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LETTER TG THE EDITOR

Discordance between quantum and classical correlation

moments for chaotic systems

J M Robbins and M V Berry
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK

Received 8 May 1992

Abstract. For systems whose classical orbits are chaotic, a set of quantum expectation
values @, is constructed which vanish for all A, unlike their classical counterparts C, which
are finite. This behaviour is not paradoxical because @, and C, are moments of time
correlation functions, which are dominated by the long-time limit where quantum and
classical evolutions disagree.

According to the correspondence principle, quantum observables (expectations of
Hermitian operators)} should tend to their classical counterparts in the semiclassical
limit, i.e. as Planck’s constant # - 0. However, the semiclassical limit is highly singular
(Berry 1991), and is vulnerable to disruption by any other limit with which it does not
commute. An example is the long-time limit ¢—»<c. In the combined semiclassical
long-time limit, the correspondence principle need not apply, and very complicated
behaviour can occur (see e.g. Berry 1988). -

Here we give an example where the quantum-classical clash is extreme: the quantum
observable is zero independently of #, while if the orbits are chaotic its classical limit
does not vanish. A related result was given by Kosloff and Rice (1980), who argued
that the quantum mechanical value of a suitably defined Kolmogorov entropy vanishes,
whereas the classical value does not. Another example has been presented by Ford et
al (1991); they showed that the algorithmic complexity of computations for the quantum
Arnold cat map always vanishes, while the classical complexity, reflecting the chaotic
evolution, does not (of course, complexity is not the expectation of a Hermitian operator
and so is not a quantum observable in any obvious way). In both the above examples,
as with ours, the apparent breakdown of correspondence originates in the fact that
the development of chaos involves the long-time limit. The example we give here has
the virtue that the transcription from quantum to classical is particuiarly straight-
forward.

Let A and B be Hermitian operators that depend on the fundamental coordinate
and momentum operators §, § for a bound system whose evolution is governed by a
time-independent Hamiltonian H. Then we can define the quantum correlation function

Q(1)=Xn|(AB-AB,+ BA, - B A)ln). (1)
This involves the nth eigenstate |n) of ﬁ, and the Heisenberg (time-evolved) operators

A\,Eexp{iﬁl/ﬁ}/: exp{—iﬁr/ﬁ} (2)

0305-4470/92/150961 +05804.50 © 1992 IOP Publishing Ltd L961
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and similarly for ﬁ,. Q(t) is real because the operator in parentheses in (1) is Hermitian.
The correlation moments, with which we will be concerned, are

Q,EJ dr 2'Q(s). ()

Elementary arguments (involving independence of expectation value toa shift in
the time at which Heisenberg operators are evaluated) show that Q(r) is an O_dd
function, so that all the even moments are zero. Now we show that the Q, also vanish

when r is odd. After introducing the resolution of the identity to separate the operators
in (1), and the frequencies

E,-E,
h

It

wnm

(4)

where E, are the energy levels (discrete eigenvalues of H), an elementary calculation
gives

Q1) = —2 ¥ sin{wpmt} Im{(n|A|m)(m|B|n)}. (5)

Thus Q(t) is an almost-periodic function. That its moments vanish can be seen by
expressing them as derivatives of the Fourier transform of Q(¢) at the origin, and
observing that (5) has no Fourier component at w = 0. Alternatively, we can use

I det' sin{wt} =0 >0, rodd (6)
0

whose truth can be established by a variety of arguments, for example expressing the
integral as a derivative of a delta-function of w, or introducing a convergence factor
exp{—et} and taking the limit £ - 0.

Let the classical counterpart of the quantum system have N (=2) freedoms, and let
z2=(q,p)=(q1,....qn, 1, ..., Pn) (7)

denote position in the 2 N-dimensional phase space. Then corresponding to the quantum
operators A and B are classical functions A(z) and B(z). The corresponding classical
Hamiltonian H(z) generates from the initial point z the orbit Z,(z) in time ¢, and the
classical counterpart of the time-evolved operator (2) is

A(z)=A(Z(2)). (8)

To define the classical counterpart of the correlation function (1) we need to know
what corresponds to the quantum expectation value in the state [n). Thisisa phase-sp_ace
average over whatever classical invariant manifold corresponds to |n). By assumption,
the classical systems we are considering are chaotic, so almost all orbits are ergodic

on their energy surfaces. Thus the appropriate average is microcanonical, and the
classical correlation function is

