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Classical geometric forces of reaction: an exactly
solvable model

M. V. Berry and J. M. Robbins
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS§ 1TL, UK.

Abstract

We illustrate the effects of the classical ‘magnetic’ and ‘electric’
geometric forces that enter into the adiabatic description of the slow
motion of a heavy system coupled to a light one, beyond the Bomn-
Oppenheimer approximation of simple averaging. When the fast systemn
is a spin § and thic slow system is a massive particle whose spatial
position R is coupled to § with energy (fast Hamiltonian) S-R, the
magnetic force is that of a monopole of strength 7 {=adiabatic invariant
§-R/R) centred at R=0, and the electric force is inverse-cube repulsion
with strength 52-/2. Confining the slow particle to the surface of a sphere
eliminates the Born-Oppenheimer and electric forces, and generates
motion with precession and nutation exactly equivalent to that of a heavy
symmetrical top. In the adiabatic limit the nutation is small and the
averaged precession is precisely reproduced by the magnetic force.
Alternatively, choosing the exactly conserved total angular momentum to
vanish eliminntes the Bom-Oppenheimer and magnetic forces, and
generates as exact orbits a one-parameter family of curly ‘antelope homs’
coiling in from infinity, reversing hand, and receding to infinity. In the
adiabatic limit the repulsion of the 'guiding centre' of these coils is
exactly reproduced by the electric force.

A by-product of the "antelope hom' analysis is a determination of
the shape of a curve with given curvature x and torsion Tin terms of the
evolution of a quantum 2-spinor driven by a planar ‘magnetic field' with
components Kand 7.

Short title: Solvable model of classical geometric forces

Submitted to. Proc. Roy. Soc. Lond., December 1992

1. Introduction

When a light system, whose motion is fast, is coupled to a heavy
systemn, that moves slowly, the dynamics can get quite complicated and
hard to analyze. A useful approximation is to solve the fast motion for
frozen values of the slow coordinates, and then consider the slow
dynamics to be influenced by the average energy of the fast motion. This
energy depends on the slow coordinates and so its gra‘ient acts as a
reaction force on the slow motion. In quanturn mechanics the
approximation technique is known as the Bom-Oppenheimer method
(Messiah 1962) and is commonly used to analyze molecules (where the
light and heavy systems are the electrons and nuclei respectively). In
classical mechanics it is the method of adiabatic averaging (Amold et al.
1988, Lochak and Meunier 1988). We shall call this reaction force the
Born-Oppenheimer force.

In recent years it has become clear (Mead and Truhlar 1979,
Jackiw 1988, Berry 1989) that in quantum mechanics an improvement of
the approximation, more consistent with the adiabatic assumption for the
fast motion, should include in the slow dynamics two extra reaction
forces, which have a gauge structure resembling that of
electromagnetism, in addition to the Bom-Oppenheimer force. These
'magnetic’ and 'electric’ reaction forces depend on the geometry of the
fast dynamics in the space of frozen slow coordinates. They are related to
the geometric phase (Shapere and Wilczek 1989). In the quantum
mechanics of molecules, one effect of the magnetic gauge force
(associated with degeneracies in the frozen electronic states) is to alter
the energy levels of the nuclear motion (Longuet-Higgins et. al. 1959,
Delacrétaz et. al. 1986).

Cur purpose here is to study the analogous classical geometric
forces in a simple Hamiltonian model where they have real and clearly
identifiable effects. This is part of a larger programme in which we are
exploring the origin and structure of the classical geometric forces. It is
not our intention to give the general theory here, but it will be convenient
to present some new formulae for the forces. The novelty is twofold.
First, the formulae apply when the fast motion is ergodic, and so extend
previous related studies (e.g. Hannay 1985, Berry 1985), which have
been confined to integrable systems, to cover the case of chaotic motion,



thereby resolving a long-standing problem. {(In the present example the
fast motion is one-dimensional, and so the integrable and ergodic
categories coincide.) Second, the forces are expressed as integrals along
trajectories, and in the integrable case are manifestly independent of
action-angle variables, making them easy to interpret and convenient to
calculate.

In the model, introduced in §2, the fast system is a spin, and the
slow system to whose coordinates it is coupled is a massive particle
moving in three dimensions. The fast motion {with frozen slow
coordinates as parameters) is integrable. An interesting feature is that the
slow motion can be exactly decoupled from the fast motion - that is,
independently of the adiabatic approximation - and the resulting equation
is not Harniltonian.

In §3 the gauge forces are calculated; the new formulae enable a
speedy derivation, although the results are not new (see e.g. Berry 1989).
The magnetic force is that of a monopole and the electric force an
inverse-cube repulsion. These alter the slow motion in qualitatively
different ways

§4 treats the special case where only the magnetic force acts. This
leads to a surprising connection with the motion of an ordinary spinning-
top, whose precession can be considered as caused by a magnetic gauge
monopole describing the reaction of the (fast) spin on the (slow)
dynamics of the symmetry axis, averaged over nutation. In a different
special case, considered in §5, only the electric force acts; the repulsion
describes precisely the stow motion after oscillations are averaged away.
In an interesting technicality (appendix D) the determination of a curve
whose curvature and torsion are given functions of arc length is shown to
be equivalent to the 'Landau-Zener' evolution of a two-state quantum
system, which in certain cases, including that of the orbit in §5, enables
the exact analytic solution to be found.

Now we present the general formulae. Let the slow system have
coordinates R={R1, R2...} and momenta P=[Py, P2,...} and let the fast

system have phase space variables z={g,p}={41...p1...}. For the
Hamiltonian we take

H(R,P.2) =} 35.0;RP; + h(z.R) 1))

Here  is an inverse mass matrix which is small in the adiabatic regime,
and A is the fast Hamiltonian coupling the fast variables to the slow
coordinates. This can describe a classical or a quantum system,
depending on whether R and P, and g and p, commute. In the improved

adiabatic approximation, the slow variables are governed by the effective
Hamiltonian

Hy(R.P)=$ET0;(F - A,(R)(P; — 4;(R)) + Ego(R) + P(R) @

Corresponding to this are the three reaction forces

Bom - Oppenheimer : -0,Egn(R)
magnetic gauge: By = d,A;(R) - 9;4,(R)
electric gauge: -3,D(R) (3)
d
where g =—
" OR

In quantum mechanics, these forces depend on the eigenstate
In(R)> and energy E»(R) of the fast Hamiltonian 4, corresponding to the
adiabatically preserved state of the fast system. Berry (1989) obtained

EBO(R) = En(R)
By(R) = i#] (9,19,) ~ (9;rl0ym))
®(R) = EZQUSU(R) @

2
where g =%—(8,-nl(1 —|n)(nD]81n>

Appendix A outlines a slightly different way of getting this well-known
result. We remark that the quantities Bjj and gjj, which here influence the
slow motion, also have significance in the fast motion: Bjj is the 2-form
whose flux through an R circuit gives the geometric phase, and gjjisa
metric govemning the separation of quantum states in R space {Provost
and Vallée 1989, Berry 1989).

It is remarkabie that the quantum geometric forces have finite
classical limits. We display the new classical formulae for the case where
the fast motion is ergodic (this includes the example to follow, which is
one-dimensional). The phase volume



$(E.R}= jdz@{E - h(z,R)} (5)

where @ denotes the unit step, is an adiabatic invariant {in one dimension
it is the action times 2x). The fast energy Epo(R) is determined by taking
CQ{EBo,R) as constant.

Let Z4z, R} dencte the orbit which starts at z at r=0 and evolves
under i with parameters R, and let

(3;h), = h(7,.R) (©)

denote the time-cvolved parameter derivative of the fast Hamiltenian.
Denote averaging over the energy surface in phase space by
I

=5 jdzé(E—h(z,R))m (7)

Then the geometric forces are determined by

1 -
BA(R) - - @a{agﬂ [J] (@), 9, (9,1), 0h)

g, (R) - %Idn«(?,h)r(éjh»g (8)
0

where 9,1t = b —{(d,h} = 8;h - 9, Egg

{The last equality is the classical analogue of the quantum Hellman-
Feynman formula. )

The magnetic force By; has been derived by Robbins and Berry
(1992) as the classicat limit of the quantumn expression in (4). The
formula for the electric potential was found in 1988 by Berry and
Wilkinson (unpublished) in the same way. In appendix B we outline this
method. In one dimension the formula for Bj; is, despite appearances,
equivalent 1o the classical 2-form discovered by Hannay (1985). Deriving
and interpreting these formulae from classical mechanics in the
multidimensional ergodic case involves subtle questions which we will
discuss in later papers.

In a systematic study of the origin of quantum gauge forces,
Weigert and Littlejohn (1992) have shown that an additional (LW) term
arises in the effective Hamiltonian, which typically is of the same order
as the electric geometric scalar potential, They have also considered its
classical limit for spin problems (private communication) of which the
one considered here is a special case. In §3 we show that in the particular
case we study the LW force is smaller than the other forces, and we will
not consider it further.

2. Spin model’
The Hamiltonian (1) is
H=4P*+R-§ )

Here the heavy system is a particle with classical coordinates R={R, R2,
R3} and momenta P={P}, P2, P3}. The light system § is a classical spin
whose length is fixed and whose direction can be regarded as a
Hamiltonian system with one freedom (the momentum is the projection
of § onto any fixed axis, and the coordinate is the azimuth angle about
that axis). The equations of motion are

R=V=P, P=-5, S=RAS 1o

Thus H has four freedoms: (hree slow and one fast. We shall denote the
length of R by R, and its direction by the unit vector r, i.e. R=Rr. § is
slaved to the particle position R and precesses about its instantaneous
direction with angular velocity R, and § influences R by providing the
force on the particle.

The adiabatic regime corresponds to R large, so that the spin
precession is fast and S turns many times while the direction r remains
approximately constant. It is not necessary to introduce an explicit
adiabatic parameter (for example a large mass) into the Hamiltonian (9),
because in this case it can be removed by scaling - something not
possible in general.

Classical or quantal aspects of the model (%) have been studied by
many authors, for example Stone (1986), Gozzi and Thacker (1987),



Anandan and Aharonov (1989), Berry (1989), Aharonov and Stem
(1992), Bulgac and Kusnezov (1992), and Littlejohn (private
communication 1992). There are more general variants, in which for
example R is replaced by any vector function of R, but (9) suffices for the
simple point we wish to make, namely that the gauge forces have real
effects. It is possible to interpret (9) as describing the motion of a heavy
uncharged spinning particle, with a magnetic moment, through a uniform
sphere of monopolium (whose magnetic field is proportional to R). In an
altemative interpretation, the ‘particle’ could be a thin spinning molecule
with an electric dipole moment along its axis, moving through a uniform
sphere of charge. :

The coupled motion (10) is apparently nonintegrable for most
initial conditions. Nevertheless, it is a remarkable feature of this model
that the fast motion can be eliminated without approximation (that is,
independently of any adiabatic assumption), using the fact that because of
rotational invariance (10) conserves the total angular momentum (orbital

plus spin), namely
J=RAV+S=constant (1)

Note that J-R= S-R. Thus (10) gives the acceleration of the slow variables
as

V=RAV-J (12)

Now the slow motion corresponds to that of a charged particle influenced
by the Lorentz force inside a uniform sphere of monopolium, and also by
a constant 'gravitational' force -J. This Newtonian equation is measure-
preserving in the phase space R, V. It is however not Hamiltonian,
because the ‘'magnetic field' R has nonvanishing divergence and hence no
vector potential exists. (It is possible to obtain (12} as the equation of
motion generated by an energy and a 2-form, but the 2-form is not
closed.) Two quantities conserved by (12) are the energy and length § of

spin, namely
E=4V*+J.R, S=|J~RAV| (13)

Note that conservation of S implies constancy of the magnitude of the
acceleration in (12).

In §§4 and 5 we shall solve (3) exactly in special cases, in order to
assess the effects of the gauge forces whose derivation follows now.

3. Geometric forces

In this model the slow coordinates form a vector in space, so that
in (8) it is convenient to replace derivatives d by gradients V, and regard
the magnetic gauge field as a vector B. The gauge forces depend on the
fast motion generated by

h=R-S, ie. S=RAS (14)

with fixed R, via the gradient Vh=S. This describes precession about r,
which we take temporarily as the z axis, with angular velocity R. If the
initial spin has polar coordinates 6, ¢, its evolution is

S, =(SsinBcos(p + Re), SsinBsin(p + Rr), Scos8) (15)

The constant-energy surface for this one-dimensivnal integrable
and ergodic motion is a latitude circle on the spherical phase space
S=constant, whose measure, appearing in (8), is

2 r
agz:sjaq:]ae sin86(E—SRc059):%:£ (16)
(VN

This is independent of £ and so cancels from the magnetic field in (8).
There is an adiabatic invariant (conserved under infinitely slow changes
in R), given by the component of spin along R:

I=5-r=Scosh (=§Eﬂ=ﬁ§pqu 17

Thus the Born-Oppenheimer, magnetic gauge and electric gauge
forces are obtained from



Ego(R)=IR
B(R)= —%85Tdr(s, A S), (18)
0

o

P(R)= 4 [dee{(S, - Ir) (S - 1)},
0

The averages {....)g are integrals round the Iatitude circle with cos0=//S,
and a direct calculation using the orbit (15) gives the known results

B(R)=-I -/i_
s e 19
O(R) = T -1 )
2RE

As previously asseried, the magnetic force is that of a monopole at R=0,
with strength -/, and the electric force is an inverse-cube radial repulsion
with strength $2-/7. From (18) the Born-Oppenheimer force is radial and -
constant, and attractive or repulsive if />0 or f<{. This calculation, based
on the new formulac (8}, is much simpler than the analogous calculation
(Berry 1986) of B from the carlier formalism involving the shift of
invariant tori with R.

Adiabatic theory therefore predicts that the slow motion is
determined by the cquation of motion generated by the effective
Hamiltenian (2). namely

Var (52‘12)

Ve dr i — ey

r (20)

in which the acceleration is the sum of Bom-Oppenheimer, magnetic and
electric terms. This looks very different from the exact equation (12) for
the slow motion, and yet we will find that it gives very good
approximations to the average of the slow motion. Aharonov and Stern
(1992} have derived the geometric forces in (20) by physical arguments
involving careful averaging,

In this example the additional term discovered by Weigert and
Littlejohn (1992} in the effective slow Hamiltonian is

2
Hyy =22 er;\e il Q1)

To estimate its importance, consider its effect when acting in conjunction
with the Born-Oppenheimer and geometric electric forces, that is in the
Hamiltonian

1
9 S =1
Hetecive =3P +IR+ T +Hyw (22)

Conserved quantities are the angular momentum and energy:
L=RAP= £V_3
1+1/R

2_ 2 2 2
2E:R2+21R+S—~51-—+%+11“—
R* R

(23)

Thus motion is planar, with the LW force contributing an inverse sixth-
power repulsive force whose strength depends on L. Since L is
proportional to R, this is smaller in the adiabatic regime of large R than
the inverse-cube repulsion (inverse-square potential) of the electric gauge
force, and from now on we neglect it. (The essential reason for the
smallness of the LW force is that the Bom-Oppenheimer force is radial.)

4. Magnetic force only
4.1. Exact solution

Both the Bom-Oppenheimer and electric forces in (20) are radial.
To eliminate their effects, and thereby study the case where the only
adiabatic effective force is magnetic, we constrain the particle to the
surface of a sphere. This can be achieved by replacing the kinetic energy
in (9) by

P2 5P —(P-r) (24)
because then Hamilton's equation gives the velocity as

V=P-P.rr, ie. V.r=0 (25}

10
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The total angular momentum (11) is still conserved, and the fast
variables § can be exactly eliminated, to give the slow acceleration as
(12) together with forces incorporating the constraint:

\ v?
V:RAV—J+J-rr——R—r (26)

In addition to R, this conserves E and § given by (13), and hence the
combination

(raVv)-J

27
R @n

K=E+§5(12 s2)=R-J+

To determ‘ine the motion of R on its sphere, we first introduce
polar coordinates (6,¢) for r, with J as axis, and thus obtain

E =} RY[§? +sin* 8 7|+ JRcosO o8
K= J(sin2 8¢+ RcosB)

Choosing the time origin when §=0, with8=8p and azimuthal speed o>
we can eliminate E and X:
: R} R%2 . Rs} :
Lpg? = fon — Mo Bofen =)+ 20 g0 4 8 (g + )5+
$RE% =(co C){ 7 (co—c)+ T 0t (co + )00 29)

where c =cos, ¢y =cosfy, s=sinf, 5o =sinf

This describes precession about the z axis (figure 1), with variable
speed q'&. accompanied by oscillations in 8 (nutation) between limits 8o
and 8 where 6=0. Exactly this motion is familiar in the heavy
symmetrical top (A ™old 1978) and indeed as we show in Appendix C
one form of the equations of motion for the top is precisely (26).

In the adiabatic Limit of large R, the amplitude of nutation vanishes.
To see this, we find the extreme 8 (i.e. §=0) from the dominant terms in
(29). Thus

12 7

i 2 12
COSQO - COSGI = ——"_Mln RBO ¢ if ¢0 £0

(30)

2sin® 8,7 .,
=——R—3L- if g =0

Both expressions vanish as R—e< (the second because J is of order K -
consistent with (13) for § constant), so that 81-»6. This shows the
accuracy to which the adiabatic invariant I=S-r=J.r=Jcos8 is conserved.

Taking the motion to be pure precession round a circle of latitude,
we find the angular velocity ¢ from (26):

R? —JR* — 4JRcos8

2Rcos@ a1

.;{5:
—a% asR — o0

The speed of this adiabatic precession on the R sphere is

Jsing _Jtanf
R R

V=Rsinf¢= (32)

4.2. Motion under magnetic gauge force

In the adiabatic gauge model the equation of motion is (20}, with
the magnetic monopole force included and the two radial forces (Bom-
Oppenheimer and electric} omitted and replaced by the force constraining
the particle to the sphere:

Var VvV

-t (33)

Ve=—f—
R? R

In addition to R this conserves energy and a modified angular momentum
incorporating the monopole field:
E= &V"" =constant, Q=R AV +Ir=constant (34)

These imply that r-Q =1 is constant, so that the particle moves with
constant speed in a circle with axis Q. The angle made by r with @ is 6,
where, from (34),
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tanf = =— (35)
Comparing with (32), we see that the magnetic gauge field, from the
monopole at R=0, describes precisely the steady mean precession of the
particle on the sphere in the adiabatic limit when the amplitude of
nutation is negligible.

Thus the precession from the magnetic gauge force describes the
main global feature of the adiabatic dynamics. Note that ordinary Bom-
Oppenheimer theory, in which this force is omitted, fails completely
because it predicts that the particle remains at rest on the sphere.

