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INTRODUCTION

Mathematical modele of lithosphere dynamics are tools for the
study of the earthquake preparation process. These models are also
useful in earthquake prediction studies. An adequate model should
indicate the physical basis of premonitory patterns determined
empirically before large events. Note that the available data often
do not constrain the statistical significance of the premonitory
patterns. The model can be used also to suggest new premonitory
patterns that might exist in real catalogs,

The basic principles of a model investigated here are developed
in Gabrielov et al. (1990). The model produces an artificial catalog
of earthquakes.

Although there is no adequate theory of the seismo-tectonic
process, various properties of the lithosphere, such as spatial
haterogeneity, hierarchical block structure, different types of
non-linear rheology, gravitational and thermodynamic processes,
physico-chemical and phase transitions, fluid migration and stress
corrosion, are probably relevant to the properties of earthquake
sequences. The gqualitative stability of these properties in
different seismic regions suggests that the lithosphere can be
modeled as a large dissipative system that does not essentially
depend on the particular details of the specific processes active in
a geological syatem.

The model exploita the hierarchical block structure of the
lithosphere (Alekseevsk: ya at al., 1977). Blocks of the lithosphere

are separated by comparatively thin, weak, less consolidated fault

zones, such as lineaments and tectonic faults. In the seismotectonic
process major deformation and most earthquakes occur in such fault
zones.

In the model, a seismically active region is represented as a
Bystem of absolutely rigid blocks divided by infinitely thin plane
faults. Relative displacement of all blocks is supposed to be
infinitely small relative to their geometric size. Blocks interact
between themselves and with the underlying medium. The system of
blocks moves as a consequence of prescribe motion of boundary blocks
and the underlying mediunm.

As the blocks are rigid, all deformation takes place in the
fault zones and the block bottoms separating the blocks and the
underlying medium. The relative displacements of the blocks take
Place along the fault planes. This is justified by the fact that for
the lithosphere the affective elastic modules of the fault zones are
essentially smaller than those within the blocks.

The blocks are in viscous-elastic interaction with the
underlying medium. The corresponding stresses depend on the value of
relative displacement. This dependence is assumed to be linear
elastic. The motion of the medium underlying different blocks mav be
different.

The motion of the blocks of the structure is defined so that
the system is in quasistatic equilibrium atate.

The interaction of the blocks along the fault planes is
viscous-elastic ("normal state") while the stress is below a certain
strength level. After such a level is exceeded for some part of z
fault plane an elastic stress-drop ("a failure") occurs. It can

cause a failure for other parts of fault pblanes. Each seguence of
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failures is considered as an earthguake.

After an earthguuke the corresponding parts of the fault planes
are in creep state. In this state the interaction along the fault
plane ia viscous-elastic but the values of constants are different
of those for normal state. Creep state lasts until the stress falls
below some other level. Then normal state returns.

As a result of the numerical simulation a synthetic earthquake

catalog is produced.

BLOCK STRUCTURE GEOMETRY

A layer with a depth (thickness) H between two horizontal
planes ies considered. A block structure is a part of this layer
limited and divided intoc blocks by planes intersecting the layer.
Parts of these planes which are inside the block structure or
adjoin to it are called "faults".

Block structure geometry is defined by intersection lines of
faults (they will also be called faults below) with the upper plane
and by angles of dip for the fault planes.

It is considered that three or more faults cannot have a common
point on the upper plane. A common point of two faults is called
"vertex". There are three types of vertices:

C (corner vertex) - a vertex which is an end point of a fault
and at the same time an initial point of
another one;

E (end vertex) =- a vertex which is an initial (or end) point

of a fault and belongs to another one but

iswrt its initial {or end) point;

a b ¢

FIGURE 1. Types of vertices: a - corner (C); b - end (E);
¢ - intersection (I).

I (intersection) - a point of intersection of two faults
which is not an initial (or end) for each
of them.

The examples of these types of vertices are shown in Figure 1.

Corner vertices are defined by indication of their coordinates
on the upper plane. Coordinates of other vertices are calculated by
using information about their positions in faults.