C(t)=(AB~ B,A)¢
_[d"™z8{E ~ H(2)HA(z)B(z) - B,(z)A(z))
§a?™z8{E - H(z)}

Of course this function is independent of h. (There are also semiclassical ‘scar’
contributions to Q(f} from each of the classical periodic orbits, but these are of order

(9)
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7™ " exp{i/ &} (Berry 1991) and vanish in the classical limit, as the oscillations become
infinitely fast and faint.) The classical correlation moments are

C,EJ det'C(t). (10)
—at

Again, elementary arguments (involving conservation of H and the fact that time
evolution is a canonical transformation) show that C{r)} is an odd function, so that
all the even moments vanish. But the odd moments need not vanish. To see why, we
observe that the mixing property associated with chaos means that

C(t)T(A)E(B)E'—(B)E<A)E=O (11)

so that C(¢) rises from zero at ¢ =0 and then decays to zero at infinity, Provided the
decay is sufficiently fast, C(¢) has a continuous spectrum, and so is not an almost-
periodic function. Therefore it can possess some non-zerc moments, and typically will
do so.

We can prove this for hyperbolic systems, for which it is known (Pollicott 1985,
Ruelle 1986) that C(w), the Fourier transform of C(t), is meromorphic in a strip
including the real axis. But if all the moments of C(t) are to vanish, then all derivatives
of C(w) must vanish at w =0; by analytic continuation this implies that C{w), and
hence C(t}, vanish identically. Thus any non-zero C(f) must have non-zero moments.

We are unable to generalize this argument to arbitrary classical chaotic systems,
because not enough is known about the analytic structure of their correlations. Therefore

, we cannot exclude cases such as

C(w)=I dt C(¢) expliwt} = iw cxp{-—ﬁ:hlm] (12)

-0

where, because of the essential singularity, all derivatives at @ =0, and therefore all
moments of C(t), are zero. Moreover, C(f), in addition to having a continuous
spectrum, decays exponentially. This can be seen by Fourier inversion, which gives

1 1 - . :

C(r)=—5—lm-§3K2{.§} E=Vit—-iAexplin/4}=VA+i1 (13)
m

where K denotes the modified Bessel function (Abramowitz and Stegun 1964), whose

limiting forms are

-&—;:-5—,5[4\/2 Ko{VA}+(8+ A)K {VA}] ]« A
C(n= sgn) (14)
TR N exp{~V1l1]} cos(v¥{] +}m}) ] » A.

We consider such cases as special, and unlikely to occur in any real classical system.

If the classical motion is integrable, the above arguments do not apply. For then
the motion is almost periodic (indeed multiply periodic, since there are finitely many
independent frequencies), and the quantum expectation value corresponds to averaging
over the angles of the quantized invariant torus whose actions are associated with |n)
(see e.g. Percival 1977). C(t) is given by a formula similar to (5), in which the @
are replaced by (non-zero) integer linear combinations of the N classical frequencies.
It then follows from (6) that the moments are zero.
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It seems paradoxical that a quantum expectation value can have zero moments
while the moments of its classical limit are finite. But the moments we are calculating
are constructed to exploit the clash of limits h +0, t >, because they are dominated
by the behaviour of Q(t)and C(r)atlarge +—precisely where the classical and quantum
evolutions disagree. Specifically, for long times ¢ > #i/(mean level spacing) ~1/&'~ """,
Q(t) is dominated by oscillations associated with the discreteness of the spectrum,
while C(t) decays because of the mixing associated with chaos. The essence of
quantization is here incompatible with the essence of chaos.

A purely mathematical example illustrating this curious behaviour is provided by

the ‘quantum’ function

O(t)=h Y mexp{—h’m’}sin{mhr} (15)
and its ‘classical’ limit, in which the sum is replaced by an integral,
c()= J dx x exp{—x} sin{xt} =? texp{—it’}. (16)

(Despite superficial appearances, this is not a model for any kind of harmonic oscil-
lator.) Both are odd functions of !, whose moments are easily calculated to be
Q. =0 (all r)
c ={0 (r even) (17
T2 W ) (r odd)
showing the clash of limits.

