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EXAMNPLES OF PATTERN RECOGNITION PROBLEMS

Let it is necessary to decide about any cbject, phencmenon or
process has it some feature or not. This problem could be solved by
construction a model on the bagis of mechanical, physical, chemical
or other scientific laws which could explain the comnection between
the available information and the feature under consideration. But
in many cases the construction of a such model is difficult or
practically impossible. In this case it is natural to apply pattern
recognition methods.

Examples of some problems for application of pattern
recognition methods are the following.

1. Recognition of earthquake-prone areas (for example Gelfand
et al., 1976).

The objects are the selected structures of a region. The
possibility for a strong (with magnitude M = Ho' where M is some
threshold) earthquake to occur near the object is the feature under
consideration. The available information is the topographical,
geological, geomorphological an geophysical data.

The problem as the pattern recognition cne is to divide the
selected structures into two classes:

-= structures where earthquakes with ¥ = "o may occur;

~- structures where earthqguakes with M z Ho may not occur,

2. Intermediate-term prediction of sarthquakes (for example
Keilis-Borok and Rotwain, 1990).

The okjects are moments of time. The occurrence of a strong
(with magnitude M = "o' where "o is some threshold) earthquake

in the region within the peried (t, t + ) where * is a given

constant is the feature under consideration for the roment t. The
available information is the values of functions on seismic flow
calculated for the moment t.

The problem as the pattern racognition one is to divide the

moments of time into two classas:

-- moments for which there is {or will bi) a strong earthquake

in the region within the period (t, t + 1};

—-- moments for which there are {or will be) not strong
earthquakes in the region within the period (t, t + Tt}.

2. Recognition of strata filled with oil.

The strata encountered by a borehole are the objects. The

filling of the strata with oil is the feature under consideration.

The geological and geophysical data about the strata are the
available information.

The problem as the pattern recognition one is to divide the
strata into two classes:

-= atrata which contain oil;

-- strata which contain water.

3. Medical diagnostics.

The objects are examined people. The feature under
consideration is a specific disease. The data obtained through
medical examination of people are the available information.

The problem as the pattern recognition one is to divide
examined people into two classes:

== people who have a specific disease;

-- people who do not have it.
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GENERAL FORMULATION OF TEE PATTERN RECCGNITION PROBLEM

Generalizing the three above examples one may formulate the
problem of pattern raecognition abstractly as follows:

The set W = { w } is considered, where objects

1

i i '
w = (w1, Wor eee w') , 1 =1, 2, ... are vectors with real

{integer, binary) components. Below these components will be called
functions.

The problem is to divide the set ¥ into two or more subsets
which differ in certain feature or according to clustering

themselves.

There are two kinds of pattern recognition problems and

methods:
-~ classification without learning;

—-— classification with learning.

FIGURE 1. Clustering of objects in two-dimensional space.

CLASSIFICATION WITHOUT LEARNING

{ CLUSTER ANALYBIS )

The set W is divided into groups (clusters, see Figure 1} on
the base of some measure in the m-dimensional space LOTLATRRRT
Denote p(w,v) a distance bhetween two m-dimensional vectors

v = (w1, War sen gy w.) and v = (v1, v v sV )

2! "

To define classification and to estimate at the same time its
guality the special function is introduced. The best classification
gives the extremum of this function.

Examples of functions.

Let W is a finite set.

K
(K -1) Fe,
k=t
1 €1 K

2L L

kal Jak+1

i

1 X . KV X
2. FJ = —= Yo, - —=——F7% Y e . -— min
2 LI K= 1 0y jcey ki
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m mj are the numbers of objects in the k-th and j-th groups

respectively,
L]
v', vz, A ¥ are the objects of the k-th group,
n
vT, vz, R ;

are the objects of the j-th group.
After the groups are formed the next problem can be formulated:

to find common feature of objects which belong to the same group.



CLASSIFICATION WITH LEARNING

Ae a rule the set W is divided into two classes, say D and N.

The a priori examples of objects of each class are given. They
are called the learning set:

Wo c W,

Wy =D, N, .
Here Do is the learning set (the a priori examples) of objects
belonging to class D, N’o is the learning set of objects belonging to
class N.

The result of the pattern recognition is twofold:

-~ The rule of recognition; it allows to recognize which class
an object belongs to knowing the vector w' describing this
object.

