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INTRODUCTION

The idea about the possibility of magnetic field generation due
to movement of an electrically conducting medium belongs to Larmor
{1919) and was used for the explanation of the Sun magnetic field
existence.

Magnetic field generation due to movement of an electrically
conducting medium (magnetic dynamo} is considered now as the basic
mechanism of origin and existence of the magnetic fields of the
Earth, the Sun, planets, stars, and other space objects. The reviews
of the results of the numerous investigations in this field can be
found for example in Roberts (1972}, Moffatt (1978, 1983), Parker
(1979), Krause and Radler (1980}, Busse (1981, 1983), Cowling
(1981), Benton (1983), Gubbins (1984), and Childress (1985).

The tirst examples of magnetic dynamo were suggested by Parker
{1955, 1957), Bullard and Gellman (1954), Backus (1958), Herzenberg
(1958), and Rikitake (1958). In these investigations for the
specified velocity fields of an electrically conducting medium the
existence of magnetic dynamo was proved. The action of the magnetic
field on the medium movement was not considered and such models are
called kinematic dynamo.

The velocity field ¥ of the moving medium is connected with the

medium density p by the equation of conservation of mass
22 + aivip) = 0 . (1

If the movement occurs inside of the some region then on the region

boundary surface the following condition has to be valid

Vo = 0 . (2)
Hera the vector n is normal to the boundary surface. If the velocity
field Vv and the density field p satisfy to equation (1) and the
boundary condition (2) then the field (¥, p) is called kinematically
teasible. The field (v, p) is dynamically feasible if it alsc
satisfies to the eguations which describe the medium motion, for
example the Navier-S5tokes equation. As a rule in the known models of
the magnetic dynamo the madium motion is kinematically feasibla. But
dynamical feamibility of the motion is not usual. Thus the
investigation of dynamically feasible flows of an electrically
conducting fluid as the cause of the mac ietic field generaticn has a
certain interest.

The Couette-Poiseuille flow {(Joseph, 1976} is an example of a
such flow. It is a fluid motion between two coaxial cylinders of
infinite length. The flow satisfies to the Navier-Stokes equation
and the proper boundary conditions. The magnetic dynamo proebiem for
this flow is formulated and investigated below. The motion of an
electrically conducting fluid between tvo cylinders was early
considered (for example see Bathaiah ami Venugopal, 1982, Busse,
1982, Tabeling, 1982, Childress, 1983, Chowdhury, 1983, and Sai,
1985). But in these investigations either the flow was nhot the
Couette-Poiseuille flow or the magnetic dynamo problem was not
considered.

Evolution of the magnetic field in the moving medium is

described by the magnetic induction eguation (Moffatt, 1978)

¥ . rot(md) + AV'H . (3)

Here H is a vector of the magnetic field, V is a vector of the
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medium velocity; A is the magnetic diffusivity of the medium the
value of which is connected with the value of the electrical
conductivity ¢ of the medium by the formula A = (gnc)'1 where the
value of the constant Ho depende on the selected system of units (in
7

SI p_ = 4wl0’

0 Wh/A-m}; by definition viE = - rot(rotH).

Accordingly to the Maxwell’s equations
aive = o , (4)
that means the absence of isoclated magnetic poles.
The electrically conducting fluid is supposed to be

incompressible. Thus it has the constant density p and equation (1)

has for it the following view

Aivvy = 0 . (3)

In the kinematic formulation of the magnetic dynamo problem the
action of the magnetic field on the fluid velocity field is not
considered and equations {3) and (4) are the equations for the
vector-function H with the known vector-function V.

The existence of the magnetic dynamo means that there are the
initial magnetic field HD and the values of the flow parameters for
which the magnitude of the vector-function H which satisfies to
equations (3) and (4) increases infinitely when t - w.

The boundary conditions have to be formulated for the system of
equations (3), (4). The following two cases are examined below:
perfectly conducting boundaries and dielectric boundaries,

As the vector-function ¥ has the axial symmetry the cylindrical
coordinates r, ¢, z with the z axia being the common axis of the
cylinders are convenient to use. The system of equations (3), (4) is
linear relatively to the vector-function H. Therefore a harmonic

H(r)exp(ing + 1lez) in the expansion of the initial magnetic field H

can be examined. Here n is an integer and a a real number. The
substitution of a single harmeonic in eguations (3) and (4) reduces
the magnetic dynamo problem to the eigenvalue problem for the system
of the two ordinary equations with the uniform boundary conditions.
The magnetic field is generated if there exists an eigenvalue with a
positive real part for this boundary problem. The magnetic dynamo
problem for a gpiral velocity field was investigated early by the
same way (for example see Ponomarenko, 1973).

The magnetic dynamo problem for the Couette-Poiseuille flow of
the electrically conducting fluid was analyzed numerically and by
the asymptotic method developed by Ruzmaikin et al. (1987). The
results of the both approaches are in good agreement. The main
result lies in the evidence of the magnetic field generation by the

Couette-Poiseuille flow of the electrically conducting fluid.

BABIC EQUATIONS

The magnetic induction equation (3} has the following view in

the cylindrical coordinate system defined above
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Here Hr’ Hp, Hz and Vr' Vp, Vz are the compcnents in the cylindrical
coordinate system of the vector-functions E and ¥V respectively.
Equation (4) has in the cylindrical coordinate system the

following view

1 "} -
% t i 0 . (7)

If the vector-function H satisfies to the induction equation

(3} then
F] BN
Fpdiva = "“[FE] - aiv[rot(m - Arotn)] =0 .

Thus if for the initial magnetic field divﬂo = 0 then the vector-
function H which is the decision of equation (3) satisfies to the
condition 4AivE = ¢. It means that four equations (6} and (7) are not
independent and one of them can be jignored.

The Couette-Poiseuille flow is a helical flow with an axial
symmetry (Joseph, 1976) and the components of the vector V¥V of its
velocity field have the following view

Vr =0, Vp(r,p,z} = V;(r) ' Vz(r,w,z) = Vz(r) . (8)
By using formulas (8) and equation (7) the first two egquations of

{6) can be transformed to the form
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Note that eqguations (9) contain the two unknown functions H,
and Hw. If for these equations the boundary conditions which do not
depend on the function H, can be formulated then the functions H,
and Hp can be cobtained from them. Then the function H, can be
obtained from equation (7) or from the third equation of (6).

The Couette-Poiseuille flow results from the rotation of the
cylinders around their common axis, the motion of the inner cylinder
along this axis, and a constant pressure gradient along this axis,

Denote the radii of the inner and outer cylinders by a and b
(2 < b), their angular velocities by ", and R, the axlal velocity
of the inner cylinder by Uc.

The components of the velocity field for the COuette-Poi§eu111e

flow are defined by the formulas (Joseph, 1976)

2 2 2,2 _
v (5 = ba, - a’a . a’b"(a, - a,)
¢ B? - a? r(p? - a?)
Vp(r) = Va(r) + Vo(r) . (10)
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Here

. z_
no= -, dm) o= 1m’+ (n® - 1) [-1 + ln[:—:” . (11)
nn

V;{r) results from the axial motion of the inner cylinder and V;(r)
is due to the pressure gradient. U; is the maximum modulus of V;(r).

7 -1

5 and can be calculated by

This value is attained at r = b v
the formula

bz

P 4 lnm?

d(n) P
"

where P is the magnitude of the pressure gradient and v is the
kinematical viscosity of the fluid.
Let b be the typical length and ba/x the typical time.
Introduce the magnetic Reynolds number

U b(1 - n)
R =2
™ A

(12)

2

? 4 U
P

where U; = V/éz (n1 - nz)z + U: is the typical value of the
fluid velocity.

Consider a harmonic M(rjexp(ing + izz) in the expansion of the
initial magnetic tield distribution. It was shown by Zeldovich
(1956) and Braginsky (1964) that the harmonic can be excited only if

R * 0and e« » 0. Thus it will be supposed below that n = 0 and a = 0.

After substitution

H = Nr(r)exp{inw + laz + pt), H = war)exp(inw + iaz + pt} (13)

14
where p is a complex number and formulas (10) for the components of
the velocity field in equations (9) these equations are transformed

to the following form

M an .
r 1 r_f{1 _ _2in -
= *F [ o+ pJRr =0
(14)
2
a ¥ d# 2R B
zw + _%_ ' - [ 12 *o(r) + p]ﬂw * [—Eig_ - *__5__]Rr =0
dr r r r
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z 2
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Accordingly to the normalization accepted the independent variables
r and t in formulas (13), (15) and eguations (14) are measured in
units of b and bz/a respectively.

The componant H#,(r) of the vector-function H(r} can be obtained

from equation (7)

dx
i i r n
Hp(F) = 5 Hp(0) + = @5~ —aF Mp(7) - (16)
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BOUNDARY CONDITIONS

The system of equations (15) is considered over the interval
{n, 1]. Boundary conditions for (15) depend on the electrical
properties of the cylinders. Two cases will be examined below:
1) the material of the cylinders is a perfect conductor;
2) the material of the cylinders is a dielectric.

Let the material of the cylinders be a perfect conductor.
Inside and on a surface of a perfect conductor

H=0, E=20 (17}
where E is a vector of an electric field. A magnetic field wvector
component which is normal to a boundary surface is continuous when
crossing the boundary. Therefore on tha boundaries

B lpmn = Brlrer = © - (18)

It follows from the Maxwell’s equations and conditions (17)
that the vector-function rotH is proportional to the vector-function
J of a current density. For a moving electrically conducting fluid
with the velocity field V the vector function J is propertional to
the vector-function B + V x H. Because of the adhesion conditicn on
the boundary the vector-function Vv lies in the plane which is
tangent to the boundary surface and it follows from conditions (17),
(18) that on the boundary the proportional vector-functions
BE + ¥V x H and rotH are normal to the boundary'surface. Thus

{rot H}

= {rot H) =9,

wlr—n ?I.t"l
(13}
(rot H)

= {rot H) - 0,

z|r=‘n zir=1

For the harmonic under consideration condition (18) has the

following form

1o

R (m) = M (1) =0 . (20)
By using (20) conditions (19) for the harmonic under

consideration are transformed to the form

ax au

™ ™

[+ 2. [+

It follows from eguation (16) that

2
d”z i d ”.I." + 1 d‘"r _ _2in H __n dﬂp + Np | _ 1 #
ar r dr FE ar |dr r j aré T

i [IRES

This relationship shows that conditiona (21) follow from the second

equation of (14) and conditions (20}, (22). Thus for the harmonic

undar consideration the boundary conditions (18), (19) are

equivalent to the boundary conditions (20), (22).

Conditions (22) can be simplified by the following

transformation

R(r) = (r) , &(r) =rH (1) . (23)

The system of equations {14} and the boundary conditions (20), (22)

are transformed for the functions R(r) and ¢(r) into the system of Qf

egquations
a’rR _ 1 ar zin
— —_ {(Q(r) + p)R - ¢ =0,
ar? r dr ]
(24)
a’e _ 1 ae 24an _ RSBV
;;; - daF ~ (@) + p)¢ + [ e ——;?*_ R o .

with the boundary conditions
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R(m) = R(1) =0 . g%|r=n = g%rr=1 =0. (25)

Thus, if the material of the cylinders is a perfect conductor
then the harmonic under consideration is excited (the magnetic
dynamo exists) if there exists an eigenvalue p with a positive real
part for the system of eguations (24) over the interval [n, 1] with
the homogeneous boundary conditions (25).