To see that the result (35) is not trivial, consider the case where the
particle is released from rest at polar angle 6. Then from (28} and (29) it
follows that £=K=/Rcos8p, and the motion is nutation in a series of loops
{(figure 1) betwecn latitude circles 8y and 81, given by

)3 2 )
cos8, =F‘— 1-_11-16 Jcos360 _,_{K
4 2R R (36)

25
:cosﬂow};smz 6y forlarge R

(cf. the second equation in (30). In the adiabatic regime, the loops are tiny
and roughly semicircular. "Microscopically', the motion is far from
steady, because the precession stops - that is, ¢=0 - every time 8 returns
to 8p. However, a short calculation, which we do not give, shows that
{31} still gives the average rate of precession over a nutation cycle.

Retuming to the analogy with the heavy symmetrical top (appendix
C) we armive at an unexpected picture of its motion. The fast spin of the
top can be regarded as adiabatically transported by the slow motion of the
axis, which in turn is driven by the reaction of the spin, in the form of the
magnetic force from a monopole centred on the point that is held fixed.

14

5. Electric force only
5.1. Exact solution

Now we remove the constraint that kept R constant, and specialise
the model of §2 differently, in order to eliminate the Bom-Oppenheimer
and magnetic forces in the adiabatic approximate equations of motion
(20) and retain only the electric gauge force. This can be achieved by
setting /=0, which we do in a particular way that enables the motion to be
solved exactly, namely by demanding that the conserved quantity J
defined by (11) vanishes. Thus /=8-r=J-r=0, and the adiabatic invariant
remains zero not only adiabatically but exactly. Thus from (12) the
motion is determined by

V=RAV (37

This could describe the motion of a 'spin’ V, driven, as is S, by the
position R, and coupled to it by R=V, or, alternatively, a charged particle
in the magnetic field of a uniform sphere of monopolium,

The shape of the orbits is determined by a single parameter. This is
because five of the six quantities required to specify a solution of (37)
can be eliminated: one by choosing the origin of time as the instant of
closest approach; three by rigid rotation about R=0, possible because of
the rotational invariance of (37); and one by the dilation law obeyed by
(37), namely that if R(r} is a solution then so is aR(« #) for arbitrary a.

In solving (37) exactly, the first step is to note that the speed V is
constant. Next, we use

13} (R*)=13(R-R)=0,(R-V)=V" +R V=V’ =constant  (38)
so that the distance from the origin obeys the repulsion law

R*()=vi* +R? (39
Corresponding to the 'spin’ V is the ‘adiabatic invariant' »V; unlike the

analogous quantity / for the original spin §, this is not constant, but from
(38) and (39) varies as
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R-V t

=V 40
R Jrz +R§ Jv? )

r-V=

This changes sign at /=0 but has the asymptotically constant values v,
indicating that the orbits ultimately recede along straight lines.

Without loss of generality we can set V=1, and regard Rp as the
single shape parameter. Adiabatic orbits are those with Rg>>1.

With V=1, time equals arc Jength along the orbit, the velocity V is
the unit tangent vector, and the determination of the orbit can be reduced
to a problem in the differential geometry of space curves. The curvature X
of the curve (see e.g. Struik 1950) is the magnitude of the acceleration,
which from (37-39) is

k=AV-V = J[RAV)-(RAV) =R* —(R-V)? = Ry = constant  (41)

The unit normal n and binormal b of the curve are the vectors

nzizRf\V. bszn:VA(RAV):R—rV 2)
Ry R Ry Ry
The torsion is
;. {R?-(R-V)?
T:—b-”:rv (RAV):( )=[ (43)

RS Ro

Thus the orbit is a curve with constant curvature Rg and changing
torsion 1. To get a preliminary idea of its shape, note that, for a helix
uniformly wound on a cylinder, x and ¢ are given in terms of the radius a
and pitch p (longitudinal distance between coils) by

2 *
4rx‘a 2np
g, Ty 44
p2 +4ntal p2 +4rta® 49
Thus for large l, when the torsion can be regarded as locally constant,
we expect the orbit to wind about its asympotes in a coil with shrinking
radius and pitch

Ry Ry 2mt i (45)

a= 5'"')—-' P
RI+1 a? R+ttt

16 .

Since the torsion changes sign at /=0, the negative-t and positive-t
asymptotic windings have opposite senses.

Thus each orbit R(f) resembles a pair of curly antelope homns.
Figure 2 shows some of these shapes, for different values of Ry, obtained
by solving (37) numerically. It will also be convenient to study the track
of the velocity ¥ on its unit sphere; this is 2 curve whose speed is the
curvature Rg of R{t), and whose curvature is the torsion 1 of R(f), and
which therefore has the shape of a S coiling infinitely rapidly into
asymptotic directions V(too); figure 3 shows some of these shapes.

To compare with adiabatic theory, we need to know the
asymptotic opening angle 6(Rp) of the antelope horns, defined by

cos{B(Rq)} = r(—e0) - r(409) = =V (o) - ¥ (e0) (46)

Figure 3 indicates that the asymptotic directions V{#ee} become mutually
antipodal as Rp increases. Since the angle between these directions is
n-(Ro), we conclude that 6=0 in the adiabatic limit , so that the homs
spiral out in the same direction as they spiralled in, but with opposite
torsion. This is confirmed by figure 2. Now we will determine the
geometry of the curve exactly from its xand T and find the angle 8 Rg)

. analytically.

In appendix D we explain how the triad V, n, b is determined by
the solution of a problem in quantum mechanics: the evolution of a
complex 2-spinor, describing for example a spin-1/2 particle, driven by a
'magnetic field whose x and z components are x'and -7. As a special case,
the velocity in our problem is

1o
V‘("(o —JW) @7
o (2 2 O 2 I O R TN R

where | ) denotes the 3-vector of 2-spinors

8l



e1ch of whose components satisfy the Schrodinger equation
-t Ry
fon
i) = ’2( R, )w) (49)
wita inital condit*ons

l%(O))Z:};m Iwy(O))zj;@. I%(O)){é) (50)

Equation {49) defines the Landau-Zener problem of quantum
transition theory (Zener 1932). It can be exactly solved via the second-
order equation that lhe components y4 satisfy separately, namely

Wa + (307 + LR F iy, =0 (51)

These two equations are complex conjugates of each other. We express

the |wj> as linear combinations of the standard even and odd solutions y|

and y2 with initial conditions
y(O)=1, »(0)=0; y,{0)=0, »(0)=1 (52)

In terms of these, (50) fixes the quantum states as

v - LiR,vs
Wx::}f{[ 1 PR 1 s

0 ik,
v, = 1 ¥y +1KYR0J‘5
P - bRy 53

bt
¥, = i R
) [ % JROJ‘z]

The velocity of the particle is now seen to be, from (47),
V=(R,Imyys. R,Revys. InP-1R2y.[?
0 1My ¥2. RgREY Y, |)’1[ %Rob’zl (34)

To determine the orbit R(z), integration of V(r) is unnecessary, since from
(42)

R(r} =tV () + Ryb(r) (55)
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gives the orbit which from {D12) has initial conditions
R(0)=(-R,0,0), V(0)=(0,0.1) (56)

The solutions of {51) are parabolic cylinder functions, and the
standard solutions can be expressed in terms of confluent hypergeometric
(Kummer) functions. From §§19.2, 19.16 and chapter 13 of Abramowitz
and Stegun (1964) we identify

n(n) =exp{-fir* fm(yir 4. 4ir’)
2 =rexpl= i pu(}iRg + 3 4.4i')

From the known asymptotic behaviour of these functions we obtain, for
the dominant terms,

(37

cxp{—-llgrcR
F(:‘; - gin

yz(,)_,fm

2 F([—%irrR

)’1(0—3\[7?

O Dr

exp{—} i[t2 +iRS log({-rz)]}

=

exp{—};i[r2 +1R} Iog(%rz)—rr]} (58)

Sra

L
R P il

as t— +oo

Thus (54) gives the asymptotic velocity

V - J2sinh(} R }exp{- § k] }(~siny.cos7.0) +

+exp{—-§m‘2§}(0.0.1) (59)
as 1 — +eo
where
y = arg{I(} -~ iR )r(1+ iR} )} + 47
=im  if Ry<<l (60)

=i if Ry>>1

For 1—-00, V is given by (59) with the signs of the x and y components
reversed. Thus from (46) we obtain the opening angle of the antelope
homs as

18



19

6(R,) = 2arcsinexp{—%1rR§} (61)

In the adiabatic limit Rg—ee this vanishes, confirming our previous
conclusion. From (59), the asymptotic direction of the homs in the xy
plane makes an angle y+7w2 with the x axis, and from (60) this varies
from 3m/4 to ;¢ as Rg varies from O to ee.

5.2. Motion under electric gauge force

From this lengthy analysis of the exact solution of the model (9)
with zero total angular momentum J, we concluded that in the adiabatic
limit the particle spirals in from infinity to a distance Ry, and then spirals
back out along the same direction. Averaged over oscillations, this
motion becomes that of a 'guiding centre’ that is purely radial, with the
history of R changing according to the exact formula (39) with V=1. Now

we show that precisely this behaviour follows from the adiabatic
equations of motion (20).

Since J=0 implies /=0, (20} reduces to
2
V=%Tr 62)
where, from (11) and the initial conditions,

5 =|R(0)AV(0)= Ry (63)

Equation (62) describes scattering. The shapes of orbits are determined
by energy E and impact parameter b, which we identify from the
asymptotic form of the exact orbits of (37). Since V=1, E=1/2; and since
the orbital angular momentum oscillates about zero (S=-RxYV precesses
equatorially abou: R), =0. The corresponding solution of (62) is

R(r):(— R§+12.0.O) ‘ (64)

This is identical with the exactly-calculated radial behaviour (39).

Thus the repulsion from the electric gauge force describes the main
global feature of the adiabatic dynamics. Note that ordinary Bom-
Oppenheimer theory, in which this force is omitted, fails completely

because it predicts that the particle remains at rest or moves without
acceleration.

6. Concluding remarks

Our main aim has been to show by exact calculation that in
classical mechanics the gauge forces of reaction produce real effects.
These forces are appealing because of the simple picture they give for the
averaged slow motion, and the ease with which they reproduce features
that are quite deeply buried in exact solutions {where these are available).

Woven info the exact analysis has been a tissue of spin analogies.
In the basic model (9) there is the spin §, driven by the coordinate R. In
the ‘electric’ special case (§5.1), the velocity V appears as a spin, again
driven by R. And in the determination of a curve from its curvature and
torsion {(appendix D) each vector in the Frenet frame acts as a spin, driven
by the Darboux vector £2 (equation D5); this is equivalent to the
quanium spin states I'VJ') being driven by the 'magnetic field' £2

We have deliberately restricted ourselves to exactly-solvable
special cases of the model (9). On the basis of some numerical
exploration of the exact equation (12} goveming the slow motion, we
anticipate that in the general case there will be very complicated
behaviour. For examnple, according to (20) the Born-Oppenheimer force
is radial, and when acting alone (or in conjunction with the much smaller
electric gauge force) would generate multipty-periodic planar loops
around the origin if the force is attractive (i.e. when the adiabatic
invariant / is positive, and scattering if the force is repulsive (i.e. when
1<0). The effect of the magnetic gauge force is to cause these orbits to
swerve out of the plane, and we have observed this (along with
superimposed small nonadiabatic oscillations from the reaction of the
spin precession) in the numerical solution of (12). Over long times, the
exact motion for "attractive’ initial conditions is observed to consist of
non-planar loops with erratically varying radii and inclinations, probably
indicating chaos (as also seen in a similar model by Bulgac and Kusnezov
1992), with substantial changes in the adiabatic invariant near the closest
approaches where the precession frequency R is smallest.

20.
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Appendix A. Quantum origin of gauge forces

The evolution operator for the Hamiltonian (1}, describing the
development of quantum states for a finite time ¢, can be decomposed

into the product of infinitesinmal operators:

U(I)=exp{ - H(Rh )} [ p{_iﬁﬂ(ﬁﬂ}r (A1)

where N is large. Between each pair of factors we can insert the
resolution of unity for the complete set of eigenstates (R)> in the fast
subspace:

U=l R)lq[zexp{ ! f(R)xn.-(R)l] 42

(of course R is an operator in the full Hilbert space, but acts as a c-
number in the fast subspace).

Now we make the adiabatic assumption that there are no
transitions between fast states, so that all the sums can be replaced by the
single term corresponding to the nitial state, In> say. Thus the effective
evolution operator governing the slow motion becomes

0,0 = e -i2: 2L |

[ P EL Dy

- exp{—ir (n(R)H (R"ip ‘ Z)I”(R»} (A3)
h
where
Hy(R.P)= (n(R|L L0, FP|r(R)) + E,(R) (A4)

Now the result (4) follows from a double application of

FIn(R)) = —ihd;|n(R)) +|n(R))F; (A3)

We do not claim that this argument is rigorous, but it has the merit
of suggesting that the gauge forces are part of the lowest-order adiabatic
approximation, in the sense that they are a consequence of the assumption

that there are no transitions.

Appendix B. Classical limit of the quantum gauge forces

Inserting the resolution of the identity into 8;jand @ in (4), and
using
{mid;h|n)

Bl
E -E, (B1)

(mld;n)=

(where here and hereafter we do not write the R-deper lences explicitly),
we obtain the known formulae
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ij(R) =ik 7, (mlaihln)<n|ajh|m)‘(ﬁafhl")("]afhlm)

m#n (E" - Em )2
32 (mlal-hln)(np jh|m)

577 men (En-E,)

(B2)

Now we substitute

% - _%sz:exp{ii%} ®3)
4]

and thereby express the gauge forces as integrals over time:

Bj;=- El;i- J dtr(n n>
[

[(@i1), 051}~ {(2,1),-948]

(B4)
8 = -%jdr:(nl(&ih -9,E,) {9;h - c?jEn)n)
[i]
Here
iht iht
(9), = exp{-h—}a,.h exp{— —;1—} ®5)

denotes the time-evolved operator, and the diagonal terms in the m-sum,
necessary to include in (B2) in order to get (B4), are zero.

Now we can take the classical limit directly from the
correspondence principle: the expectation value is replaced by the phase-
space average (7) over the classical invariant manifold (here the energy
surface) corresponding to the state, and commutators by iA times the
Poisson brackets. Thus we immediately obtain the classical formula for
gij in (8); the formula for 3;j follows after substituting the identity

(Robbins and Berry 1992)

(B, = 5 52602 (0.0.5)) (B6)

and integrating by parts over 1.

Appendix C. Analogy with heavy symmetrical top

Let the top have moments of inertia A, B, B about the point of
support R=0, mass m, and axis determined by the unit vector r, and let
gravity g=-ge; act through the centre of mass at R=Ir. Let the axis r,
whose motion we seek, have polar angles 8, ¢, and let the third Euler
angle, describing the spin about r, be . In an inertial frame (i.e. not in
the usual body frame), the angular velocity £2 and angular momenturn L
are

Q=(y +dcos@)r+raf, L=A(y+dcos)r+Brai  (€1)
Gravitation determines the motion of L through the torque

L=-mglr ne, (C2)

By symmetry, the components of L along r and e; are conserved:

L,=rL= A(l,{/ + qﬁcose) = constant ©3)
Ly=e,-L=Ly,r-e, +Braf-e, =constant
Thus the equation of motion (C2) becomes
Ly,7+Br nF=-mgirre, (C4)
or, since 7 is a unit vector,
i":L—;—rAr"-f-lg—l(ez—e,-rr)—er (C5)

Comparing this with (26) and recognising that V=R, we see that
the top equation is identical with that for the spinning particle constrained
to a sphere, provided we make the identifications

L

r=lv szglLy,

B B? ©®

€



The conserved quantity K (equation 27) is essentially the vertical
component of angular momentum, since X=JL4/B.

Therefore the adiabatic limit regime of large R comresponds to large
Ly, that is the top spinning fast. A puzzling feature of this analogy is that
there is in the top no obvious physically-significant counterpart of the
spin § of the 'particle’ whose position corresponds to its axis, namely

L,
S=J-Rn v:E‘g—[mgzez -L,ra(2nar)] (CT

Appendix D. Quantum spinor method for finding a curve from its
curvature and torsion

That the shape of a space curve is determined by its curvature x
and torsion T, given as functions of arc length, is the content of the
fundamental theorem of differential geometry (Struik 1950). We employ
the conventional notation ¢, s, b for the orthogonal frame comprising the
tangent, normal and binormal along the curve, which has arc length s,
The curve R(s) is obtained by finding ¢ from the Frenet equations (Struik
1950)

’

t'=xn, n=-xt+1h, ¥ =-1tn (D1}

and then integraung:

5

R(s) = [d‘\-':(.«) (D2)
0

To solve the nine coupled equations (C8) we first note that they
can be written in the 3x3 matrix form

fi = e 1y (D3)
where fj;, specifying the frame, is

~b b, -b, -b,
fi=] n (=] n, n, o n, (D4)
t

and
[0,}=(x.0,-1)=0 DS)

is the angular velocity of the frame (Darboux vector). Note that the
indices j are passive in (D3).

We claim that solutions of (D3) have the form
fy =2y o) 6)

where o; denotes the three Pauli matrices

01 0 - 1 0
.= = D?
iy ol S e @
and the spinors
li'/_;'a-
= (D8)
i) [wa)
are any three solutions of the 'Schrédinger equation’
ily’)= 2 dy) (D9)
in which the 'Hamiltonian' is
-t(s) x(s)
02 0=1 D10
’ f(m) r(s)J 1o

To prove this assertion, we differentiate (D6) and use,
successively, (D9) and its conjugate, and the commutation relations for
the Pauli matrices:

£ =2(wilodw, )+ v o)
=212, (v ;[or.0.Jw;)

= —284,8 (W jlowly j)
=268 [y

(D11)
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By antisymmetry, this is identical with (D3}, which is what we wanted to
show.

A convenient choice of initial conditions is that |y, (0)} is the
eigenstate of oj with eigenvalue +1/2, i.e. (50). Then (D6) fixes the
orientation of the reconstructed curve (D2) by the following initial
orientation of the triad:

£;(0)=5;, ie. (0)=(0.0.1), n(0)=(0.10), b(0)=(-10.0) (D12)

The foregong argument is equivalent to the reduction of the Frenet
equations, by Lie and Darboux (Struik 1950), to a single Riccati equation
(this is satisfied by the logarithmic derivative of either component of any
of the spinors ly>).

An interesting duality, which follows from the symmetry of the
Frenet equations (D1), or the "Hamiltonian' (D10), is that once the curve
specified by xand T is found, the curve with forsion x and curvature T is
given by integrating b(s) rather than {(5).