-- The actual division of objects into separate classes
according to tl is rule:

W=D, N,

In some cases there are objects with undefined classification,

8o
W= (D, N U.

Analysis of the obtained rule of recognition may give
information about the connection between the feature which differs
the classes D and N on one hand and description of objects
{functions of vectors vi) on another.

For example, analysis of the rule for recognition of
earthquake-prone areas gave an insight of the role of fluids in the

origin of the earthquakes.

EXANPLES OF ALGORITHMS

1. STATISTICAL

It is assumed that distribution laws are different for vectors
from classes D and N (see Figure 2).

Samples Do and "o are used to define the parameters of these
laws.

The recognition rule is based on calculation of an estimation
of conditional probabilities for each object v to belong to =lass D
(P; }) and N (P: ). Classification of the objects according to these

probabilities is performed as follows:

i i

i
w ep, itP -P re,
v enw, if P; - Pl < -,
v e, if -¢ = p; - P: <e,

where ¢ = 0 is a given constant.
An example of a statistical algorithm is Bayes algorithm.

BAYES ALGORITHM

According to Bayes formula
P(I-'i|'eD) P(weD) = P(veD|v=vi) P(U=w')
and

P(w=w'|weD) P(weD)

P = P(leD""‘) = -
° P(w=w )

Similarly

FIGURE 2. Different distribution laws for classes D and N.
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P! = P(weN{v—vi) = P("'ilﬂﬁN) P(weN)
* P(v=v‘)

Estimaticns of probabilities in the right side of these

relations are given by following approximate formulae in which

the samples D0 and No ire used:

P(w=w'|weD) ~ P(w-w' |weD,),
P(w-v‘1weN) » P(v=v‘|'eN°),
P(vnw') » P(w-vilveDU)P(weD) + P(w=w1|veNo)P(veN).

Probability P(weD) is a parameter of the algorithm and has to
be given, P(weN) = 1 - P(weD).
NOTE: The sign of the difference P; - P: does not depend on

value of P(w*wi).

2. GEOMETRICAL

In these algorithms surfaces in the space L wz, L., W are
m

constructed to separate classes D and N (see Figure 3).

An example of a geometrical algorithm is the algorithm

Hyperplane.

FIGURE 3. Separation of objects from classes D and ¥ in two-

dimensional space by the straight line.

ALGORITHM HYPERPLANE

In the space L e W the hyperplane

2’
P{w) = a, +aw, +oa,w, + ... taw is constructed.

This hyperplane has to separate the sets [, and L by the best

way. It means that some function has to have extremum value.
The example of the function is

n n
1 z

T(a,,a,..,a,) = IE‘P(u‘) - ‘);‘P(vi) —— nmax.

n
Here v‘, vz, R ! are objects of D0 .

n
v’, vz, R ? are objects of N0

The recognition rule as follows:

w' ep, it P(v') = ¢,

v e N, if P(v‘) < -g,

w e U, if - = P(v') < e.

Here ¢ = 0 is a given constant.

3. LOGICAL
In these algorithms characteristic traits of classes D and ¥
are searched using the sets D and N . Traits are boolean

i

functions on LTI ces W The object w has the trait if the

2t
value of the corresponding function calculated for it is true and
does not have the trait if it is false. A trait is a characteristic
trait of the class D if objects of the set D  have this trait more
often than objects of the set ¥ . A trait is a characteristic trait
of the class N if objects of the set N have this trait more often
than objects of the set D .

Using the searched characteristic traita the recognition rule is

formulated as follows:



w €U, if - = no-n -8 <e.

Here n; and n: are the numbers of characteristic traits of
classes D and N which the object w! has, A and ¢ = ¢ are given
constants.

Logical algorithms are useful to apply in cases then the
numbers of objects in sets D, and N, are small,

As a rule logical algorithms are applied to vectors with binary
components. An example of logical algorithm is the algorithm CORA-3.
It is applied to geophysical problems in particular to the problenms
of recognition of earthquake-prone areas and intermediate~term
prediction of earthquake. The detailed description of this algorithm

can be found in Gelfand et al. (1976) and will be given below.
DIBCRETIZATION AND CODING

As it was mentioned above some pattern recognition algorithms
(for example CORA-1) are applied only to vectors with binary
components. In the case when the set W initially consists of vectors
with real components (functions) the discretization and coding are
necessary.