Let the material of the cylinders be a dielectric. Inside a
dielectric currents are absent and the vector-function rot H which
is proportional to the vector-function J of a current density equals
zero. It means that in the regions where r < v or r > 1 the vactor-

function H has to satisfy to the system of equations

rot K =0 , div H = 0 . (26}
It follows from the first eguation (26) that

aF . 1 ar _ &F
Hr 3¢ ¢ Lw ar z "~ 3z (27)

where F(r,v,z} is a scalar function. For the harmonic under
consideration this function has the form

F(r,¢,z2) = ¥(r) exp(ing + iaz + ipt).

Accordingly to the second equation of (26) and formulas (27)
the function ¥(r) has to satisfy to the equation

1 d¥ 2

a’s | 1 gy
ar? r dar |

+ al ] F =0, (28)

The equation (28) has a solution Zn(ilalr) where Z_(w) is the
circular cylindrical function of order n with the complex argument w
(Korn,G. and T.Korn 1961). The general solution of equation (28)
can be represented as a linear combination of two linearly
independent circular cylindrical function of order n with the

complex argument ijeir. The Bessel function of order n Jnrilalr) and

12

(1)

the first kind Hankel function of order n Hh

file|lr) can be used as
the such functions. In this case the general soclution of equation
(28) has the following form

$(r) = K, J (llalr) + K, H:”{ilalr) (29)
where K, and K, are arbitrary constants.

In the region where r > 1 the solution of equation (28) has to
be finite when r » ». It follows from the asymptotic representations

for |wl - «

r _._1__[“;,[1[,, 8] e[ - 2 - §]]] ,

—
000 -/ el o - ]
{(Korn,G. and T.Korn, 1961) that the condition K1 = 0 is the
necessary and sufficient condition for the functicn ¥(r) (29) to be
finite for r 3 ». Thus in the region where r > }
$(r) = KH Vqdialr) . {30)
In the region where r < » the sclution of equation (28) has to

be finite for r + 0. It follows from the formulas
"o k 2k
W -1 4
700 = (F) ) e (E)
kad
21 ¥ 4oe]] - ][22
n 2 n 2 n.
no— k 2k & L
W -1 w 1 1
) e
ko i1 jea1

)T )]

ka(

H:1’{w) = Jn{w)[l +

where € = 0,57721566... is the Euler number (Korn,G. and T.XKorn,



1961) that the condition K, =0 is the necessary and sufficient
condition for the function ¥(r) (29) to be finite for r - 0. Thus in
the region where r < 75
¥((r) = KJ_(ilalr) . (31)
In accordance with formulas (27), (30) and (31) the components

of the vector-function M(r) has to satisfy to the following boundary

conditions
“r("} - el ar (w)
Tlp(n) nF (wj  dw iw—iluln !
(1) (32)
K.(1) ™ daH = (w)
“ﬂ¢(1) nH (w) dw lv=ila] *

It follows from formulas {(27) that

Ha(n) = g Ko(m) R (1) = —F K (1)

The last formulas and formula (16) lead to the following boundary

conditions

L ou Wi Y L N T

r r(") dr |r=n n n w(") '
2 (a3
[+

d"r
Ho(1} + HE’|r=1 = wi[ & + n]Rw{lj

The boundary conditions (32}, (33) for the functions R(r) and

#(r) (23) can be represented in the following form

o) = _nil_:]_ Y, R(n) , (1) = —f%!— Y,R(1) ,
(34)

n!

dr
- [{a] + 22— Y_R(1) .
aPlr-u [ el 2

dR nt
Y‘R(n) . 3?':-1 = [|a| + TaT
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Here

Sepnimm, e
A

y o1 a0 o1 g ) " E
T S S L TSt slvery ey ERTPY i
dw a;ﬂ_____ ;
Thus, if the material of the cylinders is a dielectric then the %‘
harmonic under consideration is excited (the magnetic dynamo exists) §;
if there exists an eigenvalue p with a positive real part for the é
system of egquations (24) over the interval {n, 1] with the g
homogeneous boundary conditions (34). !
NUMERICAL AMALYSBIS
Dencte the maximum of all real parts of the eigenvalues p of :
the boundary problem {24), (25} or of the boundary problem (24), _?

{34} by 7.
The value of 7y is estimated by the Galerkin method. When the
boundary problem (24), (25) is considered the functions R({r) and

¢ (r) are represented in the form

J J
R(r) = Zc“ £,,05) . () = ZC“” 0,0 (35)
j-1 Jlu
whare i
£ = —21 4
T

- /2 J(r - n)n
fzj{r) =5 sin = . (36)
/S 2 j(r - n)=
fzj‘1(r) = =5 cos——y ; J =0

It follows from formulas (36) that the functions R¢r) and &(r}

15
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(35) satisfy to the boundary conditions (25)}. Substitute sums (35)
in equations (24), multiply the first equation by the functions

L) (m =1, 2, , J) and the second equation by the functions
zm”(r) (m=20,1, ... , J), and integrate the 27 + 1 equations
obtained over the segment [n, 1). As the result the following
equations will be obtained

J 1

Y e L) e, mpum -

J=1 n

J 1

L 4 {(r)f, (r) (r}f, (r)

2j*1 _ zjn

2 e ]dr i) e, a ar -
j=0 n

J
-p Z c”J'f“(r)r“(r)dﬁ o,
i

7
m=1, 2, . T,
J 1 ,
2:: C?i“j [ [ 1-m ] YIS AT TR Lat
EE n
- ' 37
nif, (rif,, | (r) J ! <)
T ar - E:: Cyran[fa o (1L, m0mIar +
i=e n
J
: : rr)fz_‘,( )
+ (2in - ZRMB) Z Cz,_[ dr -
1= n
J 1
TP E:: szolffzj+1(r)fz.«1(r)dr =0
it

m=90,1, ... , J.

Equations (37) are the linear algebraic homogeneous system with

the unknowns C:' Cz, vae g CK (R = 27 + 1).
It follows from formulas (36) that

1

1
[t om0, jmar =21, [z
n n

2 (T, (r)ar =1,

16

and {(38)
1 1

[t 02, ymar =0, £, .1, (mar=o,
n n
if 7 + m,

Therefore system (37) can be represented in the form

(A - pE)C = O. (39)
Here A is the matrix of order XxK, E - the unit matrix of the same
order, and € = (C1, Cz, . K) - the vector of the unknowns.
System (39) has a nontrivial (nonzero) solution only in the case
when p is an eigenvalue of the matrix A. Thus the value of 7 is
estimated by the maximum 1; of all real parts of the eigenvalues of
the matrix A. The estimation is better when the value of J is
greater,

When the boundary problem (24), (34} (the material of the
cylinders is a dielectric) is considered the transformation of the
unknown functions R, # -+ S, T is made before the application of
the Galerkin method. This transformation has the form

S(r) = exp(-D r’- D,r)R(r) ,

(40)
Tr) = exp(—D1r2- Dzr)[O(rJ - i[E‘ + EZrJR(r)]
where D1, Dz' E1, and E2 are constants.
The inverse transformation has the form
R(r} = exp(D1r2+ D,r)S(r) ,
(41)

é(r) = exp(D1rg+ Dzr)[T(r) + 1[31 + Ezr]S{r)]

The values of the constants D1, D,, E, and Ez in formulas (40)
and (41) are selected to have the following simple boundary

conditicne for the functions S¢r) and T(r)

17



S ey = Blrm1 =0 T =Ty =0 . (42)

According to formulas (40) and (41) and the boundary conditions
(24) and (42) these values of the constants are calculated by the
formulas

B, = _fTT—:_iT_[ [|m1 + T:E]Y1+ [|a| + —Tg;—]Yz]

=]
4

2 —1‘:‘7,—[ [l“l + —i—!—]nl’ + [Ial + ﬁ]l"] , (43)

Y,

Y
E, = (1-?)]«] [n ‘“"z]- E, = (1-::)|u‘|—["z‘ n']

It follows from the general features of the cylindrical functions

(Korn,G. and T.Korn, 1961} that Y, and Y, (see formulas (34)) have
to be real numbers. Therefore according to formulas (43) the

conatante D1, D E1, and E2 are also real numbers.

zl’
It follows from formulas (41) that after the transformation of

variables the system of eguations (24} has the form

2 D
d—s—[—-l-——z[zur+o]]g;5— Qr) + p + —>— -
H r 1 2
dr L
2in
-[2D1r+D] z]S———Z—-T=O,
4 r
a’r 1 ar | b,
—-—E-[T-Z{ZD‘r+D2]]aE- Q(r) + p + —[2D1r+ (44)
dr L
2 2R B
+D] 2"’[3 +Er]]r+ziszg§+ —2;—‘-:—-—:+
2 r r r
iE 2
2 2in -
+ 2i£5[2D1r + Dz) - e - z [Bq + Ezr] ]S 0.

18

Notations (15} are used here. The boundary problem (42), (44) i=s
equivalent to the boundary problem (24), (34).

The maximum real part y of the eigenvalues p of the boundary
problem (42), (44) 1s estimated by the Galerkin method as in the _
case of the boundary problem (24), (25). -

The functions S(r) and T(r) are represented in the form

J J
S(E) = ) €Ty (D) . TR =) C,f, (0 (45)
I=0 I ,
]
where the functions fz.‘l{r) (m=0,1, ... , J) and sz(r) {m =1,
2, +«s , J) are defined by formulas (36).

Substitute sums (45) in equationa (42) and multiply the first
equation by the functions fz.‘i(r) {(m=0,1, ... , J) and the
second equation by the functions fz.(r) (m=1, 2, ... , J). After !
integration of the 27 + 1 equations obtained over the segment [y, 1]
the following equations will be obtained

J 1

2 .
lli
Z CZJ”.[ I:—[ I -2 ] L (BT, () + r

J=1 L]

+

1 -7

—“J—[—Il_- - 4p,r - 2D,

r j(r)fh”(r)]dr +

J ‘ D, - 2nE, . , .
+ E cz“1 -0(r) - —feu—"— + 4Dir’ + 4D D.r + D} + Ve
i=0 n
2nE1
+ - 2]‘1(r)f2-‘|(r)dr -

(r)fZ.,,fr)
- 21in Ei: EJI ar -

=1
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J 1
-p 2:: Cz]’1jfz].1{r)fz_‘1(r)dr =0,

j*0 n
m=20,1, ... , J,
J 2 D2 - ZnEZ 2 2
Z sz. [ 1 - 7 ] = er) - 'r_ + 4D1r + (46)
je1
2nE
1 . 5 SR I S -
+ 4D‘Dzr + D - —T]fzj(r)-fz-(rj P T 4D‘r

ZDZ}fzj.'(r)ranrr)]dr -

J L]
. n
- 24, E c2j¢1[—T—é-;—]jrzj(r)fz_(r) dr +
n

=

J ! Zin(l - 22| - 2r B
+ E CZ]*1I > + 4iD1EZr +
r
J=0 n
. 2 1 + 4nE,
+ 21[E2D2 - "Ea] - iEz_—__E___—" ZJH(r)f (rjydr -

-pP E:: j fzj{r) f (r) dr = ¢ ,

=1
m=1, 2, .. , J .

It follows frowm formulas (38) that equations (46) are the
linear algebraic homogeneous system having the form (29). The
maximum of all real parte of the eigenvalues of the matrix A which
corresponds to equations (46} is the estimation of the value of 7.

The modified LR-algorithm (Rutishauser, 1958) was used for
calculation of eigenvalues of the complex matrix A and proved its
efficiency.

It follows from formulas (15) and (43) that the maximum real

20

part 7 of the eigenvalues of the boundary problem (24), (25) or
(42}, (44) and its estimation 1; depend on the following parameters

of the problem: #, R_, n, «, £, K

= UP/UC. Thus while the

posasibility of the magnetic field generation is considered it is
supposed that 2, = 0.

