occur
in depressions of alluvia while around the depressions at slightly higher
elevations of the alluvium semihydromorphic soils occur. And on the next
higher terrace, lithogen soils can occur without features of hydromorphism.
These gradual transitions within pedochors are called catena. Pedochors are
used with scales up to 1:50000. For smaller scales, soil taxons of medium level
are used and frequently grouped into pedoregions which contain taxons having
similar features.

For studies of soil hydrology, the largest scales of polypedons and those of
domains including the lowest level of taxons are most appropriate whenever
the heterogeneity of the landscape is described deterministically, In such cases
the scale of pedochors can be used for linking soil hydrology to mapping units
with certain assumptions and approximations. However, a detailed preliminary
study of the mutual relationships between mapping units and soil hydraulic
properties is indispensable and the knowledge gained is not simply transferable
to other pedochors. Efforts to apply maps of smaller scale {pedoregions) to soil
hydrolegical studies are futile.

1.2 CONCEPTS OF SOIL HYDROLOGY

All studies in soil hydrology eventually have a unique aim - a better
understanding and description of hydrological processes. The individual
elementary processes of infiltration, redistribution, drainage, evaporation and
evapotranspiration are first analyzed and subsequently considered in
combination during a particular sequence of events or season. Transport of
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solutes is also considered as an integral part of those processes. All such
processes occur in soils and under actual meteorological situations. A proper
physical understanding of them requires several approximative levels of
studies.

As a first approximation we model the soil as a simple, homogeneous porous
body temporarily forgetting the existence of horizons within its profile and the
horizontal variation of its properties. In some instances a soil profile consisting
of two horizons is modeled simply by considering a layer of a homogeneous soil
overlain by a second having different hydraulic properties. For studying the
behavior of soil water including flow and transport of matter, we use
phenomenologir:'al {or macroscopic) descriptions. We describe what we can
"see

u

with our apparatuses and we denote the scale where the
phenomenological approach is applied as Darcian. Only when the physical
interpretation of some phenomena requires a detailed discussion at the
microscopic level will we temporarily abandon laws and equations based on a
macroscopic scale of observation.

The elementary hydrologic processes for simply modeled soils and for trivial
boundary conditions are described by analytical solutions of the basic
macroscopic equations. The advantage of analytical solutions is a full
understanding of the physical processes. Parallel to such mathematical analyses
are carefully conducted experiments performed on repacked socil columns or on
model porous materials under precise conditions in the laberatory.

The next level of approximation is the quantification of processes for real
soils, i. e. field soils. Although the scale remains Darcian, we speak of it as the
pedon scale. At this level the boundary conditions are usually less trivial than
those used in the first level, and if they are sufficiently complex, numerical
methods are applied to achieve particular solutions. These results, similar to an
accurately performed field experiment, are regularly verified by Field
experimentation. The advantage of numerical simulation is the rapid
production of a large number of "computer experiments” which partially
substitute for tedious, time-consuming field experiments. Alternatively,
numerical procedures allow us to study specific features of a process which are
not accessible or readily observed by existing experimental techniques. We



e

properly interpret the data physically by applying the knowledge we gained at
the first approximation level.

From these pedon studies (often called "point scale” studies) we try to extend
the results to the larger scale of a field or catchment. This scale, larger than
Darcian, is denoted as megascale or catchment scale. At this scale, methods used
at smalier scales need to be modified with stochastic characteristics entering our
equations and procedures. The stochastic structure of these hydrauiic properties
of Held soils is studied by specific procedures. In some instances we obtain a set
of deterministic pedon-scale observations spatially distributed across the field or
catchment to define a newly formed stochastic or regionalized variable. In other
instances, entirely new approaches are developed applicable only to the

megascale.

Analogous to these briefly introduced concepts of soil hydrology, we proceed
further into the content of the book.

5 “ 7 Fre O

5 HYDRODYNAMICS OF SOIL WATER

We introduced the concept of soil water potential in Chapter 4 where the
system was studied at the equilibrium state. It was characterized by a driving
force equal to zero and the value of the total potential being equal at all
locations in the soil. Under such conditions, the water flux density is zero and
both the soil water content # and the soil water pressure head h are invariant
with time. Here we derive equations describing the water flux when the soil
system, not in equilibrium, manifests a total potential & not being constant in

space.
5.1 BASIC CONCEPTS

The flow of water in soil can be described microscopically and macroscopically.
On the microscopic scale, the flow in each individual pore is considered and for
each defined continuous pore, the Navier-Stokes equations apply. For their
solution we lack detailed knowledge of the geometrical characteristics of
individual pores to obtain a solution for the REV. Even with this knowledge, a
tremendous effort would be required necessitating voluminous calculations for
even a relatively small soil domain. Nevertheless, this type of procedure is
often applied in some theoretical investigations where the basic laws of fluid
mechanics are invoked. In such studies the real porous system is usually
defined by a model assuming great simplification of reality.

The macroscopic or phenomenological approach of water transport relates to
the entire cross-section of the soil with the condition of an REV being satisfied.
The rate of water transport through the REA is the flux. In order to emphasize
the fact that water does not flow through the entire macroscopic areal cross
section, the term flux density (or flux ratio, macroscopic flow rate et al.) is used
to describe the flow realized through only that portion of the area not occupied
by the solid phase and, by the air phase eventually when we deal later on with
unsaturated soil. Moreover, we use the term flux density understanding that we
actually mean the volumetric water flux density having the dimensions of
velocity [LT].

Inasmuch as the principal equation derived for this macroscopic approach is
Darcy's equation, the scale for which this approach is valid is ofter denoted as
the Darcian scale. For soils, the area of this scale is usually in the range of cm? to
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m2. Beyond this scale in either direction, larger or smaller, Darcian scale
equations may not be realistic. Unless we state otherwise, equations will be
derived and soived mainly for the Darcian scale related to a particular REV.

On the Darcian scale, water flow in soils is comparable to other transport
processes such as heat flow, molecular diffusion etc. when the appropriate
driving force is defined. For example, when the distant ends of a metal rod are
kept at different temperatures, heat flow exists. Similarly, molecular diffusion
depends upon a difference of concentration in two mutually interconnected
pools. Soil water flow is conditioned by the existence of a driving Yorce
stemming from a difference of total potentials between two points in the soil.
Laymen mistakenly suppose that the driving force of water flow in an
unsaturated soil is related to differences in soil water content. This supposition,
valid only for a few specified conditions, generally leads to erroneous
conclusions.

Here, we first formulate basic flow equations for the simplest case of flow in a
saturated, inert rigid soil. Afterwards, we deal with water flow in a soil not fuily
saturated with water. This latter type of flow is commonly called unsaturated
flow while the former is called saturated flow. To be more precise, we should
distinguish the former from the latter flows as those occurring at positive and
negative soil water pressures, respectively. If the flow of both air and water in
the soil system is simuitaneously considered, we speak of two phase flow.
Initially, we assume that the concentration of the soil solution does not affect
the soil water flow. Subsequently, our discussion is extended to swelling and
shrinking soils. Finally, we examine linked or coupled flows together with
some specific phenomena of transport at temperatures below 0°C.

All equations that we derive are supposed to be applicable to not only
analytical and approximate mathematical solutions of the compoenents of the
soil hydrological system but to all deterministic models of soil hydrology.

52 SATURATED FLOW

We assume that water is flowing in all pores of the soil under a positive
pressure head h. In field situations the soil rarely reaches compiete water
saturation. Usually it is quasi-saturated with the soil water content § =mpP
where m has values of 0.85 t0 0.95 at h 2 0, and P is the porosity. Entrapped air
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occupies the volume P(1 - m). And for this discussion of saturated flow, the
impact of entrapped air is not considered.

5.2.1 Darcy's Equation

For the derivation of Darcy's equation we shall discuss a simple experiment
demonstrated in Fig. 5.1. The soil is placed in a horizontal cylinder connected on
both sides with vessels containing water maintained at a constant leve! in each
vessel by an overflow valve. If the water level on the left side is higher than
that on the right side, water flows to the right. The rate of discharge Q = V/tis
simply measured by the volumetric overflow V in time ¢. The flux density ¢ [LT"
1] (macroscopic flow rate) is

§=— (5.1)

where A is the cross-sectional area of the soil column perpendicular to the
direction of flow. Sometimes, the term g is also called the Darcian flow rate. The
meant water flow rate (velocity) in the soil pores v, is

v,=q/P 5.2) @

In 1856, Darcy experimentally demonstrated for columns of sand a linear
relationship between the flux density 4 and the hydraulic gradient f,. In our
experiment shown at the bottom of Fig. 5.1

4k’

Ah
q=KsT=KsT=KSI~ ‘ (53)

where 4h/L or ah'/L’ is the hydraulic gradient Ij, 4k the difference between
water levels on both ends of the soil column of length L and 4k’ the difference
between water levels in the piezometers separated by the distance L’ in the
direction of flow. Both Ah and 4k’ are considered the hydraulic head drop along
the soil. Inasmuch as 4k/L is dimensionless, Ks has the dimension of g [LT1].
When we read piezometer levels hy and h; at elevations z; and z3, respectively,
we have

q=-K (—L——L” 'H] (5.4)
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where the total potential head H (= h + 2) is related to a unit weight of water. In
a more general way (5.4} becomes

q=- K gradH (55)
Equation (5.5') states that the flux density is proportional to the driving force of
the water flow which is the gradient of the potential. Inasmuch as Iss isa
constant for a given soil, we write ¢* = KsH, and hence,

g = grade’ (5.6)

where ¢*is KsH. The negative sign in the above equations means that water
flows in the direction of decreasing potential or against the positive direction of
z in Fig. 5.1. The value of K5 depends upon the nature of the soil and is
numerically equal to the flow rate when the hydraulic gradient is unity. Values
of Ks commonly range from less than 0.1 cm-day! (10® m-s!) to more than 102
em-day™ (10% m-s1),

In layered soils we have to specify the direction of the flow relative to that of
the layering. When the flow is parallel to the layers, the total flux density is the
sum of the flux densities for each of the individual layers, see Fig. 5.2. Hence,

g=9 +t4q; + 4 5.7)

For a column of width 4 = 1, length L and thickness b composed of three layers
each of thickness by, the total flux density for a hydraulic head drop 4h is

ah
g = (Kb +Kb+Kb )T (5.8)

Here, the apparent hydraulic conductivity K, is the arithmetic mean of the
individual values for each layer. ( §. LD

~

When water flows perpendicular to the layering, we introduce, analogous to an
electrical resistance, the hydraulic resistance of each layer R;= L,/ Ksg; having
units of time. In Fig. 5.2 the flow combined from the three layers is

In
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- dar 5.9
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With the total resistance of the system R = IR; we obtain the harmonic mean or
the apparent hydraulic conductivity K = L/R.
When thg' flow is at an angle < 90° to the layers, the difference of K5 in each
of the layers causes a change of the direction of streamlines (Zaslavsky and
Sinai, 1981, and Miyazaki, 1990), se Fig. 5.3.

5.2.2 Saturated Hydraulic Conductivity

Inasmuch as the soil water potential H can be expressed in three modes, the
dimension of the hydraulic conductivity is not necessarily [LT-!]. From (5.5) we
obtain for the three dimensions of H three different dimensions of K.
Although expressing Ks in units of velocity is usually more convenient, any
one of the following sets of units is occasionally preferred.

H gad H Ks.

Jkg! LTy Jkglm?! LT s (T
Pa IMLIT?  Pam® [MLITY  mslpwlg! (MILIT]
m [L]  dimensionless ms! (LT

The empirical, intuitive derivation of Darcy's equation (5.5) can be
theoretically justified from Navier-Stokes equations applied to an REV of a
model of a porous medium and scaled with a characteristic length. In order to
obtain (5.5), inertial effects were neglected and the density and viscosity of water
were assumed invariant (Bear, 1972; Whitaker, 1986). Scheidegger (1957) showed
that Ks should be considered a scalar quantity for isotropic soils, and a tensor of
rank 2 for anisotropic soils with the vaiue of Ks dependent upon the direction
of flow. When the tensor Ksis assumed to be symmetric, its principal axes,
defined by six values, are identical to those of an ellipsoid of conductivity. If the
gradient of the potential is not in the direction of a principal axis, the direction -
of flow is different from that of the gradient. ;.d

From a theoretical treatment we can obtain a physical interpretation of the

hydraulic conductivity. We develop here a modified and simplified model of
Kozeny (cf. Scheidegger, 1957) consisting of a bundle of parallel capillary tubes of

H
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uniform radius. We assume that the soil and the model are identical with
respect to porosity P, specific surface A, [L'1] and water flux density g [LT!], see
Fig. 5.4. The mean flow rate v, in a capillary of radius r is described by Hagen-
Poiseuille’'s equation

(5.10}
where g is the acceleration of gravity [LT2], pw the density of water [ML3], u the
dynamic viscosity [ML'T-] and I, the hydraulic gradient [dimensioniess]. With
n being the number of capillaries of unit length x, the porosity of the model is

P=nxrix/V, (5.11)
where V), is the unit volume and the specific surface is

A, =2nxrx/V, (5.12)

From (5.11) and (5.12) we obtain

r= 2P 5.1
i (5.13)
And, from (5.2) and (5.10) we obtain
- lowgP?
q 2 4 Al N {5.14}

Because soil pores are irregularly shaped and mutually interconnected, a shape
factor ¢ replaces 1/2 in (5.14). Letting

cp?
K, = g (5.15)
we obtain
g = K,,p—:"l& I, {5.16)

ST¥

which is identical to (5.3). Because the term K, relates to the flow of any fluid
through a soil, it is called the permeability [L?]. The unusual dimension of K,
represents the cross-sectional area of an equivalent pore. Although now almost
obsolete, the historical unit of 1 Darcy = 1 um? was used for describing
permeability:

Inasmuch as flow channels in the soil are curved compared with those of a

capillary model, a tortuosity factor t introduced in (5.15) yieids the Kozeny
equation

cP?
KF=rA2

(5.17}

The tortuosity 7 is the ratio between the real flow path length L, and the straight
distance L between the two points of the soil. Because L, >L, > 1. In a
monodispersed sand manifesting a value of t =2, the flow path forms

approximately a sinusoidal curve (Corey, 1977).

Equations identical or of similar type to (5.17) have been derived by many
authors. If a model of parallel plates is used instead of capillary tubes and the
slits are oriented in the direction of the laminar flow, we obtain the mean flow
rate

_Pwgd’
=

%

I, (5.18)

where 2d is the distance between the plates. When B is the width of the plates, P
= 2ndBx/V, and A, = 2nx(2d + B)/ V... Taking x =1 and B = 1, we obtain d = P(A,,
- 2P) and hence,

cP?
Ks——t 5.19)
" z{a,-2P) (

A compromise between (5.17) and (5.19) is the Kozeny-Carman equation

PJ
K B 5.20
" 5AI{1-P) 620
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derived in detail by Scheidegger (1957}.

From (5.3) and (5.16) the relationship between Ks and any formulation of K,
is

Ks =K, (5.21)

Kozeny's equation shows that K is sensitive to porosity. However, in his
model the pore radii are considered uniform while those in real soils have
broad distributions. For real soils, we subdivide the pores according to their radii
into j categories each having an equivalent radius ;. For 7, > rj,; the flux in each
category gi(r ',n;) where n; is the percentage of the j-th category in the whole
soil, g; >> gy, .Total flux g = T g; as shown for parailel layering. Thus, let us
assume for j = 1, the percentage of the category of largest pores is eliminated by
compaction. Although the porosity may be only marginally reduced, the value
of Ks may be reduced by orders of magnitude. It is logical, therefore, that
aggregation of a soil may increase Ks by orders of magnitude, yet the porosity
may remain nearly the same. And, vice versa, soil dispersion or disaggregation
substantially decreases Ks. For example, in a loess soil, the saturated hydraulic
conductivity of its surface after a heavy rain decreases 3 to 4 orders of magnitude
compared with its original value owing mainly to two processes - disaggregation
and the blockage of pores by the released clay particles (Mcintyre, 1958).
Compaction of soil in the A-horizon and in the bottom of the plowed sub
horizon causes a much greater decrease of Ks than that predicted from- a
decrease of porosity in the simple Kozeny equation because compaction reduces

primarily the content of large soil pores associated with values of pressure head
k=0 to -100 cm.