A fault is defined by indication of its consecutive vertices.
For each vertex its type is indicated. For a corner vertex its
number is indicated. For an end vertex or an intersection the
number of the another fault to which this vertex also belongs is
indicated. If the end vertex is not an initial or end point for the
fault defined its relative position in the fault (the ratioc of the
distance between the initial point of the fault and the vertex to
the fault length) is indicated.

The angle of dip for the fault plane is measured on the left of
the fault. The fault direction is the direction from its initial
point to its end point.

The structure is separated by the faults into blocks. A common
part of any block with the upper plane is a polygon.

"Boundary blocks" are defined in the structure. A boundary
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FIGURE 2. The vertices and the faults on the upper plane.

block is a continuous part of the structure boundary between two
vertices. It is defined by indication of its initial and end
vertices. The direction is selected toc have the structure on the
right.

The following is ar example of description of the structure
having the upper plane faults represented in Figure 2.

This structure has 4 corner vertices with the coordinates:
(2, 1), (2, 5), (6, 5}, (6, 1). The are 8 faults. Their description
is given in Table 1.

With the layer depth H = 1, the faults and the vertices have
on the lower plane the position shown in Figure 3.

The structure has f blocks.

For the structure 4 boundary blocks can be defined. In this
case the boundary blocks are connected with the pairs of adjacent
boundary vertices. The boundary block can be consclidated. For
example two boundary blocks could be considered for the structure:
the boundary block between the corner vertices with the numbers 1

and 3 and the boundary block between the corner vertices with the

numbers 3 and

TABLE 1. The description of the faults.
Type of |Number of |Relative |Type of |Number of [Relative
vertex |vertex or|position jvertex |vertex or|position
fault of vertex fault of vertex,
Fault 1, Angle = 45° Fault 5, Angle = 45°
c 1 E 1
E 7 0.25 I 8
E 6 0.5 E 3
E 5 0.75 =
C 2 Fault 6, Angle = 45
E ' 1
Fault 2, Angle = 45 I \ 8
c 2 E I 3
E 8 0.75 , -
[ 3 Fault 7, Angle = 45
E 1
Fault 3, Angle = 135 I 8
C 3 E 3
E 5 0.25
E 6 0.5 Fault 8, Angle = 45
E 7 0.75 E 4
C 4 I 7
I fi
Fault 4, Angle = 135° I 5
o] 4 E 2
E 8 0.25
C 1
¥ 3
1 2
6 4 2 2 >
1 5
5 4 5
2 6 3
4 41 1 6 3
1 3 8 7
3 A 7
4 8
2 A 4
1 4 4
1
X
T T T ?
0 1 2z 3 4 5 &
FIGURE 3. The vertices and the faults on the lower plane.
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MOVEMENT OF BLOCKS

The blocks are assumed to be rigid and all their relative
displacements take place along the corresponding fault plane.

The movements of —~he the boundaries of the block structure
{boundary blocks) and ihe medium underlying the blocks is assumed
to be the outer action on the structure. The rates of these
movements are considered to be horizontal and known.

At each moment of time the displacements of the blocks are
defined so that the structure is in a quasistatic equilibrium.

All displacements are supposed to be infinitely small relative

to the geometrical sizes of the blocks.

INTERACTIONS

Interaction between a block and the underlying medium. The
elastic force which is due to relative displacement of the block and
the underlying medium in some point of the block bottom is supposed
to be proportional to the difference between the total relative
displacement vector and the vector of slippage (inelastic
displacement) in this point,

The density of the elastic force f£Y = (r:,r:) acting at the
peint with coordinates (X,Y) at some moment t is defined by the
formulas

=K (x=x, - (Y -Y)le=-9) ~x),

Lo=K(y -y, + (X -X)-9)-y). o
y u u e u N

Here X , Yc are the coordinates of the geometrical center of the

block bottom; (xu,yu) and ¢, are the shear vector and the angle of
the rotation around the geometrical center of the block bottom of
the underlying medium at the moment ¢; (x,y) and ¢ are the shear
vector of the block and the angle of its rotation around the
geometrical center of its bottom at the moment t; (x.,Y.) is the
inelastic displacement vector at the point at the moment t.

The evolution of the inelastic displacement at the point is
described by the equations

dx
[ ]

day

g < Vuf: ' afl = Vuf: . (2)

The values of the coefficients K, and Vu in formulas (1} and
egquations (2) can be different for different blocks.