In this example the mysterious classical appearance of the moments can be traced
explicitly, by re-expressing (15) with the aid of the Poisson sum formula: without

approximation, we have

Q(f)_—' E '[m dxxexp{-x2}sin{xr}cxp{2ﬂinx}

"=—cwo h

VT = 2 1 2mm\?
7§ (-2 en{ -5 (-0) }

Thus Q(t) is here a series of copies of C(1), displaced along the t axis by multiples
of 27/ h. As k-0 all these copies recede to +0, leaving C(t) alone at finite £. The
moments are derivatives of the Fourier transform of Q(t) at zero frequency w. Each
copy generates a phase-shifted reproduction of the transform of C(t), whose sum

involves

Y exp{2winw/h}=1+2Re ¥ exp{2wine/k}
n=1

exp{2miw/ h}
1 —exp{2miw/ h}
=1-1=0 (19)
(we ignore the delta-function at @ = 0 because this is negated by a zero of the transform
of C(t) there). The —1 in (19) represents the contribution of all the copies to Q,, and
cancels C,.

=1+2Re

JMR thanks SERC and The Royal Society for financial support.
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Abstract

We consider the geometric phase for a family of quantum /classical
Hamiltonians in which the effect of changing parameters is simply to
induce unitary/canonical transformations. In this case the classical
limit of the geometric phase is easily obtained, even when the classical
motion is chaotic. The results agree with those previously obtained for
general chaotic families, but may be expressed in a simpler form, not in-
volving time integrals of correlation functions. It is also straightforward
to establish some results which are problematic in the general case, for
example the form of periodic orbit corrections, and the closedness of the
classical two-form. If the parameters are regarded as dynamical vari-
ables, evolving slowly so as to maintain adiabaticity, they are sub Ject
to geometric magnetism, but not, in contrast to the general case, de-
terministic friction and Born-Oppenheimer forces. Examples including

families of translated and rotated systems are discussed.
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1. Introduction

In the theory of the geometric phase (Berry 1984, Shapere & Wilczek 1989),
there are a number of interesting questions related to the classical (A — 0) limit.
This limit is best understood for integrable systems, for which Hannay (1985)
found angle anholonomies along the tori of cycled integrable systems, and Berry
(1984) established the semiclassical correspondence between the geometric phase

and the Hannay angles.

In Robbins & Berry (1992a), hereinafter referred to as RB, we obtfained the
classical limit of the geomefric phase two-form for"élé.ssica]ly chaotic Hamiltoni-
ans, along with semiclassical corrections associated with periodic orbits. In Berry
& Robbins (1993) we showed that the classical two-form produces a Lorentz-like
reaction force on the parameters, ‘geometric magnetism’, which is the antisym-
metric partner of a dissipative force, ‘deterministic friction’, previously found by
Wilkinson (1990). Whether the classical two-form describes an anholonomy in

adiabatically cycled chaotic systems is an open question.

Here we consider a special family of chaotic Hamiltonians for which the clas-
sical limit of the geometric phase is easily obtained. For these unitary/canonical
families, a change in parameters amounts to a unitary/canonical transformation.
For example, the parameters could describe the orientation of the system, so that
changing parameters produces a spatial rotation. The intrinsic properties of the
dynamics (the energy levels of the quantum system, and the actions and Liapunov
exponents of the classical system} are parameter-independent. In particular, de-
generacies are parameter-independent, whereas generically these act as monopole
sources of the two-form. However, in spite of the rather trivial dependence on

parameters, interesting effects are produced by varying them in time.

The paper is arranged as follows. Unitary families are introduced in §2 and
the associated one- and two-forms are obtained. Assuming the classical dynamics
to be chaotic, we obtain (§3, §4) their classical limits, which for the two-form
gives a special case of the formula obtained in RB. A simple modification yields
the classical limit for the integrable case. We consider next periodic corrections
(§5). These too agree with RB, although an alternative derivation avoids the
analytic continuations required in the general case. In §6 we show that the classical

two-form is closed for canonical families, and discuss possible implications for the



general case. In §7 we consider the reaction forces produced on the parameters
when these are regarded as dynamical variables. To lowest order, the only reaction
force is geometric magnetism. Examples are discussed in §8.

For convenience we take parameter space R = (Ri,R2,R3) to be three-
dimensional, and use vector notation rather than differential forms. Thus both

one-forms and two-forms are vector fields.