When x and Tare slowly-varying functions of s, the Schrodinger
equation (D9) can be solved by the adiabatic approximation. The
resulting 'adiabatic curves' form a class of helices of which the
asymptotic coils of the antelope horns, discussed in the paragraph
following (43}, are an example.
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Figure captions

Figure 1. Stereographic (south pole) projection of the motion of the
particle when confined to a sphere with radius R, calculated from
(26) with (a-¢): R=3, J=3; (d): R=4, J=3, for §0)=45° and different
initial azimuthal velocities. (d) shows the decrease in the amplitude
" of nutation as R increases and the adiabatic regiiue is approached.

Figure 2. 'Antelope homns' obtained by solving (37) (which corresponds
to J=0) for the orbits R{r), with speed V=1 and distances of closest
approach (a): Ro=1; (b): Ro=1.5; (c): Ro=2.

Figure 3. Stereographic (south pole) projection of the velocity V (unit
tangent vector) corresponding to the orbits of figure 2.
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Chaotic classical and half-classical adiabatic
reactions: geometric magnetism and deterministic

friction

M. V. Berry and J. M. Robbins
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Abstract

We study the dynamics of a heavy (slow} classical system coupled,
through its position, to a classical or quantal light (fast) system, and
derive the first-order velocity-dependent corrections to the lowest
adiabatic approximation for the reaction force on the stow system. If the
fast dynamics is classical and chaotic. there are two such first-order
forces, corresponding to the antisymmetric and symmetric parts of a
tensor given by the time integral of the force-force correfation function of
the fast motion for frozen slow coordinates. The antisymmetric part is
geometric magnetism, in which the ‘magnetic field’ is the classical Limit
of the 2-form generating the quantum geometric phase. The symmetric
part is deterministic friction, dissipating slow cnergy into the fast chaos;
previcusly found by Wilkinson, this involves the same correlation
function as governs the fluctuations and drifl of the adiabatic invariant. In
the ‘half-classical' case where the fast system is quantal with a discrete
spectrum of adiabatic states, the only first-order slow force is geometric
magnetism; there is no friction. This discordance between classical and
quantal fast motion is explained in terms of the clash between the
semiclassical and adiabatic limits. A generalization of the classical case is
given, where the slow velocity, as well as position, is coupled to the fast
motion; to first order, the symplectic form in the lowest-order
Hamiltonian dynamics is modified.

Short title: Geometric magnetism and deterministic friction
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1. Introduction

Consider a light system, which may be classical or quantal,
coupled to a heavy classical system. The evolution of the light system is
rapid on the scale of the heavy motion, which can therefore be regarded
as slow. Here we will concentrate on this slow classical motion, which is
influenced by reactions from the fast system. In the usual '‘Bom-
Oppenheimer’ (Messiah 1962) or 'adiabatic averaging’ (Amold et al.
1988, Lochak and Meunier 1988) approximation, the energy of the fast
motion, calculated for frozen slow variables, acts as a potential in which
the sfow syvsiem moves.

In the neat approximation beyond this, there are two additional
reacticn forves lincar in the slow velocities. The first is of magnetic 1ype.
The field which generates 11 (Mead and Truhlar 1979, Jackiw 1983, Berry
1989) 1s the 2-turm that gives the geometric phase in the fast system
(Berry 9834, Shapere and Wilczek 1989). Because of the connection
with the geometric phase. we call this force 'geometric magnetism'. For
examples of the effects of geometric magnetism - and also of the higher-
order electric reaction force - see Berry and Robbins (1993) and
Aharonov and Sterm (1992, The second force was calculated by
Wilkinson (1990}, and exists when the fast motion is classical and
chaotic: 1t 1s deterministic friction. We use this term to emphasise that no
thermody namic fimit is necessary for this kind of friction. which arises
out of the deterministic chaos in low-dimensional fast systems.

Our aun here 15 to derive these first-order adiabatic reaction forces
within a systematic framework. When the light system is classical (§2).
we consider the fast motion to be ergodic and mixing. This case has long
been problematic. Although the classical limit of the quantum phase 2-
form has recently been calculated for chaotic motion (Robbins and Berry
1992a), it was not clear how to derive the reaction force it generates on
the slow systoim using purely classical arguments. The reason is that the
accuracy of conservation of the adiabatic invariant for chaotic motion
(Ou 1979, Brown et al. 1987) is much poorer than in an integrable (or a
quantum} system, To deal consistently with fluctuations, we employ the
following physical model: the slow system is coupled to a
(microcanonical) ensemble of fast systems (described by a phase-space
distribution function), rather than to a single fast trajectory. Deterministic

friction emerges as the symmetric part of the tensor producing the
velocity-dependent reaction force at first order. The antisymmetric part is
geometric magnetism.

When the light system, coupled to the heavy classical one, is
quantal (§3), we have a situation which (following a suggestion of Dr
J.H. Hannay) we call 'half-classical mechanics’ (there being no
implication that the light system is semiclassical. i.e. near its classical
limit). Then we couple the slow motion to a density matrix representing
the fast system, From this formalism emerges geometric magnetism but
not friction. This quantum/classical discordance - that friction vanishes in
quantum mechanics, for alk finite £, but is not zero in the classical limit
when the motion is chaotic - is discussed in §4 (for a related instance of
it, see Robbins and Berry 1992b).

For simplicity of exposition, most of the discussion is restricted to
a slow system with three freedoms, described by the motion of a vecter

R=|R;j={X.Y.Z] (1}

Coupling 10 the Tast motion is through this slow position R(1) (and not
through the slow velocity V=R). The slow acceleration is determined by
the reaction force, that 1s

V=F (2)

and the aim is to determine F in terms of averages over the fast motion,
including terms linear in the velocity V. It is however possible to give a
much more general treatment, in which the slow system can have any
number of freedoms and coupling can involve the slow velocities as well
as coordinates. We show (§5) that in this case geometric magnetism and
deterministic friction appear as modific2tions of the symplectic form
generating the slow equations of motion.

2. Classicat fast motion

Let the fast system be bound, with D freedoms and 202 phase-space
variables

z={gq.p)=lq1...., pp] (3)



and let the ensemble of fast trajectories be represented by a phase-space
distribution function p(z,) which is normalized, i.e.

jd;p:s {4)

Let the time-dependent Hamiltonian /# generating the fast motion be
governed parametrically by the (changing) slow coordinates R, i.e.
h=h{z R(1). Thus the evolution of the ensemble p is determined by its
Paisson bracket with fi:

ez = {h(:.R(r))‘p(:‘r)} (5)
Here £ 1+ adiabatic parameter whose smallness guarantees that the -
motion 1s mdeed fast compared with the R motion; £2 could for example
represcnt the Light/heavy mass ratio, appearing in the form (5) after

scaling the eguations of motion. The force in (2) is defined as the
followine average over fast phase space:

F [dzpVi 6)
Here and hereafter pradients Vowill act on the slow coordinates R.
We shail find the firstiwo terms of Finan expansion in powers of

€. This requures o formal expansion of the distribution function;

p=Sep, (7

[t

From (5). the pyare determined by
‘{""-f‘u}_'()- {“-P,}:P;-l (r>0} (8}

Thus po s constant on an invanant manifold of the fast dynamics
with frozen R For chaotic motion the invariant manfolds are the encrgy
surfaces @nd, densely distributed over these, the periodic orbits. We
choose the normalized microcanonical distnibution

. O(E(R)~ h(z.R))
Potzt) = 3, Q(E(R).R) )

Here R=R(1) and £2 denotes the phase volume within the energy surface
specified by E and R, namely

Q(E,R)=|dz0(E ~ h(z.R)) (10)

where @ denotes the unit step. The function E(R) determines the energy
surfaces visited by pp as R changes with ¢ Its form is determined by the
adiabatic theorem for ergodic systems {Lochak and Meunier 1988).
namely (2=constant for infinitely slow changes. { We invoke the adiabatic
theorem at this point as a matter of convenience, as the adiabatic form of
EiR) actually emerges from the following analysis.)

Now we mntroduce two useful notations. Averaging over the energy
surface E will be denoted by

' | .
yo= |l deoal=d) =  dr SUE - Bz R))-- 11
{ >£-f¢po(--r) 5 g3 4 OUF ~h=R) (1

The fluctuation of the fast Hamiltonian relative to the adiabatically
evolving energy £(R) will be denoted by

ii=h(z,R)— E(R) (12)
Adiabaticity then implies

<wi>£(R) =0 (13)

We can write the force (6) as

F= fJ dzpVh = m(jd:p}VE -J d:(p“ + &M +()(£2 ))Vfr (14

Since p is normalised and j'd:p(,sz = <Vﬂ>F(R) vanishes {cf. ¢ and 13},
we have )
F=-VER)+eF + 0(62). where

- (15)
F = —szpﬂh



The leading term -VE is the Bom-Oppenheimer force. The focus of
interest here is the next term £F1, which is the desired first-order reaction
force. To find it, we need the first currection pj in the distribution
function, which we obtain using arguments of Ott (1979).

According to (8). the corrections to pg are determined by the
solutions of equations of the form

{hit=¢x (16)

where /i and ¢ are given functions of z, and f 15 ta be determined. Because
{h.£}) =0 (micocanonical averages are constant in time), a necessary

condition for {16) 1o have a selution is
(g)j_ -0 (17)

It is shown in appendix A that a particular solutton of (16) is

0

f(:]:--J drg(z,(2)) (18)

—cm

where 242 is the trajectory generated by the Hamiltonian # in time T
starting from 2. As a function of 7, g(z¢) is oscillatory with vanishing time
average (as implied by (17) and ergodicity). Thus (18), like the integral of
a random function, need not converge, but instead gives f as a
disrtribution, whose averages over phase-space functions do converge.
Equation (18) is the causal solution, depending only on the fast motion in
the past, rather than the future. We may add to it any solution fi of the
homogeneous equation {/f}=0, which is necessarily a function of 4
hecause energy is the only constant of motion.

Using (8), the first correction can be determined from (18) as
O.
oz = mJ 13, polz; (2. RO)1] + Az R()1] (19)

—o

where z#=.R) is the orbit under the frozen dynamics, and the partial
derivative d acts only on the second argument of pg. Applied to (8) ,the
condition (17) requires that (3,09) ; = 0. A shont calculation shows that

this is true if the average of the fluctuation V(h-E(R)) vanishes as in (13),
that is if the adiabatic theorem holds (indeed this is one way to derive the
adiabatic theorem} .

Substituting (%) into (19), we find

0
1 .
p=V- e J dr{og8(E - h)](Vh)r () + () (20)
where
(w])r = Vil(z,(z.RLR) 2n

and the term () is proportional to &£-1) and will not contribute to the
first-order force.

The force produced by the term f is velocity-independent. As
shown by Jarzynski (1993), it can be determined by imposing the
condition{17) on the second-order {r=2) equation in (R). This force is a
correction to the Bom-Oppenheimer force (and indeed vanishes when the
latter does), because it may be expressed as the gradient of a potential,
This potential is however time-dependent and involves the history of the
slow motion; therefore Jarzynski's force is a memory effect. From now
on we neglect the contribution from fy. but it is certainly worth exploring.

From (15) and (20) F1 can be written as the time integral of the
correlation function, over the fast dynamics with frozen R, of the
gradients of the fast Hamiltonian, that is the {orce-force correlation
function. Thus

E

Q
F=v.-a amjm((vﬁ)rw}} (22)

with £=E(R). Changing the sign of 7. and using the invariance of
correlation functions to a time shift, we obtain



F = Avg’::lﬁa‘E 85.(2{&(‘7}? (Vﬁ)‘f)b‘ = K.V, where
]
t

Ky = =0 0e2[ arC, () and 23)
e 0

C,(m={(aF),98)

For chaotic motion, the comelation function Cjf(7) vanishes as T—oo,
because of mixing, and we asume it decays fast enough for the integral in
Kj;to converge.

To interpret this result, we separate Kj; into symmetric and
antisymmelric parts:

K =K, +K,) K =3k, -K;) (24)

Consider first the antisymmetric part. The corresponding force F @} is

geameltric magnetism, since
sl . .
B ooV ABR) (25)

where the 'magnetic field' is given by

o

BiR) - - .Jﬁar aful dr<(Vf:)r Avﬁ)

2d, £

U

This is precisely the expression we previously found (Robbins and Berry
19924) as the classical limit of the geometric phase 2-form. We showed
that B vanishes when the fast dynamics possesses time-reversal
symmetry (the 1wo essential steps of the argument are invariance of the
correlation function under time shift, and the existence of pairs of inittal
phase points = and Tz such that the forward evolution of Vi from : is the
same as its backward evolution from Tz). We also gave formal arguments
suggesting that B is divergenceless.

The symmetric part of the first-order force is deterministic friction,
that is irreversible viscous dissipation of slow energy by the fast chaos
(Wilkinson 1990). We emphasise that this phenomenon requires only
low-dimensional deterministic chaos: no heat bath has been introduced.
To lowest order in & the dissipated energy is

£V-F =—eVV Ky (27)

In calling this dissipation, we are assuming that the tensor Kj; in
(23) must be positive definite. Wilkinson (1987) shows that

jdrc,.,.(r) >0 (i not summed) (28)
0

but dissipation requires more: this quantity times dg£2 must increase
with E. This is true for scaling systerns, where the fast Hamiltonian 4 is
the sum of kinetic energy and a potential U satisfying

U{og.R)= oc*U(q.R) (u>0) (29)

since then the quantity in square brackets in Kj; in (23) scales as

(D+1u=2)
M

ET% (30)

which increases with £. We cannot give a proof of the positivity of Kjjin
the general case. Indeed. for cenain low-dimensional systems we have
found what appear to be counter-examples. although these can all be
eliminated by increasing D. However, the inequality (28) is sutficient to
guarantee dissipation if the unperturbed distribution py is a decreasing
function of #, e.g. the Boltzmann distribution or the Fermi-Dirac
distribution (Wilkinson 1990), in contrast to the microcanonical ensemble
considered here.

Unlike geometric magnetisin, this trictional force exists whether or
not the fast dynamics possesses time-reversal symmetry. But it does
require the dynamics to be chaotic. To see this, consider the integrable
case D=1, for which the correlation function is periodic:
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C,(t)= i(SU(n)cosnw'r+Aij(n)sinnan'). w>0 30
n=1

where §jj is symmetric and Aj; is antisymmetric. Only §,; could
contribute to the dissipation (cf. 24 and 27), but its contribution is
proportional 1o

jdr cosneT = md(nw)=0 (323
0

(This argument can be generalised to higher-dimensional integrable
systems.) Thus the irreversibility of deterministic friction arises from
chaos. toscther with causality as embodied in the solution (18) of (16),

By assuming that correlations decay exponentially, as in systems
with homogeneous chaos, we can obtain useful approximate expressions
for the tensors in (23) and (24). We write

CoAT) - ((‘,I(()) + T(I“U [()))cxp{—ir}

W N ) (33
(f\ oy ()-fh>l-' + T( {h.(),h} ()ﬂ‘i){: Jcm{flr}
where A ix the entropy characterising the chaos. Thus the tensor K 1s
| (aiaiy {{naiyoh-{nah}an)
g = A, | 3 et 3 £ 1 (34)
a8 A 24

where mwriting the second term we have used the invariance of the
average under time shift. The first term is symmetric. und represents
deterministic friction, while the second is antisymmetric and represents
geomelric magnetism, This expression is simple because it requires only
the evaluanon of fixed (that is, not evolved) phase-space quantities, in
addition to A.

The structure (23) of these first-order forces exemplifies linear
response theory (Landau and Lifshitz 1980, Kubo et al. 1985), with the
force F 1 and the slow velocity ¥ {'cause” and ‘effect’) being related by
the tensor Kj; . Note that in the tensor Kjj describing ‘nonequilibrium’

1

response (changing R) there occurs the correlation function Cyj describing
‘equilibrium’ (constant R) fluctuations (in Vh). This is an example of the
fluctuation-dissipation theorem. And indeed as shown by Ott (1979} and
Brown et al. (1987) the same Cjj appears in expressions for the secular
drift in the adiabatic invariant §2 (which is directly related to dissipation)
and the growth rate of fluctuations in £2.

When the underlying dynamics has :ime-reversal symmetry, the
linear response tensor Kj; is symmetric. This is an example of Onsager's
relation. When there is no time-reversal symmetry. ¥;; has an
antisymmetric part, which as we have seen corresponds to geometric
nagnetism. Thus the geometric phase 2-form appears in a new tight, as
the antisymmetsic cousin of friction.

3. Half-classical mechanics

Now let the fast motion be quantum-mechanical, described by a
density matrix p(r) driven by a Hamiltonian A(R). which i time-
dependent hecause the (classical) slow position R 1s changing. hisa
Hermitian operator, whose spectrum we assume o be discrete and non-
degenerate for all R. It is well known {Mecad and Truhlar 1979, Wilkinson
1984, Berry 1989) that there appear magnetic (and electric) reaction
forces at first (and second) order., associated with the geometric phase.
Qur purpose here is to give a derivation of geometric magnetism which
parallels the discussion of §2, to facilitate the comparison of classical and
half-classical results in §4.

The evolution of p is govermned by the commutator
ihep(r) = [n(R(). p(r)]. Trp = | (35)

where again € is the adiabatic parameter. Equation (35 is ihe analogue of
{4) and (3). The desired force is given by the analogue of (6}, namely

F = -TrpVh (36)

Consider first the case where p is an evolving pure state [y{r)>:

P

p(0) =y (Ow(n]= ple) (37)



12

As in the classical case, we write p as the series (7) in powers of £. The
terms pr are determined by the following equations, analogous to (8):

[hpol=0.  [hp]=inp, (r>0) (38)
Thus pg must commute with the frozen fast Hamiltonian (R). If
we define the adiabatic eigenstates and energy levels by

HR)Im(R)) = £, (R)|m(R)) (3%
we cunt choose py as one of these states, say the nth. Thus
Pl ) |l R R(R(1))] (40

This is the natural anatogee of the microcanonical distribution 19, Tt
depends on time through the changing slow positon Rir).

Now we can wrile the force (36) in a form analogous to (15):

Pl V- Elp Vi + ()(Fz)
. 41
VIR s e+ 0€7)

where

Foo= e Vi = S ko DUV k) 42
Iy

As with 1150, the leading term -VE,, {equal to -<lVilis) is the Born-
Oppenbeimer toree, and the next term is the desired first-order reaction .
To tind 1. we need the first correction p1 1n the density matrix.

