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Prediction problem on the whole

Geophysical part

L

—

Precursors: search, Analysis and modeling
study, selection, 0f losses

synthesis (algorithms/ | o ~ ~— = 7 7 S
methods of prediction) | o |  Taking decisions

"Economical" part
~{ or goals on research stage )

Problem: medeling and optimization of losses

Goals: to understand

- how are synthesized precursors best ?
- vhich statistical properties of g£eophysical

information J(t)
prediction?

shouid be analyzed for



The simplest optimization problem in prediction

Prediction policy:

{1 alarm P(J%)
Gr(t]%)= in(¢,¢+4) With Probablity
O noalarm 1-p(%)

(The typical prediction policy: p(J,) =1 or0)

J 18 geophysical information at moment t:

(state of geophysical fields in some intervalg (t- t., t-h),
catalogs of events etc.)

successes failures to predict

1 Ill :::::: L 1 l[ltlltll é,’l@..r:wu,alel'lt,“ J peig gyl l

0 T
Long-term characteristics (errors) of prediction:

rate of fallure- .y { faijures-to-predict } T
to-predict X {all strong evenisy
rate of 2 _ mes{alarm sets}
alarm time re T ’ﬁ T4
¢ © "““,7“
"Loss" function ¥ : f (0,7 ) s
A =1L € s ¥ cut is convex A

Prediction goal:  to minimize )

e



ERRORG -SET G FOR ALL POLICIES
BASED O J(t).

optlmist policy

: \\

random guess w1th

R Probahillty p \
_ i
7 G

jNTY center of G

negation of.T

n

YU
n*s
Pesslimist
0 T 1 policy
. . - [ | o P
(1) G 1s convex: Traix = {ﬂa ¥ith probabllity ,

(1i) G 18 set of the best policies based on J(t)
(1i1) q}n I = £, &)= ue

The diagram [ characterizes the limit capabilities of
information J(t} in earthquake prediction

Estimation of 7 is geophysical part of prediction problem
Ezamples: (d,7) for different prediction methods.



STRUCTURE OF J-OPTIMAL POLICY, ﬁm

HAZARD FUNCTION (conditiomal intensity of events):

r, =Prin{t)>0 | J{t) =1 L//zx = r{u)
yhere |
n(t) = #t events in (t, t+a) }
It {1 n(t), J(t) } is stationary ergodic flows then
- optimal alarm set ( «we—eee ) i as follows:

o - :ni’(P)
A 1§ number of events per time unit
© EXAMPLES
. Linear logses : Y :eXh BT =

d 1 losses for one failure-to-predict
® 18 losses for alarm time unit in 8
Y 15 total losses of prediction per-time unit

2. Hinimax policy: ¥=min J‘., P
© yhere ¥ - max{n,c)

CE algorithm (Keilis-Borok, Rotwain) gives: @ =7 : 20 - 5!
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EARTHQUAKE PREDICTION ON SAH ANDREAS FAULT
(National Earthquake Prediction Evaluation Council):

R = Prt events within (t, t+30rears)| J}
vhere J(t) - (time elapsed since the last event)
T, _ u=J(e)
b R
1° Value of R, cannot be considered as a lucky choice
for comparison of different sefments:
}a <.45 constantly for all segments except Parkfield
290 in Parkfield for 0 < u < 800 years

2’ If Flu) =Pri{7,<ut is interevent time distribution
then hazard function F )

4-Flu)y ! u>0
EXAMPLES of F(u): Fv-m Varv: e

r{u) -

Rr o o™ - R s - e R @ (1w In(w/m) +2)

(amma Weibull Log-Normal
P-o/m £ =liHR) /o o4° = Yar (InT)
Z(w) 'I‘,g??f
Tg-' —_— = - ! 'l‘ < 1

I

L2larm sef
g.m u ' 4

Practical estimates G /m = 0.24 - 0.6
If prediction goals are fized (¥), then optimal decision for

dlarm is defined for the whole interevent time, i.e. R dynamics is
not required.




Conclusions for minimag policy

- prediction results ( n,T ) and normalized time threshold (k)
of alarm are in weak dependence with type of distribution F
ven 6/m< { ;

- 5 out of 8 segments of San Andreas tault should be in state of
(minimax)} alarm

Concluswns for losses: §':d A0+ plG| ¢

1) It o
_ _ min ¥ (6:) Bl < £
Y (Parktield) - { max 1(6) for Bl > C;

1) It oy =W = of/ng  (natural model in insurance)
then

I (Parkfield) - min J(G)  for any P/«

pdrl(fiefa’
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Time threshold /m

Errors

200
{001

30

204

{0 1

o

Distribution models F(x):
o~ Weibull

% - Gamma ‘
= . Log-NMormal (R thresholds)

S -Log.t\/ormal (1 threshold)
® - Uniform .