Although the textural class of a soil may have a large influence on the value
of K5, any attempt to establish a correlation between the two attributes usually
fails. Only for those soils and soil horizons of the same genetic development
occurring in the same region and being similarly managed will a correlation
between texture and Ks be manifested. On the other hand, a few generalities
may exist. For example, the smallest values of Ks in each of the main textural
classes can be approximated. In sandy soils, the minimum value of K; is about
100 em-day*!, in siity loams about 10 cm-day™! and in clays about 0.1 em-day™!. In

579

peats, K5 decreases with an increasing degree of decomposition of the original
organic substances. When the degree of decomposition of a peat is about 40 to
50%, the value of Ks diminishes to values of K5 typical of unconsclidated clays.
Extreme drainage and concomitant drying of peat soils causing compaction and
an increase of soil bulk density also reduce the magnitude of Ks. Moreover,

because this drying increases hydrophobism, entrapment of air during wetting is
enhanced and contributes even further to the decrease of Ks. [ " f /
L]

In joams and clays, the nature of the prevalent exchangeable cation plays an
important role relative to the value of K;, see Fig. 5.5. In Vertisols, an increase
of the percentage of exchangeable sodium (ESP) is accompanied by a decrease in
Ks when the ESP reaches 15 to 20%, provided that the soluble salt content of the
soil water is small. For exampie, with the electrical conductivity of the soil paste
EC being 1 mS cm™! or less, the value of K5 can decrease two or three orders of
magnitude. On the other hand, even for the same soil having a large ESP, if the
concentration of soluble salts is increased substantially to an EC value of about 8
mS cm™! or more, the Kg value is not significantly affected. In addition to the
coupled role of soluble salt content and ESP, the sodium adsorption ratio (SAR)
is of great importance to the dynamics of the variability of Ks (Russo and
Bresler, 1977). These variations are closely related to the degree of flocculation or
peptization of the soil colloidal particles that can be quantified with the value of
the {-potential derived from double layer theory. Applying this theory, the
decrease in K5 owing to the action of rain water (very small EC}) is easily
predicted for soils having large SAR values. These predictions are not
necessarily successful for soils that differ pedologically. For example, a solution
of high SAR value percolating through an Oxisol does not decrease the value of
Ks even after reducing the solute concentration because the abundant free iron
oxides prevent peptization and disaggregation of the soil particles. The value of
Ks also depends upon the composition of the clay fraction. It decreases in the
order kaolinite, illite and montmorillonite. And, soil organic matter has a
profound impact upon the magnitude of K5, owing to its cementing action that
promotes aggregate stability. Generally, there are many factors influencing the
value of K5 that are usually not considered in simplified models.

Soils classified according to their values of Ks are

Ks <107 ms!
107 < K5 < 10¥ ms’!

very low permeability
low permeability

-
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medium permeability 104 <Ks5<10% ms’! _ We have already mentioned that Darcy’s equation is valid only for small rates
high permeability 105 < K5 < 104 m 5! ‘ when the inertial terms of the Navier-Stokes equations are negligible. For
excessive permeability Ks>10%ms! ; engineering purposes the upper limit of the validity of Darcy's equation given
by (5.3) through (5.6} is indicated by the critical value of Reynolds' number for
Geological materials are similarly classified as porous media
compa&ted clays 10N <Ks <10%ms! Re = gdp {5.22)
gravel 10! <Ks <10t m 5! H

where d denotes length. In sands, d is the effective diameter of the particles, or
with some corrections, the effective pore diameter. Sometimes 4 is related to the
permeability of the sand, e. g. d = K,/*. However, in all soils other than sands, d
is not at all definable and hence, {5.22) is not applicable. The difficulty in
defining 4 is manifested by controversy in the literature regarding the
assignment of critical values of Re. Most frequently, critical values of Re have
been reported to range from 1 to 100, In this post linear region, the flow is often
described by the Forchheimer equation (Bear, 1972)

All such classification schemes above are problematical. For soils in a certain
region, a more appropriate classification would be based upon the frequency
distribution of Ks. Based upon that frequency distribution, we can identify
subregions where a particular range of Ks is expected.

When values of Ks are considered relative to their position within a soil
profile, soils are grouped into these seven classes.

L. Ks does not change substantially in the profile.
1 Ksof the A-horizon is substantially greater than that of the remaining ' o _ ag+bgt (5.23)
soil profile and no horizon of extremely low Ks exists. &

3. K5 gradually decreases with soil depth without distinct minima or
maxima.

4. Ks marufests a distinct minimum value in the illuvial horizon or in
the compacted layer just below the plow layer.

5. Soil of high permeability with its development belonging to one of the
first four classes covering the underlying soil of very low permeability.

6. Soil of very low permeability with its development belonging to one of
the first four classes covering the underlying soil of very high
permeability.

7. Ks changes erratically within the profile owing to extreme
heterogeneity in the scil substrata.

where a is the material constant analogous to Ks and b is functionally
dependent upon the water flux density. This non linearity is caused primarily by
inertia and by turbulence starting only at very large values of flux density, see
Fig. 5.6. A more detailed theoretical discussion is given by Cvetkovi¥ (1986).

Deviations from Darcy's equation have also been observed in laboratory
experiments for very small flux density values. We define, therefore, the pre
linear region of flow where g increases more than proportionally with ,, see
Fig. 5.6. This deviation from Darcy's equation, most often observed within pure
clay having very large specific surfaces (e. g. 10? m?g!), has been explained by the
action of three factors: a) Clay particles shift and the clay paste consolidates
owing to the imposed hydraulic gradient and the flow of water, b) It is
theoretically assumed that the viscosity of water close to the clay surfaces is

: different than that of bulk water or that in the center of the larger soil pores.
; According to Eyring's molecular model where the viscosity depends upon the
: activated Gibbs free energy, the first two to five molecular layers have a distinct
increased viscosity. Owing to the great value of the specific surface in clays, the
contribution of the first molecular iayers to the alteration of averaged viscosity

The influence of the temperature upon the value of Ks can be examined with
(5:21). Inasmuch as pw is negligibly influenced by temperature, changes of Ks(T)
depend primarily upon the viscosity u(T).

5.2.3 Darcian and Non-Darcian Flow
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may not be negligible. ¢) The coupling of the transfer of water, heat, solutes et al.
may also contribute to the existence of the pre linear region (Swartzendruber,
1962; Kutflek, 1964, 1972 and 1978; Nerpin and Chudnovskij, 1967).

Deviations from Darcian flow are not frequently described or observed, and
the post linear region is only rarely reached in sands and gravelly sands. There
is not yet any field experimental evidence of the existence of a pre linear region.

Darcy's equation is, therefore, either exact or at least a very good approximation
entirely adequate for soil hydrology.

5.2.4 Measuring Ks

Saturated hydraulic conductivity is one of the principal soil characteristics and
for its determination, only direct measurement is appropriate. Indirect methods,
derived from soil textural characteristics which are sometimes combined with
aggregate analyses, generally do not lead to reliable values. Considering soil
texture as an example, soil water flow is totally independent from the laboratory
procedure of dispersing, separating and measuring the percentage of
“individual” soil particles which do not even exist “individually" in natural
field soils. It has been shown in section 5.2.2 that the value of Ksis closely
related physically to the porous system within a soil. Inasmuch as a quantitative
description of this porous system is much more difficult than the measurement
of Kg, direct measurement of Ks is preferred. When K is ascertained by water
flux density and potential gradient measurements, we will speak about the
determination of Ks. In order to avoid misunderstanding, when additional

assumptions are used to evaluate these two quantities somewhat less directly,
we will speak about the estimation of K.

_ Measuring is realized either in the laboratory on soil core samples previously
taken from the field, or directly in the field without removing a soil sample.
Field methods are preferred. They provide data that better represent the reality
of water flow in natural conditions. Their main disadvantage is the lack of
rigorous quantitative procedures for measuring soil attributes in the majority of
field tests. For laboratory measurements, the size of the REV should be
theoretically estimated in order that an appropriate soil core sampler be selected.
In practice, because the REV is rarely determined, a standard core or cylinder
size is used for most soils. As a result, larger numbers of samples are taken with
appropriate statistical evaluation of the data in order to partly reduce the error
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associated with samples having smaller volumes than the REV. In soils
without cracks and frequently occurring macropores a soil sample volume of

200 to 500 cm® is assumed satisfactory. In subsoils, a 100 cm® sample will
sometimes suffice. Methods relying on "undisturbed” core samples are
generally not applicable in stony soils, in forests and in soils that crack
excessively upon drying.

In the laboratory, the test is usually performed in a way similar to that
demonstrated in Fig. 5.1. When both elevations of the water level are kept
constant, i. e. in the vessel before water passes the soil ("upper level”) and in the
vessel after water has passed through the soil ("lower level), (5.1} and (5.3) are
applied. Apparatuses so constructed are usually called constant head
permeameters. More frequently, the upper water level is allowed to fall, see Fig.
5.7. The fall of the water level dh in the measuring tube above the soil sample
relates to the flux of water through the soil in time dt. Equating the two

volumes, that moving in the measuring tube and that moving through the soil,
we have

-A,dh=A,qdt (5.24)

where Ajis the cross-sectional area of the tube above the soil and A; is the
cross-sectional area of the soil. Substituting 4 from (5.3) into (5.24) and

recognizing that Ak in (5.3) is the total potential head difference  in Fig. 5.7, we
have

AL L dh t
—_— |t .
ALK, f"' h (5.25)

After integrating and rearranging
AL h,
R '“[,.—,

The method is sometimes modified by having A; = A; and by keeping the
bottom vessel without an overflow. Construction details of these apparatuses,

usually referred to as falling head permeameters, are given in Klute and
Dirksen (1986).

{5.26)
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In the field, we generally deal with two cases relative to the determination of
Ks. In the first case, a water saturated zone is formed by an unconfined aquifer
close to the surface with the ground water level being not deeper than about 1.5
m. In the second case, the soil is not fully saturated.

There exists a number of field methods for determining Ks in the saturated

zone. Among them, the auger-hole method and the piezometer method are the
most commoenly practiced.

~
In the auger-hole method, a hole is drilled to a depth well below the ground
water level. After the water from the hole is rapidly pumped out, the rate of rise
of the water ievel in the hole is registered. A general equation for the
computation of Ks is simply

K;=C

i

5.27)

where z is the depth of the water level in the hole measured from the
hydrostatic ground water level in the soil and C is the shape coefficient
dependent upon the geometry of the test. In practice, the derivative in (5.27) is
replaced by the differences Az/At and the coefficient C is evaluated , e. g
according to the potential theory by Ernst (1950) quoted in Maasland and
Haskew (1957). Except at the extreme bottom of the hole, it is assumed that the
flow paths of water in the soil are perpendicular to the walls of the hole  In
order that this assumption be fulfilled, pumping should not be repeated in short
sequences of time. Estimation of C for less restrictive geometrical conditions has
been described by Boast and Langbartel (1984).

The piezometric method is similar to the auger-hole method except that a
tube driven into the augered soil serves as a lining for the hole. The rate of the
rise of the water level in the lined hole is measured after pumping a portion of
the water from the hole. The lining prevents inflow except through the bottom
of the hole. For isotropic soils, Ks is computed from

rrt z,
K, = In{—
fTC At n z,

(5.28)

5[5

where r is the radius of the tube inserted into the hole, z; and z; are the depths
of water levels in the hole measured from the hydrostatic ground water level
during the time interval 4¢. The shape factor C ~5.6r for a flat bottom and C =9
for a hemispherical bottom. Note the similarity between (5.28) and (5.26). The
falling head permeameter method modified here with a shape factor C applies
to the piezometer method. When the lining does not reach the bottom of the
hole, water penetrates additionally from the sides, and the value of the shape
factor C increases in relation to L/r where L is the height of the unlined portion
of the hole (Smiles and Youngs, 1965).

The piezometric method is ideally suited to measure K of anisotropic soils.
Two measurements are required. For the first measurement, the lining reaches
to the bottom of the hole and we compute with (5.28) the product of the vertical
and horizontal hydraulic conductivities, Kv and Ky. In (5.28), K5 is replaced by
(KvKp)!/? and we assume that the main axes of the hydraulic conductivity
tensor are vertical and horizontal. For the second measurement the hole,
deepened by the value L without pushing the lining tube deeper, allows inflow
into the hole through both the unlined wall of height L and through the
bottom. With a new shape factor C; in (5.28), the values of Kv and Ky,
respectively, are simply calculated with data from the second experiment. A
detailed description of methods of measurement of Ks in the field is given by
Amoozegar and Warrick (1986). If the saturated soil or aquifer is of great
thickness and the locality allows installation of several observation wells,
pumping tests can be performed in order to obtain Ks. This method which deals
with ground water hydraulics is frequently described in detail in the literature.
Data obtained from these pumping tests are not generally compatible with data
determined by the auger-hole method representing a weighted average K value
in the domain of the cone of depression compared with the “point” data of the
auger hole method.

The task of measuring Ks in an unsaturated zone is more difficult.
Infiltration tests are most frequently used to measure K of the topsoil or other
horizons near the soil surface. The value of Kg is estimated from readings of
cumulative infiltration as a function of time. Alternatively, after a quasi-steady
state infiltration rate is reached, its value together with that of the hydraulic
gradient estimated from tensiometers installed at two or more depths are used
in (5.5) to calculate the value of Ks. The details will be discussed in Chapter 6.
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The auger-hole method is commonly modified to determine Ks below the
soil surface of an unsaturated soil. Because the zone is not saturated, the
modified procedure is opposite to that dealing with a saturated zone. Instead of
water being removed from the saturated soil, water is poured into the hole from
a marriotte flask. After a relatively short time of 15 to 30 minutes, quasi- steady
flow is reached. The steady water flux density g is measured together with the
constant height & of the water level above the bottom of the hole. Amoozegar
(1989) recommends that Ks be calculated according to Glover's solution
q [s'mh"(h /R =(ri/nr-n)"
2rh?

K, - +r/h]

(5.29)

where 7 is the radius of the hole. This procedure is called the constant head well
permeameter method. A similar device is the so-called Guelph permeameter
{Reynolds and Elrick, 1985).

5.3 UNSATURATED FLOW IN RIGID SOILS

By the term rigid soil we designate soils that do not change their bulk volume
with a change of water content. We assume that unsaturated flow in soils is
governed by the same laws that apply to saturated flow. For unsaturated flow we
must consider the fact that a portion of the soil pores filled by air could indeed
resaturate or drain. In our discussion of unsaturated flow, capillarity will be
quoted as well as the term capillary rise frequently used in the literature.
However, general mathematical formulations of physical phenomena should
be independent of such simplifying ideas as soil capillaries and consequently,
when we mention capillarity, it is just for the sake of modeling approximately
some effects occurring in real soils.

5.3.1 Darcy-Buckingham Equation

A simple example of unsaturated flow demonstrated in Fig. 5.8 is analogous
to the examples of experiments with saturated flow. The cylinder containing the
soil has small openings within its walls leading to the atmosphere.
Semipermeable membranes, permeable to water but not to air, separate the soil
from free water on both sides of the cylinder. The pools of water are connected
to the cylinder with flexible tubes. Full saturation of the soil is first achieved
when both pools. lifted to the highest point of the scil, displace the soil air

1)
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through the openings on the top side of the cylinder. At this moment, there is
ro fiow in the system and the soil is assumed water saturated. With the pool on
the left side of the cylinder lowered to the position A1 and the pool on the right
side to position k;, air enters into the soil through the openings as the soil starts
to drain in a manner similar to a soil placed on a tension plate apparatus. The
soil on the left side of the cylinder will be drained to a lesser extent than that on
the right side with the soil water content distribution from left to right being
nonlinear. Although water flows from the left pool to the right pool, the rate of
flow is reduced significantly compared with that when the soil is water
saturated. If the water level in each of the pools is kept at a constant elevation
with time, steady flow will eventually be reached with the water content at each
point within the soil remaining invariant. At this time, the flux density g will
depend upon the hydraulic gradient and be governed by an equation similar to
(5.3)

==K — 5.30
g=-K 7 {5.30)

where K is the unsaturated hydraulic conductivity [LT"!). Inasmuch as the soil is
not saturated and flow occurs primarily in those pores filled with water, the
value of K will be smaller than that of Ks for the same soil. As for saturated flow
we commonly take the potential related to he weight of water, i. e. in units of
pressure head. For the majority of practical problems, all components of the
total potential except those of gravity and soil water are negiected. Hence, (5.30)
rewritten to allow the hydraulic conductivity to be a function of the soil water
potential head h is

dH
== = 5.31
q K(h} ‘ {(5.31)

and for two and three dimensional problems
g=-K(h)gmdH {5.32)

Equation (5.33) is equivalent to Darcy's equation, and because Buckingham
(1907) was the first to describe unsaturated flow dependent upon the potential
gradient, equations such as (5.31) and (5.32} are called Darcy-Buckingham
equations. The unsaturated hydraulic conductivity K is physically dependent
upon the soil water content 8 because water flow is realized primarily in pores
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filled with water. Because the relationship 8(k) is strongly influenced by
hysteresis, K(h) is strongly hysteretic. On the other hand, it follows from
percolation theory that K(8} is only mildly hysteretic.

Examples of K(8) and K(h) demonstrated in Fig. 5.9, show that the more
permeable soll at saturation does not necessarily keep its greater permeability
throughout the entire unsaturated region. It is also evident in Fig. 5.9 that the
hysteretic behavior of K{h) demands that, for a given value of h, the value of K
is greater for drainage than for wetting.

The Darcy-Buckingham equation is adequate for describing unsaturated flow
only if the soil water content is not changing in time. Unfortunately, this is
seldom the case. When @ and g alter in time, we must combine (5.31) with the
equation of continuity. The equation of continuity relates the time rate of
change of @ to the spatial rate of change of 4 in a small elemental volume of soil.
The resulting differential equation is strongly non-linear and its solution even
for simple conditions is most difficult. Generally, {5.31) is in itself not
satisfactory for the solution of such hydrologically important processes as
evaporation, infiltration, drainage, subsurface flow etc. Exceptional situations or
highly simplified flow conditions are usually the only problems described by the
sole use of (5.31)

5.3.2 Unsaturated Hydraulic Conductivity

We distinguish two approaches for a physical interpretation of the measured
hydraulic conductivity K. The first is based on the direct application of the
Kozeny equation. The second uses the soil water retention curve to quantify the
pore size distribution. With this quantification the Kozeny equation is used for
sub-groups of pores. In addition to these two physical approaches, empirical
formulations of K(h) are used to merely express cbserved relationships.