[0 the adinbatic basis the off-diagonal elements of the corrections
Py are determined by the commutator equations (38) as
‘ Lk,
iy = i Sl (43)
L

The diggonal elements are determined by the pure-state condition (37). A
simple calculation using (43) shows that the first-order correction g is

13

V- (VB = S )

=i k=l
(klp ) =1ih £ -F, {k=1) (44)
=0 (k=1)
Using
(HVMQ_ Vi ) 4
FoF, ={|Vk) (k=1) (45)

we now find the first-order force (42} as

FI = ~ih¥ - E('(EV”((SH.' _5ni\' }(”VI‘\/
k.
=V SV Tnik) - (Vnlk)(k|Vn)) (46)
k

= ihV A SA(Vnlk) A (k| Vi)
K

This has the form

F, =V AB(R) (47)
where the 'magnetic field' 13

B{R) = —hIm{Vn{R)| ~{Vn(R}) (48)
(cf. the classical {25) and (26}).

Now we allow p 1o be a mixed state. From (38). the lowest-order
approximation must shill commute with /o and it follows that po must

have the form

Pty = S mRUNm(R(). Lo, (=1 (49)

In fact the coefficients ¢, must be constants: this is 4 consequence of the
second equation in the hierarchy (38), which implics that (nr|pg|n)=0 for
all adiabatic states Im>. Now the calculation proceeds as for pure states,
except that we cannot determine the diagonal elements of the correction
01 (cf. 44) by using the pure-state condition. However, to order £ any
such diagonal elements would give a contribution to F of the same form
as the Born-Oppenheimer force - effectively a renormalization of the
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coefficients ¢m. The result is very similar to that for pure states:
geometric magnetism (47), with the magnetic field given by the sum

B =-hlm X c,(Vm|A|Vm) (50}

rather than (48).

We have therefore found that when the fast dynamics is quantum-
mechanical the first-order force on the classical slow system consists
entirely of geometric magnetism, The force is entirely antisymmetric, so
there is no [riction as when the fast system is classical and chaotic.
Therefore quantum and classical mechanics are discordant, an interesting
situation which we will discuss in the next section. The expression (48)
for the magnetic field is familiar as the 2-form generating the geometric
phase in the Tast system when R is evoled.

As previously noted in connection with the geometric phase (Berry
9844} the magnetic force B(R) is divergenceless except for monopole
singularities at the degeneracies of the adiabatic spectrum. For typical /i,
without symimetry, degencracies have codimension 3 and so correspond
to points in the space of slow coordinates R. The loss of global
divergencelessness of B has an interesting consequence for the classical
slow dynamics: this is measure-preserving but not globally Hamilionian
(although it 15 locally Hamiltonian). When the slow dynamics brings R
near one of these monopoles, the orbits will, locally. be conical spirals
(Goddard und Olive 1978). These classical effects will however be weak,
since the monopole strength is £7/2, which vanishes in the classical Iimit.
Morcover, the breakdown of the adiabatic approximation will be greatest
at the degeneracies, because of transitions between adiabatic states.

4. Discordance: classical but not quantal friction

In the ¢lassical treatment, deterministic friction originates in the
symmetric part of the tensor Ky in (23). For quantal fast motion, no
symmetric part appeared. The quantal counterpart of the symmetric part
of the correlation integral in (23) is

15

["j = % JdT(Cr'j(T) + Cﬁ(f)). where
0

CU(T)=%[(n|(8,ii,,)tc}ﬁn|n)+(n|(9‘,lhf,i(c?,-ﬂn)r|n)] and &)

Here we make use of time-evolved operators:

Th

(A), Eexp{i%}/&exp{-i?}} (52)

However, this quantum equivalent f; is zero. A short calculation shows
that

T, .. )
%—(CU(T) + Cﬂ(r)) = m%ﬂ Re((n 2 myntld I n)) COS{E(IL.“ - !i,”)}‘ (5%
This has the same form as (31), so that the time integral /;; vanishes {cf.
32).

Therefore there really is no quantum friction in this theory, and the
discordance with classical mechanics persists. Its origin is the same as
that studied in a related, mathematically inspired, example by Robbins
and Berry (1992b): a clash between the essence of quantization, namely
the discrete spectrum of frequencies, and the essence of chaos, namely
mixing and a continuous spectrum extending to zero frequency (which
make the integrais in {23) converge to finite values}.

At first this discordance appears paradoxical, and a vielation of the
correspondence principle: the /;j vanish for all finite /i but are finite for
zero h, The resolution lies in a careful consideration of the time scales
involved in the correlation integrals. To see the quantal /i converge to
zero, the T integration must include times much longer than the reciprocal
of the smatllest frequency in the integrand (33). This is proportional to the
level spacing, and scales as AP-1, so the integration time diverges
semiclassically. Therefore the finite values attained b the classical
integrals in a finite time (inversely proportional to the entropy
characterising the chaos - cf. (33)) must be cancelled by quantal
contributions over times large compared with f-(D-1),
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A model 'quantum’ correlation function which shows this
behaviour, and has the same structure as (53), is

Colt)=h ilexp{fhzmz}cos{mhr} (54)

Because of the discrete spectrum, the integral of this function from 0 to
s zero. In the classical limit, summation can be replaced by mtegration,
and

oo

CplTI = Cyft)= [d,xexp{stz}cos{xr} = {W’Eexp{fjﬁ rz} (55)

Q
whose ntegral is not zero but

[..i )

[T

n (560)

To resolve the discordance, we write (54) exactly in an alternative
form, obtained by applying the Paisson sum formula, as follows:

Cultl=4n ¥ exp{—hzm}}cos{mhr}—%h

=3

=ih X Jdm exp{—hzmz}cos{mhr}exp{2mmn}h%h
H= -
N exp{—gl(TZ_;m-J-}—%ﬁ 57y
= § (“&,[Iw@-)uiﬁ
PR h

Thus the ‘quantum’ correlation function is a sequence of copies of the
classical function (55), centred on 7=27m/h, together with a classically
vanishing negative offset -#/2. In the integral over 7, each copy
contributes 7, except that centred on the origin, which contributes /2.
On the average, these are cancelled by the offset, since. for large T,

17

r
. hT
[,(T)= J-dquu(r) =tm+ :rlm[%—} -4hT
bis
0 (58)
BT
=a{lntfxj+4+-2) wherey ==
(Intfx] + + - x) =
The mean value of the staircase function Intfv] is x-1/2, so that Tqu
vanishes, as expected.

In emphasising the discordance between the classical model with
friction and the comresponding quantum model without friction, we are of
course not asserting that friction cannot be described within a quantum
framework. This must be possible, since friction exists and the world is
quantum-mechanical. Indeed. there is the well-known quantum formula
of Kubo (see Kubo et al. 1985) and Greenwood (1958) tor the linear
transport coefficients of irreversible thermodynamics. (Moreover, these
have an antisymmetric part representing, for example, the
(nondissipative) quanium Hall effect (Thouless et al. 19821 Qur
assertion is stmply that friction does not appear as a first-order force
when the fast motion is quantal and with a discrete spectrum. The
argument for its nonexistence breaks down in the thermodynamic limit
where the fast system is regarded as infinite, since then the spectrum
becomes continuous and the correlation integrals need not vanish,

Even within the adiabatic framework for finite systems, there is
dissipation at higher than the first order in £, caused by nonadiabatic
transitions at ‘avoided crossings', where R passes near degeneracies of the
adiabatic spectrum. For a given quantum system, that is with fixed &,
these transitions are exponentially small for smali &, that is 'beyond all
orders’ in €. If now # is decreased. keeping £ fixed, the density of avoided
crossings increases, and they can be treated statistically using random-
matrix theory. In this regime, envisaged by Hill and Wheeler (1952) and
studied in detail by Wilkinson (1988), dissipation arises as the collective
effect of those vccasional avoided crossings when levels approach closer
than £¢{Ve), for which the transitions are not exporn 1ially small, Making
heven smaller leads to levels so close and rapidly changing that there are
frequent transitions between many levels, and in this quantally
nonadiabatic regime Wilkinson obtains the classical result {23} by taking
the limit of the Kubo fermula. That very different behaviour can occur
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during classically and quantally adiabatic changes has been pointed cut
elsewhere (Berry 1984b): the adiabatic and semiclassical limits are both
singular, and their combination is much more so.

5. Generalisation

Here we consider the case where both slow and fast dynamics are
classical, and where the fast motion can be coupled to all the slow
variables. that is velocities as well as coordinates. Let the slow
coordinates and velocities be denoted by Z={Zy}, and let the dynamics of
the cumbined system be governed by a Hamiltonian #{z.Z). As n §2. we
consider the slow motion to be coupled to an ensemble of fasi
trajectories., described by a normalized distribution function p(z.1) in fast
phase space. From Hamilton's equations. the desired generalized force
frate of change of slow phase-space variables) is

@y =Jd:p8ﬁ9{ (59

This generalization of (6) involves the unit symplectic matrix

0 -1
O B (60)

where 1 is the identity matrix with dimension equal to the number of slow
freedoms. The evelution of the distribution function is slaved to Z(r) by
the generalization of (5), namely

ep(z.0) = {H (2. 2(0)). p(z.0)} (61)
(where of course the Poisson bracket is with respect to z, not Z).

Again we expand p in powers of £ The leading term is the
microcanonical distribution (cf. 9)
S(E(Z) - H(z.Z))
O SAE(Z). Z)

polzt)= (62)

where again £2 denotes the phase volume, now defined as
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QE,Z)= Idz@(z—%(z.Z)) (63)

and whose constancy defines the adiabatic energy EZ). The generalized
force is obtained as in (15)

02, =3, E(Z)+E J dzpyd, 3 +0[e?) (64)

where (cf. 12}
H=H-FEZ) (65)

The first term in (64) is the Bom-Oppenheimer energy, and the second
term, involving the first correction py to the distribution function, 1s the
first-order force we are interested in.

The solution of (61) for p1 is obtained by a procedure precisely
analogous to that in §2, with the result (cf. 23 and 24)

w2, =0, F - €K, Z, +0(e?) (66}
where
1 ~ ~
Koy == a{gaﬁ 3£der<(8”5{)ravﬂ>z (67)
0

(Here as above we are neglecting Jarzynski's force, associated with f1 in
equation (20).) Equation (66) can be written

W (2)Z, =3,E(Z), where

(68)
O} (2) = Oy + €K, (2)

In this effective slow equation of motion, accurate to order €, the
effect of the Bom-Oppenhemer (€9) Hamiltonian #77) is modified by
altering the symplectic form from @ to @', In the case where the fast
motion in integrable, this phenomenon was noted by Gozzi and Thacker
{1987) and (in the haif-classical case)} by Littlejohn and Flynn (1991).
Because Xy incorporates generalized friction through its symmetric part,
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@’ is no longer symplectic, and the modified equations of motion are no
longer Hamiltonian. The antisymmetric part of &yvembodies a

generalization of geometric magnetism.

This more general theory can of course reproduce the results of §2.
This follows from the formulae, appropriate to that special case

2= (RVY), 9(Z)= V[ +h(z.R);

, K, 0 (69)
A =LV R ERY. &, ( Y )
0 0

where A s defimed in (230
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Appendiv AL Solution of the Poisson-bracket equation {16)

To show that the expression (18) is o solution, we substitute it into
(161

i 4]

Ihort \ dr{h[:)._w(::(:])} = - J dr{h(:r(:])‘g(:{(:]}}

" o (AD

o ' df(f}g,”'“)p.-”‘ aprh'{)%“‘]]: J dr

d .
i gl z)) = 5(2)

The second equality follows from the invariance of i under it own flow,
and the third from the invarance of the Poisson bracket under 1
translation, because this is a canonical transformation.

A stmitar argument shows that the ‘anticausal expression

21

flz)= Jd‘rg(z,(z)) {A2)
0

is also a solution of (16). If employed instead of (18). this correctly gives
geometric magnetism according to (25) and (26), but generates
antifriction (feeding enerpy from chaos into the slow motion) instead of

friction.
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FASTER THAN FOURIER

Michael Berry
H H. Witls Physics Laboratory, Tyndall Avenue. Bristol BS8 ITL UK.

Written to celebrate the 60th Birthday of Yakir Aharonov: deep. quick. subtle.

ABSTRACT

Band-limited functions fix) can osciltate for arbitrarily long intervais arbirarily faster than
the highest frequency they contain. A class of integral represeniations exhibiting these
‘superoscillations’ is descnbed, and by asympionc anatysis the ongin of the phenomenon
15 shown to be complex saddies in frequency space Computations confirm the exisience
of superosciliations. The price pmd for superoscillations is that in the infiniely longer
range where flx} oscillates conventionally us vatue is exponentially larger. For example,
to reproduce Beethoveen's ninth symphony as superosciflations with a [Hz bandwidth
requires a signal expl 1019} times stronger than with conventional oscillatons.

1. Model for superoscillations

My purpose is to decribe some mathematcs inspired by Yakir Aharonov during a
visit to Bristol several years ago. He teld me that it is possible for functions to oscillate
faster than any of their Fourier components. This seemed unbelievable. even paradoxical;
! had heard nothing like it before, and learned oniy recently of just one related paper! in
the literarure on Fourier analysis (see §4). Nevertheless, Aharonov and his colleagues had
constructed such ‘superosciliations’ using quantum-mechanical argumentsZ. Here 1 will
exhibil a large class of them, and use asvmptotics and numerics 1o study their strange
properties in detail,

Consider functions fin) whose spectrum of frequencies & 18 band-limited, say by
1<, so that on a conventienal view fshould oscillate ne faster than cos{a). But we wish
£ o be superoscillatory, that is 1o vary as costAy), where K can be arbitrarily large, for an
arbitrarily Tong interval in x. A representation that achieves this is

J ducxp{i.\k(u)}exp{—%[u—if\]z} (1

—oo

1
.‘1.5 = -
'f(‘ } 5

NET3

where the wavenumber function kUdd is even, with Aith=1 and WI<1 for real w, A s real
and positive, and &1s small. Examples are

. 1 A
k= ———=. ki(u)=sechu h[_u]rcxp{— l,_u‘}. kqlw)=cosn {2)
1+ 4w - -

v



Aharonov's reasoning (he suggested Eq.{1) with £4) was that when §is small the
second exponential would act like a ‘complex delta-function' and 30 project out the value
of the first exponential at u=14. Thus f should vary as

f=explikx] where K = k(14) ]

Under the condiions sbove Eq.(2), & increases frem u=0 along the imaginary axis, so
that K>1, {and for the given examples can be arbiwranly large), and so corresponds to
superoscillations. What follows is a study of the small-& asymptotics of the integral
representing . As well as justifying Aharonov's argument, this will dissolve the paradox
poscd by superoscillations, by showing that when x>0(1/&) they get replaced by the
expected cos{1), and f pets exponentially large.

2. Asymplotics

The aim is to get an asymptotic approximation for small & to the integral definirg
£, Eq.(1), which s valid uniformly in x. To achieve this, it is convenient to define

& =x8 )

so that Eg.(1) can be wntten

f(af/tS:.A.(S) :ﬁ J du exp{—gl?d'l(u.é.ri]} where @ = L(u - IA) i€ k) (5)

—om

For small 8. f can now be approximated by the saddle-point mediod, that is by deforming
the path of integration through saddles ug of the exponent and replacing @ by its quadratic
approximation near . /' is dominated by the saddle with smallest Reb. Saddles, whose
location depends on & (and atse A) are defined by

do

o =0, teu = i[ékr("a)+ AI ©

Apphcation of the saddle-peint method now gives the main resuk:

exp{i,\"\'(“s] - 3;3 (1, -1 ):}

Fa

\/l—i.tézk"(ns)

To interpret this formula, it is necessary 1o understand the behaviour of the dominant
saddle as & varies.

= (7

When £<<1, that is x<<8 -2, Eq.{6) gives us=iA, and (7) reduces to Eq.(3); this
is the regime of superoscillatons. When £>>1, that is x>>8 -2, the saddles are the zeros
of k'(1); assuming for simplicity that k has a single maximum at #=0 (as ir the first three
funcrons in Eq.(2)), this is the only real saddle, and (7) reduces to

. ] o a4’ }
! Emcxp{l.t _‘.’1’} cxp{ 252. 8)

This is the behaviour to be expected conventionally, that is on the basis of the frequency
content of f; in the infinite range of validity of Eq (%), f is Ofexp{A2/28°} and so
exponentially amplified relative to the superoscillation regime.

As x increases, the saddle moves from i4 10 0 along a curved track, illustrated in
figure 1. This is the dominant saddle us; its track resembles figure [ for all k(x) of this
type that I have studied. There are other solutions of Eq.(6). whose arrangement and
motion are complicated and depend on the details of k(u), but they are not dominant and
so do not compromise the validity of Eq.(7} as the leading-order approximation 1o the
integral defining £, Eq.(1).

0 02 0.4 Lo T
Reu

Figure 1. Track of leading suddie u, a5 & increases fron (e e tor the s cntnber function k3{u) in
Eq.(10). for A=2 (the track 15 samnlar for aay AGEA wath i siple masimum)

In understanding the oscillations, it is helpful s study (e Joval wavenumber,
defined as

| (§). A}
2
As illustrated in figure 2, g(&) decreases smoothly from k(iA) (which is real) to 1 as £

increases. Note that the decrease is rapid (this is true for all &{#) that | have studied). This
has the important implication that 10 observe superosciliations it s necessary io keep £

g(¢)=-1m = Rek{1,(&)) (%



much smaller than unity, and if we want to allow x to be large, in order to observe many
superoscillations, § must be correspondingly smaller, Eq.{4), and the exponential
amplificaticn in the regime of conventional escillation, Eq.(8), will be cotrespondingly
larger.

3
25
)
1.5

‘ AN———

t [ 3 4 -

g
Fipure 21 ovsl wavenumber ¢(£). Fq.{9). for Lhe ks(u) in Eq.{10), for A=2

None at the wavenumber functions in Eq.(2) gives an f whese integral
representation <un be evaluated exactly inwerms of special functions. However, if we
choose the w.an comber function

N

Etee)=t-4u° (10
we van etsure that s band bnuted C1Kl<Y) by restricting the range of integration in
Eg. (b e 2 The resalung tuncated integral is

) LI : | \
fla o) 0\3 ‘ dn cxp{u(l - %u‘)}exp{- I {4 —14) [L thy

Al

which be cxpressed nterns of error functiens:

(i

[t sstoctive to examine this in detail. The superoscillation wavenumber

Ly.(3s s

K =ks(ia)=1+ 447 13

There is a single saddle, at (figure 1)

w(&)= (14)

Afi-¢
§}=1+w(—n—?—2J (15)
2! +&)
For this case, the saddle-point approximation, Eq{7) gives
, I A AZ6707
J{¥ A §) = e expy x| | + — 3 cxp
) Vi+ s’ p] 21+ 078%) 21+ x°5%)] (16)

However, the asymptotics of (11} includes contributions from the end-points
w=+2 as well as the saddle ug. This can be seen by realising that the steepest path between
-2 and +2 runs from -2 to infinity in the negative half-plane, through 4 to infinity in the
positive half-plane. and back to +2. The end-point cantributions oscillate conventionally,
with the wavenumber -1, so we must be sure that they do not mask the superosciliations
that exist for small & The condition for this is that the abselute value of the Gaussian in
(11) must not exceed unity at the end-points. Thus

\
T4 .

exp{g}sl, ie A= (i
267

{we include the equality because the end-pomnt contribution is smaller than that from the
saddle by a factor . Eq.13) now implies that the maximum rate of superoscillation
obtainable with this model is K=3. (It is worth remarking that 1=0, A=2 lies on the anti-
Stokes line for the error functions in Eq.412). that is, where the exponential contribution
from the saddle exchanges dominance with those from the end-points.)