To find the values of the parameters which provide the
possibility of the magnetic field generation the gradient method is
used to minimize the functional W(n,R‘,n,a,x,n1) = -1;. The search
wf the minimum of the functional W gives possibility to find the
values of the parameters for which 7; > 0 if such values exist. The
value of the integer parameter n as well as the values of 3 and R.
are fixed and the values of «, x, and x, are changed while the
gradient method is applied. The partial derivatives of W with
respect to a, x, and ., which used for calculation of the
congsecutive approximations when the gradient method is applied are
calculated by using of the finite-difference method.

The direct numerical solving of the boundary problem (24}, (25)
or (24), {(34) is used to test the eigenvalues cbtained by the
Galerkin method. The solution of the boundary problems under
consideration is the eigenvalue p and the vector-function
£{(r) = (R(r), ®(r)) which satisfy to the equaticns (24) and the
boundary conditions (25) or (34). The solution is not unigue because
if the pair p, £(r) is a solution then the pair p, Cf(r) where C is
an arbitrary complex constant is a solution also. One more boundary
condition it added to avoid the anuniqueness of the soclution. This
condition is ¢(n) = 1 in the case of the boundary problem (24), (25}
or R(m) = 1 in the case of the boundary problem (24}, (34). The

eigenvalue p; (Rep; - 1;) of the matrix A is used as the initial
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approximation of the eigenvalue p for the solution of the boundary

problem. The solution € = (C‘, c crvy X) of system (39) with

2'
p= p; is used to calculate the initial approximation

dr L
arjr=n = c‘u 3 ]¥1jczl
(1 - n){—;g— + ¥ czj"]

Fe

for the boundary problem (24), (25) or the initial approximation

das in
drlr=n © (2D1n + Dz) “;TET— Y1 + iEE +
Fl
* C:l J jz1jc2‘
(1~ =) +Yc *
[ V3 ;§1 21"]

for the boundary problem (24}, (34).

RESULTE OF NUMERICAL ANALYSBIS

The numerical analysis has proved the existence of the values
of the parameters for which the magnetic field is generated (the
magnetic dynamo exists). The example of such values is: 5 = 0.25,

=0, A, = 0. Note that the

Ra = 150, h = 1, a = -2, k =1, K,

condition x, = 0 means that there is absent the action of the
pressure gradient on the fluid. In this case the flow is called the
helical Couette flow.

Table 1 contains the real (1}) and imaginary (5;) parts of the
eigenvalue p; = 1; + 16} of the matrix A calculated for different
values of X. The last line of the table contains the eigenvalues

p = vy + i3 obtained by the direct numerical solving of the boundary

problem.

22

TABLE 1

Perfect conductor boundaries Dielectric boundaries

x -« 5. L] -
T X Tx Sy
7 0.26431 44.585 0.10092 46.43%
13 0.44081 44.594 0.78056 45.688
19 0.44112 44.560 0.77751 45.£90
29 0.44166 44.555 0.80235 45.540
49 0.44246 44.553 0.80804 45.525
69 0.44263 44.552 0.80935 45.523
99 0.44270 44.552 0.80986 45.522

The eigenvalue p = y + 13 obtained by the direct numerical
sclving of the boundary problem
(24), (25} (24), (34)

7 3 Y ]

0.44273 44.552 0.81019 45.52]

In the case of the perfect conductor boundaries the table shows
that if X = 13 then for R_ - 10? the values of 7; and a; approximate
the real and imaginary parts of the eigenvalue p with the relative

2

accuracy 0.5:10 % and 10°° respectively.

In the case of the dielectric boundari«s it necesszry to take

2

K = 29 to cbtain the relative accuracy of the approximation 10 ° for

the real part and 0.4-10', tor the imaginary part of :che eigenvalue
p-

The corresponding tc the eigenvalue p solutions R(r) and ¢(r)
of the boundary problems are shown in Figures 1 and 2 (for the
perfect conductor boundaries) and in Figures 3 and 4 (for the
djelectric boundaries). These sclutions satisfy to the additional
boundary condition #¢n) = 1 in the case of the boundary problem

(24), (25) or R(m) = 1 in the case of the boundary problem (24),

(34).
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The next result of the numerical analysis is the construction
of the boundaries of the regions of the magnetic dynamo existence on
planes corresponding to the chosen pairs of parameters and the other
parameters to be fixed. These boundaries are the curves where T =20
ard are called neutral curves. The approximation of the neutral
curve (the curve 1; = 0) can be constructed by the Galerkin method.

For the perfect conductor boundaries the neutral curve
approximations 1; = 0 for different values of X and the neutral
curve obtained by the direct numerical sclving of the boundary
problem (24), (25) a-e shown in Figure 5. The Plane R., a is
considered and the other parameters have the following values:
m=20.25 n=1, k = 1, K, = 0. The analogous curves for the
dielect~ic boundaries and for the same values of n, n, x, and x, are
demonstrated in Figu e 6.

Figures 5 and 6 show that the curves .

K
the upper part of the curve y = 0. For the lower part of the curve

= 0 well approximate

¥ = 0 the approximation is satisfactory if the value of R_ is small
enough: Rn < 200 if K = 7, R_ < 300 it K = 9, R' < 400 if X = 11,
and 1‘?'n < 600 if X = 13 in the case of the perfect conductor
boundaries and R_ < 300 if K = 9, R_ < 500 if Kk = 11, and R. < 800
if X = 13 in the case of the dielectric boundaries.

From the form o.. the neutral curves shown in Figures 5 and 6
the assumption follows that if K, = 0 and « > 0 then for any value
of R. the magnetic dynamo exists only if

« <« (n,n,x) <0, (47)

The minimal values of R. for the neutral curves y = 0 shown in
Figureas 5 and 6 are -129 and .125 respectively.

The neutral curves 1;3 = 0 on the plane x, « for R. = 200,
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FIGURE 1. The real (1) and imaginary (2) parts of the function

Rfr) in the case of the perfect conductor boundaries.
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FIGURE 2. The real (1) and imaginary (2) parts of the function

¢(r) in the case of the perfect conductor boundaries.
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R{r) in the case of the dielectric boundaries.
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FIGURE 5. The neutral curves on the plane R., « for the perfect
FIGURE 4. The real (1) and imaginary {2} parts of tne function conductor boundaries: y = 0 (1), y. =0 (2), 7. = 0
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FIGURE 6. The neutral curves on the plane R_, « for the
dielectric boundaries: y = 0 (1), 1; -0 (2), 7; =0

(3), 7,, =0 (4), v;, = 0 (5).
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n=1, x, =0 and different values of y are shown in Figures 7 and 8
for the perfect conductor boundaries and the dielectric boundaries
respectively. In the both figures the region of the values of x and
a« for which the magnetic dynamo exists has the maximum square when
= 0.25. If n + 0 or n » 1 then the size of this reaion decreases,
For instance in the case of the dielectric boundaries if n = .75,
R_ = 200, n =1, and K, = 0 then there are not any values of x, «
for which ¥ & 0 and the region of the magnetic dynamo existence is
absent for 5 = 0.75 in Fiqgure 8. The disappearance of the magnetic
dynamo when n - 1 can be explained by the fact that in this case the
motion of the fluid between the cylindrical surfaces approaches to
the motion between two planes and as proved by Zeldovich (1956) the
plane motion of the electrically conducting fluid does not generate
the magnetic field. The values of x in the regions limited by the
neutral curves shown in Figures 7 and 8 are close to 1. It means
that the necessary condition for the magnetic field generation is
that the magnitudes of the components V? and Vz of the fluid
velocity have not to be different highly.

When nz = 0 it follows from the form of system {24) and the
boundary conditions (25) and (34) that if the values of x and « are
multiplied by -1 then the eigenvalues are transformed into the

conjugate complex numbers and the value of 7y does not change. It

MBI

means that besides of the regions limited by the neutral curves

presented in Figures 7 and 8 there are the symmetric to them ahout

i
%

the coordinate origin regions of the magnetic dynamo existence on

the plane x, ¢ (where x < 0, « > 0).
If the values of n and a are multiplied by -1 then the

sigenvalues are also transformed into the conjugate complex numbers

&
i
H
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FIGURE 7. The curves 7:3 = 0 on the plane x, a for R. = 200,

n=1, «k =0, and 9 = 0.15 (1), 0.25 (2), 0.5 (3),
0.75 {(4) in the case of the perfect conductor

boundaries.
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FIGURE 8. The curves 1:3 = 0 on the plane x, a« for R = 200,

n =1, Kk, = ¢, and n = 0.15 (1), 0.25 (2}, 0.5 (3)

in the case of the the dielectric boundaries.
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and the value of 7 does not change. Thus for R = 200, n = -1,

kK, =0 the regions of the magnetic dynamo existence on the plane

x, « are symmetric about the x axis to those presented in Figures 7
and 8 for the same values of 7.

The regions of the magnetic dynamc existence on the plane k, a
for the non-zero values of <, in the case of the perfect conductor
boundaries are shown in Figures 9-16. These regions were constructed
for R, = 200, n = 1, and n = 0.25, 0.5, and 0.75. The houndaries of
the regions are the curves 7:! = 0. Thus Figures 9-16 show the
evolution of the regions shown in Figure 7 when the value of <, is
changed.

When K, = -0.25 (Figure 9) the sizes of the regions are greater
than in the case of K, = 0 (Figure 7). When the value of <, is
decreased to -0.5 (Figure 10) then the sizes of the regions for
n = 0.25 and 0.5 are changed slightly but the size of the region for
n = 0.75 is reduced sharply. For the smaller values of k, (Figures
11-13) the region for » = 0.75 disappears and the size of the region
for n = 0.5 is reduced when the value of 5, is decreased. When the
value of L is changed from -0.5 to -1 then the size of the region
for n = 0.25 is increased slightly. For the smaller values of ., the
size of this region practically is not changed.

The region of the magnetic dynamo existence for Uc =0, Up > 0,
and n = 0.25 is shown in Figure 14. Note that if U, = 0 than the
simultaneous multiplication of « and Up by -1 does not change the
value of y and the region of the magnetic dynamo existence for
g_=0, Up < 0, and v = 0.25 is symmetric about the x axis to that
presented in Figure 14. The regions for k, =4 and 2 and 7 = 0.25

are shown in the same figure. The size of the regions in Figure 14
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The curves 1:3 = 0 on the plane k, « for R_ = 200,
n=1, kK, = -0.25, and n = 0.25 (1), 0.5 {(2),
0.75 (3) in the case of the perfect conductor

boundaries.
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FIGURE 10. The curves 7:, = 0 on the plane x, « for R_ = 200,
n=1, k =-0.5, and 35 = 0.25 (1), 0.5 (2),
0.75 (3) in the case of the perfect conductor

boundaries,
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FIGURE 11, The curves r:! = 0 on the plane x, a for R_ = 200,
n=1, k, = -1, and n = 0.25 (1), 0.5 (2) in the

case of the perfect conductor boundaries.
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FIGURE 12. The curves 1:! = 0 on the plane k, a for R_ = 200,

n=1, K

1

T
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= =2, and » = 0.25 (1), 0.5 (2), in the

case of the perfect conductor boundaries.
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0.5 (2) in the

case of the perfect conducter boundaries.
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is reducec when the value of x  is decreased from » to 2., In the
case of the perfect conductor boundaries the region of the magnetic
dynamo existence is absent on the plane x, « for n = 0.5 or 0.75 if
R‘ = 200, n = 1, and <, > 1.