2. Unitary families

Consider the family of Hamiltonians
h(R) = UR)AU(R), (1)

unitarily related to a given Hamiltonian H. The unitary operators U(R) could but
need not constitute group representation. Assuming the energy levels of H (and
therefore f:) are nondegenerate, we consider the geometric phases v, obtained by
parallel transport of the eigenstates [n(R)) = U{N) ({N) denoting ecigenstates of
H) round a circuit C in parameter space. As is well-known, 7, is given by the line
integral of the one-form A, (R) = AIm (n|Vn) round C, or (via Stokes’ theorem)
by the flux of the two-form V,(R) = VAA, = kIm (Vnr|A|Vn} through a surface
S bounded by C. (Note that with these conventions, the geometric phase factor
is exp(—ivn/h).)
The one- and two-forms can be expressed in terms of the generators g(R) of
U, defined by
g(R) = RVU(R)UI(R). (2)

g is a vector of Hermitian operators. Since

V) = — £ ln), (3)

it follows that
An(R) = Alm (nVn) = —(nlgln), | (4)
Va(R) = AIm (Va| A [Vn) = S {nlg A glo) = — = (g AgR). (5)

k

Here [g, Ag] denotes a vector of operators whose i** component is ¥, ;k Cijk (&) &k,

so that [g,Ag] =28 A &.
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It is useful to verify that V,, = VA A, directly from (4) and (5). For this we

need the identity
1

R A P
VAg=—ggAg=—5#&Aﬂ (6)

obtained from the curl of (3). A similar-looking though different formula holds for
the family of operators f (R)Y='U FUt, namely

vfz_';';'[gsf]: (7)

where it is assumed that F has no explicit R depende’hce.

The gauge freedom in A, (the fact that a gradient Vy, may be added to
it) may be attributed to phase conventions in either |n(R)) or U(R). We take
the latter point of view, as it has a simple classical analogue. The unitary family

h =UHU?' determines U up to transformations

s

U— Ue_ik/h, (8)
where K(R) = F(H,R) is a (parameter-dependent) function of H. Under (8),

g— g+ UVKUT, (9a)
A, - A, — (n|UVKUR), (9%)

while V,, and «,, remain unchanged.

3. Canonical families

To H there corresponds a given classical Hamiltonian H(z), defined on 2N-
dimensional phase space with canonical coordinates z = (q,p). We assume H is
ergodic. The unitary transformations U(R) correspond to a family of canonical
transformations ®(z, R), and A(R) to the family of Hamiltonians

h(z,R) = H(®7(2,R)) (10)

canonically related to H.
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The classical himit of g(R) gives the classical generators g(z,R), a vector of
phase space functions whose ‘flows’ (regarding them as Hamiltonians in the equa-
tions of motion) generate the infinitesimal displacements &(z, R + dR) — ®(z,R).
More explicitly,

Vé&(z,R) =17 -0.g(®(z,R),R), whereJ= (—(I) (I)) . (11)

(In case the parameters constitute a Lie group, the generators g are related to the
momentum map (see Abraham and Marsden (1978)) in a simple way.}) Replacing

commutators [-,-] by Poisson brackets ih{-,-} in (6), we have

VAag=j;{g g} (12)

The classical limit of (7) follows similarily; if f(z,R) = F($7'(z,R)), then

Vfi={s f} (13)

(13) is used several times in what follows.

It is worth noting that the classical generators g can be determined directly
from the canonical transformations @, without recourse to the classical limit of g.
This is not immediately appararent, because (11) involves 8,g and not g itself, and
so determines g up to a z-independent but otherwise arbitrary one-form. (This is
not the gauge freedom of (9a), in which the additional one-form is necessarily a
perfect gradient.} However, as shown in the Appendix, this arbitrariness can be

removed (up to gauge transformations) by imposing (12) as a separate condition.

4, Classical limit

In (4) and (5), A, and V,, are given by expectation values of g and [g, Ag],
both of which have well-behaved classical limits. This makes it straightforward to
obtain the classical limits of A, and V. (In contrast, the expectation values ob-
tained in RB involve commutators of time-evolved operators, whose classical limits
diverge exponentially in time.) Assuming the classical dynamics to be ergodic (the
integrable case is discussed briefly below), we take the classical limit of a typical

expectation value (n|f|n) to be the microcanonical average

(Fen = 5 [ 428(E = W)f (= R (1)
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sometimes we will write simply (f), omiting the arguments. In (14), the normal-
ization factor dpQ(E)%’ [dz§(E — h) is the phase volume on the energy shell
(h(z,R) = E), and its integral Q(E) < [dzO(E — h) is the phase volume con-
tained inside the energy shell. The (canonically invariant) volume QU E) is of course
independent of R. The classical energy E and quantum number rn are related by
the Weyl formula