Let us first apply the Kozeny equation. Inasmuch as only a portion of the
pores is filled with water in an unsaturated soil, we replace the porosity P by the
soil water content 8. We assume that the value of the tortuosity t is described by
Corey (1954) as

]

T, a-9,
w8 |P-8. (5-33)
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which is valid for sands where 5 is the tortuosity in the saturated soil, 1(8) the
tortuosity in the soil having water content & and 8, a residual water content.
When it is assumed that the tortuosity owing to a change of soil water content is
ignored in (5.17), Leibenzon (1947) derived the following expression

K (e8-8,\" 5.3
K, | P-8, ’

where the exponent n should have values ranging from 3.3 to 4. Averianov
(1949) proposed that n = 3.5 is a good robust estimate. The value of exponent n is
related to the pore size distribution and thus to the soil water retention curve
SWRC, see Brooks and Corey (1964} who recommended n = 2/ + 3 with A read
from (4.42) when P is replaced by 05 in (5.34). Later on, Russo and Bresler (1980)
found that values of 1 or 2 fit better than 3 in the exponent n. Childs and Collis-
George (1950) obtained the equation

1 3
K=a-= (5.35)
which is comparable to that of Deryaguin et al. (1956)
A 3
K=a =4 (5.36)
2u

provided that we assume smooth walls. At small soil water contents and in
soils having rough walls, the power function K & & remains but the exponent n
» 3. A physical interpretation can be obtained using a fractal model of wall
roughness (Toledo et al., 1990) The identity of both equations (5.35) and (5.36) is
reached when the average thickness of the water film 4 is taken as functionally
dependent upon & for a given specific surface A,,. In both equations « is an
empirical coefficient.

Inasmuch as 6(h) exists, the dependence of K upon h is also deducible with
many empirical formulae quoted in the literature.

Gardner (1958) modified Wind's (1955) empirical proposal
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K=ah™ (3.37)

to the relationship

a
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applicable to h = 0 where a, b and m are empirical coefficdents. Note that for h =
0.irtSi) a/b = Ks.

Gardner's exponential relationship (1958)

K = K exp (ch) (5.39)

is frequently used in analytical solutions. If K/Ks is plotted against h on semi-
log paper, a straight line is obtained. This relation usually fits the experimental
data well in the range from k = 0 (8 = 85) to a certain hym, see Fig. 5.9, top right.

For soils manifesting a distinct air entry value hs, Gardner and Mayhugh (1958)
modified (5.41) to

K=K, exp[c (h—-hA)] (540)

The value of the empirical coefficient ¢ with dimension (L] is related to soil
texture. and most frequently, ¢ = 0.1 to 0.01 cm!. For§-function soils in the
Green and Ampt approximation of infiltration the value of ¢ is numerically
equivalent to the soil water pressure head |hyl at the wetting front, see Chapter
6. Both (5.39) and {(5.40) have been broadly used in analytic and semi-analytic
solutions , especially for steady fiow problems as we show with some examples
jn Chapter 6 and as was fully reviewed by Pulian (1990).

Because (5.39) and (5.40) are valid in the wet range, (5.38) might be preferred in
the dry range For h < hym, we must use ¢; different from ¢ to extend the
applicability of the equation to the dry range. K(h) is often defined as a
composite function. For example, the range of A > h > hyim, (5.39) applies and

for h < hiim, (3.37} or (5.38) applies in order to simulate the entire soil water
regime in some instances.
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From studies of capillarity in sands, Brooks and Corey {1964) obtained the
frequently used relationship

K (kY
K Uh
' »”

where m depends upon the pore size distribution. Usuallg& =3 t0 20.

(5.41)

Physical interpretation of K(#) or K(k} must include in addition to the to
porosity, the distribution of the pore sizes. Recognizing from (5.10) that the flow
rate in a cylindrical capillary is v, (), drainage of the largest pores drastically
reduces the value of K in spite of the relatively small volume of those pores.
Childs and Collis-George (1950) were the first to propose a method relating K(6)
to a pore size distribution function f{r). Using the soil water retention curve to
reflect fr), they‘obtained (5.35) as a simplified result. Their general approach
attracted attention and was further developed and modified. We show those
developments here.

In its simplest form the porous system is composed of | categories of pores
with j = 1 for the category of smallest pores. In each category the pore radii are in
ranges r;.; to r;. In each category the flux is q,-(?f ,n} where r; is the mean radius
and n is the percentage of the category and frequently g,.; < g; even if n;.1 > n;.
Assuming VH = - 1, the unsaturated hydraulic conductivity K = Z4;. When the
soil is only partially saturated with water, contributions of fluxes gj, 4;.1 et al.
from the larger , empty pores of radii j, (j-1) et al. do not exist, see Fig. 5.10. In a
more exact derivation, we start with the mean flow rate v, in pores of radius r
according to the Hagen-Poise ille equation

v, (r)=ar’l, (5.42)
where a = pwg/8u, see (5.10). The flux density in a porous system with a
continuous distribution function of pores f{r) and a tortuosity tis

= 2fa,r)f (). (5.43)

Or, with (5.42) for [, = 1,4 = K and
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K= _1. [[ar fr)dr. (5.44)

When f(r)dr is approximated by dfg(h), i. e. by the SWRC and for the relation
between the pore radius and the pressure head (r = ¢/h), we obtain

' _E 1 5.45
K : h’(az}de() (5.45)

For relative hydraulic conductivity K,

K =K/K; (5.46}
and with the tortuosity from (5.33) modified to

&/ T=8¢ (5.47)

we have

Various authors have not found a unique interpretation for expenent b in the
above equation. Marshall (1958) and Millington and Quirk (1961) defined b as
the probability of occurrence of continuous pores. For isotropic and
homogeneous media b = 2Py with Fy denoting that portion of the porosity within
which water is flowing. Marshall assumed Py=1 and hence, b was 2. Millington
and Quirk used Pras 2/3 and hence, b was 4/3. Burdine (1953) interpreting the
tortuosity with (5.33) evaluated bas 2. .

[nasmuch as the microscopic pore size distribution is used to characterize the
macroscopic flux in a seil, Mualem (1976) classified such models as microscopic
models. After evaluating about 50 soils on a macroscopic scale, Mualem deuded
that b was 1/2. Hence, (5.48) becomes

H
o do | _de;
%} ]
K=} [0 _"Lh{a) b 6, )] (5.49)
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If the van Genuchten soil water retention curve (4.43)

1
8y = ————r (5.50)
[1+(a ] )]
and (5.48) are combined, we obtain
K.(0:) =9 [1-( 1- 9;"')”']' (5.51)

with m = 1-¢/n and n >1. For the model of Burdine, a =1,b =2 and ¢ = 2. For
the modei of Mualem, 2 =2,b =05 and ¢ = 1. Let us note that Mualem's database
consisted mainly of repacked laboratory soils and b = 0.5 does not hold for all

field soils where the deviation may vary from less than -10 to more than 10
(van Genuchten et al., 1989).

Mualem's model of K(h) is

",,)u]-“} {5.52)

k) |-l
K [1+(afh|)"]

Similarly, using the soil water retention curve 8z = (h,/h)* of Brooks and Corey
(4.42) the relative hydraulic conductivity is

K(HE ) - brasid
ro R (5.53)
and
K(h hA avbfh
%-(%) o

For the model of Childs and Collis-George, @ = 2 and b = 2. For that of Burdine, 2
=2and b= 3. For that of Mualem, a = 2 and b = 2.5.

The exponent (2 + b/ 1) in {5.54) is identical to the exponent m in (5.41).

Although the value of the exponent should theoreticatly be in a narrow range
between 2.5 and 4.5, experimental data vield values that extend to about 11. This
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discrepancy can be explained by the over-simplification of the porous body in
the model. In the derivation of the above equations, several approximations
were made. First, the soil porous system ~as modeled by a bundle of cylindrical
capillary tubes. Second, the pore size distribution function was approximated
from the soil water retention curve. And third, the value of b was empirically
evaluated. However, in spite of these approximations for the derivation of
K(8g) and K{k), the most problematic is the proper interpretation of the soil
water retention curve close to 8s.

A formal sensitivity analysis of (5.52) by Wasten and van Genuchten {1988}
showed that differences in K, increase with a decrease in h (i. e, with the soil
drying) as the parameter « is altered, see Fig. 5.11. On the other hand, the
influence of the exponent n also brings about a great potential error in the wet
region. In Fig. 5.11, 8 has been replaced by € with the soil water retention curve
{4.43) having the form

9o + 8 (5.55)

" {ealn]”

Additional sensitivity analyses made by Sir et al. (1985) and Vogel and Cislerovi
(1988) show the role of an error Sh(8g) in the experimental determination of
h{Bg). If 5h(BE) is a constant in the range 0 € 8 1, the absolute error of K(68)
rises steeply with an increase of 8.

When the soil porous system is characterized by a bi-modal pore size
distribution curve (Fig. 4.19), the relation K(h) shows two distinct regions. For 0
> it > hy, only the by-pass pores belonging to the secondary peak are considered
with Mualem's model applied to the soil water retention curve of the inter-

e ——

pedal (by-pass) pores. For h < h; we use the remaining portion of the SWR@
representing only the intra-pedal (matric) pores, see Fig. 5.12 and Othmer et al.

(1991 Hence, two matching factors are needed. For the region 0 > h > hp the
matching factor is Ks. For the region h < i; it is a measured value of K(h < ky).
Although this mechanistic separation of the two porous systems uses the same
basic equations, the accelerated fluxes through the by-pass pores are
conveniently described.

Up to now we have discussed the problems related to K(#8) in a wet soil. In a
dry soil, the probable errors in modeling K(8) are related to 8.. The residual soil

Sles

water content 8, in 8¢ of (5.50) and further on in other K(9) models leads to
K(85 6,) = 0. This zero value of hydraulic conductivity for @ > { is in agreement
with our description of SWRC in Section 4.3 where we used &, to denote the
boundary between coherent and incoherent water phase distributions.
However, we have shown in the same Section 4.3 that 6, is obtained as a fitting
parameter which we are not allowed to interpret physically. Thus, the physically
observed G, inK(6) may not coincide with 6, obtained by fitting (4.42} or (4.43)
to experimental SWRC data. A simpie method for independently estimating
Bw, for K(6) models has not yet been proposed and tested on a broad scale.

Macropores play a special role in the flow of water especially during
infiltration. When the soil water pressure is positive or when an unsaturated
soil is ponded with water, water flows in the so-called "macropores”. The
mechanism of the flow in this case may be different from that of the capillary
porous system. Water may flow either along the walls of the pores like a thick
film, or through the eatire cross-sectional area of the pore. When water
conduction in cracks is combined with absorption, the kinetic wave
approximation (German and Beven, 1985) can be used. The flux density is
restricted just to macropores and it is generally reduced by absorption. The
theory describes the transformation of both flux density and front velocity when
water is transported in macropores as a pulse. It is applicable only under the
provision that the macropores do not change during the transport of water. The
theory cannot be used for modeling water flow in the fissures of shrinking-
swelling soils.

In this book, we use the term macropores only for pores without capillarity.
In some of the literature a confusion exists inasmuch as coarse capillary pores
and by-pass pores are also called macropores just to emphasize the large flux in
those pores. However, if capillarity is manifested with the flow realized by the
gradient of the negative soil water pressure, the Darcy-Buckingham equation is
still appropriate with no need to replace it.

Up to this point we have assumed that the Darcy equation is fully applicable
to unsaturated flow. However, when the validity of the Darcy equation is
doubted for saturated flow in clays, non-Darcian pre linear flow should be even
more pronounced for unsaturated flow in clays. Experiments indicating this

possibility (Swarzendruber, 1963) have been theoretically explained (Bolt and
Groenevelt, 1969).
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The influence of the temperature upon K(8) is usually expressed by uw(T) in

K(8) =K (0)}K,pwg/tw (5.56)

However, Constanz (1982) provided experimental evidence that in som
insta 5.61 nly a imate. ( ,
instances (5.61) was only approxima s. 'J

The influence of the concentration of the soil solution and of the
exchangeable cations is similar to that already mentioned for Ks. Dane and
Klute {1977) reported that a decrease of the concentration in the soil solution
when the SAR was kept constant resulted in roughly the same decrease of K in
the whole range of 8, see Fig. 5.13. It is also expected that the function K(&)
would change with ESP (Kutilek, 1983).

Measuring techniques for determining K(#) are usually related to the
solution of specified unsteady flow processes, and will be discussed in Chapter 6.

5.3.3 Richard's Equation

Equation (5.32) is fully applicable to steady unsaturated flow when Vg = 0, dg/d¢
=0 and d&/dt = 0. In practical situations, unsteady flow frequently exists with
dé/dt 0. In these situations, two equations are needed to describe the flux
density and the rate of change of 6 in time. The flux density is described by the
Darcy-Buckingham equation and the rate of filling or emptying of the soil pores
is described by the equation of continuity. Consider the prism element having
edges of length Ax, 4y and Az given in Fig. 5.14. The difference between the
volume of water flowing into the element and that flowing out of the element
is equal to the difference of water content in the element in time At. The rate of
inflow (macroscopic) in the direction of the x axis is g, If we assume the change
in g, is continuous, the rate of outflow is [, + {94,/ dx)Ax). The inflow volume
is gy AyAzAt and the outflow volume is [g, + ( g,/ Ix)Ax}Ayazat. The difference
between inflow and outflow volumes is

{9.ayazat-[q,+(d, / dx)dx|axdyaz) (5.57)

or

LyZy

i‘ﬁ)m Azt
{31 v {5.58)
Similarly in the direction of the y axis, the difference between the inflow and

the outflow \.:olumes is

{a—q’-]dzdydzdt {5.59)
oy
and that in the direction of the z axis

—(%)Axdydzdt (5.60)

The sum of the above differences equals the change of the water content of the
element. Provided that g(¢) has a continuous derivative for ¢ >0,

A8 N, . 9 &h]
— t =~ —+—=L+— |Axdydz 4t (5.61)
A ArAy Az A [&x + w x Y

Taking the limit as ¢ — 0, we obtain the equation of continuity
8 _ (M. %, %N 5.62)
at (ax " & (

If we insert for 4., g, and g; from (5.32), we have
g9 o gH| 4 oH 3[ 3H]
—=—|K(h)=— |+ —|K{h)=—|+=—| K(h)— (3.63)
2 - 2 e Z] e 2 k| xS

provided that the soil is isotropic. In one-dimensional form for H = h + 2 the
above equation becomes

08 a ] K
= = K )—+—. 5.64)

3 a;[ ( )&z]+ % (
Equations (5.63) and (5.64) are called Richard's equations in the name of the
author who first derived them (1931).
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If the soil is either wetting or drying, & will be uniquely dependent upon only

h and »

a0 de oh
Fr el (5.65)
Hence, the capacitance form of Richard's equation is obtained as
oh 3 oht K
Cuih)=— o az[lf(h)sz-}a- = (5.66)

where Cw = d6/dh {L'!] is illustrated in Fig. 5.15. An alternative developmen
using

oh _ dhadé

% - -&3; (5.67)

leads to the diffusivity form of Richard's equation

30 _ 3[p0], 9K 30
' az[D(e)az]+ a8 .68
where the soil water diffusivity D is the term derived from

D(6) = K(6) 2. (5.69)

The main reason for the derivation of either the capacitance equation (5.66) or
the diffusivity equation (5.68) is the reduction of the number of variables from 4
w03 MoZi a:z..z- e Buiey - Qu uatrrn Lo
2="D)f2 » kts ¢&ra)
Both equations (5.66) and {5.68), strongly non-linear owing to functions
Cwih), K(h} and D(8), are sometimes called Fokker-Planck equations. The name
of (5.68) was derived from its resemblance (when its second term on the right
hand side is omitted) to that for molecular diffusion. The units of [ in (5.68) are
identical to those of the diffusion coefficient. Many analytical and semi-
analytical solutions for the diffusivity equation for various boundary conditions
are known from the theory of diffusion (Crank, 1956). They have been profitably
applied for the solution of many processes of unsaturated flow in soils.
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Whenever there is a region of positive pressure in the soil (5.68) is not
applicable and (5.66) should be used.

Sometimes, Kirchhoff's transformation
U = K(h)dh 5.70
' ’.L ) ( : )
is used with (5.64) to yield

Cu(h)au U 1 dKau

K() o - 7 K(mdk ox G71)
or

38 _a'd _ K

ERE (5.72)

Because the last term of (5.64), (5.66) and (5.68) originated from the
gravitational component z of the total potential H, it is frequently referred to as
the gravitational term of the Richard's equations. The first term of the right
hand side of each of those equations expresses the flow of water in the soil
owing to the gradient of the soil water (matric) potential component h. In some
instances, the gravitational term is neglected and the non-linear diffusion
equation with its non-constant diffusivity

8 _ 3p e\
z. E[p (o);] 573)

is solved approximately. Solutions of the above equation for various boundary
conditions are analyzed in the literature dealing with the mathematics of
diffusion or heat flow (Crank, 1956, and Carslaw and Jaeger, 1959). If the flow is
horizontal, sclutions of (5.73) are exact.

5.3.4 Soll Water Diffusivity

The most common D{(6) relationship is demonstrated in Fig. 5.16. With the
exception of the region of very small soil water contents less than 8y (h < -10°%
cm), the curve steeply rises with 8. Soil water diffusivity D(6) in the wet range

e
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above fy is typically less steep in its relation to & as compared with K{8). In this
range of 8, D changes about five orders of magnitude compared with seven
orders of magnitude for K.