The regions of the magnetic dynamo existence on the plane kK, @
in the case of the perfect conductor boundaries are shown in Figure
15. The boundaries of these regions are the curves 1:, = 0
constructed for n = 0.25, R_ =200, n = 1, and x = 1. There are two
regions in Figure 15: in one of them « > 0 and x, > 0, in the other
« < 0 and the values of x, are negative or small positive. The
region where « < 0 has essential expansion for the small negative
values of L The form of the regions allows to conclude that for
the selected values of 7, R . n, and « the magnetic dynamc exists if
|x1| + » and the value of « is cleose to ~3 (if L 0) or to 3 (if
K, > 0). This conclusion conforms to the fcrms of the regions of the
magnetic dynamo existence presented in Figures 9-14: the point
k =1, « = -3 belongs to the regions constructed for n = 0.25 and
kK, < 0 (Figures 9-13), and the point x = 1, a = 3 beleongs to the
regions constructed for % = 0.25 and LIS 0 (Figure 14). Note that
the region width with respect to « does not practically change when
the values ix1| are large. This correlates with slight changing of
the size of the regions for » = 0.25 in Figures 10-14. The region
for k, = 2 in Figure 14 does not contain points with x = 1. This
conforms to the form of the region in Figure 15 for which a > 0
because k, > 2 for all points of this region.

The regions of the magnetic dynamo existence for n = 0.5 and

0.75 are shown in Figure 16. The values of R_, n, and « are the sane

as for the reglons in Figure 15. The region with o« < 0 from Fiqure
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FIGURE 14. The curve r:

s = 0 on the plane x, a for R'| = 200,

R =1, m=0.25 and x, == (1), 4 (2), 2 (3) in the

case of the perfect conductor boundaries.
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15 is alsc shown here for comparison. For the considered values of
R, n, and ¢k and ©# = 0.5 or 0.75 the regions of the magnetic dyname
existence were not found for a > 0. Note that the size of the ragion
is essentially reduced when the value of 7 is increased and the
regions are limited with respect to x, when 3 = 0.5 or 0.75,

The regions of the magnetic dynamo existence on the plane
R, k, give the additional information about dependence of the
magnetic field generation process on the value of ® .+ Such regions
are shown in Figures 17-20 for the case of the perfect conductor
boundaries and in Figures 21-24 for the case of dielectric
boundaries. The regions in these figures are constructed for the
following values of the other parameters:
1) » = 0.25, n =1, «a = -1, x = 0.5 (Figures 17 and 21);
2) » = 0.5, n=1, a = -1.25, x = 0.75 (Figures 18 and 22);
3) » =0.75, n=1, « = ~1.14, k = 0,88 (Figures 19 and 23);
4) » = 0.5, n =1, « = 1.25, x = 0,75 (Figures 20 and 24y,

The boundaries of these regions are constructed by the Galerkin
method with X = 29, i.e. the boundaries are the curves 7;9 = 0,

Note that the region of the magnetic dynamo existence in Figure
15 extends for the smaller negative values of x, than the region in
Figure 17 which is constructed for the same value of 5. This
difference is explainel by the evidence that these regions are
constructed for the different value of x and the region in Figure 17
ie constructed for the value of a« which is other than the values of
@ within the region of magnetic dynamo existence in Figure 15,

The regions of majnetic dynamo existence presented in Figures

17-24 show that there are the values of <, for which the magnetic

dynamo exists only for the values of R‘“| within some segment
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conductor boundaries.
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perfect conductor bound ries.
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R: <R < Ri, i.e. the magnetic dynamo does not exist for the values
of R. which are great enough but exists for the smaller values of
R_. Tables 2-4 contain the dependence on 1'2'I of the values of 1;
obtained by the Galerkin method with the different values of K.

The values of 1; presented in Tables 2-4 estimate the maximums y of
the real parts of the eigenvalues of the boundary problem (24), (25)
for ko= -6.5 (Table 2), K, = -2 (Table 3), x, = -0.525 (Table 4)
and the same values of n, n, «, and k for which the regions in
Figures 17, 18, and 1% were constructed respectively.

Table 2 shows that the using of the value of 1;3 does not offer
to detect the magnetic dynamo existence for kK, = -6.5, This was a
reason of using of the curves 1;9 = 0 (instead of 1:3 = 0) as the
boundaries of the regions of the magnetic dynamo existence in
Figures 17-24.

The form of the region of the magnetic dynamo existence shown
in Figure 18 permit to make an assumption that if the value of x, is
close to -0.7 then the magnetic dynamo exists for R; < Rn < R: and
for R. > R: (R: > R:). This assumption is confirmed by the results
of the calculation of the values of 7; presented in Table 5. These

results were cbtained for K, = -0.7 and the same values of n, n, «,

TABLE 2

Rl 715 129 769
225 -0.41626 -0.05311

250 ~0.20585 =0.19672 0.23767
275 -0.088239 0.34910

300 ~0.05706 0.41017

325 -0.10567 0.38563

350 -0.22859 0.28067

375 -0.42074 0.10003

400 -0.67750 -0.15188 -0.09606
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TABLE 3

R, LEF! LFT Tyo
130 -1.95262 ~1.96603
180 0.61885 0.57667
230 2.40275 2.32295 2.31804
280 3.35634 3.23110
330 3.48607 3.30952
380 2.79659 2.56597
430 1.29104 1.00877
480 -1,01571 -1.33881 -1.36620
TABLE 4
R - -« -
L] 113 729 759
175 -0.02160 -0.02501
180 0.00562 0.00192
188 0.02550 0.02149
190 0.03792 0.03359
195 0.04279 0.03812 0.03818
200 0.04004 0.03501
205 0,02961 0,02419
210 0.01145 0.00564
215 -0.01444 -0.02067 -0.02066
TABLE S
L] - -
R, Ty Tas LY
900 6.71632 6.38460 6.34603
1200 -4.04723 ~3,81965
1500 ~5.44053 -5.18908
1800 -4.04538 ~3.87839 -3.85894
2100 -2.17842 -2.05897
2400 -0.46492 -0.30902
2700 0.91169 1.19453 1.20510

and x for which the regions in Figure 18 was constructed.

The fact that the dynamo action vanishes with incresse of R.
was noted earlier for other flows of a conducting fluid by Arnold

and Korkina (1983), Arnold (1984), and Galloway and Friesch {(1984).
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Note that the reqgion of magnetic dynamoc existence is reduced
wvhen the value of »n is close to 1 (Figures 19 and 23). iﬁ

The forms of the regions in Figures 18, 20, 22, and 24 furnish
an assumption that if » = 0.5, n = 1, « = -1.25 (or 1.25), ® = 0.75,
the value of |u1| is great anough, and the value of R_ balongs to
some segment then the magnetic dynamo exists. Note that in the case
of the dielectric boundaries the region of the magnetic dynamo
existence for n» = 0.5, n = 1, « = -1.25, and k = 0.75 (Figure 22)
coneists of the two separate subregions.

The results of the construction of the regions of the magnetic 'l

e

dynamo existence furnish the following general conclusions:

1. For K, < ¢ and n = 1 magnetic field generation is possible if

ex > 0. If the value of |n1} is great enough then the magnetic

dynamo exists only for the values of ,R'l which belong to some

sagment. In some cases the dynamo actior vanishes with increase of

R_ and appears again for the greater values of R..

2. For the small positive values of x, and n = 1 the magnetic dynamo
exists if ax < 0 and the value of R_ exceeds some th:eshold. .
3. There is the segment of the positive values of k, between 0.25 and :
1 for which the magnetic dynamc is not poasible if n = 1.

4. For the greater positive values of x, and n = 1 the ragnetic

dynamo exists if ax > 0. If the value of <, is not too great then
magnetic field generation is possible fur the all values of R

exceeding some threshold. For the greater values of x, the magnetic
dynamo exists only if the value of R belongs to some segment.

5. In the case of the perfect conductor boundaries magnetic field

generation is possible for the smaller values of R  than in the case

pr S

of dielectric boundaries, This is particularly pronounced for the
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values of 7 which are close to 1 (Figures 19 and 23).

The calculations were made to find the minimal values of R,
for which the magnetic dynamo exists. Let nz = 0 and the values of
m, n, and x, are fixed. Let also there are the values of « and 7 and
R = R: for which 1{R:,a,x) = 0. Then in the case of the perfect
coniuctor boundaries {the boundary problem (24), (25)) the minimal

min

value Rn of R- for which v £ 0 for some values of o« and x is

defined by the formula

-1
2
R:‘" = RS / - [nin[(l + .cz)[l + —i—]” f48)

a,Kk T{R:"’-:"—)

where the minimum is taken with respect to those pairs a, x for

which 1(R:,a,xj > 0.

n

Tak:le 6 contains the minimal values R:' of R- for which the

magnetic dyname exist:. These values were obtained for nz = g,

n=1, x_ =0, and dirferent values of 1. Instead of 7 its

1

-
approximation T,

calculated by the Galerkin method was used. In the
case of the perfect conductor boundaries formula (48) with R: = 200

was applied to obtain the values of R:'"(n). In the case of the

dielectric boundaries this formula cannot be applied and for the
values of Rm changing with the step 1 the attempt was made to find
by the gradient methoc the values of x and o for which ¥ = 0. The
minimum value of R_for which this attempt was successful was taken

min

as R " (n). Table 6 contains also the values x(n) and a(y) for which

T{R:'"(n),x('n),a(n)) = 0 and the values of the ratio a(n)/e(n}.
Table 6 shows that in the case of the perfect conductor
boundaries the minimal with respect to n value of R:i"(nj is reached

when 7 = 0.3. In the case of the dielectric boundaries the value of

TABLE 6

Perfect conductor boundaries | Dielectric boundaries

n
min a(n! min Gl['n!
R () k() «(n) xfn) |Be (M) x(m) a(n) ()
0.15 | 119.8 0.5250 -1.031% -1.97 124 0.6324 -1.303 -2.06

0.20 98.3 0.5127 -1.0924
0.25 87.4 0.5223 -1,1173 -2.10 104 0.6300 =-1.313 =-2,08
0.30 82.3 0.5892 =-1.1987
0.50 91.2 0.7330 -1.2304 ~1.68 145 0.8186 -1.358 =1.66
0.75 181.7 0.8796 -1.1377 ~1.2% 415 1.0355 =-1.333 -1.29%

min

R~ (m) obtained for m = 0.75 confirms the fact noted above that
for n = 0.75, R_ = 200, n = 1, and kK, =0 there are not any values
of x, ¢ for which y = 0. The comparison of the values of R:'"{n)
obtained for different boundary conditions shows that the magnetic
field can be generated for the smaller values of R in the case of
the perfect conductor boundaries than in the case of the dielectric
boundaries. The values of the ratio e(n)/x(n) for the different
boundary conditions are close. For the both boundary conditions the
value of «(n) changes slightly as a function of % and the value of

% (n) is minimal when 3 = 0.20+0.25 and increases when the value of 7

increases.

Formula (48) was also used for the search of the minimal values
R:'" of R, for which the magnetic dynamo exists for kK, *0 in the
case of the perfect conductor boundaries. The calculations were

carried out for n = 1 and various values of k - For fixed 5, the

value of » increased by increments of 0.01 and formula (48) was used

min min

to compute R_ . Denote R- "

(x,) the minimal value of R:‘ over all
these steps and by n'i"(x1) the value of n at which R:'"{x1) is

attained. Denote also

.
ﬂ‘..‘n(x1) - o

Vel + )% - x)?
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TABLE &8

and
ey - : - 3 =
Vel + (k)Y - (x)?
c 48.0 -0.0255 -0.0157
R. 48.1 -0.0153 -0,.0056
where £ = — and «' and ¢’ are the values of a and x at 48.2 -0,0052 0.0046
R, (k) 48.3 0.0049 0.0147
which the minimum in (48) is attained when 7 = n""(n1). ifr
min win mnin min
- - = >
nom ot kb, ko= kT T(Ry), @ = ati(k,), and R, > R "7(x,) then the reached when x, - -0.5. This value of x, means that the pressure

ts. Th 1t £
magnetic dynamo exists e results of tha calculations are listed gradient has an opposite direction to the velocity of the axial

7. it lculat
in Table Instead of ¢ its approximations calculated by the motion of the inner cylinder and the value of U"J is half that of Uc.