The representation Eq (1) does not have the form of a Founer transform, namely
(for a band-himited funcuen)

] N
F(x.A8) = [dyexpluglfyl (18)
-1



It is however easy to cast it into this form. The wransform f(g) depends on the inverse
function of &(w); this is multtivalued, and the path of integration can be deformed into a
loop around a cut extending along the real axis pegatively from the branch point at g=1
{the ends of the loop are pinned to the cut, at g=-1 for ks and at the essential singularity
g=0 for ky. k>, and &3). Again there is a dominant saddle, which for small £ lies at g=K,
and the loop can be expanded to pass through this. All previous results can be reproduced
in this way.

3. Numerics

The aim here is twofold: 10 compare the saddle-puint approximation Eq.(7) with

the exact integral (1), and to exhibit the superoscillations. I carried out computations of f

for the wavenumber tunctions k1, &2, and k3 (Eq.{2)), but will display results only for
Re ftlin [ is similart for ks (Bg.(10n, with the truncated integrat of Eq.(11). for which
the results are very similar, The computations will be exhibited for the fastest
superoscillations, namely K=3, that 1s A=2 (Eq.(17). choosing &=01.2.

Frgure 3 shows the results, The superoscillations for smali v, with period 27/3 |
are shown on figure 3a, and figure 3b shows a range of v wherte there are conventional
oscillations. with period more than 3 times greater (actually about 8.4 - cf. figure 2,
where & - 1.6 corresponds 1o 1 ~ 40). In both cases, the approximation (in this case
Eq.(161} agrees well with the exact expression, Eq.(12). For example, the fractional emmor
is 018 for x=2, and 2.8x10°18 for 1=42. Note the enormous ratio of the sizes of f for
targe and small x; from Eq.(16), this can be estimated as exp(36)~ 1018 (the asymptotic
ratio of Eq.(8) is not attained in figure 3b). The transition between the superoscillation
and conventional regimes is clearly shown in figure 3c.

In these computations, the value A=2 is the Jargest for which the saddle dominates
the end-points. The competition between contmbutions shows up most clearly at x=0), for
which (12} gives

f(0.4.8)= Rccﬂ{é{ﬁﬁ%]} 19

For A<2, f is weil approximated by the saddle contributen of unity, for A>2, the end-
points dominate and f increases exponentially. Eq.(17}, masking the superoscillations for
small x. This is iliustrated in figure 4. Even at the critical value A=2, that is, on the ant-
Stokes line for the function (19), the exact value f=0.945 is close to the saddle-point
value f~1.

(3a)

Ref

to
[
(=1

b

40 41 42

12

i0

log jRe f]

13

0 YYH' e |
0 5 10 15 20 25 M
X

Figwe 3. Computations of f{x2.0.2) for the wuncated integral. Eq.(11). showing {a). superoscillations,
and (b) conventional esciliations. Circles: exacl expression. Eq.{12; full lines: saddle-point
approximation, EqQ.(16). In (c) the logarithms are base 10
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4. Beethoven at Hz

Professor L Daubechies has informed me that superoscillations are known in
signal processing. n the context of oversampling. This is sampling a function faster than
the Nyguist rate, 1.e. at points v=az where the function is band-limited by k<1, If a
function 1~ oversampled inoa finite range, extrapolation outside this range is exponentiaily
unstable” She quotes B Logan as saying that it is possible in principle 1o design a
bandlimited signal with a bandwidth of 1Hz that would reproduce Beethoven's ninth
symphony exactly. With the superoscillatory functions described in this paper 1t is
possible to wive an expheit recipe far constructing this signal, as 1 now explain.

W tegmie superoscitlations for the duration T (—40005) of the symphony.
Theretore the desured signal B{r) can be represented as periodic outside this intervai,
namels

i N
i l“nt‘w‘li'—-f.(,” (209
\ I

Here A s the vnder of the Fourier compenent corresponding to the highest frequency
Vs & N0 20k Vi desired o reproduce.

Foapprosimate this with a signal band-limited by frequency 1 {=1Hz) we make
the replacenient

2rur

“\P\:'"}— =@, (1) 2n

i

where (¢f.Eq.(1}) @, is the superoscillatory function

@, (1) = 5 \}E [ du exp{iva(u)}expi—z—;-z—(u-ifln)z} (22)
n A

Here the frequency function v{u) never exceeds (for real u) its band-limited value
vi0)=vg. and A, and 8, will now be determined by the requirement that @,
superoscillates with frequency #/T for ume T.

The superoscillation frequency of @ (1) is v(iAn) (c¢f. Eq.(3)). Thus from
Eq.(21) A, must satisfy
. n
v(id, )= — 23
(i) = 3 23)
We fix &, by requining that the superoscillations are maintained for time T, in the sense
that the replacement of Eq.(21) remains a good approximation. For this we require the
next cormectuon to the superoscillatory exponential that @,(7) represents. Expanding the
saddle-point approximation to Eq.(22) (analogous to Eq.(7)) for small ¢, we find

@, (1)~ exp{i 3%2} exp[znza,%[-w?(i,‘a,, )];2} 24)

The second factor is an increasing exponential. because \-"(iA,,) is imaginary, and must
remain close to unity for O<r<7. Thus

5, << 2y (in 1] 5)

Choosing A, and &, as in Eqs.(23) and (25) guarantees that the signal B,(r}, with
its frequencies up to Vmax, will be imitated for time 7. When r>T the imitation will grow
rapidly in swength, and eventually, that is when it is oscillating at the freguency vy
corresponding to its Fourier content, it will acquire an ampiification factor corresponding
to its targest Fourier component n=N. An argument analogous to that leading 10 Eq.(8)
gives this factor as

il I } (26)

2
- AN p I
F= cxpl?—} >> cxp{ANn T
with Ay determined by Eq.(23} with the right-hand side set equal to vy
Let us calculate this amplificaton for the medel frequency function

viu}= vy exp{—uz} (27



(ef. K3ty in Eq.(2)). We find

AR = log{ . } 28)

and hence, ftom Eg (269,

¥

F o> t’.\p{-lﬂ’z qu?[__\fmux ];ﬁu\T‘} 29}
L

v

For Beethoven's ninth symphony this gives

P L‘\p{]()m} (3t

This amplification will not be achieved until a time ¢¢, which can be estimated by the
argument preceding Eq.(8) as

\

o gt
- [\-Ug;i.] - —‘—‘l;”‘—— <108 years anh
(]

Other choices for vt give similar expressions and numerical estmares

The estimate of Eq.(30) indicates that 1o reproduce music as superoseillanons
reguires a signal with so much energy as to be hopelessly impractable, but more madest
bandwidth compression might be feasible.

5. Concluding remarks

Ahuaronov's discovery, elaborated here, could have applications in seversl
branches of physics. One possibility is the use of superoscillations for bandwid'h
compression as discussed in #4. Ancther example, also in signal processing, concerns
the observation of oscillations faster than those expected on the basis of applied or
inferred filters. These would conventionalty be interpreted as high frequencies leaking
through imperfect filters, but the arguments presented here show that the phenomenon
could have a quite different origin, namely superoscillations compatible with perfect
filtering.

Perhaps more ‘nteresting are the possible applications of superoscillatory
functions of tw.. variables, representing images. One envisages new forms of
microscopy, in which structures much smaller than the wavelength A would be resolved
by representing them as superoscillations. (This is different from conventional

superresolution, which is based on the fact that Fourier components larger than 2n/X can
be present in the field near the surface of an object, but decay exponentially away from
the object because the wavenumber in the perpendicular direction is imaginary. Witn
superoscillations, the farger Fourier components are not present.)

Superoscillations can probably exist in random functions flx). arbitrarily long
intervals, in which fis expenentially small relative to elsewhere. could superoscillute.
Consider how this might be achieved. It £ s Gauss distributed. its statistics are
completely described by its autocorrelation function, which by the Wiener-Khinchin
theotem is the Fourier transform of the power spectrum Sty of £ Evenif fis band-
limited, it ought 1o be possible to choonse $(g? with analvtic siructure (saddles with
Re ¢ > 1, ¢1¢ ¥ such that the autocorrelation superoscillutes st Lalls frony its initial value.
This idea ts worth pursuing.

O the purely mathematical side, it is clear that superosalitions Gy @ price. the
function is exporentially smaller than in the regime of conventonal oscillations, with the
exponent increasing with the size of the interval of superesaillations. We have seen
examples of this, but there ought 10 be a general theatem tpettps based on  version of
the uncertainty principle).
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The geometric phase for chaotic systems¥

By .M Romriss axn M V. BERRY
H 1 Wills Physies Laboratory. Tyndall Avenue. Bristol B8 ITL. UK

The geometric phase acquired by the eipenstates of eveled quantum systems is given
by the flus of & two form through a surface in the system’s parameter space. We
obtain the <lassival Lt of this tao-form in a form applicable to systems whase
Alassical dynaties is chaotic For integrable systeme the expression is equivalent to
the Hanmay two form Wediseuss various properties of the classical two-form. derive
aemiclassical correctiots Tt {axs winted with classical periodie orbits). and consider
implivations for the wemnndiseicat denaty of degeneracies,

1. introduction

sincr its discovery tBery s conewderable attention has been devoted 1o the
geometnie phase v qeared by the cgenstates |7 of quantum systems HiRy whose
parameters fioare taken througls a evele €0 According to one of a number of

eguivalent expressions

.
o=, |t 1y
Y ,[ n SRY

where N e o suttace 1 parsnieten space bounded by €. and

I =~ thddntaldn (1.2

n

is the two torns whese tas tirongh N s the geometric phase. There exist several
extensy e et iews of s penetrne phase e, for example. Shapere & Wilezek 19849}
(Note multiphoue by (214 eguinalent to taking the imaginary part. and the
fuctor of & intreduccd will render Vb mdependent in the classical hmit)

Given 1V, g quantnnn me hanreal quantity of geometne origib, it is natural to ask
what it corresponds o classically For infegrahle systems this question was answered
by Haunay (1955 who dimcirn el a classical anholonomy for eycled integrable
systems, snalogous (o the geometti phnse Hannay's two-form was subsequently
shown to correspond 1o Fm the elassical limit (Berry 1985}

More generally, the cotrespondenee principle. couched in geometrical language.
asserts that in the clussicul et the speetral invanants of guantum systems
correspond 1o the mvarmnt mamtulils of classical systems. For integrable systems
the invariaot manifolds are torn and this correspondence is embodied in the torus
wave functions sud quantization conditions (Berry 1953) which form the basis for
the semiclassival anndysis ot Berry (1883) The invariant manifolds of chaotic systems
are the energy shells and the isolated periodic orbits contained therein. Semiclassical
quantization conditions i terms of these are fundamentally more difficult than for
the integrable casv. the guest for «ueh conditions lies at the heart of guantum chaology
(see, for example. Gutzwiller 1980 Berry 1991, Keating 1991}

t This paper was acoepted 6s rapid communication
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Ax Hannay's two-form is aasociated with invariant fori. one would expect the
classical two-form for chaotic aystems to be associated with the energy shell and
periodic orbite. A theory along these lines. along with some of the difficulties
encountered, was previously discussed informally in Berry (199}). Here we present
a complete account of the classical limit of the two-form in & form applicable to
chaotic systems

Before proceeding. let us niention an interesting though quite distinet extension of
the Hennay two-form due to Montgomery (1988) and Golin et al. (1980} These
authors consider classical hamiltonian systems with parameter-dependent con-
tinuous symmetries {though not necessarily integrable}. and establish the existence
of & uniyue {bamiltonian} connection. ir. a prescription tor lifting curves from
parameter gpace to phase apace (with certain additional properties). Crudely
speaking the connection describes the geometrical comp aent of mution in the
‘ignorable " coordinates (i.e. those conjugate to the momenta which generate the
svmmetries): in the integrable case these momenta are the actions and toe
connection determines the geometrical component of the angle evulution. namely
the Hannayv angles

Here we are considering & different problem o our concern s the intrinsic
anhelonomy. defined quantally but so far ot classically . assoctated with ergodse
hemiltonians with no symmetries at ait One might attempt to appls the preceding
formalism to such systems. by regarding the dynamics itself ax the symmetry. but
{he associated connection is ill defined, as the expressions for it diverge exponentiably

The paper 1s organized as follows We introduce a time-dependent formalism for
the quantum two-form (§2). from which its elassical limit, our principal result,
follows direetly (831, The cases of anticanomical symmetries and additional constants
of the mation {in particular. integrable systems) are considered (§4). along with sume
specific examples (§3). We then develop an alternative formalism fur both the
guantum and claxsical two-forms (§6). which is used to estublish formally that the
two form is closed (§7). Finally, we caleulate the perindic orbit contributions to the
two form (§%) and its derivative. the density of degeneracies (§9) In the interest of
mwaintaimng continuity, the derivations of some results have been placed in
Appendixes Througheut we use the notation of differentis] forms. Arnokd (1978}
provides a good general reference.

2. Time-dependent quantum formalism
{a} Derivation

For chaotic systems, the classical limit of {1 2) is not directly avressible. bevause
(and in contrast to integrable systems), semivlussical vigenstates are not known. As
is customary in quantum chaology. we proceed by expressing the speetral property
of interest (in this case, ¥,) within a time-dependent formalism Taking the classical
hmit is then a straightforward matter

We start with the equation (Berry 1854)

Cojdlim) A CouldB| )

V,=—it T
" (En_b.m)z

men

(2.4

Here. as elsewhere, d is the exterior derivative with respect to parameters R
Throughout the paper the R dependences are usually left implicit. though
oceasionally in the interest of clarity they are indicated explicitly
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The energy denominator in (2.1) may be expressed as & time integral:
. - . = df o=
(K,—-E.) =~ﬁhm fe™ f COB 1. (2.2)
e =B JO
whert aw,,, = (E,—K_3/h. (Usually the convergence factor lim, gexp(—et} is left
implicit.) The oscillations cos wyg, f may then be incurporated into time-dependent
matrix clements, asm
t<nidHmd A {m RIS
= W (A ] w0 A G ld B ) + (o [dH e A Cm [(dH) D). (2.8)

O w

LE

Here ((]};’), =1 W) s the time-evolved operator. in which () is the
evolution operator at fixed R pamely

L) = 710 (24

With the substitution of (2.3} and (2.2} into (2.1}, the restriction m # 7 on the sum
% Do Jonger necessary . unil X I G| wives the wdentity. Therefore

I, = ‘," Ao ulify, A AT+ dFF A (dH) ) (25)
-1‘_ o

The sum of operators appearing in (235) is actually 8 commutator, ie.
(L, A dF + A8 n df), = (dH), AdA). {26

At first this might appear surprising. since the commutater of two scalar operators
is antisvmmetric i its argnments, However, the commutator of operator one-forms
i svmmetric. the two antsymmetries caneelling as it were. To clanfy this point. et
us consider {(as we often will in what follows) the “reference’ area element 3,
parameter space drawn in tigure 1a, spanned by infinitesimal displacements ry and
r, from f The ux through (g of d4 AdB+dB add. ax computed from the usnal
rules for two forms, 1s

(A, B,— A4, B+ (B 4, - B, 4 (2.7)

_ ger . . PR,
{here 4, = ddA - roand similarly for B). whereas the flux of [4. A B] through [5g 18
(4, B,]-[4,. 8] or L. .. - . L.
(4,8, —B, 4~ 4, B, -8 4Ap (2.8
Clearly {2.3) and (2.8) are the same
Substitutmg (2.6) mto {2.5) we obtain

o= 2%’ [ dtedalldfy,, Adiny, (2.6}

Yo

our principal formula for the guantum two-form. We may write it in a form more
symmetrical with respect to time. Since expectation values of eigenstates are time
invariant, (nl(dH}, AdHIn) = (aldH » (dH)_ | n). Therefore

b, = ;'hJ’ deténi(1dHy, + (dH)_,, ~dH ] r). {(2.10)
1]
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-—-

nearby arbits

In> Iny>

Figure 1 (a) area element O, spanned by dixplacements s, and o, onc iUk 11 two-torm Huxes
through =, e follows. (b) The time-dependent formula (6 2] refates | I ln'tlu* time B\:-ru.gr uf
the symplectic anva of 0,{f) in Hilbert space () The time-dependent tormula (6 8 relates 17 (K O,
16 the time and microcanonical averages of the symplectic ares ol 0z N phase spacr (] The
time-independent formula (1.2) relates -y tothe symplectic ares o ;
time-independent formula (G 1) relates 175 25, to the =y mpleetn ared of
The periodic orbit two-form (8.10)

o Hilbert space (e) The
LiFn phase space (f)

By AntFunitary synimetrns

An antiunitary symmetry K such as time reversal, takes e products to their

complex conjugates and commutes with the hamiltonian

(KyIR ¢ ={ylié). 2.11a)
(K = KH. 211b)

If (2 1156) holds for all parameters. the two-form satisfies
Vo=—Va (2.12)

where i) = KEjn). In particular, if j») is invariant under &. then V, vanishes.
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The symmetry property (2.12) is easily obtained from (1.2} and can be also made
menifest in the new formula (2.10). We note that

Fdfh, = (dH) K. {2.13)
beeause (i) time evalved operators A, tIun.nfurm according to Kd, = A-u,]\‘" where
A4 =KAR " and i from (21100448 = dff Turning to the expectation value in {2 1Y,
computed Tor Vi ruthey then [n).

Gl + Wl rddiy = <K nl[(dH i+ @H),. ndHE )
— (K v Bl + W) adH] o = il + @l AdfHlrds (214

where i the thind cquality we have used (213 and in the last eqguality the
antiunitary property (2 Ha) Sioce the expectation value of the commutator mn the
last term s pure imaginary. it follows that

Ol + il Adf) Ry = (o l[(dH, + (0H) . AdH) m)*
= =i, + (dH) . AdHT Ry, (@215)

and (2,123 follow~ mnedtely.

3. Classical limit
() Wigner Weyl formalism
The tlassvid it of (2 47 is carried out within the Wigner- Weyl formalism_ the
defining relation ol which s the following correspandence between operators A and
]lhase- space functions 4(z).