In the dry region of 0 $ 8 < 8y with a great portion of pores filled with air,
water vapor flow is enhanced while liquid water flow is limited to that of very
thin water films on the soil solid surfaces. The rate of liquid flow, strongly
dependent upon the thickness of the film, has already been demonstrated by
(5.36). Here, the vapor flux exceeds the liquid flux. A more detailed discussion
on water vapor flux will be given in Section 5.3.5. Now, we shall study in detai]
the monotonically rising part of D(8), i. e. for 8 > 8.

Among the well known and frequently used empirical equations is the
exponential form (Gardner and Mayhugh, 1958)

D=D,exp[B(8-8,)] (5.74)
where D, corresponds to 8; and f ranges approximately between 1 and 30. Or,
D= aexp[ B(6;)) (5.75)

where 8, is replaced by 8y inf; and at 8y, D = @. A physically more exact
equation should be derived from the soil water retention curve and from K(6).
Using (4.43) and (5.51) in (5.69), van Genuchten (1980) obtained

KS ( 1l=m )981/2‘-1./-

D(8)= W[(I—BEU. )7+ (1-87)" - 2] (5.76)

If the simpler (4.42) is used instead of (4.43) we have

t-1yeta=13/2
_ Kk, 6¢

D(8;) 210,79 (5.77)

with the values of a and b being those given earlier for (5.53) and (5.54).

In some clays. mainly alkali Vertisols, the value of D decreases with an
increase of @, if the soil is confined and not allowed to swell, see Fig. 5.16
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(Kutflek, 1984). For some undisturbed soils as well as for disturbed repacked soil
columns in the laboratory (Clothier and White, 1981), D' does not vary as
strongly with 8 as discussed above. If (Dmax - Dmin) is less than one-half an order
of magnitude, the linearized form of (5.73)

2
4 (5.78)

@

|

‘30
2B
ot

¥

serves as an excellent approximation where the mean weighted diffusivity D
for the wetting process (Crank, 1956) is

= S ., 2/3
D =———07x | (0-6, D(§)d8 (5.79}
' 3(9,"9.‘) ’ L' ( ) ( )

~

and for the drainage process is

b= E’_’—%, j(e-8,)"" D(8)ds (5.80)

where 8; is the initial soil water content and 8,is fatx =0fort > 0.

Soils manifesting values of D that are constant or nearly so are called "linear
soils” because (5.78) is a linear equation. If the Brooks and Corey soil water
retention curve (4.42) is used, K (8g) is described by (5.53) and D(8g) by (5.77). The
condition of a "linear soil” is satisfied if in these equations [A =-(a-1)/(b-1}] or
{a = b = 1]. If the first condition is applied to the Burdine equation, we obtain h =
a8 and K, = 8;'. Neither of these equations describe physical reality.
Similarly, equations of Childs and Collis-George or those of Mualem lead to
unacceptable results. The second condition leads to (Kutilek et al., 1585)

h=h,8;" (5.81)
K =8 (5.82)
and
h, K
—_A__s 5.83
D 2 (8,-6,) (5.83)
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In ge.neral, there exists a family of “linear soils” described by the above
equations. If 4 = 1, the hydraulic conductivity function (5.82) is quadratic and

meets the requirements of the solutions of Burgers' equation (Clothier et al
1981). ’

Concluding, we should keep in mind that the soil water diffusivity is used in
Richard's equation in order to reduce the number of variables. It has no direct
?hysical meaning and is only defined mathematically, see (5.69). Moreover
inasmuch as D(#) is dependent upon the derivative of the soil water retentior;
curve, it has different values for wetting and drying processes. The temperature
dlependence of D(#) is in accordance with changes of surface tension and
viscosity with T. However, its prediction is only approximate owing to some not

ell u.nd.erst d p omena that associates the te. Pe! epelld
Wi OO he“ t m ature d

5.3.5 Diffusion of Water Vapor

In se.clion 5.3.4 we have already shown that the relative maximum in the D(8)
relationship in the dry region is caused by water vapor flow. Indeed, the soil
water diffusivity D contains two components: Dy the diffusivity of li u;d wate!

and Dg the diffusivity of water vapor, i. e. the gaseous phase. Henc: D= DLZ

D¢ (Philip, 1957). Jackson (1964) deriv

: , . ed D as analogous t i

introduced soil water diffusivity Bous to the earle

dpg
D; =D, T

(5-84)

wihere PrG is the relative density (concentration) of water vapor and D, the
diffusion coefficient of water vapor in soil which is approximated by '

D, = -8)*
, =D, a(P-6) (5.85)

where D, is the diffusion coefficient of water vapor in free air and « and

factors that account for the tortuosity and complexity of the soil porous s ::“‘e
F)etailed information about (5.85) is provided by Currie (1961).The term d: / :lns
is actually the slope of the adsorption isotherm and its inflection N int
corresponds to the relative maximum of D¢(8). The water vapor diffuspitity

el )
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6 ELEMENTARY SOIL HYDROLOGIC

PROCESSES -
In this chapter, for the sake of a lucid discussion of soil hydrology, we separate
from the global hydrologic cycle those simple elementary processes which take
place in the soil. The first group of elementary processes to be discussed are
those to be described in the vertical direction and defined by simple boundary
conditions. Here we discuss

-infiltration,

-redistribution of water within a soil following infiltration,

~drainage to a water table close to the soil surface,

-evaporation from a bare soil and

-evaporation and transpiration {evapotranspiration) from a soil surface

partially vegetated.
Except for infiltration, all the above processes cause a water loss either from the
entire soil profile or from at least a particular layer usually from the topsoil
when one-dimensional vertical flow is assumed. When two- and three-
dimensional flow is considered owing to field circumstances, lateral subsurface
and hypodermic flows may contribute to the water balance within the soil

profile.

Meteorological situations actually control the extent of the elementary
processes, and together with the water storage capacity of the soil profile, a
particular stage of a hydrologic regime evolves over a long time period. If these
stages are combined and averaged over stil] a longer span of time, we speak of a
hydrologic regime of a soil. Analogously, as meteorological situations refer to
weather during a period of weeks or months in a particular area, combined,
long time averages are considered as the climate of the area.

6.1 PRINCIPLES OF SOLUTIONS

Our knowledge of elementary soil hydrologic processes stems partly from
properly performed experiments and partly from mathematical solutions of
equations describing physical processes. In each of the procedures we simulate
the process either physically by an experiment or mathematically using either
analytical or numerical methods. When we speak of properly performed

L
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experiments, we must experimentally impose exactly the initial and bm.mdary
conditions. Before imposing the boundary conditions, we first establish the
initial conditions - the values of 6 or h at all z of the one-dimensional column
at t < 0. When the initial conditon demands a zero flux (g = 0), it is imperative
that dH/dz = 0 along the entire colurnn. When the initial value of the soil water
content & is assumed constant with depth (d6;/dz = 0), a flux corresponding to 2
unit gradient of H exists, i. e- g = -K(84) provided that a continmity of liquid water
exists. If 6 is very small, the downward flux may be negligibly small. Altering
the value of the variable & or h, respectively, at the boundary (i. e. at the
topographical soil surface) induces a non-equilibrium condition that gengrates a
soil water flux within the soil profile. Non-steady fluxes will then persist in the
system until an equilibrium is reached with g = 0, or until the flux is invariant
with time {dg/dt = 0) and 2 steady state flux density is reached. Another
possibility for causing water flow in soil is by imposing 2 defined flux density
4(1) on the boundary qoft)-

One boundary of a one-dimensional soil column is its topographical surface.
The other boundary is that of a column having either a finite or infinite length
A finite column is used to manifest 2 field condition, e. g. 2 ground water table
{h = 0) or a defined water content or water flux at its bottom end. If the column

extends to infinity, we speak of a semi-infinite column with its lower boundary
z oo,

If we establish a new value of the variable 6 or & on a boundary for t 2 0, we
obtain Dirichlet’s {or a concentration) boundary condition (DBC). When a flux
density is imposed for t 2 0 on a boundary, we have Neuman’s {or a flux)
boundary condition (NBC). if € or h is specified on one boundary and a flux is
specified on the other boundary, we have a mixed boundary condition (MBC).

When we solve a steady flow problem which is characterized by dg/dt = 0 and
dq/dz = 0, we do not define the initial condition because the flux and variables 6
and h are independent of time. The solution is a particular value of the flux q

_for which a unique distribution of & and h, respectively, along thp! z axis exists.

Distributions of non-steady flow problems yield distributions of  or h,
respectively in space and time. These distributions 8(z, t) and h(z, t) for one-

Lo
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dimensional problems are usually given as continuous functions 6(z) or k(z) for
specific times or time intervals. For DBC we are frequently searching
additionally for the flux density at the boundary 2,(t). In an experiment we must
establish the initial &; or h; at all depths for ¢t <0 and sustain 8, or g, at the
boundary during the entire experiment. It is imperative that the experimental
initial and boundary conditions are matched exactly with those described
mathematically. Without such initial and boundary conditions, the
experimental results cannot be properly evaluated and generalized.

In the mathematical treatment of problems, the initial and boundary
conditions represent the limits of integration. Additionally, the properties of the
soil need to be characterized. When we describe the process mathematically, we
characterize the soil by its hydraulic characteristic functions Kg, 85, h(6) and
K(8) or K(k). D(8) is obtained from K(6) and h(6) or is defined directly from
primary measurements. Methods for obtaining the hydraulic functions will be
discussed later in Chapter 7

Mathematical solutions of the elementary hydrologic processes are either
analytical or numerical. In analytical procedures , differential equations are
usually integrated only after some kind of transformation. Many analytical
procedures exist for somewhat trivial boundary conditions of unsteady flow in
soils defined by simple hydraulic functions and for steady flow processes in
homogeneous or distinctly layered soil columns. The analytical solutions
typically involve infinite series or transcendental functions that are evaluated
by numerical methods with the assistance of a computer. As a result, the
calculated results are approximate in spite of having an exact analytical solution.

Close to analytical solutions are the quasi-analytical solutions for which a
significant part of the procedure involves an analytical procedure. The overall
equation, often reduced to one or more ordinary differential equations, 1s
integrated using a convergent iterative scheme. Alternatively, we split the
higher order partial differential equation (e. g Richard's equation) into lower
order differential equations that are solved separately. In such casés an auxiliary
function is frequently assumed with its value being determined by consecutive
iterations. Analytical and quasi-analytical solutions developed for some
elementary soil hydrological processes fit soils with simple, special forms of
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hydraulic functions. Such solutions, even if they are not directly applicable to
field situations, have a great advantage. They lead to a full understanding of the
physical process and provide estimates of deviations, e. g. owing to an alteration
of a boundary condition. Moreover, these solutions allow errors of estimation
of approximate and numerical procedures to be quantified. Approximate
solutions are frequently exact analytical solutions developed for a soil process
characterized by a simple or even oversimplified hydraulic function. Or, they
are exact solutions for a very simple flow process that only approximates reality
in the field.

Numerical methods used in the solution of soil hydrologic processes are
procedures which enable us to replace a differential equation with a set of
approximate algebraic equations solved with a computer. These approximate
numerical procedures are (i) the method of finite differences and (ii) the
method of finite elements. Although their theoretical derivations are based
upon different mathematical approaches, there are many similarities between
both methods.

In the method of finite differences the spatial domain within which we
search for a solution is sectioned by a system of normals into small segments. In
1-dimensional problems we obtain line segments, in 2-dimensional problems
rectangle segments and in 3-dimensional problems parailelepiped segments. For
each node of these geometric segments, we determine the value of the
differential function describing the problem.

We replace the derivatives at a point by differences of the variable over a
small finite interval. This method for the function h(z) is therefore the inverse
of the definition of its derivative

dh h(z+az)-h(z)

-, = lim, ~ (6.1)

)

Inasmuch as the approximation at one point depends to a oerta'm" degree, upon
approximations at neighboring points, local approximations are controlled by
approximations applicable to the entire domain.
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The continuous analytical equation is replaced by 2 set of algebraic equations
with differences substituting for derivatives of functions obtained from Taylor's
series expansions.

In finite element methods, the domain of the solution ‘is subdivided into n
smaller sub domains, i. e. finite elements. The simplest scheme is composed of
triangles with a triangular pyramid erected over each node. The value of the
base functions represents the approximate solution with time taken as the finite
difference. Local approximation is the characteristic feature of the finite
difference method. In contrast, the finite element method manifests a global
view. Assuming that the solution is expressible by a set of basic functions, the
most frequent procedures are those of Galerkin and Ritz which are both based
upon minimizing & quadratic function.

For a full appreciation of numerical methods, the reader should study
fundamental and applied concepts provided in the literature (e. g. Remson et
al., 1971, Neuman, 1975; Pinder and Gray, 1977 and Vauclin et al., 1379).

Numerical methods offer ad hoc solutions which are successful for non-
trivial boundary conditions and for soils having hydraulic functions not
described by simple functions. Additionaily, they can be advantageously used to
study water flow in heterogeneous soils. Numerical methods offer a large
number of solutions for studying soil parameters under a wide range of
conditions. They may in some instances replace results of experimental studies
which are difficult to carry out owing to (i) slowly changing conditions over
excessively long time periods, (ii} excessive number of experiments needed for
alternative initial and boundary conditions and (iii) some of the acting factors
for some problems may not be experimentally separated and uniquely studied.

In spite of all their advantages, numerical studies cannot generally substitute
for analytical solutions and experiments. Analytical methods are useful to test
the validity of numerical procedures adopted as standard solutions, and they are
particularly helpful to establish the behavior of solutions in the neighborhood
of singularities. Experimental observations compared with numerical
simulations demonstrate how well our simplisied formulations capture the
essence of complex, natural soil processes.

L3
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6.2 INFILTRATION

. . its surface.
The term infiltration denotes the entry of water into the soil throufgh its dsb athe
The soil surface could be plane, concave or convex, and 1icno;;.lt:l b: Tmorlmewur);e of

i such as a sphere, cylinder etc.
walls of a cavity of a defined shape : oo of
water can completely or only partially cover _the entire su:fac«le. :iq;:r -
describing infiltration are usually for 1-dimensional wate.r flow u: sither the
vertical or horizontal direction. A limited number of s-.o:uuons d:::is or 2 and
i infi i . Here, we restrict our A

3-dimensional infiltration processes e, ‘ o
dimensional, vertical infiltration. Implicitly, our solutions are valid
infiltration through a plane horizontal surface.

o i
Hydrologically, the infiltration process separates rain into h-vo pa:;s. Ocnh: faes
stored within the soil supplies water to the roots of vegetation ar:tl re f eg is
hich does not penetrate the soil surfac
round water. The other part w . . irfa
fesponsible for surface runoff. Infiltration is therefore a pivotal point within the

hydrologic cycle.

Being consistent with present-day terminologg‘(, v.ve st?all call th:I f‘l”u:v::nst;:ys
of water across a topographical soil surface the infiltration rat: °~nﬁ|tr;ti°n
infiltration rate is often confusingly described b.y terms' such as i ity
velocity, infiltration capacity, infiltrability ?ﬂtc;1 :: ;eilt;tlzx:ﬁ ;o s: ns: chelly
i boundary condition and in accorda e kind
;thjeo:tei:e criteria. );:or non-steady flows it is clear- t_hat the ﬂv..t;:a de:r‘:sdxtyt l:z t:]?:
dependent and moreover, when boundary conditions are c ]:gf ,mulate :
density responds and is also time dependent. Thus, we cou or_ e 2
voluminous number of terms describing still the same phenomenon

density across the top boundary of the soil.

We shall discuss separately steady and unsteady infiltration ?w‘mg t.o th.e
different hydraulic characteristics of both flows. Although steady 1?:1::5?:: :
simpler to solve and to understand beca.use only lthe Darcy i nfme.
equation is involved, unsteady infiltration is thae dommanf procets: -
We shall discuss unsteady infiltration in two sections according to - e e i);
conditions governing the type of infiltration. When the soil surfac

£y

instantaneously and excessively ponded as it is in an infiltration test performed
with a ring infiltrometer, we have Dirichlet's boundary condition (DBC). When
infiltration occurs under natural rainfall, we meet Neuman's boundary
condition (NBC) for the full duration of the rain or for at least its initjal

occurrence. With these two types of flow being fundamentally different, we
shall consider them separately.

621 Steady Infiltration

Steady infiltration is characterized by the condition that the flux density does
not change with time nor with position in the unsaturated soil, i. e. 9g4/3t =0

and 24/dz = 0. It follows from the equation of continuity (5.62) repeated here
for 1-dimension

.‘.;% - %l (6.2)
that the soil water content does not change in time (i. e. 96/t = 0 as wel] as
dh/ 3t = 0). In order to satisfy the condition dh/ 3t = 0, we must define a non-
variant hydraulic condition 'at the bottom of the soil column. The simplest
practical provision is a constant ground water level at its bottom. Such
conditions are simply demonstrated by the following process. A rain intensity gp
is constant in time (dqr/dt = 0) and equals the infiltration rate as well as the
flux density in the soil 4 provided that gz < K. In this case, rainfall has been
constant and infiltration has lasted long enough to allow the wetting front to
reach the ground water level, We further assume that the ground water leve] is
kept at a constant elevation by e. g. a drainage system. It is mathematically
convenient to identify the otigin of the z coordinate at the ground water level
from which z increases positively upwards. As a resuit at z = 0. h = 0 and at the
soil surface z = Z, h = hz and ¢ = - gp. Some solutions derived for steady state
conditions approximate non-steady infiltration after a long time has elapsed

when 3g/8t < 0. For example, the development of a h(z) or 9(2)' profile in a

crust-topped soil or in a soil with distinct horizons of different hydraulic

functions and conductivities is practically identical for either steady state
infiltration or the quasi-steady stage of non-steady infiltration after a long time.