Interaction between blocks along the fault plane. At the moment
t at some point of the fault plane separating the blocks with the
numbere 1 and j (the block with the number i is on the left and the
block with the number j is on the right of the fault) the components
Ax, Ay of the relative displacement of t .e blocks are defined by the
formulas

AX = x, - xj - (¥ - Y:)wi + (Y - Yi)pi'
i i (3}

Ay =y, ¥, + (X - X)e - (X - XD,
Here X:, YZ, Xi, Yi are the coordinates of the gecmetrical centers
of the block bottoms; (xi,yi), (xj,yi) are the shear vectors of the
blocks at the moment t; L wj are the angles of the block rotations
around the geometrical centers of their bottoms at the moment t.

Accordingly to the assumption that the block relative
displacements take place only along the fault plane the

displacements along the fault plane are connected with the



horizontal relative dispiacement by the formulas

A‘ = aIAx + evAy,

(4)
n
Al - cosz ' where An - Gxﬁy ﬂvﬁx -

Hare A:' A‘ are the displacements along the fault plane
parallel (A‘) and normal (Al) to the fault line on the upper plane;
(°.'°y) is the unit vector having direction of the fault line on the
upper plane; o« is the anjle of dip for the fault plane; & is the
horizontal displacement normal to the fault line on the upper plane.

The density of the elastic force f = (ft,fl) acting along the
fault plane at the point is defined by the formulas

T =K - LI

(5)
£ =K@, -3

1 )

|

Here 5t. al are the inelastic displacements along the fault plane
at the point at the moment t parallel (5t) and normal (Gl) to the
fault line on the upper plane.

The evolution of the inelastic displacement at the point is
described by the equations

ds dé'

HEL =ve ge = vV, . (6)

The values of the coefficients X and V in formulas (5) and
equations (6) can be different for different faults.

Besides the elastic force the reaction force which is normal to
the fault plane acts also. But this force does not perform any work
because all relative movements are tangent to the fault plane. The

density of elastic energy at the point is egqual to

e= (£ (8, ~8) +1 (8 ~38))/2. {7)

10

From formulas {4) and (7) the elastic force density horizontal
component normal to the fault line on the upper plane can be

obtained. This component is equal to

¢ fe 1

L8 . (8)
n BAn coSx

Formula (8) confirms that the reaction force is normal to the
fault plane (see Figure 4). The density of the reaction force is

egual to
p, = fltga . (9)

Formulas (4), (5) and (8) lead to the following formulas for
the horizontal components of the vector (fl,rv) of the elastic force

density at the point.

The upper plane

\“The fault plane

The lower plane

FIGURE 4. The forces in the plane orthogonal to the line of the

fault intersection with the upper plane.
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2 ei 1 aley
r =FK||e + Ax + e e (1 ~ Ay ~ & e + .
% x cosza x ¥ cosza T X COoBa
{10}
2 ei ' 1 alex
f =Kj|le + Ay + @ & |1 ~ A - 3 @ =~ .
Y cos’a WA cos’a ty cosa

The formulas given above are alsc valid for the boundary
faults. In this case one of the blocks separated by the fault is the
boundary block. The movement of these blocks is described by their
shears and rotations around the coordinate origin. Therefore the
coordinates of the geometrical center of the block bottom in
formulas (3) are equal to zeros for the boundary block. For example
if the block with the number j is the boundary block then

xi = Y: = 0 in formulas (3).

EQUILIBRIUM EQUATIONB

The components of the shear vectors of the blocks and the
angles of their rotations around the gecometrical centers of the
bottoms are defined from the condition that the total force and the
total moment of forces acting on each block are egual to zero. This
is the condition of the quasi-static equilibrium of the system and
at the same time the condition of the energy minimum.

In accordance with formulas (1) and {10) the system of
equations which describes the equilibrium has the following form

As = b , (11)
where the components of the unknown vector s = (z‘, 2,0 ey z!n)
are the components of the shear vectors of the blocks and the

angles of their rotations around the geometrical centers of the

bottoms (n is the number of the blocks), i.e. 2z =x , 2 =y,

3-01- L] !n+2- [ ]
Ziues™ Ta (m is the number of the block, m = ¢, 1, ..., n-1).