A= |’d"s<q+ésl.—ﬂq—és}e'*"”. 3N

where 2=1(g pr iz = valled the Wenl symbol. or simply the syvimbo!l of 4.
wometinies we wiite 145,020 for 41g) There s nothing intrinsically semiclassical or
approximate abont the Wigner Wead cortespondence | it is simply another formalism
for enact quantun uechanies Howevero it lends steell to semiclassical approxi
mations m who b the canonical strueture of elassieal mechanies is manifest For
discussions amd rev e ~er Groenewold (19361 Moval (1948) Baker (19453%)

I, s expressed i 12U A the time integral of an expectation value. In the
Wigner Weyl funnadism expectation values of operators correspond to phase space
averages of =vbale Inpartn nlur,

Sl Ay = J‘-l"zu',,{.:wmdfh,. adH]1,12) 13.2)

Wz is the sy mbaol ot ihe projection [#) ¢nl. and 1s alsa called the Wigner function.
For chaotie sy~tems, the simplest and cradest semiclassical approximation s to
replace W izh by the microcanonical density, namely

Wiz » 8E - Hizh/ Q2 E) (33

Here Hiz), an abbreviation for Hiz. B} is the classical hamiltonian. 1e. the symbul
of A The normalizution factor

QE) = [d“':rnE— Hiz))
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i the volume of the energy shell, whose energy £ quantized e this howest
spproximation acrording to the rule

QEN=nh" (3.4)

which associates @ quantum state to carh phase space cell of volame A
TTUE) = J(i”‘z@(k'fff(:)w

i~ the phase space volume with energy less than E. Refinements to (331 mvelving
classical perrodic orints, are discussed mn 8

Neat we consider ({(AH),. AdH Dy, To lowest order i A the symbol of the
commutater of two operators is given hy ih times the Posson bracket of their
svimboels. Thux

([(dH), AdB Yy =it iidf ), A dH (3.5)

Like its commutator analoguoe, the Poisson bracket of une-forms s svmmetric rathee
than antisvmmetric in its arguments. (Explicitly. the lus of jdA4. A dB through [y,

ael def
s given by (A, F,i 414, .8} where 4, = dd-r, K, = dfi v ) The symbol of a tune-
evolved operatar is given, to lowest order in k. by st elass allv timeevalved sy mbol

et
1{ we define the time-evolved function A (2) = 4020 » here 2, o the trajectory frrom

zat tune § then )
(A = 1di), 13.6)

{An explication of notation might be heipful ar this point (), evaluated ut £ and
Rois just Hiz, R +dRI—Hiz, RB) to first order moddo) Then from (35 and (3.6}

(A, A A, » i, adi 3T

Lot us mention that both (3 5) and (3 6) give the lowest order terms i formal) puwer
series expansion in A The next terms are of order £ higher than the leadimg one (see
Varos 1976} so that the neat termoan (3.5 1~ ol order 47

Substituting 133 and (3 7Y into (3 27 and (2 91 we ohtain the classival himit of the
two form

I »l"‘(’E}:-—_l,{‘ drecpddty, A, (38

n
)

rcseneral o, denotes the muerocanonn al avorage

NI BME - L

-

When there = ne risk of confusion we simphv wnte o0 leaving the energy
dependence imphat For given n, £ s guantized srecordig to the approximation
[KIEY]
by Comverg nt formade
For chaotic systems it 18 not elear that the expression i 4 &) is convergent. The
reason i~ that the Poisson bracket {(df), A dH2) grows exponentially i tine To
se¢ thi~. note that in geperal

{4, Bitn= Az Siz o B (3.9

Proe B Noe Lond A pWdD
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whore A7tz und Bz are phase space gradients, J ix the Puisson tensor

[
= . 310
J (-—I n) (

and Syle = (22 il 3.1
- det
ix the linearized How where Ziz = i= the How. The exponential wrowth of
S(z.1) (which wonli pnphy the mame of (3810~ the very defintion of chaos
To make sense of the elasseal Jimit of the two forin we reguire & manifestly
cunvergent formuli Thie can be obtamed by means of arodentity which clisminates
the 2 derivatsves i (R

Coldy AR, = G A, Al Y AR

The derivation i givenm Appendin A The prime ( ) denotes the deorivative with
respect T envigy id the det () the derivative with respeet ta time: While (3 9
implics that 14, J0o e exponentitly divergent om0 (3 12 imphes that at -
oscillatory e 2 arnd that the exponentiad s st i careel e the mwin when
averaped over the cnorgy shell Soberratngg G312 o 130X

S
ISR Pl IRt A, FRES

(), dhenotes the derivative of (A1 with respect 1o 8 Weantegrate I purts,

dreadify, = I ‘ dre uddh, = ‘ drd iy, Atn
{the rernstated conno e s fustor ot 12 27 st Hies the neglect of the boanndiry terrn
and obtaim

I Ei = ___;2 (sz | Are i » i \,) IR

This is onr progoped Joonula for thee clasern] two form Lake the gquantum Lormala
(29t can be ok ot ~vanriettieal withe respect to e Sinee rerncanoeal
Hyeraes  Ate e mvanmnts we g that <ol sodH s = (A /B s =
- dH b Therelen

Vi (22 { At eldh, dH )

From 10 the convergenee ol PR dependdson the hehuvionr ol the

correlation tuneteon - el v dfds I the dy i s oy CArneld & Aves 108
then

Ty ‘-l'””, sl =AMy Al = 11Ty

In fact. we shall aesnnne the eate of miving (e the rate atow bebe LA, 8 -4l
ix sufficiently vagnd ~o that

" deddd) A db

S
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convergex. Thix is cortainly true for hyperbolic (or Axiom A} systems, for which the
mixing rate s exponential (see Ruelle 1886). bt cheariv halds for power law mixing
rates — with » > 1. (As discussed in §4¢. (3.15) nlsu holds for integrable kystems,
which are not mixing at all, essentially bucause the correlation functions are quasi-
petiodic.}

Because the dynamice is ergodic,

7T
[ drdifiz,. adiiz) (3.18)

(dH, AdH g = lim ;‘1,
r.oal

for almost all initia! conditions 7. Therefore, the phase space integrals of (3.15) may

be repluced by time integrabs along singthe trajeetory. and the energy derivative

obtamed by varving the energy of the imtinl comdition Use of (3 18] would

considerably fucilitate numerical computations, as 1" (E) eould be computed from

just a pan of trajectories with slightly separated encrgies Eand £+«

Finally. let us mention an equivalent form of {(3.35] of wor theoretieal interest
Considering the guantum two-form for the moment. we note thiat becaume it
depends onty on the eigenstates of H tand not on the energy levelsh 10 um linged
i 1 in replaced by a (possibly parumeter-dependent) furvetion of it=cit The same s
true of the clessival two-form | it = easy to verify thet 17 renvns unchanged if
iz Ky~ n‘;linl‘e’d }r_\

def
(Lo Ry = gz (41t

where g = gi& f1 i~ a functon of energy and parareters (Phe eflect o the dy namies
A this substitotion is simply 1o reseale the fime A naturad representative for the
famidy of “hapnliomans detined by (3 1% 1 the velume function

del
Quiz By =dJhz Ik

[whose quantuam wnalogoe 1w the connting opetatin - )_',. aopn o ferns of
which

3!

e = ! der edgd o mdgd (320}
2dw |, ! o

Here the expes tation value €5, b taken over that energy shelb which contains phiase
volume woand (A7, denotes dfl, evolved oder the dyrmuies o 2, tor s etitious
time . For onge dinensional systems, (3207 1~ closely relnted o equation (0) of
Hunnay (1483
4. Symmetries
L Antecanondond syuonetios
The classical analogue of an antiunitary syimetry Aol (2 11 an antionnoniesl
svinmetry K (Robnik & Berry 19861 a phase spaee translormation which reverses
the sign of Poisson brackets and commutes with the hanabtonion,
{AoR Boh:=- {4 Hiok. [EREA]
Hokh = H 414
tHere o denotes composition. su that {(Ho ki) = HiAon ) Time reversal. in the
furm Kig p) = (g.— p). 1 the prototypical exampl
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SUppIOse & SYRLEM RISsESSes 81 anticanoenical semmetry A In general. the energy
shell iz iz = Fiowill be composed of distinet comnected vompenents mapped into
vach other by K. Let Ty und Ty be two guch components. related by £y = K(/p) (it
could be that [, = Foie that Fpis invariant under K). Let 194£) and T (E) he the
assoeinted 1w o furms obirined by restricting the microcanonical average in (3.16) to
Ipoand f—k respreetivels Thenom analogy with (2.12). the elassical two-form obeys

Pk = - 1EY 42
i purticular of 1y = T then VOE) vanmshes

The proof of t4 21 s gt amilar to that of (2.12) Caleulating PUEY from (3 1)

and integrating over Aizirather than z t& volume-preserving change of variablel,

3

. 17
Mg = \ m‘in- LA E = Hy G, — (dHy ) A dH

=0 l Wt ’-I-“ 28k~ HoKindl,oh — iy e Ky audi oY 143
Hore 8k = Hydenot - e peetrntion of 818 - Hyto Fyoand 08 = QE ) = the
volume of £, o0 Iy Smecanta anemneal sy metries reverse the sens of tirae (easidy
shown) Zyjok = AcZr 0 or mere explicithy Zikizy fy = KiZiz —th Therefore

def
(i), oK il AlfeZinich - lioKoZi—i) But difok = Af (K s a symmetry o so
that
vl ok = dile Zi—ti= il idH) ok = (i), 44
Substituting the precodimg into (43

.
it Id“ cdk = H oK (i, - WHy 45

LYY ‘

Sinee Spk - Hoh - 880 1L theright hand side s just — FyE ) and the svnnnetry
property (425 fulosws direotly
o Aedditeomad cunsturds of the ot ian

Retore comdening mitvganbde systems we first consider the more general cnsen
which there are & conmmuting constants of the motion. with 1 € b€ A Ergodic
RyvEtens correspuotad 1o d = 1 integrabile syxtems to F=N Lot F=1(F Fodenote
the constants ol ot

Aseuming the dursanies 1~ crgodic on the mvariant manifold fz]Fiz) = fl there s
u straightforwand genenahzatien of the classie altwo forme Equation (3 5) i xtill vahd
i the mueracanonieal density s remterpreted to be &4 f— F1/D(f). where

Infy = J'd“;ﬁ*lfvf)

ix the volume o the s anant manitold Thus
' - l N el . |“ B
Vi l A, A dHy, (40
N
From a stetightlonsand peneralization of {3 52) (derived in Appendin Ay

Wil sy = (O DU P A dH D) 4.7}
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But §(dH), F} = {dH. F_ . since Poisson hrackets ane preserved by the dynames.
and [dH.F. ), = {dH. F},. sioce F i~ & constant of the motion. However W F =
MH Fi—{H.dF}. and d{H.F} =1 aghin beeause Fis a constunt of the motion.
Thercfore ]

HdH), Fi=—tH.dF, = (1F). (4.8

Kubstituting (4.8} and (4.7) into 14.6) and integrating by parts over £owe ohtain

. Vo
t-gf)=2r“vf-(n{ dr G Fy, mm;,). (4.9)

the reyuired generalization of (3 15}

[y Frebegrabde syt s
Take the constant=of inotion Ftobetheactions/ Thenfndi = (2n tobtained from
itegration over the angles ). and
. P
V= L Y NTIYARENTH A 4.1y

bttt}

W abtain a more explivit tormula by eapanidimg A s Fonner series
AHB T = Sh iTyespom B 411

in which the coeflicients & are one-forms 1 Note that A7 s the derivative of Hiz i
with = rather than 8 7y held fised ) The Fourier cocticnents 1 of 8 may be
expressed an termes of the hyx FEapanding the velatmen WL A= i Ty (the
detivative of WHD =01 in a Founer series, we ohtain aim i, = imh_. where
&) = V,H are the flt'qm‘ln o= 'I'hf'l‘(‘fnr‘l'

i,=h miim cn 41

,,l B4
The dynarmes s sinply 8, = 84 o substituting the Fourier sepes for 1y, and &fF
into (4. we readily carry onut the torus averaws < and tie mitepral ithe latter
after reinstating the convergenee fuctor of 1200 and obtain
. | R - ftm."- } " .
=L X m Yy 4 13)

{m o)t

Ash =0 3y e real Lo Appendi Bowe =hoow that (4 130w n|m\ulvm to the
Harmay twa form
5. Examples
{1} (-nifurm sy e Aﬁrfn'
In appropriate units the hamiltonian of a three dimensional charged particle in a
uniform magnetic tield B is given by
H=Wp-A¥r+Vin A-iBxr 5.1

We take the parameters of £ 1o be the conponents of the magnetn field and use
vertar notation for parameter space. wrting ¥y anstead of d straightforward
calculation gives

Vell=- U 5 2)
Proc K Nor Lond A (199
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Figure 2. Aharanov Bohm hilbard The particle at 7 mover with velocity e = {r ) in uniform
background field B, and a Bux line 1 located at R p= r—R = (p.6)

where I = r x ¢is the mechanical angular mementum and © = p— 4 » the velovity #
The two-form V' (£, B} ix a vector field in B-space and is given by
- i * ‘
VHE By = —= | dt<id~1)xDep (5.3)
0 . :
At B =0 the humiltonian s invanant under the time reversal transformation
(r,v) = (r. —r) Under this transformation -+ —land {, -~ =1, Since microcanonical
averages are invariant under time revorsal,

Ll =T axb =~ )= {541

which in turn implics that 17(F, B) vanishes whenu B = 0. Note that this conclusion
is nof a conscquence of (423 Equation (4 2)1s derived for an anticanunical svmmetry
which holds for all parameters. whereas the hamiltonian (5.1) is time-reversal
invariant only for B =0

Ve(E. B)is pot invariant under parameter-dependent gauge transformations of the
vector potential 4. in spite of its expression in terms of the mechanival angular
momentum. Under the gauge transformation 4(ry - A(r)+ V, v (r. B).

Vel -~V H = VeV ). (5.5}

and V°(E, B} transforms accordingly. The analogous behaviour of the quantum two
form is discussed in Mondragon & Berry (1988). (There it is noted that. although the
geometrical and dynamival phases are not separately gauge invariant, their sum s

(41 Aburonor Bohm billiard in uniform magnetic field.

A particle is confined to a two-dimensional billiard threaded by an infinitety thin
unit solenoid {e g the Hux kine of 8 magnetic monopole) in a constant hackground
magnetic field In suitable units the hamiltonian 1

H=1p-A,-A). A =(Zxp)/p’. A,=Bixr {5 .6}
where (see figure 2} + = (r.y) are the particle coordinates, B = (X. ¥} are the solenuvid
coordinates, and p = r— R. A, and A4, are the vector potentials of the solenoid and
the background field. respectivety. One can verify that B, = 2né*(p)f and B, = BZ.

We take R, the coordinates of the solenoid, as the parameters of the system. {We
could i we wished include B, the background field strength, and introduce another
parameter for the solenoid strength.) We use vector notation for parameter space
writing V instead of d. Omitting straightforward calculations, we get that

VoH =E£x(v, —0)/p! {5.7a)
= (—v/pt} (sin (@ —28), cos (a — 26)), (3.74)
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where o = p— A, — A, is the velocity #. Equation (5.5a) is expressed in terms of the
components of v paralic]l and perpendicular to g. namely o, = (# vypande, = v—p,.
Equation {5.5b) ir expressed in terms of the polar coordinates of v and p. namely
p = plcosd sinf) end e = v(cosa,sina).

For this system (27 ir & constant equal to 2n4, where A is the area of the billiard,
and r = |p| is 8 constant of the motion. The two-form ixa sealar field in R-space given
by -

l"(E.R):(J' df<“’*)‘:(”'x5—-_iﬂ>) (5.8a)
[ Pr g

- (_,,,rd,(s‘mm(ﬂ.%ﬂ—ﬁ:a_”» (5 8b)
0 D' I

Let us point out some features of (5.8). For trajectorics which either start (resp. end)
at the solencid. p {resp. p,) venishes, and the integrand is singutar. However, the
contribution of these singularities to V(E, R is finite. (See Appeodix ) Next, i the
absence of & background field (i.e. B = 0). the dynamicx is time-reversal invariant,
and with an argument similar to the one in §5a. one can show that 19(E. R) vanishes
identically. Thus, even though the solenoid breaks the time-reversal invarianee of the
hamiltonian, the background field is needed to produce a non-zero two form. Finally,
one can show that (£, R) vanishes if the sofenond lies outside the tulliard. (This is
intuitively clear but is not obvious from (5.K). 1t does follow immediately from the
alternative formula (6.8) derived in the next section ) Thus R space is effectively the
billiard itself.

The Aharonov-Bohm billiard in a waiform background field = perhaps the
simplest example of a chaotic system for which the classical two form is non-trivial
It is two-dimensional. the minimum required for chaos. The dynamics may be
computed without having to solve differential equations {the trajectories are vireular
arcs specularly reflected st the billiard boundary) Finully. the dynamics s
independent of the parameters R (8s B, vanishes evervwhere but at s point. only a
zero measure set of trajectories is affected by it ) In light of the discussion following
{3 18, & numerical calculation would require only a pair of trajectories. with shightly
separated energies, to determine F*(E. R) for all R A variant of this example (not
guite as simple] is a billiard in crossed uniforin electric and magnetic fields, The
magnetic field is nermal to the billiard, the electric ficld tangent 1o it, and the two
field strengths and the direction of the electric ficld are natural parameters

6. Alternative form

We ubtain a useful alternative expression for the classieal two form. (6.8) below
Instend of deriving it directly from (3.15). we begin with an alternative expression
fos the guantum two-form (6.2) below} which is of independent interest

(a) Quantum formula
The alternative gquantum formula follows frum an identity.
—4i{dli) nl A |dEit)-ny =V, +5A X {dnijy A (Gldny cosmpt 6.1)
jemn
derived in Appendix D. dU(t) is the derivative of the propagator. Upon averaging
over time the oscillatory terms vanish, and we obtain

V, = —}addUy) n[Aldl(e) ny. (6.2)
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{Here and hereafter. f denotes the time aversge
lr
lim — [ defir))
T vz T L] f

With & similar vali tlation one can also show that

b, = —kdiyy nlaldlw) n). (6.27)

In (6.2') the time averages over the bra and ket are performed separately, or
enherently. whereas m {6 2) they are performed simultancously, or coherently  the
factor of 4 accounts for this difference. One can develop the formalism starting from
either the caherent on the weoherent expression s for brevity we present the coherent

VOTHION OV 7 _ 5
Equation (6.2] ha~ aninteresting geometrical interpretation. Suppose we want the

fiux of 1, through (1, t=ve figure 1) We apply Ui Ry, iR+ rpyand DG R+ to
U R, The states obtained desceribe an area element [0, (0 in Hilbert space (see figure

del
1h), spanned by displacements Uit and Uny from Uitin) there (1) =
a7ty vy By virtue ul 1he canonical structure of yuantum mechanies, [gif) has a
{naturally detinedl syvinplectic area ~ 2 Im  n [ Ry (see Appendin E)
An-ordm.g to (6 2y the tune average of the symplectic area of [, (1) = just (minus
twice) the requiped flux i Note thers s factor of two which arises from the detimtion

of the wedge product i
The equivalence ol 16 21 and (20 can be established by expressing {0 m terms
of (dHy, These nre related by the formula for the derivative of an exponennial (see

Bellman 14960,
Aty = 7%‘!'(11-['117{&?), (6.3
0

Substituting inte (6 21

(- 7;%Tﬂqdr'(nl[(dﬁ),. AdH), T n), 6.4)

in which. beeause the 7 and 7° integrals appear symmetrically, we have replaced
(df}, A (dH), by itx symmetrized part, W(dH),. A (dH), ] (ef {2.6)). Since expectation
values of eigenstates arce time invariant,

(), A @), ) = (rl[idH),,. AdH]InD.
Making this sut=fitution n (6.4) enables the 7° integral to be performed. and (2.9)
follows from a few more manipulations.