6.2..1 Homogeneous Soil Profile

Here, inasmuch as the direction of flow is oriented downward while the
positive direction of the z-axis is upward, the flux density 4 < 0. Equation (5.34)
repeated here is

g=-k(mE (63)

where H = (h + 2). We obtain g < 0 when dH /dz > 0. If indeed, dH/dz = 0, we
have a state of equilibrium with g = 0 and h = -z. The domain of k(z) which
satisfies (6.3) is therefore limited from the left side of the graph in Fig. 6.1by h =
-2 (g = 0) and from the right side of the domain by g = - Ks with dH/dz =1 and
dh/dz = 0. For the determination of h(z) we integrate (6.3) with an appropriate
expression for K(h). For an exponential expression of K(h), see (5.39)

K = K exp{ch)
we obtain for the limith=0atz = 0

K¢ dh

2 h
e [ (6.4)
Ldz 0 g exp{—ch ) + K;
After integration we have
| AR 6.5)
=7 In L + K, explch )}

Solution (6.5) is represented graphically in Fig. 6.2. For measured values of Ks

and ¢, we obtain values of z for a series of selected values of h using the
. appropriate values of Ks/g. We obtain &z) shown in Fig. 6.1 using the soil water
retention curve SWRC. We see in the left graph that the depth of the zone
having dh/dz = 0 increases with increasing absolute magnitudq's of g. Also,
within this zone g =~ -K and 46/dz ~ 0. For exampile, for g = - 04 em/h, (h, G atz
= 300 and 500 cm are (-79.98, 0.3396) and (-80.46, 0.3387), respectively, see the right
hand graph. Hence, if we measure h or @ for a series of steady-state infiltration
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fluxes g¢n intc a homogeneous soil with a water table at great depth, we obtain
Ka(h)= g5} of Ky(€) = 1gn 1, regpectively.

An equation similar to (6.5} is easily derived for a soil manifesting an air
entry value hy when a K(k) function described by (5.40) is used in (6.3). Soil
water pressure head profiles calculated for hy = .20 cm are shown in Fig. 6.3 for
some values of g given in Fig. 6.1. Note that the height of the water-saturated
zone above the ground water level is not constant but rises with an increase of
Iql. And, if g = 0, the height of the saturated zone above the ground water level
reaches only its minimum value, = - hy, see Fig. 6.3. Such cobservations are a
graphical illustration that hydrostatic conditions differ markedly from those
involving systems where water is flowing.

Many additional solutions of infiltration for other expressions of K{h) have
been reported by Kutflek (1984).

6.2.1.2 Layered Soil Profiles

The simplest case is the crust-topped profile. Rainfall frequently destroys s0il
aggregates within a soil surface. Or, if infiltration lasts for a long time, the source
of water is often from a river or waste discharge carrying suspensions of clay or
fine particles which are deposited on the soil surface or within the soil profile.
Each of those processes denoted by sealing, crusting, collimation etc. results in
the formation of a less permeable soil surface layer. Here for the sake of
simplicity, we shall use the term crust for the result of all such processes. The
characteristics of the crust will be denoted by the index 2, while those of the soil
below the crust will be given the index 1, see Fig. 6.4. The origin of the z-axis is
again identical with the position of the ground water level which is kept
constant. The thickness of the soil between the ground water level and the crust
is Ly, the thickness of the crust Ly and the depth of water on the soil surface ho.
For steady-state flow, q1 = g2, and we have

K,(%) = K’(%), {6.6)

o

L2l



6/10

If Kgy » Ksg, and Ki(hy) » Ka(h)) where hy is the value of h at the interface, we

have
aH 4a
(dz), “(dz], ©7
and because H = (h + 2),
) «(2
dz /, dz]z 68)

This condition of a larger gradient of h occurring in the crust (layer 2) demands
a sufficiently small value of by including k; < 0. Because we assume that just
below the interface in the subsoil (layer 1), dH/dz = 1, we can write

g =K (h) (69)

For the crust assuming it remains water-saturated,

h,+h,+L
e |2
q sz( L, ] (6.10)

We also assume here that hsy = 0 and hay = 0. The value of i is obtained by
equating (6.9) and (6.10).

The criterion for h) < 0 is derived from the total head loss between the free
water level on the soil surface and that of the ground water - (ko + L1 + L2).
Inserting this head loss into the modified Darcy equation (5.10) with the
hydraulic resistance R; for each of the two layers, we obtain

R+ R, . {6.11})

The soil below the crust will be unsaturated if Igl < Ks). From (6.11) it can be
shown that the condition for unsaturation below the crust is

6/71

h <L, [gﬂ -1) (6.12)

51

if hay = 0. Because Ly » 0, unsaturated flow below the crust exists anytime the
soil is ponded with water provided hay = 0. The unsaturated condition (6.12) is
also valid for haz < hj. For haz > h;, the bottom part of the crust is also
unsaturated, and #(z) has a curved shape, see (b) in Fig. 6.4. For such cases, the
above approach has to be modified, see e. g. Takagi (1960), Srinilta et al. (1966)
and Bear et al. (1968). Kutilek (1984) provides additional solutions when dH/dz
< 1 below the interface.

Once h(z) is known, we can determine 8(z) in the entire profile. Although
h{z) has to be continuous, &z) is frequently discontinuous at the interface, see
Fig. 6.4. When criterion (6.12) is fulfilled, the soil below the crust will be
unsaturated if ka1 > At provided the SWRC manifests ha.

If a soil profile has n layers (or horizons) with each layer having its unique
value of Ks and K(h), we integrate in intervals identical with the height of the
layers zn. As a practical example, let us assume that the soil profile consists of 5
layers, see Fig. 6.5. The sequence of numbers again follows the positive direction
of the z-axis with the layer in contact with the ground water level being 1, the
next higher being 2 etc. Let us suppose that the soil has a strongly developed Bt
horizon with a very small hydraulic conductivity, our layer 3. If 141 > Ksathen
for layer 3 we find that (dH/dz); > 1, or {(dh/dz)3 > 0. For the other layers dH /dz
< 1 and dh/dz S 0, see Fig. 6.5. The distribution h(z) can be found either
analytically or with the graph in Fig. 6.2. We start with layer 1 as if it were a
homogeneous profile to obtain hy on the boundary between layers 1 and 2. For
layer 2 we find what would be the position of the ground water level to obtain
hy for the given value of 4. Let us call this position §2 2 substitute ground water
level for soil layer 2, see Fig, 6.5. With §; we determine h(z) between 23 ad z3,
and at 72, h = hz. In layer 3 which has the very small hydraulic conductivity, we
assume hg 2 haz and f{z) is linear. 1f indeed hy < haa, we proceed @alytically to
obtain the distribution h(z), see Kutilek (1984). Or, aiternatively, we approximate
reality by a linear relation as we did for a2 > ha3. Note that a linear increase of h
for the sub layer with k> ha or for h > 0 is exact. Having obtained the valu of
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hs, we use in layer 4 Darcy's equation for the saturated flow which occurs in the
domain h 2 has. From the elevation z where h = 0, we follow the same
procedure as that already described for a simple 2-layer soil profile.

Jt follows from the above analysis that the less permeable layer in a profile
acts as a hydraulic resistance which causes the development of a saturated zone
in and above this layer provided that the flux density is greater than Ks of this
less permeable layer. The thickness of the saturated zone increases with g, or for
a given ¢, it increases with a decrease of Ks in the less permeable layer.

In Fig. 6.5, the zone of saturation starts above the top boundary of the less
permeable layer 3 and ends above the bottom boundary of layer 3 provided that
haa=0.Forhaz =20 the thickness of the saturated zone is greater.

The example described above also explains the conditions for a pseudo-gley
formation in layers 3 and 4 during long term steady rainfall, even without the
presence of a water table.

6.2.2 Unsteady Infiltration, Dirichlet's Boundary Condition (DBC)

Assuming that a soil surface is continuously flooded with a negligibly small
depth of water at time t Z 0, the surface soil will be water-saturated. Before the
sail surface is flooded {t S 0}, we assume that the initial soil water content 8=6;
Water supplied to the surface keeps the surface soil at saturation {8 = 6s) but is
never allowed to rise significantly above the soil surface.

Such a situation defines Dirichlet's boundary condition (DBC) for infiltration
into a semi-infinite homogeneous soil. With z increasing positively downward
and z = 0 identified at the soil surface, the DBC is

120 =0 8 =65, (6.13)

B 120 2=0 h = ho, [ (6.140)
or

120 2=0 h=0. (6.14D)

6/13

We use (6.13) when the diffusivity form of the Richard's equation (5.68) is
solved and (6.14) for the capacitance form {5.66). Less frequently, the time
dependent behavior of 8(t) or hit) are defined at the soil surface.

'I'heinitialoond.itionfmtlusimplestcaseis

t=0 z>0 8= {6.15)
Initial conditions were discussed in detail at the beginning of section 6.1. The
initial condition is sometimes considered as a boundary condition with t =0

taken as a boundary similarly to z = 0.

Boundary condition (6.142) has the advantage that it specifies the depth of
water flooding the surface, i. e. the pressure head on the surface. Flooded
alluvium along a river, flooded infiltration in an irrigation basin or in a basin
for tertiary sewage treatment are practical examples of that boundary condition.
Or, late periods of some rainfall events are other examples of (6.13). If a basin is
flooded at ¢ = 0 without additional water being provided, the decreasing level of
water in the basin equals the cumulative infiltration I. Inasmuch as Iis a
function of &, we have for the DBC at z =0, h(l) = [he - I{t)] where h = hoat t = 0.

Infiltration caused by a DBC is frequently demonstrated with data from
infiltration tests using double ring infiltrometers. The infiltration rate is
measured by observing the decreasing water level within the innet ring, or
even better, by measuring the inflow provided from a mariotte flask to the ring
in order to keep a constant water level. The outer ring serves as a hydraulic
buffer zone to minimize lateral flow below the inner ring. As a result, flow
paths below the inner ring are nearly vertical, see Fig. 6.6. However, because a
slight divergence of flow paths in the inner ring cannot be avoided, the
measured data do not represent exactly 1-dimensional infiltration. Generally,
the error is negligible compared with the inaccuracy of field experimentation
and the spatial and temporal variability of the soil hydraulic functions provided
that the soil is vertically homogeneous.
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When distinct soil layers exist in a profile, a strong divergence of flow paths
oFcurs and the assumption regarding 1-dimensionality of the experiment is
violated, see Fig. 6.6c. Hence, the measured data can be evaluated only for the
period up to the time when the wetting front reaches the top boundary of the
lesser permeable fayer.

6.2.2.1 Characteristics of Infiltration

The primary data are measured values of cumulative infiltration I expressed as
[L], usually in cm as a function of time. The values represent the total amount
of water infiltrated into the soil surface from the beginning of the infiltration
test at { = 0. A typical I(t) relationship is a smooth, monotonically rising curve,
see Fig. 6.7. The infiltration rate ¢, = - dI/dt where the subscript o refers to the
soil surface at z = 0. The value of |g,| initially decreases rapidly with time and
eventually approaches a constant value. Fort =0, 1g,] — e, andfort = e, g, =
Foxjtstant. Theoretically, 14,1 = Ks as t — e, see Fig. 6.7. Practically, the
mflltration rate starts to be constant for coarse textured soils only after decades of
minutes while that for fine textured loams is in the order of hours, depending
upon the hydraulic functions of the soil and 6. Infiltration sometimes denoted
as quasi-steady after this time limit will be discussed more fully in section
6.2.2.2. Steady infiltration into a crust-topped profile or into a layered profile can
be successfully analyzed when l-dimensional flow is guaranteed, e. g. by
ponding water on a large area at { = 0 when the ground water level is at great
depth or absent. The shape of 4,(t) is empirically approximated by either a
hyperbolic or exponential curve.

For a solution of the infiltration problem we first search for h(z, t) and from it
we obtain 8(z, {) from the SWRC. Some solutions provide &z, t} directly. Two
examples of 6z, t), one for sand and one for light clay are given in Fig. 6.8. The
profiles are "piston-like”, particularly for the sand. Where § decreases steeply
with z is called the wetting front. The rate of progress of the wetting front into
the sand profile is more than two orders of magnitude greater than that into the
clay profile. As the depth of wetting increases the shape of the wetting front
becomes more gradual, especially for the clay. As infiltration proceeds, the
shapes of 8z) profiles for a given soil become nearly identical. Theoretically, the
shapes are identical as ¢ — . ’

6j15

Integration of the soil moisture profile at time ¢ defines the cumulative

infiltration at time

1=["2d0 (6.16)

which according to (6.15) will decrease as §; increases. The influence of the
initial value of water content 6; is demonstrated in Fig. 6.9 for the light clay. i
8,/ 65 z 0.95, the infiltration rate g, can be approximated by 4,! = Ks. The
influence of the depth of ponding on the soil surface upon go(t) is illustrated in
Fig. 69. For 0 S ho € 2 cm, the influence is negligibly small. For h, = 10 cm, the
value of 14, is increased by 20% for large times and by more than 50% for short
times. These relationships demonstrate how important it is to keep the value of
h, constant and as small as possible in experiments when the DBC (6.13) is

applied.

Solutions to this type of infiltration can be divided into the three classes - (i}
analytical and semi-analytical procedures, (i) approximate solutions and (iii)

empirical equations.
6.2.2.2 Analytical and Semi-Analytical Procedures

Richard's equation in its diffusivity form (5.68) is repeated here for the vertical
coordinate criented positively downward from the soil surface located at 2 = 0

{6.17)

> Z| e &

a8 _d ] dKd8
2-2fow)- 4%
This equation, sometimes denoted as the non-linear Fokker-Planck equation
(Philip, 1969), is non-linear owing to the strong dependence of D and K upon 6.
The first term on the right-hand-side of {6.17) describes the transport of water
owing to the initial degree of unsaturation of the soil profile. Therefore, as 6
increases, the importance of this term decreases. The second term on the right-
hand-side of (6.17) originates because the gravitational potential. Hence, it is
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called the gravitational term and describes the flow of water owing to the force
of gravity.

Philip's (1957) solution of (6.17) is based upon the idea of separating the
infiltration into its two components - those caused by the matric potential force
and by the gravitational potential force. The idea is illustrated in Fig. 6.10. In the
first step, he neglected the gravitational force and obtained a solution for
horizontal infiltration in the form x(8, {). Here, the dependent variable was
changed to that of the horizontal axis x. Next, he assumed that the real (8, ) for
vertical infiltration was the horizontal component x(8, t) plus a correction , see
Fig. 6.10. The correction owing to the gravitational force is time dependent. The
influence of gravity upon infiltration is shown in Fig. 6.10 when 6; is small. For
short infiltration times its influence is very small, but with time it increases and
for very large times, the force of gravity dominates the process. Hence, we first
study horizontal infiltration.

Our horizontal soil column, initially at an unsaturated water content 8;, has
its end at x = 0 maintained at water saturation 8s. Hence, for

=65 (6.18)
t=0 x>0 0=6; (6.19)

we solve {6.17) without the gravitational term

2-glowz]

It is only here for a homogeneous soil (i. e. not layered) that the gradient of @
represents the driving force of the process. When D is a constant in (6.20), the

{6.20)

solution is according to Carslaw and Jaeger (1959)

e -8 _ x '
- 5.-0, erfe (2 Df) (6.21)

)

€.10,
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Wn D .is a function of 8, we transform (6.20} into an ordinary differential
equation using the Boltzmann transformation. The transformed equation has a

new variable 7 instead of the two original variables x and {. The new variable 7
defined by the Boltzmann transformation

ne ) =xt~V? (6-22)
leads to

ﬂ = -3 n

™ xt e % {6.23)

-a-ﬁ = Q iﬂ- = - id_e

o  dn ot 2t dn (6.24)

ﬂ = t-iﬂ

ox (6.25)
and

Heeg]-slPendiz

= -;;[D (e )% t“”] ¢ o
From the above (6.20) transforms to
The transformed boundary conditions are
=0 8 =6 rl (6.28)
N= o =6 {6.29)
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The solution for which we search is simply 8&(n), see Fig. 6.11. Measured soil
water profiles 6[x(t)], 8lx(t2)), 6{x(f3)] ete. are thus transformed '1'nt0 :_,l'zle unigue
8(n) relationship by merely dividing x by t¥? for the first profile,t;", for the

second profile etc. Note that for t = 1, x = 7. Hence, the physical reality of &n) is
the soil water profile 6(x) when the infiltration fime is unity.

Philip (1960) and Kutflek (1984) have shown for which analytical expressions
of D(#) analytical solutions of (6.27) subject to (6.28) and {6.29) exist. Because it is
exceptional that any of those analytical expressions accurately describe Difofa
real soil, an iterative procédure proposed by Philip {1955) is commonly used to
calculate 8(n) from measured distributions of D versus 8.