For each block the moment of forces is calculated relative to
the gecmetrical center of its bottom.
The elements of the matrix A (3nx3n) can be calculated by the
formulas
v

n
s"E"c_ + ¥ s"g"Pc™P,
U um pe1 -] 1

a!u+1,3nt1

s
]

W Mp_mp
SpX Ca '

a3m+1,3m42 ;

Finez, Imet =p¥

r
L]
m_ mp mp ne_ m - mp mp
¥ spx (c;"(x X)) cli(y,

=
a!m+],3m+1
p=1

a!m01,3n+3
- Y':))I
r
nom " om mp . mp
+
SuKucm P§1SPK C3 f

83m42,3m°2

r

L]
_ m_mp mp mp_ . m. _ .mp mp
= A SPK (CS (Xc Xc) Cz (Yc

&
Im+2,3Im+3 Y

Im+2,3Imt 2 = Z
p= "
-7,

Zines, tnes K:c.[ é(x? + Y2)ds - S:[(x:)z + (y:)z]] +

.
L]

+ ¥ x”’[ Je™x? + c"Py? - 2cxy)ds - s”[c“’[zxmpx

pet s 3 1 P P 3 c

m
4

(x')z] + c'”[zv'”r'— (¥") 2] + 207P(x"y"- x"P¥"- ¥ ”Px”)]].
c 1 c c c 2 € c c < c c

Here S:, X:, Y: are the sguare and coordinates of the geometrical
center of the bottom of the block with the number m; K: is the

coefficient K, in formula (i) for the block with the number m; r_ is

the number of vertices of the block with the number m; 50 x"F, y"P

c c
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are tha square and co-ordinate of the geometrical center of the
fault segment between the block vertices with the numbers p and
p+1l (itp<r)orr andl (if p= r); K"F is the coefficient X
in formulas (5) and (10) for the fault to which the segment belongs.
Here and below a fault segment means a part of the fault plane
limited by the upper and lower planes and lines which connect
positionse on the upper and lower planes of two seguential vertices
of the fault.

The coefficients c_, c"P, co"P, C;" are calculated by the

1 2
formulas
2 L] n H (e.p)zc
¢, = min cos’e__, c1P = (e"P)'c + L. 2
1spsr P ? " cos’a
m mp
mp. 2
c (e ") ¢
C;p - e:pe'p[c' + ———33—— , C;p = (e"P)%c + __L_?__! .
y cos’a Y . cos‘a
mp n
where amp, e:’, e:p are the values of «a, e« and ey for the fault to

which the segment belongs.
Let m = k. If the blocks with the numbers m and k have no
common segments, the elements a )
Imed Sk

matrix A are equal to zero. Otherwise

(i, =1, 2, 3) of the

* - E’s'K.pC-P.
P e !

a3501,3k01

- e - TegMypMp mp
a3n01.3k¢2 a3r02,3k01 L SDK CZ !
p

oMo AP np mp k - mp mp_ k
a!n+1,3k03 § spx (Ct (Yc ¥ cz (Xc X

]

— T gMgMp . mp
’3n¢z,!k+z E SPK c! '

LS R PP ri®- vl - P xtt- xby,

all*!.3k+3
-]
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= T gRpnP WP WP W, AP Ap_ m
a!n¢3.3k01 E SpK (C, (Yc Yc) cz (X: Xc)),

- ot Rp mp mp_ ] - »p mp_ L}
as-’s,staz z spK (Cz (Y: rc) cs (Xc xc))'

WP mnp - Mpg2 _ np,.,2
805 shes ™ § X [ [(aeyxy - o}Px® - o)’y yds +

] mp np ] k — x" k "p np n k - m, k
+ sp[c! [xc (x% +x) chc] + ¢} [yc (¥2 + ¥ ycyel +
np B,k kym_ o mp ] k - ympP ] k
+C; [chc + X Y- XPPYT 4 v ) - YOR(XD 4+ xc)]]]

In these formulas summarizing is made only 10or the common segments
of the blocks with the numbers m and k.