Q(E) = (2xh)Vn, (15)

according to which each quantum state occupies a phase volume of (27k)V. Thus
from (4), (5) and (14) we obtain ‘

A, - AYE,R)=—(g), | (16)
V. - V(E,R) = 1 ({g;"g}), (17)

the classical limits of A, and V,
In RB we derived the general formula

1

V¢(E,R) = 29501

o5 (aEn /0 T gt ((Vh) A Vh)E'R) , (18)

where in general f, denotes the function f evolved along classical orbits. (More ex-
plicitly, if z, denotes the orbit from z at time ¢, then f¢(z) 4f f(z¢).) The integrand
{{(Vh)y A Vh) in (18), an antisymmetric correlation function of Vh, is assumed to
decay sufficiently fast for the i-integral to converge.

As we now show, for canonical families (17) and (18) are equivalent. From
(13), Vh = {g,h}. But {g,h} is the time derivative of g along trajectories of h,

so that
d.—i‘g. (19)

t=10

d
Vh={g,h} = 78

Similarily (Vh); = &:. Substituting these into the integral in (18), we get

[T amnvn = [T aigong =-@re). (20)

There is no contribution from ¢ = co provided the dynamics is mixing; in this case

(80 A &) = {g) A (§), and

=0, (21)
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since microcanonical averages are time-invariant. With (20), (18) becomes

V(E,R) = 50z (90 (& A ) (22)

Using the following identity (a derivation is given in appendix A of RB):

1

7o00% (952 (& n8)) = (g, Aa), o (28)

we see that (17) and (22) are indeed equivalent.

If the classical dynamics is integrable, then the microcanonical average of (14)
should be replaced by an average over the invariant torus corresponding to the
state [n) = [n1,...,nn). It is then straightforward to show (similar calculations
can be found in RB) that the resulting expressions for the one- and two-forms
(torus averages of g and {g, Ag} respectively) are equivalent to the more familiar
formulas of Hannay (1985) and Berry (1985).

Let us consider the classical limit of the gauge transformation (8). The canon-
ical family A = H 0 ! (here o denotes composition of functions) determines &

up to transformations of the form
b ->Pol, (24)

where X(z,R) is the time-one flow of K(z,R) = F(H(z), R); since K is a function
of H, ¥ commutes with the flow of H. Then VI = (J - 8,VK) o £, and one can
show (the canonical property of & is used explicitly) that under (24),

g—g+VKod !, (25a)
A° - A°— ((VK)o @71), (25b)

and V¢ is unchanged.



5. Periodic orbit corrections

As the Weyl formula (15) describes the smooth behaviour of the density of
states 3. 8(E — E,), so too the classical two-form V< describes the smooth be-

haviour of the spectral two-form

D(E,R) =Y §(E — En)Vy. (26)

In RB we obtained the following semiclassical approximation for D, in which fluc-

tuations are described by a sum over classical periodic orbits, just as for the density

of states: P 1
c _ E c x7c
D — D(E,R) = WV +EZKJVJ-. (27)
7
Here 7
K;(E,R}) = W cos(S;/h — ;™) (28)

are the oscillatory amplitudes of the Gutzwiller trace formula (Gutzwiller 1990)
which depend on the orbits’ actions S;, periods Tj, stabilities |M; — I| and Maslov
indices p;. V9§ is a two-form associated with periodic orbits and is defined as
follows. If z;(8,5,R) ' (¢;,p;)(#, S, R) denotes the periodic orbit as a function of
the scaled time 8 = 2wt/T}, action S and parameters R, then

Vi(E,R) = % (Vz;- & szj)jE‘R = (Vg; - Avpi)jER’ (29)

where (<) g (or simply (-- -)J-, omiting other arguments) denotes the orbit av-
erage 1/27 § d6(---). (Note that the ‘dot product’ in the second member in (29)
is taken over 2N phase space dimensions, while in the third member it is taken
over N degrees of freedom.) The orbit two-form V7 is entirely analogous to the
Hannay two-form for one-freedom integrable systems, with periodic orbits taking

the place of one-dimensional tori.