L L]
wer d = 0.25
Galerkin method were used (7, for «, and Tis for other The situation is less suitable for the magnetic field generation if

£ .
values o x‘) Uello < Up < 21’J’c and the direction of the pressure gradient is the

Table 7 shows that the minimal threshold lue R -~
reshold value &, 48 ls sape as the axial velocity of the inner cylinder. Table 8 shows the

dependence of y on R_ near R. = 48 when n = 1, k, = -0.5, n = 0.32,

7
TABLE kK = 00,6104, and a« = —1.2926. For the same values of parameters the
1 § § 1 — :
<, R: n(K,) 2" n(x1j " n(K1) " "(‘1) boundaries (the curves L 0) of the region of the magnetic dynamo
existence on the plane R , k, are shown in Figure 25, The comparison
Uc =0, U >0 88.3 0.20 0.5596 1.9774 »
10 P 96.0 0.20 0.5415 2.0644 of Figure 25 with Figures 17-24 shows that the region of the
. 0. . . .
3 li:.g 0.33 g.g:;g g_;;gg magnetic dynamo existence is considerably larger in the case of the
. 0.1% 0.4 .
i ;:g_g o.20 0.2;33 g.gggg parameter values for which the minimal threshold value of R. is
0.25 897.2 0.13 0.2560 ~1.4848 ttained
0.125 181.7 0.32 0.4595 -0.8854 attalned.
0.1 139.0 0.34 0.5053 -0.9954
12 80.9 0.35 D.6035% -1.1862
-0.1 63.6 0.35 0.6598 -1.2922
-0.125 61.0 0.35 0.6603 -1.2919 ASYNPTOTIC ANALYS18
~-0.25 53.0 0.34 0.6665 -1.3329
-0.4 49.1 0.33 0.6442 =1.3243
-0.5 48.3 0.32 0.6104 -1,2926
-0.6 48.4 0.32 0.6086 -1.3247 The change of variables
-1 55.7 0.29 0.5424 -1,3258 ii(r!
-1.5 64.4 0.23 0.6116 -1.6220 S(r) = - g (49}
-2 68.0 0.22 0.6138 -1.7240 / . 1 ™
-4 75.2 0.21 0.6084 -1.8253 14—
_;g :g:: g::i g:gg;i :i::ig: is convenjent for analysis of dynamo action for R -+ =. If the value
v, = o Up <9 88.3 0.20 0.5596 ~1.9774 of the sguare root with the positive real part is chosen in (49)
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FIGURE 25. The curves 1;9 = 0 on the plane R_,
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600000

for n = 0.32,

n =1, x = 0.6104, « = -1.,2926 in the case of the

perfect conductor boundaries.
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then eguations (24) take the form f{(x) = (R{x), S(x)}) is defined as follows

2 B 1__ ‘I_
aR_ 1 dR_ ) +pr+-22 f1+ —2 _suo, IE(x)H = RRAx + |SSdx .
2 r dr P n 2 2
n n

{50)
2 R B
d°s _ 1 ds + 4+ _2n + " - B
ar? T & ~ (R(F) *+ pIS rt : n R=0. By definition of the change of variables Re /1 + _—E!__ > ¢ and
2 the following inequality follows from (53)
After the change of the independent variable ¥ = r° the first
derivatives are excluded and equations (50) take the form u + U)Hg(x)u < _nzng(x)“ + 4|n|Re / Iﬁ IREI sg | . (54)
2 iR B
R s =T LYY
4x By using the inequalities
(51)
d°s _ _Q(vX) + n RB [ _sE {SIIR] 4y s L _.__d"*”-‘ X £o)®
s - { %L E_ s+ —/1+ n- R=20 . |R°I SR < I 5||R s 2 55 . ; “g(x)“
dx 4x 2 . x° 2 x* x
L n
tem (51) i idered the int 1 tn?, 1}. The bound and 1 -
Systenm is considered over the interval [n°, . e boundary
u:(x) - I ss + RR < zj “t(xl
conditions (25) for system (51) take the form n; 7 nz ;
7,
RMm?) = R(1) =0, S'(n°) =S (1) = 0. (52)
_— and the formula
Multiply the first equation (51) by the function R(x) which is
/ 2.2
conjugate complex to the function R(x)} and the second eguation (51} Re /1 + ER-B = 1 V/f’+ 1+ R-B L
I 2 »
by the function S¢x} which is conjugate complex to the function vz n g;
S(x). After integration of the aum of these equations over the the inequality '
segment [nz, 1] with regard for formulas (15) and the boundary J// Rip?
—a? 4 Bl /1 ¢ — . _
conditions (52) the following equation for the real part will be u s -a 4 o2 vZ2/1+ /1 + 2 |n| {55)
obtained

is obtained from (54). ?

2 2 2z
“g;" + —%-uséfl" e + L “f(x) It follows from inequality (55) that the considered harmecnic in
the expansion of the initial magnetic field distribution is excited

1 -—
+ nRe /1 + -B RaJ SR dx = 0 (53) (u > 0) only if n » 0. This corresponds to the known fact (Cowling,
/ A .
2

n 1934; Braginsky, 1964) that the axially symmetrical magnetic field

L]
o™~

AT SR

Here u = Rep, v = Imp, and the magnitude of the vector-function (n = 0) cannot be excited by the axially symmetrical motion of an

AT
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electrically conducting fluid, as the helical Couette-Poiseuille

flow. Note that if

n® - an* = 43:52
then

r*B?
vi/1+ /1 4+ —— - |n| s 0
n

and the harmonic is not excited also. If

n6 - 4n‘ < 4R:Bz

the harmonic is not excited for the large values of «?

for which the
right part of inequality (55) is negative.

It follows from (55) that if the harmonic is excited for 1‘2“I 5 =
then the growth rate of y is limited by v’:. With regard for the
typical time accepted and the definition of R (12) it means that
there is not a fast dynamo for the considered flow of an

electrically conducting fluid. It follows from the analysis of the

imaginary part of the .ntegrated sum of eguations (51) multiplied by

the functions Ryx) and S(x) that |v| = O¢R ) for R_ -+ w.

The detailed analysis of the asymptotic behavior of the
magnetic field generation process in the Couette-Poiseuille flow of
an electrically conducting fluid is carried out by using the methods
developed by Ruzmaikin et al. (1987). These methods are based on the
theory of singular perturbations.

It was shown by Rizmaikin et al. (1987) fhat in the case of

dynamo acticn for R' =+ « the following asymptotic relations must be

catisfied:
2
1 drR 174 1l 4°R 172 1 ad 174
RE-RI ' R Z-Rl 4 [ ~Rn !
1 ad (eel
tr2 172 L] 172
R RE) +p RS, - R
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It follows from (13) that the relation Q(rj + p - R:’z

cannot be
true over the entire interval [n, 1]. However, it can be satisfied
in the vicinity of some point r, € [n, 1]. Then the eigenvalue takes
the form

p=-iRqg(r) +p, p -R'% (57)
The magnetic field concentrates in this vicinity in the process of
excitation. This means that the eigenfunctions R(r) and #(r} of the
boundary problem {24), (25) (or (24), (34)) associated with an
eigenvalue having a positive real part are essentially nonzero in
the vicinity of r,. According to Ruzmaikin et al. (1987), the
asymptotic relation Qfr)} + p - R;’z holds in the vicinity of r, of

1""). By {15} this can only happen if

g%lrwr =0 (58)
0

Then it is possible to find r, from (58).

size r - r, = O(R_

The system of differential eguations (24) is defined on the
interval [n, 1]. Consequently the point of concentration must fall
into this range. This means that the magnetic field concentrates
between the cylinders. Thus a necessary condition of magnetic dynamo
action may be obtained from {58} for the Couette-~Poiseuille flow.
This condition states that at least one root of this eguation must
fall into the interval [n, 1].

The analysis of equation (58) is easier for a helical Couette
flow of a conducting fluid, that is, in the absence of an axial

pressure gradient (Up = 0}. In that case equation (58) reduces to

2nKn [ 2
3 + I r o . {59)

1 -9
Equation (59) has one and only one root

2neninng

3 (60)
«f{l - ")
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belonging to the interval [(n, 1], if and only if the following

inequalities are true

2 2
1 -7 Kh n{l -n}
2nlny < @ < 2Inn * (61)

Inequalities (61} are necessary conditions for magnetic field
excitation. They relate the values of n and x specifying the helical
Couette flow configuration to the values of n and « specifying the
harmonic of the initial magnetic field. It follows from inegualities
(61} that no magnetic field excited if n > 0 and the signs of x and
« are the same. This was noted above as a result of the numerical
analysis for n = 1.

For UP + 0, (15) leads to

dg _ _ _2nB ~ 1 1
r
where
nknd(m)v U: + U: 1 - na Ucd{n)
T = ' T = - . (63)
2(1 - n?)at 1m 41lnmm 8U_1n%y
Equation (58) now reduces to the following equation in r:
4 2 )
ro - 2'rro + o =0 (6)

~

whence r’ =t ¥ v 7% - ¢ . The root of equation (64)

r =Vt -V -4 (65)

a
is real and falls into the interval [n, 1), if one of the following

systems of inequalities is true:

T =1, nz(27 - nz) <o < 2t -1 (66)

or

2

<t <1, w2t -n?) <o <l (67)

€6

The root

r, = T + P -0 (68)
is real and falls into the interval [n, 1], If one of the following
systems of inequalities is satisfied:

T % nz, 2t = 1 < ¢ < nz(ZT - nz) {69)
or

“2 <T <1,

2t ~1 <o < 1. (70)
Note that there are values of ¢ and v which satisfy to both systems
of inequalities (67) and (70) simultanec asly. In this case both
roots, (65) and (68), of eguation (64) fall intoc the interval

(n, 1]. Thus if Up * 0 then it is possible that there are two points
of wagnetic field concentration.

Make in (24) the change of variables (49). The inverse change

of variables has the form

R B
¢(r) =1/1 + ——31—— s(r} . (71)

Equations (24) are transformed into (50). Let there is at least one
point of magnetic field concentration r, which falls into the
interval (2, 1)]. The eigenfunctions R(r) and S(¢r) associated with an
eigenvalue having a positive real part concentrate in a vicinity of
r, when R. -+ » and it follows from (15), (56), and (71) that

R(r) - S(r).

Introduce the new independent variable x = c'1(r - ro) where

£ = R;"‘. Equations (50) now reduces to
2 2
1 4d°R 1 4ar n 2
—— — —__.-_.......—._....____+¢+p+
e? dyl €(r, + ex ax [ (r, + ex)
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ig{r + ex)
+ > R+ 2n —/1+ ‘:Bs-o,
€ (rD + £x) €En
2 2 {72}
1 4's _ 1 ds _ + al+ D+
c? axt cir° + ex) dx (r, + cx)
ig(r, + ex)
+ . s+ 2n —/1+ 3 R=0.
£ (ro + £x) €n

The end pointa of the interval [n, 1) for the variable x are
transformed intc x = c'1(n - r,) and x, = e ' - r). 1t R 2w
then € > 0, X 3 -, and X, > = Therefore the boundary conditions
are naturally replaced by the following: R(x} - 0 and S(x) =» 0
together with their derivatives for x 5 *w=. These boundary
conditions agree with the given above definition of the magnetic
field concentration in a vicinity of r, and do not depend on the
assumed boundary conditiens ((25) or (34)) for the functions R(r}
and ¢ (r).