The components of the vector b = (b, bz' -e.y by ) are

calculatéd by the formulas

s e"f

r
-
mp np_ Ly
b3n01 ® [K [S X ot I X dS} +p§1x éllatel COSEMP ]dS] + dSmtw'

Ime !

" 3 e"P
L] L 3 mp np Lox
be.., cn[xu[suyu+ ény.ds] + T K"y (6tey btx ]ds] +d
u

n cosa
prt SP mp

b, ., = c_[x:[ é_[y.(x - XD mx (Y - YTy 4 eR(x® 4 yZ)]ds -

- 3" e [(x ) s (r } ]] + é.x'pé:[at[ezp(x- x:) - a:P(Y- Y:)]

p=1

erf(x - x7) + e Pty - ¥
e cose ]ds] + d5n+l'

Here x:, y: are the components of the shear vector of the medium
underlying the block with the number m; p: is the angle of the
underlying medium rotation around the geometrical center of the
block bottom.

If the block with the number m has no common segments with the

boundary blocks, the items d:- (1 =1, 2, 3) are equal to zero.

1
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Otherwige

L Tr QN pMP NP - mp mp mp
smetl = E s K {c, (x_p P.Y. )+ C (Y‘p e X )
o TigMyMP AP - mp m-p mp
dy., = E 5K (c, (x,p LI 4 ]+ (y_p e 1),

= - Y} » np L1 PO ] ] mp ™

G0y = K [spfx"(cz (X*P - xT) - TP - y7))
»p LT L] _ mp np_ ] mp mp.m_ LT Y

+ an(cs (xc xc) CZ (Yc Yc)) M wnp(xc (CZ Yc CS xc)+

LY-] LI27L I np,m . mp,2 mp.2 np
+ Yc (C‘2 Xc C1 Y:))] +p'pL_(C! X+ C1 Y 202 XY)dS] .

In these formulas summarizing is made only for the common seyments
of the block with the number m and the boundary blocks; xnp, y]p are
the components of the shear vector of the corresponding boundary
block; L is the angle of the boundary block rotation around the

coordinate origin.
DIBCRETIZATION

Time discretization is performed by introducing a time step At.
The block structure state is considered for the discrete moments of
time ti = t0 + 1at (1 =1, 2, ... ), where tn is the initial moment.
Transition from the state at ti to the state at ti*‘ is made as
follows. First, the new valuea of the inelastic displacements x.,

Y, a', al are calculated from equations (2) and (6). Next the shear

vectors and the rotation angles at t" for the boundary blocks and

1
the medium underlying the blocks are calculated. Then the components
of the vector b in th: system of equations {11) have been calculated
and this system is used to define the shear vectors and the angles

of rotation for the blocks. As the elements of A in (11) do not

1s

depend on time, the matrix A and the assoclated inverse matrix may
be calculated just ones at the beginning of the calculation.

Space discretization is defined by the parameter «.
Discretization is made for the surfaces of the fault segments and
the block bottoms.

Discretization of a fault segment is performed as follows. Note
that any fault segment is a trapezium. Let a and b be the bases of
the trapezium. The trapezium height h is given by the formula
h = H/sina, where K is the depth of the layer, « is the dip angle of
the fault plane. Let

n, = ENTIRE(h/e) + 1, n, = ENTIRE(max(a,b)/c) + 1.

The trapezium is divided into nn, small trapeziums by two groups of
lines inside it: n -1 lines parallel to the trapezium bases with the
distance between them eguals to h/n1 and n,-1 lines connecting the
points spaced at intervals of a/nz and b/nz, respectively, on the
bases (see Figure 5). The small trapeziums obtained will be called
cells. The coordinates X, Y of the center of the mean line of the
cell are assigned teo all its points. The inelastic displacements 3.,
61 are supposed to be the same for all points of the cell.