After discretization the data become robust. For example if a
range of some function is divided into three parts only three
gradations for this function ("small", "medium®, "large") are used
after the discretization instead of its exact value. Do not regret
the loss of information. This makes results of recognition stable to

variationa of data.

10
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FIGURE 4, Discretization of function ¥,

Let us consider some function ¥, of vectors (objects) w which

form the set W. Let the range of the function variation is 1:-mited

with the numbers x’ and xj (x; < xi). The procedure of

]
0 !

discretization for the function w consists of dividing the range

i
of its variation into kJ intervals by thresholds of discretization

e

(Figure 4):

I J j i i i i i
e < < ... € X < x.).
Xy X ' xt,-l (xo Xy <% kj-f f)
J

Assume that the value w} of the j-th function of the i-th

object belongs to the s-th interval, if x'

<w' = x', where
-1 J 1

x) o = x:. In a process of discretization we substitute the exact

k
]

value of the function by the interval which contains this value.

Usually we divide the range of function variation inte two

intervala ("small" and "large" values) or into three intervals 4

ES)

("small"”, "medium"” and "large" values).

Thresholds of discretization can be introduce manually on the
basis of various considerations for the nature of the given
function.

The other way to define the thresholds is to compute them s0 as
to make the numbers of objects within each interval (x£_1, x:)

s =1, 2, ..., kj are roughly equal to each other. In this case only

the number of intervals kJ has to be defined. Then the threshclds of N

Ty

discretization may be calculated by a computer running a special

11



algorithm. All objects together or only objects of D, and N° can be
considered. This type of discretization is called here and below as
objective or automatic.

Our purpose is to find such intervals where values of the
function wj for objecta from one class occur more often than for
objects from another class.

How jinformatjive is the function wj in a given discretization
can be characterized as follows.

1. Let us compute for each interval (xi_ ' x:) the numbers P:

1

and P: (s =1, 2, ..., kj) which gives the percent of objects of Dn

and Nu respectively, for which value of the function wj falls

within the s-th interval.
Let us denote P = pax ]PD - P
max [

(ETEDY *

In other words P: and P: are empirical histograms of the value
of the function W, for moments Du and N.P is the maximal
difference of these histograms.
wax? the more informative is the function W
Functions for which P-.x < 20% usually are excluded.

2. Let k = 3. Let us denote:

The larger is P

2!

] ] o
|P2 P1l + IP! Pz

M = [
[} b 1]
|2} - PY)
N N [ 1
y - [P, = P + |P, - P,
“ P§ - P}

1t P: changes monotonously with s, M

L, = 1; the larger is Hr

more jerky is P:. This is clear from the Figure 5. Similar

statements are true for HI, P:.

12
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FIGURE 5. Monotonous and non-monotonous changing of P:.

The smaller are HD and H-, the better is the function W,
Functions with both M;, M; t 3 usually are excluded.

3. Samples Do and No are often marginally small, so that their
observed difference may be random. Therefore the relation between
functions P: and P: after discretization should be not absurd
according to the problem under consideration, though they may be

unexpected indeed.
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CODING

With discretization thresholds defined, a procedure of coding

of vectors w into the form of binary vectors in undertaken. For

coding only the functions selected on the stage of discretization
are considered. On the stage of coding 1J components of binary
vectors are defined for the function wj. Number lj depends on the
number of thresholds as well as on the type of coding procedure

applied to the function v

For coding the tollowing two procedures are used. In the case
of I ("impulse") procedure 1l = kj, i.e. the number of binary vector
comporents allocated for the coding of the function v, is equal to
the number of intervals into which the range of its variation is

divided after discretization.

Let us denote as Wi Wop oaea, @, the values of binary vector
i
components which code the function wJ. If the value w: of the

function v, for the i-th object falls within the s-th interval of

its discretization, i.e. x: . < w' s xj, then we set
. i .

w =0, w

' : = 0, ..., w = 0, w = l, w =0, ..., v =0,

s-1 5+
In the case of § ("stair") procedure lj = kj -1, i.e, the
number of binary vector components, allocated for the coding of a
function, is equal to the number of thresholds of discretization. If
the value w} for the i-th object falls within the s-th interval of

its discretization, then we set

=1, +v., u, =1,

w, - 0, v, = o, ..., w,

g = o, v, o= i, v,

1

Below the case when the codes of the function wl are

constructed for kj = 2 is considered.