Consider now the equation

2 2
1 4R 1 dR n 2
— - - —_— 4 + r +

.2 z e(r~+ cx dx [ (r, + ex)?

iq(ro + €x) 2ny B

+ R + /1 + 1 s =0 (73)
4 2 %
€ (ro + £X) € n

where ¢ = +1. If R(x) is a solutieon of (73) and R(x} -» 0 together
with its derivatives for x 5 t= then the pair k(x), S(x) = $R(x) is
a solution of (72) with the boundary conditions formulated.

In accordance with (57) p’ and R(x) are represented below in

the form of the asymptotic series

p = c'z(po tep, + czp2 + ...,
(74)

R(x) = R (X) + eR (x) + csz(x) ol .
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Write the function g(r, +ex) in the form of an asymptotic series,

2 2 3
g(r,+ex) = 9, teq,Xx + e'g.x" + EgX + ..., (75)
It follows from (58) that
g, =0. (76)

The successive coefficients in (75) are defined by the formulas

2 3
1 dg 1 dg
q, = —=— v q, = — = . (77)
2 2 ’21':1'0 3 [ dr’xro

Substitute series (74), (75) into equation (73). Expand the
coefficients on the left side of (73} in powers of £ and use

relations (15), (57), and (76) . Then the following equation is

derived for the zerc order approximation:

d°r
0 _ 2 _ _2my /1B =
E;?_ ig,x" + p, Tz ¥ n ]Ro =0 (78)
Ty

where q, is defined by (77).

In accordance with the definition of change of variables (49),
(71) the square roct in (78) has the positive real part and it

follows from (15) that

/ iB - /_%— —%—I(l + isign(xn)) . (79) .

To solve equation (78), make the change of variable (according to

Ruzmaikin et al., 1987) y = (iqz)"‘x and introduce the notation

1
s = ——p, (80)
qZ

where ReVqu > 0, that is,

q
vig, = /—*— + isigng,) . (81)

After the change of variable equation (78) takes the form
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7> - (8 - ¥CX + y*)R = 0 (82)

where

2 nB |
c= = .
2/ 1

signn, if xng, > 0, (83)
<= { isign , if kng, < 0.
It was noted by Ruzmaikin et al. (1987) that equation (82) has the
solution which vanishes for x & tw, if
= =(2r + 1) + ¥C¢ (84)

where m = 0, 1, 2, . This solution has the form

2
R () = KH_(y)exp[— —“2'—] ' (85)

where XK is an arbitrary complex constant and H.(y) is the Hermite
polynomial of degree m.
If inequalities (61) are true for a helical Couette f.ow

(x‘ = 0), then (15), (77). and (82) yield

q2=2—nf.._' C = vZ (86}

T

where T, is defined by (60)}. It follows from (15) and (86) that

xnq, > 0. Therefore in accordance with (83)

¢ = signn . . (87)
By substituting (86) and {87) in (84) obtain

s = —(2m + 1) + v¥ysignn . {88}
As the real part of the square root in (80) is positive so Rep > 0,
if and only if m = 0 and ¢ = signn in (88). Therefore if
inequalities (61) are true then a helical Couette flow excites the

considered harmonic of the magnetic field for R, - =,

70

Formulas {80), (81}, (B5), (86}, and (88) lead for m = 00 and
¢ = signn to the following form of the zerc corder approximat:on for :

a helical Couette flow:

Py = (VI - 1)(1 + isign(xn)) ,
r
13

(89}

5 2.(1 + Isign(xn)) (r - ro)z .

Rofr) = Kexp[—
21-o

In consequence of relations (56) and expansions (74), the function
®(r) is represented by an asymptotic serias in =:

o(x) = e (8 (x) + o (x) +c202(x) + .y . (90)

e

Since S(x) = yR({x), formula (71) leads to

b,(r) =9

%

——| (-sign¢xn) + i)R (r) . (91)

By substituting (89) in formula (91} obtain for a helical Couette
flow

[ ] (r) = K ; —%— {(-signk + isignn)x
v nB|R )
=xexXp —-——~?-— {1 + isign¢{xn))(r — r ) . (92) Iy
2r '
o

Note that in view of the analysis of Ruzmaikin et al. (1987},
p, =0 in expansions (74). This 1s proved by the following
considerations. Dencte by L the differentiation operator from the
left part of equation (78)

a’ 2 2w /1B
L= ;;? - [H9,x° + Py 2 n

. (93)

Substitute serjeas (74) and (75} in equation (73). By using formulas t

(15) and (76) the following equation is derived for the first order
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approximation:
dr
1 0 3 4ny B
LR1 = —?: = ° (iqzx + p’)RD + ——;?— /—zﬁwxﬂo R (94)
0

where g, is defined by (77). Consider the scalar product (f,g) in L,

of two functions f(x} and g(x) which assume complex values:

(f.g9} = If(X)Q(X)dX .

It follows from the second formula of (8%), the boundary conditions
for the function R1{x), and formula (93) that there is the scalar
product (LR1,R0) and

(LR R} = (R ,LR) _ (95)
where ;D(x) is conjugate complex to the function R(x) and L is
conjugate to the operator L. As R, (x) is a solution of equation (78)
80 LRU = 0 and ;;o = 0. Therefore formula (95) leads to

(LR1'Ru) =0 .

As the function R’(x) is a solution of equation {94) so the last
quality leads the scalar product of the right part of eguation (94)
by the function ;U(x) to be equal to zero. Note that the second
formula of (89) leads to

(xzk‘1Ru,Ru) =0

for every value of k and

drR, -
& Red = 0 -
Therefore
b (R,R) =0 . {96)
as

IR:(x)dx 0
50 (96) leads to

p, =0
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In the casa of a helical Couette flow the formulas for R, (Xx)
and p, can be obtained by the following way. It follows from
squation (73), expansions (74) and (75), and formulas (15) that the
equation for the i-th order approximation has the form

LR, = G (x) , (97)
where the operator L is defined by (93) and the function Gl(x)
depends on the approximations of the lower orders than 1. As the
function Rnfx) is the solution of equation (78) (LR° = 0) so if
the function R (x) is a solution of equation (97) then any function
having the form Rl(x) + CRO(x) where C is an arbitrary complex
constant is also a solution of equation {97). Therefore the boundary
conditions that R&(x) =+ 0 together with its derivatives for x - tw
is not sufficient for unambiguous determination of the function
Rl{x) from equation (97). To avoid this the following condition is
formulated:

R (0) =0 . (98)
Represent the function R (x} in the form

R (x} = U (X)R (X} . (99)
If all functions Rj(x) for j =1, 2, ... , I-1 are presented in the
the form (99) then the right part of equation (97) has the form

G (x) = g, (X)R (x) (100)
where the function gl(x) depends on the functions U1(x), Uz(x), ceay
U, (x).

Substitute (99) in equation (97). It follows from formulas

(85), (89}, and (93} that the equation for the function Ut(x) takes

the form
a’y av,
o Vig,Xge— = 9, (X) . (101)
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The general solution of equation (101) has the form

v, (x) = I[Igl(x)exp(-VIqixz)dx]dx . (102)
For a helical Couette flow formulas (15), (60), and (77) lead to
9, = - —52— nB, . (103}
r

0
Formula (102) for 1 = 1, the form of the right part of equation

{94), formulas (86}, (100}, and (103), and the relation ¢ = signn
lead to

R, (x) = [L[% - ﬁ}x + éﬂgllu + jsign(m;)x’:lno(x) . (104)

r
0 180

The condition that Rl(x) -+ 0 together with its derivatives for

X 5 to and condition (98) were used for determining of the values of

arbitrary constants. The function Ru(x) is defined by formulas (89).
The right part of equation (97) for the second order

approximation has the form

dR H
. _ X 0 . 4 n 2 _ 6ny S IB 2
Gz(x) = 7 T + [1q‘x + D, + — + a v n X ]Rofx) +
T Ty Ty
dr
1 1 3 4ny B
Ml rali [iq;" *—5 V& "]R,f’” (105)
o r
o
where in accordance with formulas (15) and {60)
. _ 1 d'q _ _onB
9. = 4 art [F=F, ar® . (106)

0

It was proved above that (G1,R°) - (LR‘,RO) = 0. This proof can be
applied for an equation for an approximation of any order. Therefore
(Gz'Ro) = 0., This equality and formulas (104)-(106) lead to the

formula for coefficient Pyt

2 53 1 2
», = -[n* - 52 +¢5]-? o? . (207)

0
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Note that b, is a real number here.
Consider now the Couette-Poiseuille flow in the presence of an

axial pressure gradient (UP * 0).
Let equation (64) has a root which is real and falls into

interval (», 1]. Then formulas (62) and (77) yield

AnB (xr? - c) . {108)
4 [
or

0
Expressions (83) and (108) lead to

9, = -

1

2 . {(109)
l1 - —r

T 0

C =

It follows from formulas (80}, (81), (83), and (84) that there
exists an eigenvalue B, with Rep, > 0 if and only if ¢ > 1, which by
(109) is equivalent to the inegualities

0 < ri<2. {110)
Inequalities (110) are satisfied only if —é— > 0. If the value of r

is derived from (65), then

_rzzl—__%_ (111)
‘!+V1.‘2—‘¢

If the value of r, is derived from (68), then

—ri =1y I ¢ - . (112)
t-vVil-g¢
Formula (111} shows that if the value of r, is derived from
(65), then inequalities (110) follow both from (66) and from (67).
Therefore if the value of T derived from (65) is real and falls
into the interval ([»n, 1], then inequalities (110) are true.
If the value of r, is derived from (68), then it follows from

(69), (70), and (112) that inegualities (110) are true for any
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negative value of 1. For positive values of t inequalities (110) are

true if

e > —%—mz . (112)

The results given above can be formulated geometrically. Denote
the regions on the plane 7, v where inequalities (66), (67), (89),

and (70) are satisfied by 01, o o

2+ 94+ and O, respectively. The
regions o, and o, have a nonempty intersection 0, (if a point occurs
in o, then both roots, (65) and {6B) belong to the interval [n, 1]).
It follows from {110} and expressions (111) and (112) that an
eigenvalue P, with Rep > 0 can be obtained in one of the following
cases.

1. The point (r, ¢) belongs to the region O1 or to the region o,.

2. The point (v, ¢) belongs to the region o, \ O5 and ineguality

(113) is true.

3. The point (r, ¢) belongs to the region 03, T > 0, and inequality
{113) is true.

4. The point (r, «) belongs to the region o, and T < 0.

Note that in cases 2«4 only one root (68) of equation (64)
belongs to the interval (%, 1] and € > 1 for this root. In case 1
only one root [65) belongs to the interval (n, 1} if
{t,c) € 01 u (O2 \ Os)' and both roots (65) and (68) belongs to the
interval [n, 1] if (t,r) e 05. Inequality ¢ > 1 is always true for

root (63}. For root (68) C > 1, if inequality (113) is true. If

n > then inequality (113) is true for all points belonging to

v3
the region Os‘ If 0 st = —%—nz then inequalities (113} and (6%}

cannot be true simultsecusly. It means that no t from the range

0stT = —%—nz will lead to an eigenvalue p, with Rep, > 0.