With the content of infiltrated water being denoted as cumulative
infiltration [,

I= j:!xde (6.30)
or with (6.28),
[=]'n(e)t"de (6:31)

Inasmuch as n(6) is unique for each soil, Philip (1957) introduced the term
sorptivity 5 [LT¥/2]

s={"n(6)as (6.32)
and

1=5¢Y? ‘ (6.33)

Because the infiltration rate

g, =dl /dt, (6.34)
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we have

q. =% 5t (6.35)

Here, we rote that the sorptivity is physically the cumulative amount of water
infiltrated at t = 1, and at that ime, the infiltration rate has diminished to one-

half the value of 5. Sorptivity depends not only upon the D(#) function but
upon 6. The value of 5 decreases with increasing 6, and as 6; — 65, § 5 0, see

Fig. 6.12. When 5 is measured for a particular #;, we can linearly interpolate
between 8; and # in order to obtain a first approximation of 5 for ;2 > 6;1. A
more laborious, exact procedure is described by White and Broadbridge (1989). If
8, < 85 is used in (6.18) instead of s, we proceed in the same manner to derive

5. However, the resulting value of 5(8; 6,) may indeed drop substantially from
that of 5(8, 6s).

Sorptivity is an integral part of most investigations describing vertical
infiltration. As a first approximation of the solution of (6.17) subject to (6.18} and
{6.19), Philip used (6.20), the solution of (6.21) for horizontal infiltration, i. e.
z1(8, 1) = x{6, ). He corrected this approximation with the term y,i.e.z=21 +y.
However, because an exact value of y cannot be obtained, its approximation ¥,
defines another correction u, i. e. y = y1 + u. Again, instead of an exact u we can

only find still another estimate u; etc. Hence, Philip obtained the infinite series
solution

(0, )=n,(8)t Y+ ny (0t + 0y (0 )Y+ + n (8)t"7 (636)

where the functions n1, 12, 13, = fn are defined with D{8), K(6) and 11,,.1. The

procedure for computing terms 7, is described in detail by Kirkham and Powers
(1972).

inasmuch as the cumulative infiltration / according to (6.16) is’

L]
I= j'( zd6 . (6.37)
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Philip formulated analogously to the sorptivity equation (6.32) for horizontal

infiltration, the following equation from (6.36)

1=5t‘”+(,4.,+x,.)z+A,t Wy AL (6.38)

where

A, =["nl(0)d0 n=23 -

and K; is K(8). Note that kit expresses the cumulative water flow with dH/dz =
-1at 8 = 6, Thus, we understand physically that boundary condition (6.19} can
be kept only if we impose a steady flux density g, = K(6i) for z 2 0 within the

semi-infinite column.

The series (6.38) converges for short and intermediate times of infiltration
and the infiltration rate go(t) obtained by differentiation is

q, =%St ““+(A,+K, ) +%A,t Vi +~-+%A.f Ml (639)

(6.38) does not converge. Inasmuch as the shape of the wetting

For large times,
the wetting front moves downward at a

front remains invariant at large times,
rate

= [-—-——-K‘ K, ) (6.40)

while the infiltration rate for t — == is

g, =K. (6.41)

Equations (6.40) and (6.41), commonly called the infinite time solutions, are
‘theoretically traveling wave solutions (Philip, 1969).

!
|
i
i

6lat

The times for which (6.38) or (6.39) continue %o converge was found to range
broadly from 0.67 h for sand to 250 h for light clay (Haverkamp et al., 1988).
Similarly, the times for which the infinite time solition is applicable varies
widely from approximately 100 min for a siit loam (Nielsen et al., 1961) to about
10° min for light clay (Kunze and Nielsen, 1982). Piece wise solutions for 1-
dimensional infiltration have been discussed by Philip (1987).

In order to obtain an intermediate time solution, Swartzendruber (1987)
adjusted Philip's time series solution of 4 to apply between the limits t — 0 and
t = ee, Inasmuch as the solution for infiltration into linear soils as well as
some approximate solutions lead to exponential forms of I(t), Swartzendruber
proposed intuitively the form

! =;;S'[1-exp(—A.t Vo Bt~ Cr Y — )|+ Ket (6.42)

where A,, B, C,, - - - are constants depending upon the soil hydraulic functions
as well as 6; and 8s. The time derivative of {6.42) gives the infiltration rate

5
7, =i—°[1~exp(—A,t"" ~B,t - C,t ¥ -

: [AT: V4B, + -‘;i CtV+ )] + K (6.43)

' Parlange (1971), realizing that Richard's equation originated from a
combination of the Darcy-Buckingham equation and the equation of continuity,
also obtained a solution His original procedure consisting of iterative processes
was gradually corrected by Cisler (1974) and further modified (Parlange et al,
1982, and Parlange et al., 1985) to its present form. The procedure, based upon an
integral moment balance (Raats, 1988), uses a double integration of the equation
of continuity (6.2). The starting point is ‘

]

Jila-a.)ez = % [ (e-8.)e (6.44)
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When the diffusivity form of the Darcy-Buckingham equation was combined
with (6.44), Haverkamp et al. (1990) using two approximation steps obtained two
well behaved equations. Owing to this contribution of Parlange and
Haverkamp, we call them the P-H equations. In their dimensionless form they

are

and

where

and

The value of hw is the water entry value on the wetting branch of the SWRC.
After I* and t* are computed for chosen values of ¢*, all three terms are

¢laz

1-7r

. 1 Y
"= {(1=-2y)Inj 1+
( ”n[ q,'-1]+q;-1

N
" E

Z(KS —Kl)
(1K) S*+2Kh, (8,-9,)

—
.
H

2(K, - K, )t
ST+ 2K, (6,-6,)

_ 2K(h,~hy)(85-86,)
ST+2K h,(8,-6,)

transformed back to the dimensional forms 1, ¢ and ¢.

The integral method can also involve a mass balance formulation where

(Raats, 1988)

q,

(6.45)

(6.46)

6/23

[1a (Y -a)at = |z (0.t )ao (6.47)

which is also obtained by integrating the equation of continuity. Philip (1973)
and Philip and Knight (1974) managed to reduce the number of independent
variables of the infiltration problem by using a guessed shape for the ratio of
flux densities /g, The main idea of this "flux-concentration relation” method
is explained in more detail in section 6.2.3.2.

The parameterized flux density F related to the parameterized water content
8g for horizontal infiltration is

F(6pt) =£: (6.48)
or with (6.32)
['n(e)as
6;) = W (6.49)
where
g, == 6,

6= @

Relation {6.49) is the ratio of the partial and total sorptivities calculated from
(6.32) and illustrated in Fig. 6.13. F(6g, 1) is the guessed shape which is inserted
into the diffusivity form of the Darcy-Buckingham equation to obtain

F(8e.t) =—2q(ﬂ§. {6.50)

With
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1
. =_St-m
=3

the sorptivity is (Philip and Knight, 1774)

s =[zj'.‘.[_)_r8—:;(ao(o)“} .

If F{(@g) is known, the above solution is available. Inasmuch as the time
dependence of F(6z) is neglected, the solution is approximate. Philip (19¥3) has
dfemonstrated that F(8g) can only exist within a relatively narrow domain. In
Fig. 6.14 it can be seen that the domain is limited on one side by the curve which
represents a linear soil having a constant D and from the other side by the
straight line (F = 83) which is descriptive of a soil having a D{#)} equal to a Dirac
S-function. For 6g =0, F = 0, and for 8g = 1, F = 1. These two soils should
represent the extremes of existence of D{8) for real soils. Although the difference
between the F(8z) relationships for these two soils appears slight in Fig. 6.14,

their soil water content distributions for horizontal infiltration are strikingl
different, see Fig. 6.16. &

(6.51)

For vertical infiltration (6.48) is modified to

Fia,,t ~4-K
Ont) =3 =%

3

(6.52)

and the F(6g) relationships for the two extreme soils are given in Fig. 6.15

The solutions for the two extreme soils have the typical features of a
~ theoretical treatment with no direct applicability to reality. Linear soil

characterized by a constant D and a K proportional to 6g leads to h be'm'
proportional to Infg - a relationship for a SWRC which is not realistic for soili
or other porous media. It would appear that for 5-function soils, infiltration
should be easily approximated owing to the steep rise of D with' 6z and that
F(Br) = 8r looks like a good approximation for the ratio of flux densities
However, when the sorptivities computed for &function soils were compare(:i

&

1

0

i

S
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to those obtained analytically for soils having a very steep D(#6), relative errors
exceeded 20% (Kutflek and Valentové, 1986). Therefore, for most soils the
iterative procedures proposed by Philip and Knight (1974) should be adopted.

In order to*obtain solutions for models characteristic of real soils, proper
functional relationships D(8), K(8) and h(8) are required. To obtain them
Richard's equation is Linearized with transformations, €. g. those of Storm or
Hopf and Cole. A review of such solutions identifying the authors of each
transformation is provided by Raats {1990).

6.2.2.3 Approximate Solutions

The solution of the infiltration process, approximated physically or
mathematically, is usually not kept wholly within either category but relies
more heavily upon one or the other. A physical approximation is dominant in
the procedure of Green and Ampt (1911) while mathematical approximations
prevail in remaining, more recent procedures.

Green and Ampt (1911) simplified a real soil water profile of infiltration to a
step-like profile, see Fig. 6.17. In this model, water penetrates into the soil like a
piston which proceeds with time to greater depths. Below the abrupt, horizontal
wetting front, the soil remains dry at its initial value of 8 = 6. In the saturated
upper part of the soil, flow is now simply described by Darcy's equation. If at
time ¢ the position of the wetting front is z = Ly (the thickness of the soil
saturated with water is also Ly, the infiltration rate is

q.(t)=-"s{t?t('f;f;o(tn}d

where h, is the pressure head at the soil surface (i. ., the depth of water on the
surface). Note that Lf is time dependent. The term Ay is the soil yater pressure
head at the wetting front owing to the unsaturated condition of the soil below z
with hy < 0. If there were no soil below z = Lyand water was falling out of the
saturated soil column (h = 0 at z = Ly), the water flux throughout the column of
thickness Ly would be

) {“_L';:J;(é.%_’_"i} (6.53)
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9, =4 =Ks—L—M
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see Fig. 6.17. Because there is dry soil below z = Ly, its unsaturated condition
causes the flux to increase. Green and Ampt added the term ks to the driving
force to account for the extra force acting at the wetting front. Neuman (1976)
has shown that

1
b= Jo K ) dh (6.54)

!

and

hy = KLS J,ple)de (6.55)

Or, using the Parlange (1975) solution

I;,[ss -8{h )-—29.IK (n )]dh (6.56)

8- 6, K,

h, =

(SRR

Obviously, without knowing the original publication of Green and Ampt,
Budagovskij (1955) based his monographic study upon the same principle.

Theoretically, the procedure is based upon the expected shape and similarity
of the 6(z, 1) profiles. Philip (1957, 1973) showed that the following Green and
Ampt approximation is an exact solution only if [}{#8) is expressed as a Dirac &
functon. Considering (6.53), we know g, = dl/dt and I = LyA® where 46 = 65 - 6;,
and hence,

(6.57)

When the force of gravity is neglected, i. e. for horizontal infiltration,
substituting (6.57} into (6.53), we have

5it F
%L A8 = K [h—h:(—hﬂ (6.58)
and after separating variables
\:’L, dL, = [ K (_’30_5:“9_";,) dt (6.59)
After integrating,
L, = {21(5 ["_0;_;'1_}]”2 Y (6.60)
or with Ly = 1/A8,
1 =[ak(n, - )a8) (6:61)
Comparing (6.61) with (6.33), we obtain the sorptivity §
(6.62)

s =[2x,(n, - ,)86)"

d to estimate absorption during a brief initial

Equation (6.61) can also be use :
quation (6.62) defines approximately how §

period of vertical infiltration. E
depends upon §;.

When gravity is not neglected, (6.53) becomes

202k 2 {ﬂ)%%ﬁ} (6.63)
!

After separating variables and integrating between the limits (0, 1) and (G, Ly), we

obtain
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t=%:‘l.,-(h,-h,)ln[1+m“- (6.64)

Notice that this solution does not allow I(t) to be described explicitly. Such an
implicit transcendental function is typical for all solutions embracing the Green
and Ampt approach even when it is not app&ent in some more sophisticated
developments. When {6.64) is transformed with dimensionless terms

Kt

T ek h,) (665

and
. I
~a8{h, - h,) (6.6%)
we have
£ =1"-In(1+1°) (6.66)

which can be evaluated graphically {see Fig. 6.25) or by computing ¢ for a series
of values of Ly with I = LS.

Because the procedure is simple, the Green and Ampt approximation has
been widely used in research as well as in the solution of many practical
engineering problems. It has also been applied to the description of infiltration
into layered profiles and those having a crust surface. However, we have to
keep in mind that real soils do not manifest a 5-function D(8), and hence, the

. method offers results of disappointingly poor accuracy. For example, the error
involved in predicting I(f) or go(t) can approach 30 %. Its use should be limited
to those wanting only a convenient, rough estimate of infiltration.

'
Within the second category of approaches, Philip's (1957b) algebraic
infiltration equation is the most common. This approximate equation is merely

£/29

the first two terms of the series solution (6.38) with the cumulative infiltration
I{t) being

I =5tV + At - (6.67)
and the infiltration rate g, (= dl/dt) being
1,0
g =g St A. (6.68)

These equations like their parent time series solution (6.38), are applicable to
relatively short times. The magnitude of Ais (Ag + K; + £} where € is the
truncation error for having used only the first two terms of (6.38). It was
expected that A be related to K5 by a simple, sufficiently accurate relation A =
mKs. Although the most frequently used value of m is 2/3, its value ranges
between 0.2 and 0.67 (Philip, 1987). However, detailed studies show that m
depends upon both 6 and time and sometimes exceeds 2 theoretical upper limit
of 2/3. The error of estimate of Ks derived from A could theoretically reach
about 30% in a relatively dry homogeneous soil (Kutflek et al., 1988). Therefore,
{6.67) cannot be reliably used for estimating the value of K5 from infiltration
tests.

Sorptivity § in (6.67) and {6.68) is an estimate of the theoretical value of
sorptivity for a soil having initial water content #;. The truncation error
influences the estimated value of the sorptivity to a lesser degree than that of A.
Thus, § evaluated from the early stage of infiltration is considered a reliable
value (Kutflek et al., 1988).

In order to reduce the truncation erTor, Kutflek and Kreta {1987) proposed to
use three terms of the time series solution (6.38)

J =GtV 4 Cyt+Cyt™"? , (6.69)
where C; is the estimate of sorptivity S, C2 the estimate of (A2 + K;) and Cj the
value of (A3 + €1) where g is the truncation error for having used three terms of
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{6.38). If we approximate the limiting time for which the truncated series {(6.69)
converges as the value of t when dg,/dt -+ 0, we have

C
fa = 38 (6.70)
And, if we make an additional approximation that go(tim) = Ks, we obtain the
estimate

K, = (3C, c:,_)”’ +C, (6.71)
Simplifying (6.42) in a manner similar to (6.67), Swartzendruber (1987)
suggested using

! =-Z'5—:[1—exp(-A,lm)]+ Kt (6.72)

Substituting 4Ks/35 for A, into the above equation, we obtain the two-
parameter infiltration equation proposed by Stroosnijder {1976). On the other
hand, if we consider only the first four terms of a series expressing the
exponential term exp(-A,t}/ 2), we obtain an equation identical to (6.69).

Equations (6.69) and (6.72) have similar disadvantages. Parameters Cz, C3 and
A, are not simply calculated or predicted from known hydraulic functions K,
K{h) and @(h). When those equations are used for estimating 5 and K¢ from
measured values of J{f), the estimates are reliable only for a strictly
homogeneous soil column with an initial condition d8;/dz = 0. When the
equations are applied to field data, significant, intolerable errors are sometimes
apparent. For example, when Ks is being evaluated, physically unreal values of
Ks < 0 are sometimes obtained {Kutilek and Kreja, 1987, and personal
communication from Kreja, 1989).

il

Brutsaert {1977) also began with the horizontal solution of Philip (1957) and

subsequently sought a correction for the gravitational force. He obtained

6131

s? 1
1=Kt +=——31- (6.73)
* BK;‘ [1+(Bl(st”’)/S]zl
and
1 1
g, =K; +=5t : (6.74)
727 | e (Brt)/s)

He considered values of B = 1/3,2/3 or 1 each descriptive of physical reality, but
for most practical purposes, recommended B = 1. Values of I{t) computed with
(6.73) are nearly identical to those from (6.38) when the hydraulic functions of
the soil are known. And, inversely, estimates of S and Ks from the experimental
data using (6.73) appear more reliable than those using other approximate
equations based on comparative theoretical errors.

From this and the previous section, we conclude that both {1} and g,(t) can be
quickly and reliably computed for trivial initial and boundary conditions with
(6.45) and (6.46) or (6.73) and (6.74}, respectively. The value of § is
advantageously obtained using the approximate expression of Parlange (1975)

s =[(es -e,)j:‘o (6)do + j:‘(e -)D (9)de] e

or the iterative procedure described by Philip and Knight (1974) or by White
(1989) for the solution of (6.51).

From the authors' experience, increasing the number of parameters brings a
theoretical improvement especially when soil hydraulic characteristics are
evaluated from infiltration tests. For example, if we deal with approximate
equations based upon the infinite series solution, the truncation error is
reduced with an increased number of terms. However, equations with three or
more parameters are more vulnerable to the field soil not being homogeneous
and the boundary conditions deviating from the trivial ones assumed in the
theoretical development. This vulnerability is realized when a number of
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physically non-realistic parameters are obtained {e. g. a negative value of Ks in
the inverse solution}.