The block bottom is a polygon. Before discretization it is
divided into trapeziums (triangles) by lines passing through its
vertices and parallel to Y axis (see Figure 6). The discretization
of these trapeziums (triangles) is performed in the same way as in
the case of fault segments. The small trapeziums (triangles) are
alsc called cells. For all points of the cell the coordinates X, Y

and the inelastic displacements X, Y, are supposed to be the same.
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EARTHQUAKE AND CREEP

Denocte

The upper plane K o= (12)

\\ \\\\\\\\\ where (ft,fl) is the vector of the density of the elastic force

defined by formulas (5), P is the difference between lithostatic and

hydrostatic pressure which has the same value for all faults, P, is

the density of the reaction force which is defined by formula (9).
/// // \\ \\\ \\\\\ For each fault the values of the following three levels ara

indicated
The lower plane indicate

B>H =H.

FIGURE 5. Discretization of the fault segment (pn, =3, n, =5). Initial conditions for numerical simulation of block structure
dynamics are supposed to satisfy the iregquality « < B for all cells
of the fault segments. If at some moment t| the value of k in any
- cell of a fault segment reaches the level B, failure {"earthguake")
occurs. Failure means slippage during which the inelastic
displacements at, 6' in the cell change abruptly to reduce the value
of x to the level Hf.

The new values of the inelastic displacements are calculated by
the formulas

.

8 = 5: + 1ft, § =8 + 3f (13)

where 6:' al, f‘, ft are the values of the inelastic displacements

and the components of the elastic force density vector just before

; the failure. The value of the coefficient 7 is cefined by the
formula

FIGURE 6. Division of the block hottom into trapeziums and PH 1
.= |1 - L (14)
X

triangles. /ff + ff + Hffltga

19
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It follows from formulas (5), (9), (12)-({14) that just after the
fajilure the value of x equals to the valu: of the level H’.

After calculation of new values of inelastic displacements for
the failed cells the new values of the components of the vector b
are calculated and from the system of equations (11) the shear
vectors and the angles of rotation for the blocks are found. If for
some cell of the fault segments « & B, the procedure given above is
repezted for this cell (or cells)., Otherwise the earthquake has
ended; and the state of the block structure at the moment ti" is
calculated in the ordinary manner.

The cells in which the failures occurred are considered to be
in tle creep state. It means that for these cells the parameter V‘
(v, =v) is used instead of V in equations (6} which describe the
evolution of the inelastic displacement. The values of V' can be
different for different faults. A cell is in the creep state while
& > H. for it. When k = H. the cell returns to the ordinary state
and henceforth for this cell the parameter V is used in (6).

The parameters of an earthquake are defined as follows: time is
t; coordinates and depth are weighted sums of coordinates and
depths of the cells in which fajlures occurred (the weights of the
cells are their squares divided by the sum of squares of these
cells); magnitude is calculated as

M = Dlgs + E, (15)
where D and E are constants; § is the sum of the squares of the

cells (in kmz) in which failures occurred during the earthquake.

20

HIERARCHY OF FAULTS

Fault features can be taken into consideration through the

values of the constants K, V, V. and the ievels B, H H..

£t
The hierarchy of faults is controlled by the hierarchy of
structures separated by them. Larger faults separate larger
structures. Note that accordingly to the fault definition the lager
fault does not mean the longer fault.
It seems natural that the same value of elastic displacement
leads to a smaller elastic force for the larger fault than for a

smaller one. Thus the value of X has to b¢ smaller for a larger

fault.

Larger faults separating larger structures are usually the more
strongly fractured and less consolidated zcnes than smaller faults,
and the same force can lead to larger slippage (inelastic
displacement) for a larger fault than for a smaller one. Thus the
values of V and V. have to be larger for larger faults than for
smaller ones,

The more strongly fracturing of the larger faults can be a
cause that earthguakes occur in the larger faults for smaller values
of the parameter x than in the smaller ones. This can be reflected
in smaller values of the levels B, Hf, H. for the larger faults than
for the smaller ones.

The qualitative arguments given above can be used as some
indications for selecting the values of constants K, V, v, and

levels B, B, H if the fault hierarchy is known.
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THE BLOCK STRUCTURE BASED ON THE BCHEME OF MORPHOBTRUCTURAL

3CUNING OF THE WESTERN ALPS

‘The scheme of morphostructural zoning of the Western Alps
constructed by A.Gorshkov and E.Ranzman (Cisternas el al., 1985) was
used as the basis for the definition of the block structure (see
Figure 7).