Introduce the parameter £ ~ :n . Then in accordance with
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formulas (63) the values of ¢ and t depend con three parameters: £,
K. and n. The regions of the magnetic dynamo existence for Rna ®
(Repo > 0) can be conatructed on the plane £, L for fixed values of
n. Define the following regions on the plane £, k,: the region D,
contains the points (£, “1) for which root (65) belongs to the
interval [n, 1] and either root (68) does not belong to the interval
{n, 1] or inequality (113) is not true; the region D, contains the
peints (£, x1) for which both roots (65) and (68) belong to the
interval [n, 1] and inequality (113) is true; the region D! contains
the points (€, x1) for which root (68) belongs to the interval

[n, 1], ineguality (113} is true, and root (65) does not belong to
the interval [n, 1]; the region D‘ contains the points (£, n1) for
which T < 0 and root (68) belongs to the interval [n, 1]; the region
E contains the points (€, K1) for which root (65) does not belong to
the interval (%, 1] and root (68) belongs to the interval [n, 1] but
either —}— = 0 or inequality (113) is not true. These regions for

w = 0.05, 0.15, 0.25, 0.35, 0.5, 0.75, and 0.9 are shown in Figures
26~32. An eligenvalue P, with Rep, > 0 exists, if and only if the

2 Ds’
and D‘. In each of Figures 26-32 there is an interval of values of

point (6,;1) belongs toe the conjugation of the regions b, D

x , covered by none of the regions b, Db, Db

2t Dy and D, . It means that

it is impossible to obtain an eigenvalue P, with Rep, > 0 for values

of <, from this interval. It follows from the definition of the

regions D, Dz' D_, and D‘ that values of K, which are impossible in

3'
the conjugation of these regions are defined by the inegualities
2
2 2 _ 1= _2 2 ;
0 s T s =5 If —aTnn > —n then in accordance with (63} the
interval of such values of L is limited, belongs to the region

x, > 0, and is defined by the inequalities
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FIGURE 26. The regions b, D

for n = 0.05.
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for n = 0.9.

B4

din) sk = 3d(n)
2Ing(1 - 7°) ! 21nn(8niing + 1 -~ n%)

This case is realized for n = 0.05, 0.15, 0.25, 0.35%, 0.5, and 0.75

2
(Figures 26-31). If - —%—Eﬁ%— < -%— nz then this interval conaists

of two unlimited parts:

ad(n} . d(n)
21nm (Bnllmm + 1 - 2%) ! 21nn(1l - n%)
This case is realized for n = 0.9 (Figure 32). Note that while #

K =
1

increases the sizes of the regions D‘, D D and D‘ are reduced

27 3

and the regions move to greater values of £ for x, >0 or to smaller
values of £ for x, < 0.

It follows from inequalities (66) and (67) that if root (65)
belongs to the interval [%, 1] then Tt > nz and o > n“. Then formula

{111) leads to

T 2
—Tf, ~1<0 (114)

and in accordance with formula (108) signq2 = sign¢nB) = sign(kn).
As € > 1 only if —;— > 0 so it follows from formula (112) for T > O

that if ¢ > 1 for root (68) then

Tri-150
o a

and signq2 = —-gign(kn). If T < 0 then formula (112) leads to
inequality (114) and signq2 = gign{xn). Note that if expansion (74}
is considered for the eigenvalue with the maximum real part then in
the case when both roots (65) and (68) belong to the interval [=n, 1]
and for uch of them € > 1 the root for which the value of C is
greater is chosen for calculating of P,- It follows from formulas
(109}, {(111), and (112) that this root is always defined by (65).
For this root

sign¢kn), if (§, x1) € D1 J D? v D‘ .

signqZ = (115)
-aign(xn}, if (£, x } € Ds .
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Formula {109) leads to

— I=[
- + 1, if (£, k,} «D, vD, vD ,
vt -o
c = | (116)

V/r_ zt

L T - r

+1, if (§, x,) €D, .

Formulas (83) and (115) lead to
signn, if (£, x1) € D1 u Dz v D‘ ,
- (117)
isignn, if (€, x ) € D3 .
It follows from formulas (80}, (83), (84), (115}, and (117} that the
choice ¢ = signn ensures the inequality Repo > 0 to be true. In
accordance with formulas (80}, (81), and {(84) the maximum real part

of P, is obtained for m = 0 in formula (84). For ¢y = signn and m = 0

formulas (80), (81), (84), {(108), (11l1), (116), and (117) lead to

by = Ly/2] 2o - ”"m”[/"_llf"_* ;-

- 1}(1 + 1sign¢kn)), it (&, k,) €D vD, U o,

{118)

1_

po-—izﬁ|—::£—[o-r=_,m]l[/_t_

1+ isign(xn)[l +/-—T-——-— -1 ]], if (€, x.) €D, .
' Vit - ¢

For vy = signn formulas (85), (91), (108), and (115) lead to the
following formulas for the functions R (T) and & (r):

If (£, x‘) € D1 v D2 u D‘ then

1
Ru(r) Xexp —?:

’ {119)

® (r) = X /-%—1—%~i(—signx + isignn)x

|nB|Vi?-oR,

x@xXp _%_ o (1+isign{nn))(r-r°)2 . (120)
2[1t|+¢tz—c ]

=

It (€, x1) € D3 then

]nB|V12-oR

= (1—isignx)(r—r°)2 . (121)

1
Ro(r) = Hexp —+

0 z

Z[t - ¥

1 B
oo(r) = K /—5—|—3—|(—signx + isignn)x

|nB|vri-cR

= (l—isignx)(r—ro)z . (122)

2

r
[

xexp

2[1 - tzﬂv

The value of r, in formulas (118)=-(122) is defined by formula (65)
if (€, ‘1) €« D vD, or by formula (€8) 1f (£, x1) € Ds vD, X is
an arbitrary complex constant.

Note that it follows from formula (116) that if the point (t,s)
baing inside the region o, approaches to its boundary ¢ = ¥ then
¢ » o, It means that in accordance with formulas (80}, (81). and
(84) it is possible that there is any imount of eigenvalues P, with

Rep, > 0 (for different values of m). However if ¢ = z?

then in
accordance with formulas (62), (77), and (108) q, = 0 and the given
above procedure of solving of equation (78) is not applicable. If

q, = 0, then only the solution Ro(x) = 0 of egquation (78) satisfied
to the formulated boundary conditions. The eigenvalue Py is obtained
by solving of equation (94) for R1{x). condition (98) for the

function R, (x) is not considered in this case.
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COMPARISON OF ASYMPTOTIC ANALYSBYS WITH NUMERICAL RESULTS

The values of y for R. - = were calculated by the Galerkin
method and were compared with those obtained by the asymptotic
formulas. The calculatione by the Galerkin method were made for
ﬂz =0, n=1, and K, = 0. The approximation r; was calculated for

diffarent values of K to estimate the closeness of 7; to the value
2

of 7 by the value of 1; - 1; (K1 < xz). The results obtained for
1 2

the perfect cenductor boundaries are given in Tables 9-11: for
N =0.25, 0« = «2, x = 0,75 (Table 9); for » = 0.5, ¢ = =2, k = }
(Table 10); for # = 0.75, « = -1.3, k = 1 (Table 11). Comparison of
the values of r; given in the tables shows that in each line the
value of r; calculated for the value of K which is maximum in this
line approximates the value of 7 well enough. Dencte this value of
1; by 7 _(R ). In accordance with relations (55) and (57) tha attempt
was made for each tabl . to approximate the values of 1C(R.) in the
form

TC(RM) x di + dzfﬁ: . (123)
The coefficients d, and dz were cbtained by the method of least
squares, that is, to minimize the function

15
F4
[ ] (i)
E [1:(R_ ) -d, - d VR ] , (124)

=1

(1)
L]

where R is the value of R, for the i-th line of the table. These

values are: d1 = -7.,4333 and dz = 0.6902 (Table 9), d1 = -5.7802 and
dz = 0.8713 (Table 10), d1 = -7.5880 and d2 = 1.2081 (Table 11). The
values of the approximation of re(R'), calculated by formula (123}

are given in the last columns of the tables. In Table 9 the
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TABLE ¢

L} - * - - -
R, Ty LT Y29 T Tso Tge 4, + d VR
100 -0.9 -0.8 -0.5
200 2.5 2.5 2.3
400 6.5 6.5 6.4
800 12.1 12.1 12.1
1600 19.7 20.1 20.2
3200 32.5 31.6 31.6
6400 69.1 46.7 47.8 47.8
12800 69.6 70.7 70.7
25600 143.6 102.7 103.0 103.0
51200 139.2 148.7 148.8
102400 259.0 213.5 213.4 213.4
204800 303.9 304.9 304.9
409600 403.1 434.5 434.3
819200 768.3 613.6 617.1 617.3
1638400 813.5 876.1 876.0
TABLE 10
Rl 113 719 129 7‘9 r69 799 d‘l + dZ»/R_:
100  -1.7 1.9
200 3.4 5.5
400 10.5 10.6
800 19.0 17.9
1600 29.4 28.1
3200  43.4  43.3 42.5
6400 60.8 63.5 62.9
12800 101.2 92, 92.4 91.8
25600 127.3  133.2 132.6
51200 191.2 190.9 190.4
102400 267.4 272.5 272.0
204800 387.8 1387.8 387.5
409600 552.2 551.0 550.9
819200 762.8 781.7 787.8
1638400 1111.2 1108.0  1108.

approximation is well for all values of R_. In Table 10 it is
slightly worse for the small values of R_ (R” < 6000) and it is
bad for small values of R_ in Table 11. Through the last fact the
values of the coefficients d, and dz were recalculated for Table 11

with considering only 11 items of sum (124) for R. > 1000, The new
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TABLE 11

R, Ty Tie Tae L) LY 7o dy *+ dVR]

100 =2.0 4.5 (9.6)

200 0.5 9.5  (14.5)

400 7.8 16.6 (21.6)

B0OO 22.4 26.6 {31.5)

1600 43.6 40.7 {45.6)

3200 67.8B 67.9 0.8 (65.5)

6400 95.1 85.0 89.1 (93.7)

12800 133.0 133.1 129.1 (133.5)

25600 189.7 189.3 185.7 (189.8)

51200 257.0 269.1 265.8 (269.4)

102400 382.8 2181.8 379.0 (382.1)

204800 518.2 541.1 541.1 539.2 (541.3)

409600 767.5 766.4 765.6 (766.6)

819200 1069.6 1085.1 1085.1 1085.9 (1085.1)

1638400 1535.8 1535.8 1535.8 1538.8 (1535.6)
values of the coefficients are: d1 = -2.4445, d’2 = 1.2016. The new

values of approximation (123) are given in the last column of Table

&

11 in brackets. The accuracy of this approximation for R“I > 10" is

not worse than in Table 9.

As a whole for Tables §-1il1 the relative difference between
7 (R} and its approximation (123) is of the order 10°% ir R, > 10,
These approximations agree well with relation (57) derived above by
asymptotic methods.