14

If the value w} belongs to the first interval (x; < w; 1 xj)

I-coding has the form: 100. For the same value w; 5-coding hasa the

i
i

(I-method) and 01 (S-method). For the third interval (xi < w} 3 x;)

form: 11. For the second interval (xi < W, = x:} the codes are (10
they are 001 and 00 respectivaly.
Discretization and coding procedures transform the get of

! }» i =1, 2, ..., n, which correspond to all

vectors W = { w
objects intc a set of vectors with 1 binary comnponents. Here

1= Z'lj, where summation is implemented onl: over the functions
left after discretization.

Thus, discretization and coding transform the initial problem
in the form of the classification within the finite set of
l1-dimensional vectors with binary components. These vectors will be
called objects of recognition.

We shall denote by D, and No the sets of objects of recognition

which correspond to the moments Do and N, and by W the set of all

objects of recognition.
ALGORITHM CORA~3

Algorithm CORA-3 operates in two steps:
- selection of characteristic traits flearning);

- voting.

At the first step the sets of characteristic traits for classes

D and N are constructed on the basis of sets D0 and Nu.

Matrix
P
61 az 6!
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is called by a trait. Here 11, iz' i3 are the natural numbers such

ag 1 = 11 E iz = i! = ] and 61, az, 53 are eqgqual to 0 or to 1.

We say that the object which is the binary vector

i 1 i
w = (w‘, w

ITIRTRY u:) has the trait A if u: = 3 w' =3 w' =3

’ : ’ . .
1 1 |2 2 \3 3

Let W' < W. We shall denote by K(¥W',A) the number of objects

w' ¢« W which have the trait A.

The algorithm has four free parameters k1, k1, kz' ;z which can
take integer non-negative values., While the value of free parameters
are defined, the notion of characteristic traits is introduced.

The trait A is a characteristic trait of class D if

K(D ,A) = k , K(N A& =k .

The trait A is a characteristic trait of class N if

K(N .A) = k,, K(D A} s ;2.

Parameters k1 and kz are called by selection thresholds of
characteristic treits for classes D and N respectively. Parameters
;1 and ;2 are called by the contradiction thresholds for
characteristic traits of classes D and N.

The number of characteristic traits of each class may be large
enough. Among them groups of traits which occur on the same learning
objects of their class may be. There is no reason to include all
traits from a such group in the final list.

Let §1(A) be a subset of the set W consisting of the objects
which have the trait A. Let, also, A and A, be two characteristic
traits of class D. We say that the trait A, is weaker than the trait

A, {or A, is stronger than a), if
QA )nD, < Q{A,)nD, , (Q(A,)nD )\(B(A }nD ) = & .

In other words it means that all objects from Do, having Ai, possess

16

also A . At the same time there is at least one object from D ,
which, having the trait Az, does not have A1.

A similar definition we introduce for characteristic traits of
class N. let A, and A, be two characteristic traits of class N.
Then the trait A, ,i8 weaker then the trait A, {or A, is stronger
than A1), if

R(A )N ¢ A(A)AN ,  (R(A,)nN )\(A(A )N ) = O .

If two characteristic traits A1 and Az of class D are both
found in the same objects of the set D, i.e.

Q(A,)nD, = Q(A,)AD ,
we call A1 and Az as equivalent.

Similarly, characteristics traits A, and A of clasa N are
called egquivalent if

QA )N = Q(A,)nN .

The lists of characteristic traits of classes being formed as a
result of the learning step by definition include no any trait
which is weaker than any trait in the list of its class. Only one
trait (selected first) is included from each group of eguivalent
ones to the final list.

Thus, the learning step results in the set of q, characteristic
traits of class D and the set of q, of ones of the class N. These
sets containing no weaker or eguivalent traits in relation to any

one from the same set.

The second step of the algorithm invelves voting and

classification. For every object w' € W the number n; of the

characteristic traits of class D which the ocbject has, the number n:

of ones of clases N and the difference Ai; n; - n: are calculated.