The derivation of the spectral two-form (27) in the general case is not straight-
forward. The difficulties are connected with the exponential divergence in time of
the quantity {(Vh):, AVh}, whose microcanonical average appears in the deriva-
tion of V¢, and whose periodic orbit average appears in the derivation of V3.
While microcanonical averaging removes this divergence, periodic orbit averaging

does not, and we must appeal to an explicit analytical continuation, as described



in appendix K of RB. However, for unitary families there exists a more direct
derivation of (27). Like the derivation of (17}, it follows from the expression (5)

for V,, as the expectation value of an operator with a well-behaved classical limit.
For classically chaotic Hamiltonians, a spectral-weighted expectation value
such as Tr[Fé6(E — h)] = > 0(E — E.)(n|F|n) is given semiclassically by
7)1,

W<F)+2Kj(F)j’ (30)

ie by the microcanonical average of F', weighted by the smooth density of states,
plus periodic orbit corrections; this result follows from the semiclassical approxi-
mation of the spectral operator §(E — &) of Berry (1989). Then from (26), (5) and
(30), the spectral two-form is given semiclassically by

80
~ (2rR)N

c

Ve #Z%Kj {{g:7g}); - (31)

To establish that (31) agrees with the general result (27), we show in what

follows that

Ve L1(Vz T AVZ), = 1 {{g, Ag)); - (32)

The periodic orbits z; = (g;,p;) of h depend on parameters through the canonical

transformation ®; explicitly,
zi(0,5,R) = ®(Z;(8,5),R), (33)
where Z;(8,S5) denote the corresponding periodic orbits of H. From (11),
Vz; = V&(Z;R) =17 -8,8(z;). (34)
Therefore
%sz -J-AVz; = -zi-azg(zj) RS NO»g(z;) = %{g, Ag} z;), (35)

since JTJ = I, and (32) follows.
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6. Closedness of the classical two-form

For canonical families,
VE=VAA =-VA(g), (36)

so that V¢ is closed (V-V< = 0). To verify (36), we differentiate the microcanonical
average (14) to obtain

_VA(g)=—(VAg)+ ﬁaE (850 (VA A g)), (37)

and using (12) and (23) obtain

_VA(g) = -1 ({g.ng}) + {g:rg}) = 3 gAY = V" (38)

For general systems it is an open question as to whether V¢ is closed. Closed-
ness is not necessarily inherited from quantum mechanics, because V - V,, has
monopole-like singularities (of charge £2m) at points R.. where the energy level
E.(R,) is degenerate (Berry 1984). Thus V - V<(E,R) describes a smoothed
monopole distribution, and vanishes if and only if this is neutral on a classical
scale. Related to this question is the fact that at present we know of no general
formula for the classical one-form A°. In RB we gave a formal argument showing
V< is closed, but with subsequent consideration this argument no longer seems
satisfactory. There is a formal generalization of the derivation (37) which is more
promising, but it remains to be seen whether it will lead to a conclusive result.

Let us point out two questions concerning purely classical mechanics which
depend on whether V* is closed in the general case. The first concerns the existence
of an analogue of the Hannay angle for chaotic systems. Leaving aside the question
of its proper definition, we would expect this ‘chaotic angle’ to be, in analogy with
the integrable case, the flux of V¢ through a surface S bounded by an adiabatic
cycle C. In order for this flux to depend soley on (', it is necessary that V¢
be closed. The second point concerns the geometric magnetism acting on slow
classical systems coupled to fast chaotic ones; closedness would mean the geometric

magnetic field is free of monopoles.
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7. Geometric magnetisin without dissipation

As in Berry & Robbins (1993}, we now regard the parameters R as dynamical
variables in their own right, coupled to an ensemble p(z,t) of ‘fast’ systems. The

equations of motion are

ep = {p,h}, (39a)
R=- f dzpVh, (39b)

where ¢ is a small parameter which insures that R evolves slowly relative to p.
Within an adiabatic treatment of the reaction forces on the slow system (the fast
ensemble is taken to be microcanonical to lowest order), there appears a ‘classical
Born-Oppenheimer’ force — (Vh) gy at zeroth order, and at first order a velocity-

dependent force —eK - R, where the tensor K is given by

1 o — e
Kii(B,R) = 520 [aEn f., dt ((a,-h)ta,-h)m},

where 8; ¥ 0/0R;, (2, E,R)% f — (f) gn -

(40)

The classical two-form V< is recognized as the antisymmetric part of K; it produces
the Lorentz-like force —R A V* called geometric magnetism. The symmetric part
produces a dissipative force, deterministic friction, found by Wilkinson (1990).
(See also Ott (1979} and Brown, Ott, & Grebogi (1987).) Jarzynski (1993) has
shown that there is also in general a velocity-independent force at first order, which

may be expressed as the gradient of a memory-dependent potential.