The point with the geographic coordinates 43°N and 5°E was
salected as the coordirates origin. X axis is the north-directed
meridian coming through the coordinate origin. Y axis is the
east-directed parallel coming through the coordinate origin. The
scheme of morphostructural zoning of the Western Alps is
interpreted as the scheme of the fault lines on the upper plane.

79 vertices are defined on the scheme. 17 vertices are corner
vertices. They have the numbers from 1 to 17. Their ccordinates (in
km) are: (355, 495), (163, 402), (5, 190), (5, 60}, {255, 90),
(315, 142), (318, 200), (190, 240), (285, 316), {334, 310},

(160, 360), (160, 340), (120, 250), (75, 205), (60, 150},
(205, 150), (213, 280}.

50 vertices with the numbers from 18 to 67 are end vertices.
They have the followino relative positions in the corresponding
faults: 0.13, 0.53, 0.72, 0.1%, 0.53, 0.68, 0.88, 0.26, 0.54, 0.63,
0.82, 0.16, 0.49, 0.68, 0.95, 0.43, 0.22, 0.53, 0.10, 0.75, 0.23,
0.64, 0.77, 0.50, 0.37, 0.56, 0.35, 0.45, 0.63, 0.20, 0.94, 0.25,
0.23, 0.84, 0.17, 0.33, 0.22, 0.73, 0.21, 0.55, 0.16, 0.26, 0.62,
0.70, 0.82, 0.88, 0.50, 0.36, 0.69, 0.43.

12 intersections have the numbers from 68 to 79,

Total number of faulte is 42. The lists of the numbers of the
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FIGURE 7. The block structure based on the scheme of

morphostructural zoning of the Western Alps (the

numbers of the vertices are indicated).
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. : . . . . ult vertices
fault vertices in the order accordingly to the fault directions are TABLE 2. The lists of the numbers of the fa
in the order accordingly to the fault directions

and the angles of fault plane inclinations to the
horizontal plane.

given in Table 2. The dip angles of fault planes are alsc given in

the table.

The number of the blocks is 38 and the number of the fault Fault |Vertices Angle (in degrees)
segments is 116. 1 65, 14 85
r
The depth of the layer H = 20 km. The coefficients in formulas g g' ;g' ;g' gg' 2: 2 :g
’ ! ¥ ’ I
(1), (2), (5), and (6) have the same values for all blocks and ; :' gg' gg' g;' gg’ ; :g
? r I r r
. 6 5, 33, 34 85
faults: 7 { 6, 34, 35, 16 85
-3 = - g8 |6, 7 8s
Ku = K = 10 "Kbars/cnm, Vu = V = 50 cm/Kbars. 9 7: 35 85
It is considered that the time t in eguations (2) and (6) is a ig 12‘ ig’ 3.8 :g
r
_ : : 12 9, 10 60
non-dimensional guantity. 13 10: 38, 39, 40, 1 BS
Discretization is defined by the following values of the 14 140, 20 82
15 (43, 41, 19 85
parameters e and &t: ig :g' zg' ig' 32 gg
= - 18 |24, 69, 44, 45, 46, 38 89
e = 5 KN, At 0.001. 19 11' 69, 68, 41 85
The value of the difference between lithostatic and hydrostatic 20 128, 70, 71, 72, 11 8>
21 |12, 47, 44 85
. 22 |14, 73, 74, 48, 12 75
pressure P in formula (12) equals to 2 Kbars. The levels B, Hf, and 23 |23, 72, 48 85
. 24 |67, 49, 46 85
H_ have the same values for all faults: 25 22: 71: 74, 75, 49 85
_ ) - . _ 26 |13, 75, 47 60
B=o0.1; H, 0.085; H_ = 0.07. 27 66: 76: 77, 13 45
. . . . 28 |21, 70, 50, 73, 77, 51, 37 85
The constant V‘ which defines the eveoclution of inelastic 29 |15, 52, 53, 50 85
displacements during the creep state equals to 2.10° cm/Kbars for gg gg' gz 78. 55, 15 gg
r L r r
all faults. The earthquake magnitude is calculated with the 3% ;g' gg gg
r
following values of the constants in formula (15) (Utsu and gg g:' gg' 78, 587, 79, 76, 51 g:
. . 36 |54, 58, 59, 60, 61, 62, &3, 36 85
Seki, 1954): 37 |31, &4, 60 ' 85
D = 0.98; E = 3.92. gg gg' 2: 22
f
The square 5 in formula (15} is measured in square kilometers. :g gg' gg 79 66. 63 gg
r I ’ r
The movement of the boundary blocks is defined as follows. The 42 117, 67, 9 60

boundary block which contains the vertices with the numbers io0, 9,

67, 17, 8, 237, 36, 16, 35, 7, and 6 and the segments between these
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vertices moves progressively with the components of the velocity