Classification is performed by the following way.

17



Class D (the set D) is formed from the objects w' for which

A‘ = A,

The objects for which 4 ,< & are included in class N (the set N).

Here 4 as k1, k1, kz and k2 is a parameter of the algorithm.
CLUSTERS ALGORITHM

CLUSTERS algorithm is the modification of CORA-3 algorithm
(Gelfand et al., 1976). It is applied in the case when the seat Do
consists of § nonintersecting subsets {subclasses):

D, =Dy |y Dy |y «-- y D}
and it is known a priori that each subclass has at least one object
of class D but some objects of the set Du may belong to class N.

At the learning step algorithm CLUSTERS differs from CORA-3
in the fol)owing.

First, by definition a subclass has a trait if at least one
cbject among those which belong to this subclass has this trait.

The trait A is a ciiaracteristic trait of class D if

K”%J)th,M%A)s;.

Here K‘(Do,A} is the number of subclasses which have the trait A.

Second, the definition of the weaker and equivalent traits for
characteristic traits of class D changes to the following.

A characteristic trait A, of class D is weaker than a
characteristic trait A, of this class if any subclass having the
trait A1 has also Az, and there is at least one subclass which has
the trait 4, but does nrt have the trait A . Traits A and A, are
equivalent if they are rfound in the same subclasses.

CLUSTERS algorithm forms the sets of characteristic traits of

18

clamses D and N like CORA-3.
The step of voting and classification is the same as in TORA-3

algorithm.

AAMMING ALGORITHM

Another algorithm applied to geophysical problems is HAMMING
algorithm (Gvishiani and Kosobokov, 1981). There are also othar
possible applications of this algorithm (for example Kejlis-Borok
and Lichtman, 1981).

The application of this algorithm alsc consists in two steps,
At the first step (learning) for each component w, k=1, 2,
1) of binary vectors the following values are calculated
qo(kIO) - the number of objects of the set D, which have

w, = 0,
qn(k|1) = the number of objects of the set D, which have

w = 1,

q.[k|0) - the number of objects of the set N, which have

w = 0,

t

q_(k]l) the number of objects of the set N, which have
w o= 1,

Then the relative number of objects which have this compcnent
equal to 1 among the set Do

q, (k| 1}

“ K11} = ko) + 47k

and among the set N‘o

q,k|1)
q,7k[0) + q,(k[1)

a, (k1)

are calculated.

19
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where maximum is taken among the components used in the given run of

Then the kernel of class D X = (x, «x - x‘) is defined as

2'

follows the algorithm.

1, if « (k{1) = « {k|1),
" ™
. TEETE FOR ESTIMATION OF RELIABILITY OF REBULTS

0, if a (k|1) < & tk|1).

values of components of the kernel of class D are more

"typical® for the objects of the set b, than for the objects of the These tests are necessary to be sure in the obtained results.

set N . The calculation of the kernel K completes the first step of It is especially important in the case of small samples D, and N,.

applying the algorithm. The tests jllustrate - how reliable are the results of the pattern

NOTE: It may be more reliable to eliminate the components for recognition. However they do not provide a proof in the strict

which |an(k|1) -« (kj1)] < €, where £ is a small statistical sense if the learning material is small.
. ]

positive constant. The examples of some tests are listed below.

The voting procedure and actual classification are carried out 1. To save the part of objects from W  for recognition only, not

at the second stage. The voting consists of calculating for each ueing it in learning.

2. To check the conditions: P <« D , N < N .

object a Hamming’s distance P, to the kernel of class D. It is o 0

calculated by the formu.a: NOTE: Sometimes this conditions are not valid because the sets D

p, = i |u: - Kkl . and Nu are not "clear" enough. For example in the case of
Clas:;;ication is performed by the following way. recognition of earthquake-prone areas objects of D, are

¢lass D (the set D) is formed from the objects w' for which structures where epicenters of earthquakes with M = H,
p = R. are known and objects of N, are structures where epicenters
The objects for which P> R are included in class N (the set N). of such earthquakes are not known. Objects of N” may belong
Here R is a parame“er of the algorithm. to the class D, because in some areas earthguakes with
Hamming’s distance can calculated with including of the H o= M“ may be possible, though yet unknown. objects of D"
weights of components may belong to the class N due to the errors in catalog (in