As we now show, deterministic friction vanishes for canonical families. (For

the case of translations and rotations, a related result was obtained by Jarzysnki

(1992).) First, (21) implies that 8;k = ;h. Proceeding as in (20),

[t = [7a(Ghs) = (o), (a1)
so that .
K;; = —maE(aEQ {9i97))- (42)

But (9:9;) + {gig;) = d{g:9;) /dt, and d{gig;) /dt = 0 (time invariance of micro-

canonical averages.) Thus (g;¢;) and K;; are antisymmetric.
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Equation (21) implies that the classical Born-Oppenheimer force (Vh) also
vanishes for canonical families, and therefore so does Jarzynski’s force. Thus, to

lowest order in e,

R=—eRAV". (43)

For canonical families, the only force acting on the slow system up to second order
is geometric magnetism.

It is also interesting to consider ‘half-classical mechanics’ (Berry and Robbins
1993), in which the fast system is quantum mechanical and is described by a density

operator p. The equations of motion are then (cf (39))

eb = [p, A, (44a)
R = — Te[pVA]. (44b)

Within an adiabatic treatment of the reaction forces (taking the fast system to be
in an eigenstate), there appears the Born-Oppenheimer force —VE.(R) at zeroth
order, and geometric magnetism —~R AV, at first order. There is no friction
in ‘half-classical mechanics’, an example of a quantum-classical discordance (see
also Robbins and Berry (1992b).) Suppose now that h(R) is a unitary family.
Then the Born-Oppenheimer force vanishes (the energy levels are independent of
parameters). Thus for unitary families, as for canonical families, the only reaction

force up to second order is geometric magnetism.

8. Examples

There is the trivial case of translational families of three-dimensional systems,
for which A(r,p,R) = H(r — R,p). In this case g(r,p,R) = p (momentum is
the generator of translations), and since {p;,p;} = 0, V° vanishes. Analogous
considerations hold for the quantum case, so that V,, vanishes too. The situa-
tion may be more interesting when there are external magnetic fields. Then the
translated vector potential a(r) = A(r — R) can be shifted by an R-dependent
gauge term V. x(r, R), which alters the dynamics (if R is changing in time) and
changes the two-form. A general discussion of the magnetic gauge-dependence of
the two-form is given by Mondragon & Berry (1989). In the special case where
B is uniform and the gauge is chosen to make a(r) independent of R, Jarzynski

(personal communication) has shown that V¢ =V, = B.
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Another simple case involves rotated families, for which A(r,p,R) = H(R -
r,R -p); here R(R) is a parameterization of the three-dimensional rotations. The
generators g of rotations correspond to components of angular momentum1 = rAp
in the following manner. If {R(w) produces an infinitesimal rotation about axis
w/||w|l by an angle ||w|| (so that (R(R + §R) ~ R(R))-r = w A (R(R) - 1)), then
(g) - 6R = (I} - w, so that

A(E,R)-6R=— )z -w=—(RAR)- (L)) w. (44)

Here (L), is the microcanonically-averaged angular momentum of the given Hamil-
tonian H. Similarily,

VE(E,R)- (6R1 A8R;) = (I) g - (w1 Awa) = (R(R) - (L) g) - (w1 Aws). (45)

Thus nonvanishing one- and two-forms require nonzero expectation values of an-
gular momentum. Analogous results hold for the quantum case. While we have
been considering ergodic systems, (45) applies to certaiz integrable systems such
as the Foucault pendulum, and it should be straightforward to generalize to three-
dimensional systems with an axis of symmetry, such as the double pendulum and
the heavy asymmetric top.