6.2.2.4 Empirical Equations

Historically, empirical equations have been used to describe a decreasing
infiltration rate g, as a function of time ¢. The shape of a smooth curve drawn
through measured values of go(t) was simply compared with that of an analytic
function. Inasmuch as both equations and experiments were empirical, it is
useless to try to physically interpret the coefficients of the equations. The
coefficients have the character of fitting parameters only with no scientific merit
(Haverkamp et al., 1988, and Kutflek et al., 1988). On the other hand, because of
their popularity in the literature and their usage persists, we briefly present
them here.

Kostigkov's (1932) equation of go(t) is the hyperbola
g, = t™" (6.76)
with

€y, (-a)

J=—=1t

6.77
o 6.77)
where ¢y and @ are empirical coefficients The value of ¢} should equal go1, the
infiltration rate at one unit of time (usually 1 min), and 0 < @ < 1. The equation
does not describe infiltration at large times inasmuch as g, — 0 when t = .
Mezencev (1948) overcame this inconvenience by shifting the go-axis

g, =c;+cyt™ (6.78)

with

f (1")

I =c,t+ﬁc, (6.79)

£/33
where ¢3, ¢3 and § are empirical coefficients. With the shift, as t < =, ¢3 3 g,,

the constant infiltration rate when quasi-steady infiltration is reached, and
hence, o = Ks. The infilration rate after the first time unit g, = (c2 + ca).

Horton's equation (1940) represents an exponential decay of g,(t)

q, =c +ceexp(-7rt) {6.80)

with

I=¢d +C?5[1-exp(— i )] (6.81)

where ¢4, cs and 7 are empirical coefficients. In contradiction to the theory of
infiltration for a DBC, g, has a finite value at { = 0. As t 5 =, ¢4 — 4o Which
yields a value of ¢y = Ks. With this approximation for Ks, the value of cs = [g0(0) -
Ks] where 4,(0} is g, att = 0. Inasmuch as Horton derived his equation for
infiltration of a high intensity rainfall, the physical objection against a finite
value of g,(0) is largely eliminated as we shall see in the next section.

Holtan's equation (1961} for a decay of ¢, with I is

g, =c,(W-1)"+¢, {6.82)
where ¢g, ¢y and £ are empirical coefficients, ¢7 = o, W is soil water storage
above an impeding layer and &, not an integer, is most frequently greater than
unity. Equation (6.82), incorporated into the USDA Hydrograph Laboratory
model USDAHL, has empirical coefficients related to the soil mapping units in
USA (Holtan and Lopez, 1971).
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6.2.3 Unsteady Infiltration, Neuman's Boundary Condition (NBC)

When we describe rainfall infiltration, we consider that the REV is defined at
the Darcian scale. Therefore, we do not describe individual raindrop events, but
consider the rain as a continuous flux with the intensity of the rain ¢, being the
flux density passing either totally or at least partially through the surface of the
soil. The boﬁndary condition at z =0 and t 2 0 is formulated by the Darcy-
Buckingham equation (5.31)

g =-K %H (6.83a)

or in diffusivity form (5.68a)
qo=K(6)—D(9)% {6.83b)

Condition (6.83), called Neuman's boundary condition, describes not ondy
rainfall infiltration, but infiltration caused by sprinkler irrigation or by a special
flux controlled technique, e. g. by a peristaltic pump providing a constant flux
through a membrane placed upon the soil surface. For drip irrigation, we have a
2-dimensional problem with boundary conditions appropriately modified. Field
measurements of infiltration with boundary conditions (6.83) are usually
performed with rain simulators, see a review of Amerman (1983). Nozzles or
hypodermic needles are used to produce drops similar to raindrops at a certain
height above the soil surface. Regardless of how boundary condition (6.83) is
achieved, the initial condition is kept the same as that for the DBC.

6.2.3.1 Description of the Process

We denote this description into the three categories (i) constant rain intensity g,
> Ks, (ii} constant rain intensity g, < K5 and (iii) rain intensity g,(¢). In all three
categories soil water profiles #z) at intermediate times do not resemble z)
during early stages of infiltration. The distinguishing feature is that the soii
water content 8,() increases at the surface with time.

635

-7
Constant rain intensity g, > Ks. The value of the soil water content of the @

surface §, increases steeply with time until it reaches s, see Fig. 6.18. The greater
is gy, the steeper is &,(¢). If rain continues, water ponds on the surface and the
start of ponding is called ponding time t,. i surface runoff is prevented, the
depth of water on the surface fi,(t) increases with time and 4, > O for t > tp. With
the increase of &, being time dependent, dh,/dt < q,. The shape of the soil water
profile at t < t', depends upon both g, and the hydraulic functions of the soil, see
Fig. 6.22. For ¢ = 1, the thickness of the saturated zone Ly extending below the soil
surface is (Rubin and Steinhardt, 1964)

L, =a [h‘K‘J (6.84)

qr_KS

where a is an empirical parameter. For t 2, the soil water profile §(z, )
resembles the profile with a DBC, i. e. with water ponded on the soil surface.
Hence, we specify the boundary conditions as follows

4, =K(9)-D(8)% z =0 0<t <ty (6.85)

8 =85 z=0 t2t, (6.86)

or, more exactly

h=0 z2=0 b=t (6.87)
and either

h=0 z2=0 >t (6.88)
or

= hylt) z=10 t >t (6.89)

Ponding time t, separates the infiltration event into two different periods. The
first is governed by the NBC (6.85) while the second is governed by the DBC
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(6.86) or (6.87) to (6.89).
6.2.3.2 Approximate Solutions

For an approximate intuitive derivation of f, we compare infiltration for 2 DBC
with that for # NBC. The parameters will be indexed by D for DBC and by N for
NBC. Rubin ('1966) has shown that the ponding time ¢, decreases with g, and
that ¢, > ¢, where t; is the intersection of g, and gp, see Fig. 6.19. In order to
satisfy boundary conditions {6.85) and {6.86) as the NBC transforms to DBC, we
assume the soil water profiles &z, b)) and &z, t,)p are identical. Hence, In(ip) =
Ip(ts). The cumulative infiltration is also

(6.50)

[Fa.i)at= [ a0ty e
With q being continuous, we recognize that
4.(t,) = wolt.) (6.91)
and for a constant value of g, we obtain
(6.92)

1
ty =;1,"J: dp () dt

where 1, is the time at which ¢, and gp intersect. Graphical interpretation of

(6.90) and (6.91) is given in Fig. 6.19. With gp(!) expressed by Philip's
approx mate algebraic equation {6.68), Kutflek (1980) obtained

SY 2 -1
t =[__] Sl (693)
T ONAJ aQ(Q-1)
where Q° =g,/ A. Similarly, gp{t) from other approximate solutions can be used

to calculate fp.

Att < t, the infiltration rate g, = q,- At ! > t, the infiltration rate can be
approximated by shifting qp(t) by {8 - t2). With (6.92) and with

6.19

£l

b, = (i]‘ 1 (6.94)
%) Ty
we obtain the infiltration rate q,(2) for ¢ > ¢,
i
! 1 gt BV
' ==5|t - A. 6.95
o3 mz—(ﬁﬂ ' o

All of the above approximations as weil as many others in the literature have
two disadvantages. First, the equality IN(tp} = Ip(t;) is just an assumption
teoretically derived by Mis (1980) and the same is for post-ponding infiitration
rates when they are computed as simple translations of the rate gp. Second, the
simple explicit formulation of qp{t) is, in reality, only an approximation.
Therefore, the purpose of our above discussions was to illustrate as simply as
possible the nature of infiltration under two different boundary conditions. The
equations can be used for rough engineering estimations provided that the soil
surface quality is not altered during the process, see section 6.2.4.1.

Constant rain intensity q, < Ks. Here, the value of the soil water content on
the surface 84(t} increases similarly to the first case but its limiting value is 6 <
8s. Inasmuch as dH/dz — -1 at the soil surface as t = o, we obtain a quasi-
steady infiltration rate g, = g, = K(8). And, the value of 8,(t) approaches &
asymptotically in time, see Fig. 6.20. The shapes of the soil water profile vary
with both time and infiltration rate. In Fig. 6.22 we see the importance of the
hydraulic characteristics of the scil for a constant infiltration rate at different
times. This example from Broadbridge and White (1988) is for two different
forms of the SWRC which are derived from the solution having an empirical
coefficient C. The influence of the value of C upon the shape of the SWRC is
shown in Fig. 6.22. The details of the solution are described by the authors.

Non-constant rain intensity 4,(t} When q,(?} is strongly time dependent as it
is in a great majority of heavy rainfalls, we obtain an estimate of !, using the
procedure described for a constant vatue of ¢, > Ks. Equations (6.90) and (6.91)
can be solved iteratively. Or, if ¢/{t) is capable of being expressed as a probability
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distribution function, we can solve them analytically. Regardless of the
procedure, we recall that the solution remains only an approximation owing to
the use of gp(t). Figure 6.21 shows the example of the graphical solution of (6.90)
and (6.91) for ponding time fp. By simply shifting 4p by (¢, - !;) we obtain
estimates of the infiltration rate for ¢ > t, and the hydrologically effective
rainfall. The same priciple was applied for a histogram of rainfall intensity.
Details regarding the construction or computation are described by Peschke and
Kutilek (1982).

White et al. (1989) proposed the approximate analytic solution

2 t
=i Miin 2 () (6.96)
q’ Ks qr tp - KS

where 7, is the mean ¢, during the time interval (0, tp} and 0.5 < M < 0.66. More
than a decade earlier Parlange and Smith (1976) had derived a very similar
expression. Both expressions have features like those of the Green and Ampt
solution. In order to avoid redistribution, these expressions require ¢.(t) not to
decrease, see section 6.3.

6.2.3.3 Analytical Solutions

If we neglect early approximate solutions based upon the Green and Ampt
approach (e. g. Mein and Larson, 1973), four scientists eventually achievell an
analytical solution for #,. Parlange (1972) provided the initial effort which was
subsequently modified by Philip {1973) and by Philip and Knight (1974). Philip
and Knight utilized the concept of "flux concentration relation” [for
convenience, (6.52) is repeated here]

F(6,.t) =%

and neglected its ime dependence which is even weaker than that for the DBC.

When the above expression for F(g, f) is inserted into the diffusivity form of
the Darcy-Buckingham equation (5.68a)

e /
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q =—D(6)%+K(G} (6.97)
we obtain with g, =g,
'€F(8,)(q, -K)-[k(8)-k] =-D(e)g. (6.98)
Integrating from z = 0 yields
r.m D(8)de ©95)

PRl FO)G -K)-[K@)-K]

where 6,(t) remains unknown. Integrating the equation of continuity (5.65) with
4, constant between the limits {0, t) and (0, 2) gives

L

-(g-K)t=[" zde (6.100)

(AU

Combining (6.99) and (6.100) and integrating leads to

2,(1) (9 -8 ) D (O)de
=K )t = (6.101)
g ) I., F(8,)(4, - Ki)_[[((g] - K.—]
From (6.101) the evolution of the water content of the soil surface 8.(t) is
ascertained. When we know #§, for a particular time ¢, we compute the soil water
profile &(z) from (6.99). If g, > K5 we compute the ponding time tp from (6.101)

1 0 (8~6)D(6)d8
L= {6.102)
Tk b Fa - £)-K6) K]

A detailed step-by-step development of the procedure shows that the authors
treat component equations of the Richards equation and integrated the Darcy-

Buckingham equation by using a guessed shape of the flux concentration
relation F(6g).
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Proper judgment for an appropriate value of F(8z) is critical. Philip's (1973)
calculations of F{8g) for horizontal infiltration into linear and &function soils
lead t» approximations for early stages of infiltration limited to values of g, »
Ks. Another approximation for a constant flux infiltration was found assuming
F(Gp) = 8y with 0.8 s n S 1 (Kutlek, 1980, Perroux et al., 1981, and Boulier et al.,
1984). In geﬁeral, errors associated with the uncertainty in F(fg) are less than
those owing to our uncertainty in estimating D(6). Considering the joint
development of (6.102), the procedure should be called the Parlange-Cfsler-

Philip-Knight (PCPK) method' see our introductory remarks and comments to
(6.44) and (6.47).

Morel-Seytoux (1982) also provided an acceptable approximation for a
constant intensity rainfail. For a variable rainfall his solution is restricted to
soils having K/Ks = 6; and to that initial part of a rainfall when its intensity is
increasing with time. His method cannot be applied to the receding part of
rainfall inasmuch as the procedure does not consider 8, decreasing as water
redistributes within the profile. Generally, infiltration stemming from a
variable rainfall can only be accommodated by numericai procedures.

The most versatile analytical solution of constant rate infiltration was
published by Broadbridge and White (1988). They allowed the soil hydraulic
functions to exist in broad limits between those of linear and &function soils.
The hydraulic functions typical of real soils are expressed by a simple, free
parameter C which is easily measured in the field. A detailed description of the
procedure involving Kirchoff, Storm, Hopf and Cole and Laplace
transformations is beyond the scope of this book. Their strictly analytical
solution in parametric form given in Fig. 6.22 is most useful for testing
numerical schemes. Moreover, the application of their solution to practical

examples contributed to our knowledge of infiltration discussed in the previous
section.

Numerical solutions have been reviewed by Vauclin et al. (1979) and van

Genuchten (1981). Among improvements provided in the last decade are those
of Mls (1982).
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6.2.4 Field Infiltration

When field infiltration tests are performed and evaluated, we meet a complex
set of effects not fully accounted for by exactly defined infiltration equations.
These effects more or less influence the observed data and the applicability of
infiltration theory to runoff hydrology, irrigation and other practical domains
involving infiltration. Some of these effects will be discussed.

6.2.4.1 Soil Sealing and Crusting

During ponded infiltration tests (DBC), the abrupt contact of the soil surface
with excess water causes weak aggregates to disintegrate and slake, The
migrating smaller particles quickly form a seal on the soil surface within a short
period of only a few minutes. The slaked clay particies are gel-like and exhibit a
thixotropic behavior not yet fully studied in detail. We expect in the presence of
mono-valent cations that this peptization of clays leads to the separation of
individual sheets of clay minerals that subsequently reorient into horizontal,
parallel configurations that tend to seal the soil surface causing an extremely
small value of Ks. Bi-valent cations allow the clay sheets to remain coagulated
and in a face-to-edge configuration. Hence, the value of Ks of the seal for bi-
valent cations is larger than that for mono-valent cations, but nevertheless
orders of magnitude less than that of the original soil. The value of Ks of the
seal and its thickness are both time dependent. The formation and quality of
this seal are major factors responsible for the difference in infiltration rates
between structured and structure-less soils, see Fig. 6.23. Surface sealing is not a

rare phenomenon - indeed, it occurs with virtually all arable soils during
ponded infiltration.

During rainfall infiltration, the slaking of aggregates is enhanced by the
kinetic energy of the raindrops. The impact of raindrops upon the soil surface
can be compared to a micro-bombardment. The drop after hitting the soil forms
a micro-~crater with some of the segregated fine soil particies relocating to clog
pores and the remainder washed deeper into the soil with the infiltrating water.
Inasmuch as the ponding time differs from one point to another, suspended
clay particles are transported to small puddles and unevenly deposited across
the soil surface. During the subsequent dry period after the rain, the newly

aa
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formed seal consolidates and forms a crust. With repetitive rainfails the process
of sealing and crusting eventuaily forms a crust-topped soil. For such a soil
crust, McIntyre (19582 and 1958b} defined two layers - a compacted thin layer
called a skin and a less dense "washing-in layer". For an originally undisturbed
soil having a value of K5 = 36 mm/h, he reported 2 0.1 mum thick skin having a
Ks = 0.018 mm/h and a 1.5 to 2.5 mm "washing-in layer" having a value of K5 =
0.115 mm/h.’

Mualem et al. (1990) defined two types of crusts. Depositional crusts are
formed by fine particles settling from a suspension reaching a depositional site.
The scale of this type of crust is related to the scale of observation. Structural
crusts are caused by the destruction of soil aggregates exposed to the direct
impact of raindrops as we discussed in the paragraph above.

Soil surface seals have relatively large values of bulk density pr. The rate of
increase of pr depends upon the kinetic energy of the rain, nature of the soil and
its aggregates and initial values of bulk density pri. The smaller is pr;, the larger
is the rate of change of dpr/d¢. Similar relations hold for K¢ and other hydraulic
functions of the seal.

Seal formation is more dependent upon rainfall energy than upon
cumulative rainfall. Rainfall energy is closely correlated with rain intensity. The
kinetic energy of rain which induces seals and crusts ranges from about 0.1 J's°
'm-? for a rain intensity ¢, of about 0.3 mm'min! to 1.2 J-s'm*? for g, =25
mm-min-l.