P, i ﬁtlwl - ‘tl epicenters and/or magnitude}.

k=t NUMERICAL TESTS. These tests include some variation of the ohjects,

Here £k > 0 are the weights associated to the components of binary d e t £ + ical +
use: omponents of vectors, numerical parameters

vectors. Weights can be assigned intuitively or computed by the
etc. The test is positive if the results of

formula:
[«, (k1) = « (k|1}] recognition are stable to these variations.

max |a (k|1} - « (k|1)]
K
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3. Elimination of objects from D, and N, - one at a time. Formal

m
criteria of stability - amall value of the ratio or
120[
m o+ m
: . Here m  and m show how many objects of D and N
|5°| + |N°| [ ] [} 0
respectively change clagsification after they were eliminated from
learning.
4. Learning on the subsets of the obtained sets D and N.
5. Change the set of usad componente of binary vectors. In
particular elimination of each used component in turn.
Since the danger of selfdeception is not completely eliminated
by these tests the design and implementation of new tests should be

pursued.
RECOGNITION OF EARTHQUAKE-PRONE AREAS

The problem of recognition of places in the western Alps where
earthquakes with M & 5.0 may occur (Cisternas et al., 1985) will be
briefly considered below.

The objects are the intersections of the morphostructural
lineaments obtained as the result of the norphestructural zoning of
the western Alps. The scheme of the merphostructural zoning of
the western Alps and the objects are shown in Figure 6. The total
humber of objects in the set W is 62. The problem is to classify
these objects into two classes: objects where earthquakes with
M = 5.0 may occur (class D) and objects where earthquakes with
M z 5.0 may not occur (class N).

Table 1 contains the list of functions which describe the
ocbjacts. Values of these functions are components of vectors w'.

The epicenters of earthquakes with M = 5.0 or In e 7 (Io is

22

RESULTS OF CORA 3

5§ LOMDITUDINAL FIRST AANK LINEAMENT
EF  TRANGVERIE PINET MANK LINEAMENT
11 PIRET NANK LINEAMENY CAPROXIMATE)
&= LOHQITUDINAL SECORD RANK LINEAMENT

AE TRANYVERSE BEQOND RANK LINEAMENT

e LONGITUBINAL THIAD RANK LINFAMENT
= TRANSYEASE THIRD RANK
34 N OF OBMICTE

VI N OF HEGABLOCKS

U5 AECOGNIZED AS
T DANGEROUS

BPRLIE
;

LIGURIAN SEA

FIGURE 6. The morphostructural scheme of the western Alps and

the result of recognition.
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TABLE 1. Functions of objects of the western Alps

Discretization
Characteristics thresholds
tirst second

Maximum altitude B . .m 2636 4807
Minimum altitude # _ ., m 325 -
Altitude in the lineament intersection
point H ,m 490 900
pistance between points B, and H_ . 1, knm 32 42
AH = H-.l - H-‘n y m 2500 -
Altitude gradient AH/1 , m/km 51 91
combinations of relief types (yes, no}

mountain slope/mountain slope (m/m)

mountain slope/plain {m/p)

mountain slope/piedmont/plain (m/pd/p)

mountain slope/piedmont (m/pd)

piedmont/plain (pd/p}
The portion of the soft (guaternary)
deposits Q, % 10 -
The highest rank of the lineament in the
intersection Rh 1 2
Number of lineaments forming the intersection n 2 -
Number of lineaments in the circle of radius
25 km Nt {3 thresholds} 2 3,
pDietance to the nearest intersection Ping ¢ km 20 i1
Distance to the nearest first rank lineament
p‘ , km 1] 32
Distance to the nearest second rank lineament
Py s km 0 40
Maximum value of Bouguer anomaly B_.l . mgl ~-B2 -8
Minimum value of Bouguer anomaly B_in , mgl =145 -85
iB = B..! - B_iﬂ , mgl 45 65
B = (B_.I + B.‘n)lz , mgl -110 -44
HB = 0.1Hn.l[m] + B-En[mgll 153 -
Number of Bouguer anomaly isolines N, 4 7
Number of closed Bouguer anomaly isolines N': 1 -
Minjimum distance between two Bouguer anomal
isolines with values divided by 10 mgl (VB) ', km 2 3
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naximum macroseismic intensity) are shown in Figure 6 by darX
circles with origin years. The learning set D  of class D consists
of 14 objects near which instrumental epicenters of esarthquakes with
M z 5.0 are known (earthquakes in the 1900-1980 peried): 3, 12, 13,
14, 20, 30, 31, 35, 40, 41, 42, 44, 51, 57. The objects (1, 5, 6, 8,
53, 55, 56, 58, 60, 61) which have historic earthquake epicenters
(events prior to 1900) with Iu z 7 were not included both in Do and
Nu learning sets. These objects and objects 18, 19 which are located
near the epicenter of 1905 were voted only. The remaining 36 objects
constituted the learning set N of class N.