Let us consider in more detail the restricted case of rotations in two dimen-
sions. For definitiveness consider a planar billiard (a particle r = (z,y) confined
to a domain and specularly reflected at the boundary) in a uniform magnetic field
B = Bz and a tangential electric field E(r) = —V®(r). (A particular significance
of the electric field is explained below.} The Hamiltonian is then

H(r,p)=i(p-A)} +3+V, (46)

where A(r) = 7B Ar, and V(r) vanishes inside the billiard and is infinite outside;
we assume H is ergodic. Rotating about Z we obtain the family h(r,p,¢) =
H(R.(¢)-r,R.(¢) -p). Parameter space is the one-dimensional circle [0 < ¢ < 2],
so that the two-form vanishes trivially. However the (scalar) one-form A° does not
vanish, and its integral round the circle (trivial because A is independent of ¢)
corresponds to the geometric phase accompanying a 2r-rotation of the billiard.
From (44), A°(E) = —(l,})g = —(rAp)g. Noting that p = v + 1B A r and
{r Av)p = 0 by symmetry, we get

A%(E) = 3 B[r’], (47)

1
2
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where [f(r)]g denotes the normalized coordinate-space average of f over the en-
ergetically accessible region (®(r) < E) of the billiard.

The system (46) provides a simple example for studying a possible chaos
analogue of the Hannay angle. This should manifest itself as a time shift along the
trajectories of the adiabatically rotated billiard. In analogy with the integrable
case, we would expect it to be proportional to dA°/dE. Thus the potential ¢ 1s

necessary for A° to have a nontrivial energy dependence.

9. Discussion

Unitary/canonical families provide simple examples of the classical limit of the
geometric phase for chaotic systems. In this case it is easy to show the classical
two-form is closed, and the alternative derivation of the periodic orbit corrections
lends support to the formal general derivation in RB. Certain characteristic fea-
tures of the general case are absent, for example degeneracies and monopoles,
and deterministic friction and Born-Oppenheimer forces — for unitary/canoncial

families, the only reaction force to first order is geometric magnetism.

For canonical families it may be possible to define a chaos analogue of the
Hannay angle, and the billiard of §8 provides a good example for numerical exper-
iment. It is hoped further study may suggest how to define this chaos analogue in

the general case, or alternatively may illustrate the impossibility of doing so.

We conclude with some speculations motivated by the above. For a gen-
eral parameterized family, the quantum/classical Hamiltonians are not unitar-
ily /canonically related. But perhaps there is a unitary/canonical transformation
which makes them lock ‘as similar as possible’. We might expect the geometric
phase and its classical limit to have simple (and manisfestly closed) expressions in
terms of the infinitesimal generators of these transformations. On the quantum
side, we have at hand the unitary transformation U(R)} which maps the eigenstates
of H! fL(Ro), a given Hamiltonian chosen arbitrarily from the family, to those of
fz(R) Is there a classical analogue? One interesting possibility concerns families of
Anosov Hamiltonians, for which there exists a transformation mapping the orbits
of H(z) = h(z,Ry) into orbits of h(z, R) (Arnold and Avez 1989). In general this
transformation is not canonical, and indeed may not be differentiable. However,

the correspondence may be worth pursuing.
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Appendix

The definition of the classical generators,
vé(z,R)=1]-8.g(®(z,R),R), (4.1)

determines g up to a z-independent vector field (ie, a parameter-dependent shift
in the zero ‘energies’ of the ‘Hamiltonians’ g.} We would like to remove this
arbitrariness. Since VA V® = 0, (A.1) implies

V AO8.g = 30.{g, g} (A.2)
We try to fix g uniquely by imposing the z-antiderivative of (A.2),
VAg=;{g rg} (A.3)

(We remark that if the parameters constitute a Lie group, then (A.2), when
reformulated in terms of the momentum map, describes a Lie algebra homomor-
phism at the level of vector fields; and (A.3), at the level of Hamiltonians. If
(A.3) is satisfied globally, the group action & is said to be coadjoint equivariant
(Abraham & Marsden 1978).)

To show that (A.3) can be satisfied, first suppose go satisfies (A1) but not
(A3), and let

a =V Ago— ;{80 Ago}- (A4)
From (A.2), a depends only on R, so that {«, f} vanishes for arbitrary f. Then

V.oa=—-3V {g,Ag}={go0, VAge}

= {go, (3{80, Ago} + @)} = ;{&0, {0, A0 }} (A5)
=3 eije{g0i, {90, g0k }} = 0,
ijk

where the last equality follows from the Jacobi identity for Poisson brackets. Since
V.a =0, ais given (locally at least) by V A 8. Letting g = gy + 3, one verifies
that g satisfies (A.3).
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