Once a seal is developed by a rain event, the physical properties of the seal are
usually sustained. Repeated high intensity rainfall or sprinkler irrigation forms
deleterious, undesirable crusts in the majority of agricultural soils. For example,
below a 5 mm thick surface crust, Passerat de Silans et al, (1989) measured
values of pr = 1.32 g-em™® and Ks = 1.3 x 10 m-s'l. Within the crust pr = 1.45
g-an? and Ks = 2.8 x 104 m-s"L. Similar examples are reported in the literature, e.
g. Callebaut et al. (1985). With the nature and extent of soil crusts being highly
variable, their behavior falls between the one extreme of manifesting an earlier
developed, constant hydraulic resistance and the other extreme of a graduaily
increasing hydraulic resistance as a seal develops during rainfall on an
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Models of Soil Porous Systems for Unsaturated Flow
M. Kutilek, R. Risslerovd and H. Othmer

Abstract. The real soil fabric is characterized by the existence of peds up to the tertary
foxmation and by cutans covering the peds. Thus wo or three pocous systems are formed
and the wotal soil porous system can not be modeled as homogenoous. The mterpedal and
intrapedal porous systems ace hierarchically arranged. This type of srangement is
demonstrated by the macroscopic measurements on the Darcian scale (soil water rewntion
curves and the unsamrated hvdraulic conductivity functions), The microscopic percolation
hierarchical models are applied for a more deailed discussion on the chamcteristics of the
0l water retenton curves of such systems.

~

1. Introduction

The scil porous system has been waditionally deduced from the soil water retention
curve (SWRC) with the following assumptions : (i) SWRC is adequarely formoulated by
an equation. (i} The model of the soil porous system consists of parallel capillary mbes
or, alternatively, of interconnected capillary tubes of basically parallel arrangement
with a free access to the sources or sinks of the liquid for each capillary. (iii) The
capillary model is micromorphologically homogeneous. All three assumprions are then
incorporated in the routine procedures of the estimation of the unsaturated conductivity
K and of the wansport processes in general.

Soil micromorphology brings the contradictious evidence against the assumpdon (iii),
i.e. against the homogeneity of the soil porous system. The real soil fabric is
characterized by the existence of peds (aggregates) up to the tertary formation and by
cutans covering the peds (Fig. 1). Thus two or three porous systems are formed and the
total soil porous system cannot be modeled as homogeneous. The models, assumption
(if), should therefore reflect the reality described by the soil micromorphology : the soil
porous system is characterized by the hierarchical arrangement of the porous systems in
peds (intrapedal pores) and the porous systems between the peds (interpedal pores). We
suppose then that the pore size distribution is either bi- or n-modal. The equation of
SWRC should be therefore used in a modified form in order to be consistent with the
soil reality, see assumption (i). The shape of the interpedal pores should be related w©
.the morphological features of the soil swucture, wo. However this is the msk for the
next research.

In this study we deal with the capillary porous systems in all instances. For pores where
the capillarity cxists we reserve the term micropores. The pores without detectable
meniscus forces are denoted as macropores. The water flow in the microporous systems
is described by the Richards’ equation while the flow in the macroporous systems is
described by the different type of equations, eg. by the kincmatic wive equaton
(Germann and Beven, 1985). We decline here therefore from the carlier classification
of pores as given in the review paper of Bouma (1991). The motive of doing so is in the
use of two different types of equations applied.

| Secondary

Fig. 1 The soil fabric : the primary peds formed by the soil solid constiments are
aranged into the secondary and tertiary peds. The peds are covered by soil
cutans (Brewer, 1964).

The interpedal pores are frequendy included into the category of by-pass, or preferental
pores due to their accelerated conducrance of water and solutes, when they are
compared to the transport in the inoapedal pores. The term dual porous system is
frequendy used, too. However, the criterion on the rate of the transport for the
definition of the boundary berween micropores and macropores s rather subjective and
less applicable for the predictive models. In our terminology. the by-pass flow

{preferential flow) can exist in microporous systems when the bi-medal porosity is
detected. o

2. Macroscopic studies

Here, we deal with the SWRC, h(4) and with the unsarerated conductivity K(¢) or K(h),
where b is the matric (or soil water) potential expressed as pressure head (cm), 0 is the
volumetric soil water content (cm3/cm3). This part of our swdy is aimed at the
macroscopic confirmation of the bi~ or n—modal porosity and its influence upon the
K(h) fanction. The study was a part of the investigaton by a Special Collaboradve
Program, SCP 179 at the Technical University in Braunschweig.
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Fig.2  Soil water rentention curve and the pore
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Van Genuchten

First, we shall assume in this
chapter in accordance with the
routine procedures that the
derivative curve of the SWRC
represents the pore size
disribution with the equivalent
pore radius r = a/h with a, the

©  constant. The derivative curve

is identical with the PDF of r.
The SWRC of soils of the
meno-modal porosity is the
curve with one peak
representing the maximum
frequency of the equivalent
radius r(Ppmax), with p, the
probability (Fig. 2).

size distribution of the mono-modal porous sysiem.
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Soil warter reten-
tion curve and
the pore size
distribution of
' the bi-modazl
0.01 Am porous system.
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The soils of the bi- or n-modal porosity have the derivative of the SWRC with two or n
peaks (Fig. 3). It is assumed tacitly that all pores have the same free access to the
draining pool of water and that the replacing air has the same opportunity 1o penetrate
in all pores which are w be drained at the given pressure. Analogically for the weting
process, it is assumex] thar there is free access of water into all pores. The weak points
of these assumnptons will be discussed in the next chapter.

We have carefully analyzed the SWRC of our measured data on 250 cm3 samples taken
at the research base ar Neuenkirchen close to Braunschweig.

First, we asszmed the monomodal porous system. The experimental soil water retendon
~ drainage data weze fitted to the van Genuchten's equation (1980) — and we ob:ai'nc':d
smooth sigmoidal curves, each with one inflection point only. One example of all is in
Fig. 4o
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From the SWRC we computed the relarive conductivity function K.(h) according 1w the
procedure of Mualem (1976). With the samrated hydraalic conductivity Kg as matching
factor, we obtained the unsaturated conductivity function K(h) = KsK(h) for each
sample. The resuiting K(h) were compared to the directly measured dats K(h) in the
field by the method of Arya et al. (1975). The results of this comparative study were
very unsatisfactory (see the Fig. 4a). Thordifferences between the predicted and directly
measured data of K were frequently more than one order of magnitude and the general
run of the predicted and measured curves differed substantally.

‘When we applied a spline fit to the retention data, we confirmed that SWRC had more
than one inflection point and on the derivative curve two peaks were distnct. We
assumed therefore the existence of the bi-modal porous system and we split SWRU into
two parts : one curve for inrapedal pores is denoted by the index i = 1, the second
curve for interpedal pores is denoted by the index i = 2. The two curves compose the
macroscopic SWRC on the principle of superposition. The boundary between the two
porous systems, the separation pressure head hi¢is not simply found. We approxirmated
it as the minimum berween the rwo peaks on the pore size distribution curve, i.e. in the
derivatve curve 1o SWRC. The SWRC for each porous system is defined in a modified
form of the van Genuchten’s equadon :

(85; = 05 )
(1 + (oghy ™
where & is the residual soil water content, 8 is the saturated soil water content and <, n,
m are the empirical parameters determined by the firting procedure, furtheron mj = 1 -
ﬁl?' h is taken as posidve. The relatdve unsaturated hydraulic conductivity is obtained
from SWRC by Mualem's procedure and :

Bi(b;) = 05 + (1)

Ky = L b P+ (ai:_;)"ir““)’ @
2

(1 *(U-ihi)“i]_L

where K(h;) = Kri(h)Ks; and Kg3 is the saturated conductivity of the soil as found at h

= (), while Ksp is the “saturated” conductivity of the first, intrapedal porous system

K(h)f} where hys the separation pressure head denotes h at the boundary berween the

system 1 and 2. The SWRC and K(h) of the whole soil porous system were constructed

on the principle of the superposidon. Both functions thus obtained have shown an

. improved coincidence with the measured dara (Fig. 4b and Fig. § w 7). However, the
predicton of K(h) is in some instances still unsatsfactory.
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Fig. 4b Prediction of the unsatrated conductvity K(h) from the soil water retention
curve e(h) for the bi-modal porous system. Directly measured data are plotted
as asterisks : Ap horizon of Gleyic Luvisol.

An improvement is reached when we shift the separation pressure head hir by iteration
to the optiroum value of predicted K(h) in relation to the measured K(h) data. The other
opportunity is to split SWRC of the whole sample inwo 3 curves for a hypothetical 3-
modal porous system in order w0 get the improvement in the computed K(h). However,
both ametiorative procedures wolid be highly speculative without a direct experimental
proof and without imumediate applicability in the soludon of the practical tasks.
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LOAM, DEPTH : 30 cm * * * MEASUREMENTS
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Fig. 5  Plot of 8(h) and the prediction of K(h) as in Fig. 4b. Soil from the B2tl
horizon. Bi-modal system.

For practical procedures we propose therefore to measure SWRC in smmall steps of h
close to the saturadon. When a cubic spline function is drawn, the inflection points are
simpl:- detecied and the split of the SWRC can be realised. For the individual porous
systems, Kri(h) are predicted and as matching points, we need two values of hydraulic
conductivides determined in the field : Kg and X at a certain h not wo far from the
sawradon, Kg is for system 2 and K for syseem 1. Let us note here the earlier proposal
of Nielsen et al. (1986) on two matching points, K5 and a certain K for the realistic
transformation of K.{h) to K(h).
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Fig. 6 Plot of a(h) and the prediction of K(h) as in Fig. 4b. Soil from the B212
horizon. Bi-modal system.

In our examples in Fig. 4b and 5 to 7, the interpedal porosity plays the imporant role in
the A and B horizons; in the C horizon is its role less significant. We have found in the
literature (Othmer et al., 1991) in 11 papers of various authors that more than one
inflection point was detectable in the SWRC and the bi-modal porosiry could be
expected in these instances. Durner (1991) quotes 14 publications where the n-modal
porous systems can be deduced from the experimental SWRC. The concept of the bi-
modai porosity has been recently applied in modeling the transport phenomena in soils
(Diekkrliger and Santler, 1992, Dumner and Zurmiihl, 1992, Rehding et al., 1992, van
Gedtuchten, 1992),
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LOAM, DEPTH : 100 cm * * * MEASUREMENTS
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Fig. 7 Plot of 8(h) and the prediction of K(h) as in Fig. 4b. Soil from the B2g/C
horizen. Bi-modal system.

3.  Microscopic model studies

By the term microscopic we understand the detailed description of the porous sysiem on
the pore level. The realistic model consists of the three-dimensionally interconnected
_pores which form the continucus network. The behavior of water (wetting phase, wp)
and of air (non-werting phase, nwp) in the network is advantageously described by the
percolation theory (Dullien, 1991). The fundamental elements of the percolation
nerwark are sites (nodes, pores) and bonds (throats). Their equivalent diameters are DP
and DT. The network of pores and throats is regular, usually rectangular. The values of
DT-ere cither correlated or uncorrelated to DP. The values of DP are randomiy
dismributed in the infinite network. If the model consists of minimally 18 meshes in the
direction of each of the three main axis, the model approaches weil the behavior of the
infinite model. When the model is placed in the pressure apparams, the given pressure
head hy corresponds to the diamerer Dy according to the capillary theory. The
percolation theory allows us to discover the clusters of undrained pores even if their D
> Dy An analogical simation develops when the model is werted and the clusters of

the closed air occur. The characteristics of the model influence the final SWRC in 2
typical way. For example the hysteresis is substantially influenced by the relation of DT
1 DP, the log-normal distribution of pores increases the hysteretic loop when compared
to the normal distribution and the value of 8 decreases due to the log-normal
disuibuﬁon.Thespecumofd:epmsimdisuibuﬁonhudninﬂnence upon Ll'fe slope
ofSWRC.daeincrmeofthemndnddeviaﬁonincremsrhisslopg.Themrcmry
value hy depends upon the skewness of the pore size disgibution curve, etc.

Fig. 8 Schematic presentation of the 3-d rectangular percolation network.

We have modeled the bi-modal soil porous system by the 3-d rectangular network of
pores and correlated throats in the system | (inrapedal pores) (Fig. 8). The system 2
(interpedal pores) was modeied by the regular net of either 16 big peds or of 128 smail
peds. The same system of pores and throats existed between the peds as in system 1 and
the only difference was in the bigger size of pores and throats in the system 2. For D1
we used the normal distribution with the mean diameter of pores 9.74 10-4 cm and with
the sundard deviation 3.8 10~4 cw. For D2 the distributon was normal, too, with the
mean diameter of the interpedal pores 5.2 10-3 cm, the standard deviadon was 9.6 104
cm. The size of pores inside of peds and berween the peds was randomly generatod.

For the network consisting of 128 peds is &g = 0.797 and &y = 0.036, For the network
with 16 peds is O = 0.982 and ©; = 0.161. Since © is in parametric form, we get the
real’s = © P, where P is the porosity. S5 denotes the saturation value ar the end of the
waﬂn;mlwfummpuimif&emmwumo—modﬂ.mmform we
got Og = 0.745 and &y = 0.019 and for D2 mono-modal (i.¢. without intrapedal pores)
©g =0.518 and 8, = 0.051. In order o show the volume of isolaved cluswers of water or
AT in the drainage and werting process, we relate Dy to the pores and throats occupied
by water in Fig. 9. The bi-modal porous system is compared to the mono-modal porous
sysem which is idenrical with the characteristics of intrapedal pores in the bi-modal
syswem. We can recognize rwo different stages of the druinage.
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In the Srst stage at high Dy, i.e. close to the saturation with water, the throats between
the peds are readily drained while the pores berween the peds are partly filled with
water in clusters. The number of pores occupied by water is higher in the mono-modal

mode! than in the bi-modal mode). It means that the bi-modal system is more readily
drained than the mono-modal system in the first stage.

The second stage at low Dy, i.e. far from the saruration is very different. The number
of pores as well as of throats occupied by water is significantly higher in the bi-modal
than in the wono-modal system. Analogical simation is for werting, the two stages are
again well recognized. When the size of peds increases, the residual content of clusters

filled with water is increased, see also the value of &, but the clusters of closed air at
saturation with water decreases.

Fig. 9

Throats occupicd

Pores occupied

Q 0.2 Q.4 0.8 0.8 1

Pores < D

The relatve number of throats and pores Dy which should be drained ar the
given pressure. It is related to the relative number of throats and pores
occupied by water : 1- mono-modal porous system.. 2 bi-modal system, big
peds, 3- bi-modal system, smail peds.
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Fig. 10 Soil water retention curves with the parametric soil water content 9:1-
mono-modal porous system, 2 — bi-modal porous system, big peds, 3 ~ bi-
modal porous system, small peds.

On SWRC which are plotted as parametric € against h (see the Fig. 10), we have
detected the following tendencies due to the bi-modality of the pore size distribution :
(i) The increase of & in systems with big peds and slight decrease of 8, due 10 the
small pi ds, when compared to the monc-modal sysiem.

(ii) The air entry value ha was not practically influenced by bi-modaliry.

(iii) The bi-modality causes an increased siope of the SWRC and the curve is just close
10 the shape of the SWRC of real soils. In mono-modsi modeis the shape was close ©
the step-like form and thus differed from the great majority of soils.

(iv) In all smdied bi-modal models we have detected 3 inflection points in SWRC. Our
previous hypothesis on the existence of the bi-modality is confirmed even by the 3-d
percoladon models.

{v) The hysteretic loop is broader in the bi-modal systems.

When SWRC are described by the van Genuchten’s equation, then the inwoduction of
the bi-modal system is reflected by the decrease of both parameters, n and The
increase of the standard deviation of pore size distribudon decreases the value of the
parameter n. :

This first study is still far from the development of methods for the physical
interpretation of parameters in equations describing SWRC. It shows only the
possibilities of the physical modeling of SWRC when the models are close to the real
soil porous systems.

4, Alfoteonthesubility of the soil porous system

In all oir stdies on the non-steady transports in unsaturated soils, the concept of the
rigid and stable srrangement of the soil porous sysiem is accepted. We are not speaking
on the large time alteradon of the soil porous system due o the activiry of the soil
edaphon, but on the possibie changes in short ime during the wetting or drying process
in the soil. If we define three or four domains of volumetric changes in clay soils
(Haines, 1923, Yule and Ritchie, 1980), we have to admit that the shrinkage and
swelling may result in the mansformation of the soil porous system and that the
macroscopic change is accompanied by the change on the pore scale.

Schweikle (1982) brought the evidence on the change of the porous system in clay
aggregates, He published the summation curves of pores measured by the mercury

" We have used his data for the derivation of the pore size dismibution in the
wet soil, h =0 and in the dry soil, h = ~1.5 MPa (Fig. 11).

AT SATURATION

— e = —= AT -1.5 MPa

Frequency

cce3 wm LG r

Equivalent pore radius r

CCum

Fig. 11 Pore size distribution in clay aggregates at the water saturaton and at the
wilting point (ie. at the pressure head -1.5 MPa) according to the dau of
Schweikle (1982).

Theinu-pnmimisinmemdidowwaywhenmefuumofanpores to sinks and
sources exist. The difference is sriking. When the soil is samrated with water, the pore
size dismribution is near w the mono-modal type with slightly higher frequency of
coarse pores and with low content of ultrafine pores. The mean equivalent radius is of
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the order of units um, i.¢. at the medium pore size. When the soil was draineduptoh =
-1.5 MPa, the pore size distribution changed substantially. The frequency of the
medium peres is now at minimum, the shrinkage reduced this category of pores and the
coarse pores gained a very high frequency. Great portion of medium pores was
ransformed into coarse pores. A smaller portion of medium pores was compressed and
cransformed to fine and ultrafine pores, where the bi-modal pere size distribution
developed. However, from this scarce exnerimental evidence we can not conclude if the
transformatipn of the pore size dismibuton due to the change in soil water conzent is
significant for majority of soils.
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