-10 cm and 7.5 cm in one unit of time along X and ¥ axes
respectively and rotates around the coordinate origin with the angle
velocity 5-10°° radians in one unit of time. The other boundary
blocks do not move.

The earthquake catalog obtained with zero initial conditions
contains 26689 events in the time segment of 100 units. Magnitudes
of these earthquakes are between 4.55 and 6.60. The graph of
dependence of the accumulated number of earthquakes on the magnitude
is represented in Figure 8.

The earthquakes occurred in the all cells of the following
fault segments (the numbers of the vertices which limit the
segment): (32, 5), (6, 34), (34, 35), (35, 16), (63, 36), (16, 16),
(36, 37), (37, 8), (8, 17), (17, 6€7), (67, 49), (67, 9), (9, 10),
(7, 35). The earthquakes occurred in some cells of the following
fault segments: (45, 46), (6, 7), (33, 34), (31, 32), (32, &1),
(60, 61). These cells aujoin to the vertices with the numbers: 45,
7, 34, 32, 61,

Irregularity in tha earthquake distribution gives possibility
to hope that the indication of the boundary block movement well
approximating their real movement could cause the earthquake
distribution being clos: to their real space distribution in the
Weatern Alps. The values of constants P, Ku, Vu, K, Vv, and V. and
levels B, Hf, and H. have to be close to reality and to reflect the
hierarchy of the faults. The correction of the block structure

geometry can also need.
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APPLICATION CF M8 ALGORITEM TO THE SYNTHETIC CATALOG

The synthetic earthgquake catalog cbtained was used as the
initjal data for the intermediate-term earthquake prediction
algorithm M8 (Keilis-Borok and Kossobokov, 1990).

Before the algorithm application the magnitude tranaformation
was made by the formula

M = 2M - 6.5
where M is the catalog magnitude; M’ is the magnitude used for the
algorithm application. This transformation is explained by the fact
that the inclination of the graph in Figure 8 is toco steep. The
values of the magnitude M are from 2.70 to 6.66.

One unit of the non-dimensional time is interpreted as one
year. The time of the initial moment is 0 h 0 m of January 1, 1900.
In consaquence the date of the first event in the catalog is
December 29, 1901, th date of the last event is December 6, 1999,

Identification of main shocks and aftershocks was made by
Gardner-Knopoff clgorithm (Gardner and Knopoff, 1974). The catalog
of the main shocks contains 2184 events. Statistical analysis of
this catalog has given arguments to consider the earthquakes with
M’ = 6,5 as strong ones.

Adaptation of M8 algorithm was made by using the initial time
segment of the cataloo (before July 1, 1915) and the standard set of
values of its parameturs in the circle with the center (45°N, 8°F)
and radius 192 km. The data after 1915 were not used for the
algorithm adaptation and were examined.

The results of the algorithm application are the following.

There is the only alarm period from July 1, 1913 to July 2,

28

1918. This period contains the strong earthquake with M* = 6.66
which occurred at August 10, 1915 and the two events with M’ = 6.06
and M’ = 6.42 which occurred less than one day before the strong
one. Two other strong earthquakes occurred in 1504, i.e. during the
initial part of the catalog when not all values of the functions
used by the algorithm for the diagnosis of alarm periods are
defined. After the end of the alarm period indicated there are not
another alarm periods and there are not strong earthquakes, i.e.
all earthguakes in the catalog after July 2, 1918 have M’ < 6.50.
Thus the result of the application of M8 algorithm to the
synthetic catalog can be considered as satisfactory. But the lack of
strong earthquakes in the catalog does not permit to estimate the

reliability of the result obtained.
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