The following functions (Table 1} ought to be considered as
the most informative: maximum altitude H . altitude gradient AH/1,
the portion of the soft (quaternary) deposits Q, the highest rank of
the lineament in the intersection R . distance to the nearest
second rank lineament Py For all these functions P 20%.

Coding of all the functions, except the combinations of relief
types (Table 1), was performed by S-method with the thresholds given
in Table 1. Their values have been obtained by the method of
objective discretization. Functions describing relief pattern need
no additional discretization and coding since they take values 1
(yes}) or 0 (no).

Algorithm CORA-3 was applied with the following values of its

parameters: k1 =3, k = 2, kz = 11, k

1 =1, and 4 = 0. The selected

z
sets of characteristic traits of classes D and N (D- and N-traits)
are given in Table 2. The traits are given in the table as
conjunctions of inequalities in the values of object description

characteristics. The obtained classification of objects is shown in
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TABLE 4. Characteristic traits selected by algorithm CORA-3 for
recognitinn of objects of the western Alps

Nos.| @, % n, N, Py Pyt AB, (vB) !
km km mgl km
D-traits
1 32 55 %2
2 >0 565 52
3 =32 1) %65
4 >3 0 565
5 >4 >45 s3
6 >0; =40 >45
7 2 »>32 >45
8 2 >32 %3
9 >2 53 2
10 >10 >3 =40
N-traits
1 45 »2
2 >0 =45
3 2 345
4 >40 545
5 >40 >2
6 2 >40
7 2 =3 >0
8 2 0

Figure 6. 34 objects are attributed to class D and 28 cbjects are
attributed to class N. All objects of the learning set b, are
classified as objects of class D. The number of objects of L
classified as objects of class D is roughly 30% of the their total

number in N..

INTERMEDIATE-TERN PREDICTION OF EARTHQUAKES

The pattern recognition methods were used to develop the
intermediate-term earthquake prediction algorithm CN (Keilis-Borok
and Rotwain, 1990). This algorithm was initially applied to

Ccalifornia-Nevada region.
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The objects are moments of the time. These moments are
described by the functions defined in the lecture "Functions on
Earthquake Flow". The selaction of the moments and the formiryg of
the learning sats Do and No are described balow.

If the earthquake catalog of some region covers the time from
t, to T, the three types of time periods can be defined between to
and Tt:

- periods which precede strong earthquakes - periods D;
- periods which follow strong earthquakes - periods X;
= periods which are not connected with strong earthquakes -
periods N.
The formal definition can be formulated as follows.
Let t1, tz' veas t- (tu < t1 <t < ..,

z
moments of strong earthquakes of the region under consideration.

<t < T ) be tha
» k

Here strong earthquakes are the main shocks with wagnitude M = M.
where M is a given threshold.

Periods D are time intervals from LI 4t to t .

Periods X are time intervals from ti to t, o+ 4t  out of
periods D.

Periods N are intervals from t, to T, which remain after
exclusion of all periods D and X.

Here i = 1, 2, ..., m; Atn and Atl are given constants.

Example of periods D, X and N is shown in Figure 7. The moments
ti, t‘.1, t;‘z and ti‘! in this figure are the moments of four
strong earthquakes.