(b Classical formula

The corresponding ¢lassical alternative is obtained directly from (6.4) Taking its
classical limit as in §3. we get

1
Vo 1(E) = i,rerda'Q(dH}" A(dH), P g (6.5)
[} L]
In Appendix F we show that
rd1 rdr'{(uii,_ AdH) Y = —[dZm), AdZn] {6 6)
vk <0
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where dZ(1) is the derivative of the flow with respect to parameters, in which the
dependence on initial conditions 2 has been left implicit. The square brackets denote
the symplectic inner product (Arnold 1978). defined as follows. Given vectors
u = (q.p)and r = {¢’.p'} in phase space.

de!
Iu»v]=’u-J"‘v=p'q’—qp'. i6.7)

where J ix given by (3.10). (The svmplectic inner product [u.e] should not be
confused with the commutstor [4.B]: in the latter the quantum operators are
distinguished by carats.) Substituting (6 6) inte (6.5) we obtain

VUE = —I[MZ), A dZ0 e = ~ KPP AdQInN5, (6 8)
where in the last expression we have taken dZin = (d@n). dPin). This is the
alternative formula for the classical two-form

Equation {6 %) 1< a precise version of & formula ey, (4 18)) derived i Berry (1980)
{there the time dependence was integrated over, but the interpretation of the
differentials d@ and dP was left ambiguous) Equation (6 8) nnght appear to be the
simplest expressian for the classical two-form. but its simplivity is deceptive (ef. the
dixcussion in Berey (1990)). As with (3. 8). the fact that (6.8) converges is not obvious,
because if the dyvnamies is chaotiv. both dZ(z.¢) and WZiz, . AdZiz ] grow
exponentislly in tane for fixed 2 (We shall not give the sumewhat involved general
argument here none of our results depend ot bt the particular case of periodie
ortnts s treated inappendix Ko However, sinee the ruerocanatical average ((dZ().

A dZ{0 ] does not i fact diverge, it follows that [dZ1z.0. A dZ(z. ()] oscillates with
z. and that the exponentially large vscillations must caneel in the main when
averaged over the energy shell.

Like {6 2} (6 8) has a geometrical interpretation Suppose we want the Sus of VO&7)
through 2, To a pont 2 on the energy shell we apply the hamiltonians H{R),
HE+r)) HiR+r,) for & time . The resulting trajectories deseribe an area element
[Jp(z.0) in phase space drawn in figure {c. spanned by displacements Z (z 1} and

Zyjz. v from z,. where Z‘(z,.t)d:dZ(z,!)-r‘. The symplectic area of Op(z.t) is
1 Z,1z.1). Z,(z.1}]. and according to (6.8}, its mictucanonical and time average 1= just
{minus twice} the required flux. In light of figure 16 and c. the correspondence
between quantum and classica]l two-forms. (6.2} and (6.8}, is immediate.

(c) An eguivalent form

Differentiating Hamilton's equations 2 =J (H'}, with respect to parameters, we
find that dZ(?) satisfies the linear inhomogeneous equation

dZ() = JH",dZ( +J - (dH),, (6.9}

with initial conditions d.Z(z,0) = 0. {Here (H"),, = (*H [02,8z;.) It is often useful to
express dZ({) in terms of other solutions d ¥{f} of (6 9). to be specified later, which will
of course satisfy different initial conditions. (Here we make a slight abuse of notation,
as we will not assume that d¥{{) is an exact differential) In general. any two
solutions of (6.9) differ by a solution of the homogenecus equation dX{f) =
JIHT,-AX, and solutions of the homogeneous equation are of the form dXif) =
St dX0). (Here St} is an abbreviation for Siz.1). the linearized flow of (3.11})
Therefore

aZif) = d¥Yit)—~ Si) d Y (6.10)
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Substituting {6.10) into (6.8) we obtain
Pe(E) = - Id YU, A dYOD +K[dY. A S d Y0~ 13d Yi0), A4 Y(0)],
{

6.11)
an equivalent expression for the classical two-form. In the last term we have used
{S()-dY(0). AS(t)-dY(h) = [dYIB). Ad ¥l 6.12)

the canonical invariance of the symplectic inner product Equation (6.11} i=s
particularly useful in deriving the two-form for integrable systems (Appendix G} and
periodic orbits {§§8 and 4)

7. Is the classical two-form closed?

The guestion as to whether 1*(E) is closed is of central importance, but it 1» not
ensily answered Here we present a furmal derivation of closedness.

di"(E) =0 (7.1

First, let us point oul that it s pot correct to argue. on the basis of the
correspondence principle, that because the quantum two-form is closed, so must be
its classieal Jimit. Fhe reason is that 1, is not closed, ax dV, is singular at eigenvalue
degeneracies. (Indeed this property was one of the motivations underiying the
discavery of the peomctrie phase (see Shapere & Wilizek 1889 p. 26)) Thus
dVE}# 0 would huve implications for the distnibution of degeneracies in the
classical hmit, as will be explained in §9 On the other hand. dV(£) = ¢ would implhy
that (at least locally) 17 (£ is the derivative of a one form. whose integral around a
closed loop in parameter space one might expeet to deseribe 8 ¢lassical anhelonemy
for adiabatically cycled chaotic systems, analogous to the Hannay angles for
integrable systems

From the formulas derived so far it is not even clear that the three-form di(E)
converges For example, the derivative of (3.15) introduces the two-form di{df})
While d(dH) vanishes. d{(dH),) does not, due to the parameter dependence of the
dynamics. In fact. for fixed z. d({dH),){z) grows exponentially in time, since

d((dH))(z) = dH'(z} A -dZiz.D) {7.2)
and dZ(z.!) grows exponcntially.

The alternative form {6.8) turne out to be the most convenient for calculating
dV<(E). To proceed, we first note that upon differentiating an ensemble average such
a8 () (here ¢ is any differential form), account must be taken of both the explicit
parameter dependence of ¢ and the implicit parameter dependence of the ensemble.
Also. the derivative of the ensemble is to be taken at fixed volume rather than fixed
energy (ef. of the Wex1 rule (3.4}). As shown in Appendix H,

d(g s = <A+ (1/2) (@ UAE—dH) A $dg). where dE = (dHDg. (7.3)
Thus differentiation of (6.8) gives

dIT(E) = — (1/482) (@ {(dE - dH) AldZ(). A Z()]D ) (7.4)
(we have used the closedness of [dZ(t), AdZ(n)). In what follows we show that
FAH A [dZ), AdZ(t))) = {dE A {dZ). AdZi)) e, (7.9)

which tegether with (7.4) implies that 1°{E) is closed. To streamline the presentation
we have left some details to Appendix 1.
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In Appendix 1 we show that
[AH A {aZUY, AAZ()]) = lim Gle, a). (7.8)
2 -0
x o-lr x . . .,
where (5. 8) =-I df—s’J’ ar eV Fir, 1), an
] 8 ]

Fir. vy = KAH)_, AdH),. AdHD.
The principal steps leading to (7.6) involve replacing 1dZt). A dZ(1)] by its expression

in (6.6) and writing 1ts time average as the residue of its Laplace transform at the
origin {a~ o Appendix J). Instead of taking both arguments of G(s.#'} to zero

mimultancously. lot us take the limit 8-+ 0 first, From Appendix J

ol 1 T . . .
lim a"J’ dre " Fir.7)= lim —,J dr Fir. 1), {7.8)

8 0 ¢ T-17D

beeaus the right-hand side is the 77-average of Fir.7') and the left-hand side is the
residuc of its 7" Laplace transform at the ongin. But from (7.7) the 7 -average of F(r,
7y is WE A GidH),. AdHD. 8 implied by the eweak miring property (A, By =
¢AS (BY (Atnold & Avez 1948} {weak mixing is implied by mixing which we have
already assumed the dynamics to be). Therefure

lim fi(s. 8y = —dE A %J rlr‘: T StdHy, A dHYD 7™

5 -0 0

The remaining limit & ~0 s straightforward  Ax shownm Appendix b
1= e . g -
im oy | dr e G, A dH e = ) ) (7.10)
F-0*"J0

Thus Jim, _ {kim, _,Gls.8)) = —dE A V(E}. which in turn is equal to
ME A (JdZ(1. AdZN]D g

Together with (7.6) and (7.4), this implies the closedness of the classical twao-form.

The preceding derivation is purely formal in that we have not established the
convergence of the expressions involved nor justified the interchange of limits. These
difficulties might yield to & more technically rigorous treatment but might also
conceal some interesting behaviour. One possibility is that 1°(£) is in & sense exact
but not closed; it might be the derivative of & one-form (in which case its integral
aver a closed surface would vanish), but it might not be differentiable itself.

8. The spectral two-form

Just as the Weyl density of states 3(E) = £’ /h* describes smooth variations in the
exact density of states d(E) = L, 8E—E,). so too P*(E) describes smooth variations
in ¥, on a classical energy scale. Similarly. just as quantum fluctvations in the
density of states are described by classical periodic orbits, so too are fluctuations in
the two-form. The starting point for these considerations is not the two-form itself
but rather the spectral two-form

DIE)y=S8E-E)T,. 8.1
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Wo can write the previousty derived quantum formula (6.2) as
U, = - i Tr [P, al A dl(n]. (6.27)
where P, = [n) (nl: this ix a time-dependent version of the mamifestly gauge-
invariant formula I, = — & Tr (P, dP’, AdP,] (see Avron ef al. 1957, 1980) in which

the two-form s expressed in terma of spectral projections. Thus we may express the
apeetral two form in a form more suitable for semiclassical approximation.

IMEy = —BATr 8k - H)dl i adl(h] (82)

Here 8K~ Hy = X, 80K - E 1 P, i the spectral operalor.
The classical Bmit of (%2} taken exactly s« in §§3 and 6. with the result

INE) <1 k) = 73]rd""zl‘r'(z.h‘)letzJ:‘ adZiz. f) 3

In place of the Wigner tnnetion () (taken to be the microcanonical density i 83
and 6 thore appoenrs the spectral Wigner function (Berry 10849)

Wiz £y = téik - Hiy, iz (84
the symbol of the ~prctral cpernton whose semiclassical approxipation s given by

1 . " .
Wiz £ =  o8E ~dHan 1+ ‘_\_,.4,:}454:,5} (%0
i3 v j - -
The first term in (%00 s just the microcanonical density weighted by the Weyd
density of states The additional terms. whose amphitudes are of arder 4 Y Uess than
the leading one, wre the perodie arbit contributions d4zbis e nermalized § funenen
on the jth peniadic erbit. and

7

ERTARE / .
' det (A, — 1

l'().\[.\‘],“?ﬁ—-},ﬂiﬂ) 1% 6
are the oscillatory amphtudes of the Guizwiller trace formula (Gutzwalier 1971
1990) 8 s the acten T othe perund of a simyle repetition. M the lincarized Pomeard
map and g4, the Maslow mdes of the jthoorbit (In fact. (8 5) i a hrating forny of a
more refined expression mowhieh the delta functions are replaced by smenth
functions localized on the cnergy shell and the periodic orbits

Suostitnting (8 5 e g2 3 we obtain the classical it of the spectral tee form

DEy = DR+ X DO 8T
The smooth contribution
DEY = (@2 7k E) {8}
is simply the classical two formy weighted by the Weyvl density of states. Our interest
here is in the penodic orlit contributions (2/4) 4,(E£)159£). where
TR = = AZ). AdZW)p (N 4}

{In general <>, denotes the average of fround the jth orhit at energy £
There tx 8 natural two form associated with periodic orbits, analogous to the
Hannay two form for one-dimensional systems. Periodic orbits belong ti continuous
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familics ,(6, S, R). labelled by action § {in preference to the energy) and parameters
K. f. the coordinate along the orbitg, is the sealed time ("angle ') in terms of which
Y,(6.5, R) is 2x-periodic. Then the periodic orhit two-form s given by

158y = ~Kdy,. AdyiDg (8.10)

(Here (-5, denotes the average arcund the jth orbit at action ) As shown in
Appendix K, V8] is weh-defined. Like (6.2) and (68} 1t has a geometrical
interpretation. Suppose we want the flux of 15 (8) tirough (G We draw vectors from
¥,(#.8 R} to points on neighbouring orbits at the same action and scaled time, hut
with parameters R +r, and B +7, These vectors span an area element [,(6) in phase
space drawn in figure 1§ The symplectic ares of (0,19 averaged round the orbit i
(minus) the required flux.
In Appendix K we show that the two-forms (K8 and (210 ire the same. 10

VIS UEY) = 47D BTy
Thus the periodic orbit contribution to the spectral twa form s
DE) = 2/ AE s (R 12)

For unstable pericdie othits the derivation of (8 311 ot straightlorwand As shown
in Appendix K [dZiz 0, ~dZiz 1], diverges exponentialls o tune and while the
divergent behaviour disappears when 2 is averaged over the energs shell at does ot
when ¢ s averaged only over a periodie orbint Thos {|d2(H ﬂ‘«iz[r]]fhﬁ grows
exponentially with 1. and its time average must be defined by analytic continuation
fa~ in Appendix J) The origin of the divergenee is the singular nature of the periodic
arbit delta funetion. itself an artefact of the semiclassical approximation (8.5). We
would like a derivation of (2 125 free of all divergences (pessibly based an the Adry
functien smoothing of Berry (1989)) but hase not vet found one

9. Semiclassical density of degeneracies

[+ thas seetion, we consider svstems without time reversal syimmetry and for the
sahe of explicitness take parameter space to e three dinensional

The distribution of energy level degeneracies i patameter space 1= of considerable
interest While degeneracies are exceptional  acenrdimg to aowell knoswn theorem of
Von Neumann & Wigper (1924, for svstems without time reversal symimetry at least
three parameters must be varied to find one then prosade s mechaniam for
disspation in adiabatic processes. As a banubltonun s vatied i time, its path
through parameter space passes near degeneraoes . these near approaches violate the
conditions of the guantum adiabatic theorem and generate transitons of Lan
dau Zener tvpe between states. This subject has recerved and continues to recenve
much attention, as deseribed in Hill & Wheeler (19527 and Wilkinson (1490

A~ discussed in the vriginal work on the subject| the geametrie phase s intimate!y
connected to degeneracies (Berry 1884} 1t turns out that A1 (R (e scalar density in
three-dimensional R space) has §-function singulanties at degeneracies (generically
these oecur at isolated points) and is zero elsewhere. Expheitly detting R, | denote
the degeneracies between the states [r) and 'n+ 13,

di (R)=2tS (o, S%R-R, V)—n, , 8RR, | Py (49.1)

a
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where =ty A dit, AdRy s the enordinate volume form and the ox denote 1.8~
we dincuss presently. Note that degeneracies with both the state above and below [u)
contribute to d17and that the degeneracies between, say, ey andd |# + 1> comtribute
todb, and b, with opposite signs.

The ms are defined ason .\‘imnn (I‘lH.‘h Assuming the vigenstates are continunus

el
funetions of parameters, let | £ > Jn + R, > =2 =R, 1> denote the par of
degenerate states at R =R, We constroet & twodimensional hernntian matris

+f - def -

F(R) with matrix ¢lements ;’l:{R)d= CHIHRY =5 MRy = (—|H(R)i+ . ¢te. The
expunsion of Hin terms of the Panls matrices. ff = AT+ B & deternunes a vector
tickd BLR) on parameter space Thena s given by = spndet [fB,/”f,)lRH L thutix
T, , s negatinve if rt R, , the mapping from R to B i~ urientation preserving. and i~
proritive it s not

The guantits we will consider s not 1 itself but rather the sum

"

M, = X dY L]

m
m=1

From (4.1} we gt thast

M, =n¥a, SR-R

x

" ! h
ax the alternating contothutions from m < # caneel each other. Thus Y o@ves the
algebiraic or signed density of degencracies hetween iy and [n+ 15 M shoold be
distinguished from the alaolute densits of degeneracies,

el
M, =2n Y dWR-R,
An interesting question twe will not porsuc it hered s hich of the two densities. W
or ML deterimmes e rate of Lundan Zener transitions  does ench play a distinenive
role in the deserption  Lact us just mention that [HEcan also be expressedin terms
of the two farm . eaplicitly

3
M Ry = hin - ( [
s =T

= ~ R R <X

d’R'JI,,(R‘)).U,,(R; W)

In terms of the apecteal two form (8 1.