The imaginary parts 5; of the eigenvalues which correspond to
the real parts given in Tables 95-11 are given in Tables 12-14
respectively. Denote by GG{R_) the last value of 6; in a line of
a table. In accordance with relation (57} the values of ac(R.) are
approximated in the form

3 (R} = g1vﬁ: + g,R . (125)
Here the coefficients g, and g, are obtained by the method of least

squares, that is, to minimize the function
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TABLE 12
* - - - - L]

Ru 61! 619 529 6‘9 669 699 gl‘/ﬁ: * gZRa
100 51 51 50
200 96 96 96
400 186 186 .86
800 364 364 164
1600 717 717 17
3200 1423 1418 1418 1418
6400 2812 2813 2813
12800 5604 5594 5594 5554
25600 11141 11142 11142
51200 22229 22220 22220
102400 44401 44348 44348 442348
204800 88563 88567 BB567
409600 176985 176952 176952
819200 353801 353635 353645 353645
1638400 707007 706924 706924

TABLE 13
- L - * » »

Rl 813 a'I9 629 669 669 699 g‘z‘/ﬁ: * gZRn
100 58 56
200 110 108
400 211 208
800 408 407
1600 799 799
3200 1577 1577 1578
6400 31238 3126 3126
12800 6230 6211 6212 6212
25600 12366 12365 12365
51200 24688 24649 24649 24649
102400 49179 49183 49183
204800 98257 98202 98202 98203
409600 196174 196174 196174
815200 392008 392022 392022
1638400 783582 783582 783582

15
2
[ ] / (i) [
Z [ac(Rn ) - g‘ Ru - gZRn ]

i=1

where R:" is the value of R_for the i-th line of the table. The
obtained values of the coefficients g, and g, are: g, = 0.68995 and

g, = 0.4309334 (Table 12), g, = 0.87081 and g, = 0.4775802 (Table
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TABLE 14

nbﬂ2
replaced by g, - — "
3 - Y - Yy - 2 il 'ﬂsU-
R, 5.3 316 326 3o S50 T g VR, + 7R
According to (55), (74), and P, = 0 the coefficients in
100 31 34
200 61 62 formulas (123) and (125) have to satisfy to the following relations
400 117 1113
800 221 212 d, ~ Rep , d, = Rep,, g, = Imp,, g, ~ ~q9(r,) .
3 4
;ggg ;;4 784 731 Table 15 lists the values of Lo ~q(r,), Repo, Impo, and Repz =p,
6400 1521 1521 1521
12800 2986 2986 2986 calculated by formulas (15), (60), (89), and (107) for the same
25600 5892 5893 5893
51200 11676 11672 11673 values of the parameters that were used for Tables 9~14. The values
102400 23259 23184 23185 23186 .
204800 46145 46145 46145 of d‘, dz' g,. and g, are alec given in Table 15 for comparison. All
409500 92123 91972 91972 91973 s
819200 183475 183493 1813493 183494 these computations were made for ﬂz =0, n=1, and K, = 0. Note
1638400 366349 366349 366349 366349

13), g, = 1.2044 and g, = 0.2226605 (Table 14). The values of the

that the values of —q(r,j, Repo, Impo, and p, are close to the

values of 9,0 dz' g,, and di, respectively. According to (107), P,

is real which agrees with (125) where the term of zero degree in Rm

approximation of a:(R_) calculated by formula (125) are given in the is not present.

last columns of the tables. Note that the obtained values of dz are
close to the corresponding values of g,- This fact is in accordance
with relations (57), {74), and (89).

The calculations carried out for the dielectric boundaries
conform that for R“l -+ = the values of y are close to those obtained
for the same values of parameters in the case of perfect conductor.
For example if n = 0.25, n = 1, « = -2, x = 0.75, Kk, = 0, and nz =
{the same values as for Tables 9 and 12) then for the dielectric
boundaries the follewing values of the coefficients in formulas
(123) and (125) were obtained: d1 = «~7.,5958, d2 = 0.6903,

g, = 0.68926, g, = 0.4309340. The values of d2 and g, are
practically coincide with those given above for the perfect
conductor boundaries. Note that if R, * 0 then in accordance with

formulas (15) the value of g, is not changed and the value of 9, is
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Figure 33 illustrates the variation of the real and imaginary
parts of the eigenfunction R{r) of system (24) with boundary

conditions (2%). This eigenfunction is derived by the Galerkin

TABLE 15
n = 0.25, n = 0.5, n = 0.75,
« = -2, k = 0,75/ a = -2, k =1 a = =1.3, k =1

T, 0.52655 0.67978 0.87105
—q(roj 0.4309 0.4778 0.2227
9, 0.4309 0.4776 0.2227
Repo 0.6900 0.8704 1.2021
dz 0.6902 0.8713 1.201s
Impo 0.6900 0.8704 1.2021
9, 0.6900 0.8708 1,2044
P, -7.3975 -6.0385 -2.9318¢
d’1 -7.4333 —-6.7802 —2.4445
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FIGURE 33. Variations of the function R(r) (solid lines} and
Ro(r) (broken lines): 1, 3 - real parts, 2, 4 -

imaginary parts.
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method with K = 29 for the following values of the parameters:
R. = 1600, » = 0.25, n = 1, a = -2, k = 0.75, ﬂz = 0, and

kK, = Up = 0 (the same values of », n, «, x, @
used for Tables 9 and 12). Figure 34 illustrates the real and

2! and L that were
imaginary parts of #(r}. The position of the point r, is marked in
the figures. The tendency of the eigenfunctions to concentrate
around the point r, is apparent. The figures also show, for
comparison, the real and imaginary parts of R (r) and Vﬁ:oo(r)
calculated from (89) and (92). The value of ¥ is chosen as

K = R{ru) . (126)
The vector function (R(r), #(r)) in the figures is well approximated
by (R (r), Vﬁ:eo(r)) hear r . The approximation is not valid in the
vicinity of the boundaries, because these two vector functions do
not satisfy the same boundary conditicns. The calculations show
that for the larger values of R_, for example Rm = 105, the graphs
of the real and imaginary parts of the functions R(r) and ¢(r)
practically coincide with those of the functions R, (r) and Vﬁ:&o(r).

The regions of the magnetic dynamc existence on the plane
Rm, k, are presented above for the following values of the
parameters: » = 0.25, £ = -0.5 (Figure 17); y = 0.5, £ = -0.6
(Figure 18); v = 0.75, € = -0,77 (Figure 19); n = 0.5, € = 0.6
(Figure 20). For these values of n the regions D1' D

D and D‘ on

3!
the plane ¢, x, are shown in Figures 28, 30, and 31. According to

zl

the asymptotic analysis the magnetic dynamo exists in these regions
for R_ - =. The sections of the conjunctions of the regions D, D,,
Ds’ and D‘ by the lines £ = -0.5 (Figure 28), € = -0.6 and ¢ = 0.6

{Figure 30), and € = -0.77 {Figure 31) show the intervals of the

values of x, for which the magnetic dynamo exists for R+ =. These
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intervals agree well with Figures 17-20, For n = 0.5 and £ = -0.6
the interval -0.2785 < ®x, < -0.1185 {Figure 30) is outside the

conjunction of the regions D1, Dz' D and D‘ and the calculations

3t
by the Galerkin method show that the magnetic dynamo does not exist
for Rm =+ a (for example, if K, = -0.2 and R. = 505000 then
1;9 = -2759.81). However the part of the right branch of the neutral
curve limited the region of the magnetic dynamc existence for these
values of K, is absent in Figure 18 because the magnetic dynamo
vanishes for the values of R“| which considerably exceed 5000.
According to the definition of the region D, there are two
roots of equation (64) with Repo > 0 for the points (g, x1) of this
region. For example, if » = 0.25 (rigure ), n =1,k =1, « = 3
(€ = 1/3}, Uc = 0, Up >0 (x1 = wm} then root (65) is r, = 0.3473932

and root (68) is r, = 0.46631493. For nz = 0 formulas (15) and (118)

lead to
P, = 3.10416631(1 + i), ~g(r,) = -3.40602064
and
pD = 1,19619821 + 5,325828781, *q(rn) = —3.45928306

for roots (65) and (68) respectively. If Rm = 250000 then
—q(ro)Ru + po\’ﬁ’"I = 1552.0832 ~ 849953.081
and

598.09911 - 862157.851

)

~q(r,JR, + p VR~
for roots (65) and (68) respectively. For the same values of the
parameters the following two eigenvalues with maximum real parts
were obtained by the Galerkin method with X = 69:

1536.9920 — 849954.631 and 581.85305 - 862132.07i.

These eigenvalues are close to those calculated by the asymptotic

formulas. The form of equation (73) leads to the assumption that the
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2
L. —53 . Note that in accordance

To

value of P, has to be close tc —«

with formula (107} it is true for a helical Couette flow bacause

—%%— - V§| < 0.1. If this rough value of p, is considered in the

asymptotic formulas then

2
~g(r, )R+ p,VE - a? - —93 = 1534.7969 — 849953.081

rﬂ
and
F
~g(r )R, + p,VR - a? - -ﬂ? = 584.50034 — 862157.854
r

0
for roocts (65) and (68) respectively. These values are more close to

thé eigenvalues obtained by the Galerkin methed than those given
above without regard for the rough value of p,.

If the point (£, ®,) is in the region E then root (68} belongs
to the interval [n, 1] but RepD < 0 even if m = 0 in formula (84).
However in this case the eigenvalue cbtained by asymptotic formulas
with m = 0 in (84) is close toc that calculated by the Galerkin
method. For example, if n = 0.5 (Figure 30), n =1, x = 0.75,
a = =1.25 (§{ = =-0.6), K, = -8, ﬂz = 0, and R' = 100000 then the
asynptotic formulas lead to

ro = 0,65962283,

2
-gq(r )R, + p,VE, - a® - - = -154.36600 - 266705.061 .

Ty
The eigenvalue with the maximum real part calculated by the Galerkin
method with K = 69 for the same values of the parameters is:

-156,92513 - 266701.641
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CONCLUSION

The results of the calculations and the asymptotic analysis
have proved that the Couette-Poiseuille flow of an electrically
conducting fluid between two cylindera can lead to excitation of a
magnetic field. Moreover the results derived by the numerical and
asymptotic methods are in good agreement. This demonstrates the
validity of the application of the methods developed by Ruzmaikin et
al. (1987) to the Couette-~Poiseuille low and the reliability of the
numerical results.

The minimum threshold value of Ra for magnetic field generation
is ~ 48. This value is reached in the following case: the ratio of
the radii of the cylinders is .~ 0.32, the pressure gradient has an
opposite direction to the velocity of the axial motion of the inner
cylinder, the value of Up ie half that of Ue, and the product of the
inner cylinder radius by the differen:e between the angular
velocities of the cylinders is ~ $0.610 .

If y > 0 then the corresponding solution of the magnetic
induction equation (3) grows in time as exp(yt) where t is the time
measured in the units of bz/A. It means that the diffusive time
scale is used (Soward, 1990). If t is the time measured in the
units of b/U_ (the convective time scale) then the magnetic field
grows in time as exp((l-n)rtc/R_). Accordingly to (12), (57), and
(74) 1if R. + » then

Lot . (1 - n)(repR,'/? + O(R')) 2 0

and at the same time 7 + w». Therefore a fast dynamo is not posasible

for the Couette-Poiseuille flow of an electrically conducting fluid
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but there is an int:rmediate dynamo (Soward, 1990).

In accordance with the definition of R. (12) in the case when
the sizes of the flow are not changed R_ -+ «» either if U_ + w or ifr
A = 0. In the case when A + 0 the electrical characteristics of the
fluid approximate to thise of the perfect conductor. If t is the
time measured in the st indard units then the magnetic field grows in

time as exp(hrt/bz). If A 5 0 then relaﬁions (57) and (74) lead to

Rep vI - nvl_

Az 2 VX + 0(A) .

bZ bll!

It means that for A 5 0 the factor by the time in the exponent which
defines the growth of the magnetic field decreases as vx. The time
dependence of the solution of the magnetic induction equation (3)
has the oscillatory nature which is defined by the factor
exp(iaar/bz) where 3 is the imaginary part of the eigenvalue with

the real part y. For A » 0 formulas (57) and (74) lead to

U (1 - ) Imp V1 - vl

= -q(r,) 5 + i VA + O{r) .

Ad
bZ

2nb
qrr,)U (1 =ny *

Thus the limit of the oscillation period is
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