Moments of time are considered as objects of recognition. For
time period from tu to T three types of morents are defined: D, N,

and X.
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— D e X 3|e—— D —|]e— X —jle N 3[e= D —|e— X — * At » € At +
. 3L at
« atn -+ - Atn - - ntx -+ - Ata 3| e At' - — —
N :"2 o t"' 4 :t‘ )
> = 0 1 2 [ 1 2 N
t1 t|o1 t|oz ti'l t t|-1 t|-1 ti-! t! tl !
-5
— 4t 4|« dto -+ L At3 +| ¢ At} -+ « At3 +|e At}
FIGURE 7. Periods D, N and X. B
¢ At -
]
Moments D (the set D_) are the moments before strong * at »
° ° e st St
earthquakes. For each strong earthguake with crigin time ti the — —
interval from ti - Atp to tr - &t is divided into k equal parts of
t t t
{-2 i-1 i
the length At = At /k, where At = At - 5t. Here § = 0 and k are —x b P ¢ b X *
3 1 ' b &0 ¢! ¢2 et t? t
selected so to have the relationship &t « &t._. Pt i el : ¥
! « At3 3|« bts -+ « At3 -+

Moments l:ic| are the moments
]

t, =t -t + jat,

FIGURE 8. Moments Do (k = 2, the moments Du are marked by e).
vhere } = 0, 1, 2, ..., k. The moments D0 which are earlier than
the origin tinme t‘_1 of the preceding strong earthgquake are

includes moments Do which precede the same strong earthquake.
eliminated (see Figure 8B).

Let t, , and t, are origin times of .wo consecutive strong

Moments N are selected within periods N with equal steps, ’ '

earthquakes. If t -~ ¢t > &4t then the subclass connected with

unless there is not specific reason to do otherwise. ! it ?

the i-th strong earthquake consists of moments D,

Moments N0 (the set No) are selected from moments N to be ’

t: =t - At + jat,,

regularly distributed among them. The number of moments N, is

where j = 0, 1, 2, ..., k. If t, -t sAt then only moments tf
usually selected about the same as the number of strong earthguakes

which are after t,. (ti >t ) are included in the subclass.

1 1

in the region.
In Figqure BA the suhclass connected with the strong earthquake
Moments X are selected from periods X with step At!. [ ¢!

with the origin time t:“1 consists of three moments D : ti_1, i1

Among the moments Du subclasses are formed. One subclass 2
and t. . The subclass connected with the strong earthquake with the
includes moments Dn which precede the same strong earthquake.
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origin time t‘ also consists of three moments Do: t?, t: and tf.

In Figure 8B the subclass connected with the strong earthgquake

with the origin time t . consists of three moments D,: t! t!

fe1f T
and t7_1 and the subclass connected with the strong earthquake with

1

the origin time t, conaiats of only two moments D,: t: and tf.

These moments were defined for the Southern California for the
time period 1938-1984, The threshold magnitude for the strong
earthquakes was M, = 6.4. Table 5 contains the thresholds for
discretization of the functions on the earthquake flow calculated
for these moments. The coding was performed by S-method with these
thresholds.

The algorithm CLUSTERS was applied to obtain the characteristic

traits of classes D and N. These traite are listed in Table 6. The
parameters had the following values: k1 =7, ;1 = 32, kz = 10, and
;z = 4. The moments defined for the Southern California are
classified by using these traits with &4 = 5. If a moment t is
attributed to class D tlen this moment is considered to belong to
a period of the time of increased probability (TIP) of a strong
earthquake. Formally if t is attributed to class D then a TIP

diagnosed from t to t + t where t is a given constant. For the

TABLE 5. Thresholds for discretization of functions

Function|Thresholds
N2 [¢] -
K -1 1
G 0.5% 0.67

SIGMA 36 71
Smax 7.9 14.2
Imax 4.1 4.6
N3 3 5
q 0 12
Bmax 12 24

ie

Southern California t = 1 year was used.

TABLE 6. Characteristic traits of classes D and N obtained by
CLUSTERS algorithm for the moments of the Southerr

Trajits D

W~ N

Traits N

Wl U d Wi

California
]
I
N2 G |Sm |Zm |N3 Bm
M a a a
A x x x
0
0
4] 0
0
1 0
1 0 0
1 0
]
0 0
1 o
1 [s)
0 1 0
0 1
0 0
0 0
4]
s
1
N2 G |Sm |Zm |N3 Bm
M a a a
A x x x
1 1
1 1
1 1
i 1 1
0 1 1
1 1
1 1 1
1 1 1
0 1
1 1
1
1 0
1 1
1 1
1
1 1
1
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