L u’h*n'u'u
"‘_‘-...._ 1

——

Fv v vy rrrreTd

5 050 075 1.00 1.25 1.50
Coefficient of variation 6 /m

Parameters of the minimax strategies
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HULTIPHASE ALARM HODEL

A - 1A;} - phases {types) of alarm;
d = {id;} ~ prevention losses:
dlarm A, prevents losses o, in case of strong event;
® - {®:) - cost of alarm maintenance:
A, requires expenses ¢ per time unit
C = {C;) - cost matrix for alarm phase change:
Ai~Aj requires immediate expenses C;» 0; Cy= 0,
(o= 1f alarms transition A-A; is not permitted.

LOSS FUNCTION

(W, u; prediction losses for policy

t b tn | tea in time intervals a;

S.(t 1 =+ au+ du,t.. - total discounted losses in
{t, ) for o

q - exp{-Ka) - discount factor

kK> 0 - coefficient of efficiency for

capital investment

GOALS of PREDICTION

to minimize the total discounted expected losses
E S; = min



Unordered multiphase alarm without initial cost:

Ci,j = 0 ) fjj'-'l
SJ(up) = min (ﬁ‘djrf“))'fe'@ = S [r]-&*

“i.e. global optimal prediction policy Iy  qe€(0.4) cCoincides

gith local (in time) optimal policy s, and does not depend on

qel0, 11, " |
T

s

Sz Py-dyr
Sz Pymdyr

Slr]
As is nat cost-effective

N\ 3= By-d,

o



OPTIHAL PREDICTION

I I@t) = chj(f), sy, s<t ]
P’"{“(*DOU(UW J@s), sdj = r(u)a

Pr{J(MJIJ Heu,J(s),s<t) = B,
(Harkov Property)
then
1) the optimdl expected losses S(U.t) under the 1n1tlal
conditions J(t) = u and W’(t—A]

o are given as solution of the f0110w1n8 equation

(%) S(ul) rrjm(c +J3A F(u)-4.d, +ff,¢_ S(Vj)) 5’

ii) the equation § - T,8 has a unique solution §} :

%-0/- an+4 =7;S"q — 5:1 :
ma x IS,,Q—S/H < /.q,n(4-q/)"
OPTIMAL DECISION:

7 (t) = A; under condition J(t) = u,  a(t-a) =
if the index j relizes the minimum in (x)

iii) if ¢ = 1 (no discount factor) then Sz is optimal
expected losses in the interval (0, Ha).

\



PREDICTION ALGORITHMS COHPARED

p - internal parameters of the algorithm A (or precarsos)
A

NP2 T (p) - strategies of the algorithn
NG o ,
h T,(p) - best strategies of the algorithm
“/“\‘ f} - curve line of errors characterises
s N =" opredictive ability of the algorithm
'L"‘ 1 St gty e W RN A A N P e
(or precarsor)

- (estimate of {a , dim p, strong events statistics) - fMpiric
characteristic feature of predictive
ability of the algorithm.

A- area vhere A, is better than A,

_ Conclusion does not depend on the choic
losses.



Comclusions

I. At the research stage of prediction it is necessary to egtimate
errors diagrams (i, 7 ) proceeding from various types of
information J(t).

Estimatiné of (0,7 ) errors for different prediction
algorithms 1is to be used for this problem.

¢. The task of seismostatistics in general case is to estimate the
hazard function r(u) and the transition probability matrix
L Py, =% for informationJ on sequential time intervals.
(r(u) and® depend not on time but on the discrete state of
seismic process!)
AK1's method of r{u) estimating for a set of precursors
overestimates r{u), as soon as it is based on the assumption
of precursors conditional independency.
To analyze P systematic descriptions of strong shock prepa-
ratilon processes are very important.

J. There is only one hazard function threshold r*in the simplest
prediction probiem, here we can hope for the prediction
stability.

In real prediction problems there should be several hazard func-
tion thresholds. In complicate cases we must know T(u) and
P,, in details.

S0 compromises are desirable.

W3
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