TF LR,

M, = l||n d‘ dE!J(E], 145

an expression whose classical mit M9E) i» readily obtained from (8 7). (8 8) and
(8.12). MY(E) like 1P (E) contains smooth and oscillatory terms. but since 19(E) is
ciosed according to (713, it follows directly from (9 2) that the smooth contribution
vanishes

The periodic orhit contributions Mi(E} are given by

a e
.U}(E):id{ de A te) Vs ie)). (9.6}
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where Aj is given by (8.6) and P} by (K110 Beease the fnetin cos (N =Ly m)
oxcillates rupadly . 1o lowest order in & we may negleet the enerey dependenee of tin
other fartors i the integrand. (1n &o doing we ignore singalaritios in det |M, — /] bat
hifureations.) Then

. 2 sin ( /ft ‘,_,h‘ nyo ) -
MuEy=Sdlh—1L [AB NP 8
HEL= ( acm, E

To lowest oeder i A d acts only ob the osallatony Jactor amd deia (N 7h-- L m) =

cos (N, /b AN Also
dN, = TidE = Gl 118}
as shown e Appendin Ko Combaning these pesnlis we obtain
MUEY = 2/ A EYdE - i A i) (9.4

(Note that £ dong periedic orbits dE - /D, approaches zero as AN -
(A, = dE ) Thus the density of degeneracies. whibe neutial on o elassical seale s
resolved semiclassically mto oscillations described by clossiesl pweriodie arbits

10. Discussion

Our principal result (3.15) 1s an expheit and eapliotly e expressaon tor the
classieal limit of the geometrie phase two-form which is valid for chaotie svstems In
the dervation we have wssumed the dyvnamics s erpodic and miving at o sutheiently
rapid rate We have piven a formal derivation of the closeduess of the elassival two
form. obtamed senpclassical corrections to it assoclated with periodic orbate and
derved a semiclassical expression for the algebrane density of degeneracies in
parameter space We have also discussed the caose of addhtional constants of the
motion and specife examples including the Alustonoy Bohim Lillard i o winform
magnetie held

From thts investigation there emerge a nuntst of gquestions 1o he puesued Oine
would hke to test these formulas numencally . particularly the pereodi arhig
contnibutions The Aharonov-Bohm billiszd i~ one vandnlate systeni althowgeh for
the version we are considering the quantum caleufatiors might not beosimple: M
(vlassical and guantum) present alternative st posaibdy shinpler test cases . the
necessaty modifications to the formalism presented bere should be stroghtfonw ard
1t would alo be interesting to see if the periodic ol twe form plays soane role in
pureiv classical mechames, for mstanee i the study of bifureations

The tmost important guestion is whether the clsscal tae tonn et hiss any
mtrimsie significance in classical mechanics Poes it ddvsenbe an anholonamy an
adbatically eveled chaotic svstems, as the Hannay two forne does for intenalble
svstems ! If so_ it must be derivable purely within classical mechames {as the Hannay
two-form s} In this connection there remains the related guestion of the closcdness
of the two-form (another question amenahle to numerical nivestigation ) The formmal
argument of §7 should be right in some sensc. hut precisely how requires further
study. perhaps facilitated by consideration of the purely classical problem

1t is & pleasure to avknowledge important contributions by M Wilkinson in the sarly stages of ths
work We aho thank J H Hannay for helpful discussions 3 M R was supported by s XATO
postdactoral fellowship swarded i 1989. and by the XERU
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Appendix A. Derivations of (3.12) and (4.7)

By detimtion

A, Ay = = I-(l“z}(dA e mdAB EE—H. (A D

Using the Lebie rule fin .l’uis-'nn bravkets, WF R = F GR =8 K60 the
wtegrand Liddy, A dBSE — MY may he written as

Ay, s S - B s el SE - A dl A2

The first term vl when integrated over phase space hecause (it » Poasion

bracket and therefore w pure divergence fexplicithy JF 00 = Vo (B G and Dt

surface integral at mtinity vamshes bevaus Stk — Hizipdoes Asfor the seonnd term

G AR - = ek L E = = AL A= (A

where the prone donctes the derivating with respect tooenergy andd the dot the
derivative with rospaect o e From (A 3y (A 31 we ohtam

1

' !
[EITIE ETEY F AR L S T ARSI NI P 162 g A vt
: (2 ¥}
the recpared pesitt S0
A sminnlar szt cetablishes 4 70 By definition
-
IR A VL F R I ’:I"‘;r’\"l_f— Foroaddi, - dis AT
The integrand &0 Fod 1, AM s be evpressed as
it -‘-qlf Fordf - ads, o f=-Fpoedld AR

The first term 1= o pore <hverpenes whs i does ot contribiate to the phisse s
inrepral and the ool

VS F s Fredd AT
Therelone T I T VI J,f{l_!”\.‘! rd A, F}”t”f\j} AN

Appendix B. The integrable case: first derivation

We estald ~h the cpevalirece of the classival twe fornn 10 0F aned the Huannay twa

form
Il = - odp ndg, (B 1y

for mtegrabde svstoras Lo B e gand poae fuuchions of @ Fand Bonnd the avenge
i taken over anon ansnt torus for conventenee & nunmes sg has been imtrodiesd
into the wsnal detnenon For the sake of simpheity we restroct aurselves to e
degrer of frecdom the e pabization to lophet dimensions s strasghtlorward

Hamilton s coprenr i ok (4 H1) e

m

dp= o M= =0 il = — G b eaplimdh ]

;o—

B
g = ¢, XA exp{ - vnfly J

3

Froo K Noc Loud A tundy

(G52 J.oM. Robbins and M1 Horey

where we have used the fact that phase space anil parameter differentials commte
Inserting the time dependence 8 = 64 wf s mtepiating s es
dp=it, T hpesplondime s ATy
mwl (l{ :‘}
dg =130, X hreapi-— vl e - O FU)
mw i
whore £ is 8 non-oseillatory 1 form deseribing the mean displacement of the torus
labeiled
These expressions for dy and dgp must L suibst ittt (B 1y and integrated over
# The terms involving F eancel because

GERI E=HE AR = B (B4}
The other terms give

TSR L AN | L
|”(-’1:72[C,[--’1"-)AH AT e w.u.,u}

a
 fe I

m \

AT AT by ke i
S l"‘)x.[,["ﬂ)‘ sl "][ AN T
IR ity LY w0 “
New Ao A s add o s cansing the teoms e the tiest Tt caneel The remammg

torms can e replacsd by thar average over o annd sl h s

M= ' LT M R I RS LU S I 1B 6t
- i ™ " I ) o

m

which oo the maie as (4 145 beeanse 8 fyan canonnad vanabiles

Appendix C. Convergence of billiard two-form

First we write (3500 a more eapheit torme The TCt o Tor e ] averge J o s
giveti by

1"‘53 ' Ay

Lo )

,l

Q2

ithe 1 integral s taken over the biblardn and s reahly Shown that 10E Ry =
S 2E T 82 where

= | i | dx

T st M ixoeoan .
0=r . (U B
Ja [N

Fepuatien [0 1] 05 an integral oy fomr duncosional cx Fors spane arad the itegrand
extubits four fvpres of simgilatitios G pos 0 e 00 e = g A E# 0 (i)
po=ot =0 We consider these i turn

ey =6 The singularity v a4 twosdimensenal sarlace gz for spaer and

cortesponds 1o trajectones which begim st the salenond Separding xoand 1oas fined,

we cvonsider the contnbmtion gz 0 ol w two dimen<ional penel o trajectores

heginmng near o= 4 in dircetion 2 Changing wmfegration artihles from rto (i H)
. .

Tix = l iy I dtt ;

0 Ja TN

an (2, —th—iz, —2a)
) : ! : 12y

Ax our coteern s the singalanty at o= 00 the npper lmie of Ve gointegral is left

Prc B S Leomd A 1982
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indefinite Lot @7 0wl 2” denote the fingl coordinates of the central trajectory from
p = 0. Kinee finad conlitions depend smoothly on initinl conditions, p, = p'+Op).
anl analogous retations hold for 8, and a,. Expanding the integrand about p = 0.

.-in('_’l(fr—f;)—(:z,—cz))= mn(ﬁ'z—EU}_"gf_)A 3
i i 2

where 6= 20 —a +2a (wh The fisst term i singular. aped it vanishes upon
integration cver & Therefar (O 2y converges conditionally The divergenee itsclf is
only lugarithmie

thy p, =0 Again the sogmlarity = twao dunensional, and iU corresponds 1o
trajectories which enid at the solenod The analy sis proceeds exactly asn (e) ane i
therefore omitted

() p= p,= 000 % 0 These oceur at ikolated pomts in (x.1.7) space. and correspond
to trajectorios which Lepin and end at the solenoid. In the neighbourhood of such a

aer det
point it is convenici to chunge variables from a and £ to p" = py and 6 =6, 1, the
contribution of the neighLourhond of the singnlarity, is given by

1 = {.1,, [ Ao " u,,'r ap Lrin 2@ =0 (2~ 2) 1)
A .U Lo - J f”'

whete J is the Jacolaan [Fr/0(2. 0], Expanding about g =t and p” = 0. we get that
a,—a v of the form {eonst +fi p+a@1p +0p"p ). where nn 2z 0
Assuming that J deee not vanish at p = p’ = &, the singuler terms in the integrand
vanish upon integeation over & and §. and the divergences in p and p° are
logarithmiv. (The vase where J does vanish corresponds to a coincidence of closed
orhits and caustios and oceurs only on a one-dimensional set in parameter space. and
therefore not fur gerere B Thix set includes self-conjugate points alung periadic
orbits )

(d) po= =0 The singularity is one dimensional it is parametrized by the

nitial direetion 21 aml i~ the <trongest of the four. As in {r) we change variables from
drt ae der
xand fto g = poand 4 ¢ Totiest arderan L= |p" - pl i short times.

fix i')\_lu'

P = - z o oaletan| ) - J=1 ; = ({5
i Vg ros H = peos ) VO S TRV

I o smH'—p.\mH‘) el
Alsu, g, —a = wt = wl o where s the Larmor frequeney (= B our units Thus
to first order i L
' R o sn 2 — H) weos (W -8
1, = I d,. I .m[ Ay [ dw [“—_._‘ et T —']_ (U6
S I FoL o

Rt " fu

Both terms vanish on mtegrating over # —#¢. the first because the § snd 6
dependence in Lois througl cos (7 — 81 Thus £, 0% conditionally convergent. although
the leading-urder divengenve s stronger than logarithmic,

Appendix D. Derivation of (6.1}

Differentiating the apeeiral resolution of the propagator

Ui =T Pexpi—ul (Dn
1

Proe B S Lond A (1842

G54 J. M. Roblins and M.V Berry

with rekpeet 10 parameters {hore PI = |7l and w = E /I we get that
AUy wlAldE (-0 = LlnldlP+ WP ) AP =ity dwird e’ (1r2)
"

where w,, = v, —w, The terme goadratic in fare of the dorm &, &, dw, A dw,) and
vanish by antisymmetry. The terms Jincar in 2 are of the formm & Ll Adrey.
These vanish because {aldPyin) = 0. We are ieft with

CAy ml Al ny = X Cnldd A dly ey et 3
pL]
Next we substitute W ¢l +150 <djt for dF) and ximilarly for a8 to obtaim
LAyl AT 0D = (dafpalde) + T {nldy> A (dylny
+§l(n|(lj; ARy etumt 4 {dud Jo A {djlmd ety (12 4)

Differentiating {alj> = &,,. we get that {(ald)) = — {dn|j>. This implics that (i) the
second sum may be written as X, {dulj> A {jldr)> and the sum performed to give
(da} Alde). and (i) the prefactors of the two exponentials in the third sum are the
ame, and the j = » term vanishes. Thus we obtain

AUy i aldliyad = 2{dn| Aldnd =2 T <dnlpy A {Jldndcosw,, L (&)

ien

which when multiplied by = §ih gives (6.1).

Appendix E. Symplectic form on Hilbert space

It is well known that the equations of guantum mechanics can be cast in
hamiltonian form (see. for example, Abraham & Marsden 1978). Our purpose here s
1o do so in a manner motivated by the correspondence principle s we make the
convention that the hamiitonian functional X (17} (which plays the role of # in
Hamilton's equations) should be given by the cnergy eapectation value CylHeD
{u~ually it 1= taken to be half of this) As we now show, this convention mphes the
following definition of the svmplectic form

def
[¢.x)= — 22T gy tE 1}

Oy maon interest s to explain the origin of the numeral factar - 2Zh o we do pot
take pains to introduce a precise notation Formally Hamdton s cquatioms are Vo=
J ¥ ) Therefore o 74 = (). so that for arbitran ¢

. del
[$.47) = <gM 1D = F i
de -
But Koy 9 =r (d/dey, H (i +egh) = 2 Re {BiH i,

and from Schridinger's equation, H-y =g Therefore
[6.471 = 2Re {@lili> = — 20 Ini (i ).
As ¢ 1s arbitrary. (E 1) follows.
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The gromedric phase for chaotic systenes (1%

Appendix F. Derivation of (6.6)

Conmider the quantits 1§ N7 dZin). A S trry-dZer)| and itx derivative with
pespect toz and 77 tHen Zi7) and Str) are abls eviations for the flow Ziz. 1) and the
lisarzed flow Niz o rret (311 the zdependence is left impslicit.) From (6.4) and from
S Nry= - 8§ ri i we pet that

CS iy dZirn = S Nryd WH), = J V). (F 1

am thic tesms i H o caneel T the last egnality we have ued §7 = =JSTS (We
rerark i possinge that (B 1) e the clis=ieal analopue of the fderivative of .41

Thirefor

«(;,_‘S Wy cdZirs S Nira dZiry) = \J‘V:E{(IH;'L AJ'V:[(tlH};}]
[

= —Vudir SVt b,
Iy using e el W S But the et expression s qust — My, Al

Theretone

M il = 1§ try dZiny A8 Ny A2 tF o

(7T
Tntepratnge 7and 7 iom 0 to foand noting that 20y = 0 and
5t dZpy A8 W dZiy) = 2w < dZu) tF 4

(e myaranee of e =viphectne mner prodhict uride canoteal trans=formations=iwe

uhiting 6ty

Appendix G. The integrable case: second derivation

W e anabtoatine dervaron ol the equivalence of the lassicnl two-form 1ef)
and the Hanrny Dao Lo, P based onthe formalism of g6 terns ofwhieh (B 1)
iy e rewnittens o

VU = - oy dy |, G

Hece vl L Hi= g 81 0200 pill TR s Appendin B. we restrict ourselves to one
degree ol freedian bt the generalization to higher dimensions is straight forward
Let o= y/0i Thon Loy ejs, = {pdags, = 1 Dhitterentiating with respect to K
ey ey, = oy ode] =0 Bar ¢fyade]y, = dy e, {thi~ follows from imtegration
by prarts ey er ¢l anten linnging the argpuments of the symplectic inner product .
so that
dy ey, = 0 T

el
Lot Y(# tr = vt - wii ithe 1 and K dependence w left implivit). Equivalently

def aet
YA 1y = y, it (~itne e genetal i) = fid +wh)]. or more simply Y1) = ¥, Since
¥(r) =atistic~ Huomilton s equations. it derivative with respect to parameters.
d¥iny = diy,) = (dy), +dwir,. Y

Proc B N fend A1

Lot JoM Rebbins and M1 Broery
i sobution of (1.9) Substituting (G 3} inte (6 1T we et that

1= =10y, A (dy), 13, + 5T Ny =AM AT,

a~ term~ of the form ¢|dy. e]>, vanish in light of (62 23 The first and third terms in
{(: 4) arc hoth egual to $17%(). Tt remains to show that the seeond ferm vanishes,

aef
Letting w = Cp/TL and pesolving dy ito its poand w components.
dy = a'r+a"w. (G 5)

1w straightforward to verily that S0 v = g, (o nrore exphutly, Swie). 0 =
vif+wd)) and Sty 0w = w4+ Cw/Chte,. Therefore

Sty f)-dy = (a" + ({w/ohita" e, + X" w, (i 6}
Also, sinee wr = J-Hiy) it follows that
Iw.e] = (Lw)yw - H = (Ve Hio =1 s 7)

By ousing (03 3) and (G 5y (G 7). the secend termy i {G ) may be written s~ half the
time average of

ST TR T A R L M L R e T e s {am ™t i W)
Frone o0 20 6 &3 wad s Tt follows that
(2", = (x"1, = v ARRY]

Oine can show that (G %) implies the vanishmg of the time average ol (¢ 81 which
turn unphes that 0 = 1H) (Note that Ha" ), vamshes i the penerabized sense of
Appendin 3 A similar though more mvolved argument appears in Apperndlin K fon
the periodic orbit two-form

Let u~ pomt ont that (GF) has a geometrical ainterpretation sinnlar te thaose
deserihed m E6 Suppose we want the Hux of TR thevagh Ty From a point yoon
artitnariant toras we draw vectors ¥pand ¥ to poants on neghbouring torn with the
same actions and angles but with parameter £+ 0 and B+r 0 ppand ppspah b ares
clement 8] in phase space ax drawn i figure Tr Avenmlag to (G 1) the regquared
Hnx s (minns) the symplectic aren of [2a8) av eraged over the torns There is a sinfan
construction for the fundurmental formula (12 for the quantune two form 1 From
iR wee dreaw vectors > and B> in Hilbert space fo iR+ and w1y
giyy and [ny) span an area element O, in Hilbert space. asom fyrure 1d Acearding
to (123 the Bux of 1, through [, 15 qust {minus) the svmplectio area of (G, (ax
defined e Appendix Ep Lo thes highto the conespondence of the guantun andd
assieal two forms (1.2 and (G D) s immediate

Appendix H. Derivative at constant volume

The microcanonical average. regarded as s function of phase olume o rather than
energy £ is given by r
(g, = td™ M - Q00 (H1n

det
where £2,.(2) = (H(z)) 15 the volume of phase space w ith energy less than Hiz;. (More

det

explivitlv, Q2. R) it QR{Hiz R). R).) Equation (H 1} is eorrectly normalized since
SRUE)— Qplzhy = 8E — Hizn/Q2(E)

Proc B Sor Lond A (1092)
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Differentinting (H 1) with respeet to parameters at fixed w. we get
d{gy, = ¢y — !d”z&'(m—f),.)dﬂ,.ngﬂ = ((igﬁ)_,—-;i(dﬂ,./\ ¢ry.. (H2)
dew

But 2, = dQ2+ L2 wnd
i = —Pl“:ﬁ(ﬁ'—”)d” = — (M.

Thercfore
d2, = — £l —dih (H3)

ark
where dE = GH 0 Wesubstitute (H 3y into (H 29 and express the result in terms of
£ rather than oo vinow = 20K) Noting that d/de = () *d/dE,

dego = (o) + (172 ) 12 (E = i) A DY (1 4

Appendix 1. Derivations of (7.6) and (7.10)
First we dhiane <7400 Starting wath the expression }JHA;\TJ?E")“ﬁ_(]ZU_J]_) on the
le-ft sicde of (7 4w expiess the time average as the residue of the Laplace transform
at the origin tas o0 Appendic gy and replace [AZ4y0 2 dZi0 by s expression in (G 4

Tae result s

s [ drem fdf [ dr' A A B A (1. ()
E ) a0 B0 - U

In writing (1 17 we have used the symimetry of the 7 and 77 ntegrals o restriet the

demnain of intepration to 7> 770 this restnction s vompensated by oan additional

factor of 2 Reversing the oeder of the dntegrations allows the ' mtegial to be

performed. with the resnlt

AR [ dr’ dre 2 CdH A a5 {12

(IR

Since mictevanetn al averages are tone mvariant, A A dH) L A iddD 0 may be
replaced by UM e oA Gl After changing variables from s to 7 - 7741

becomes

B drie [ dre " (el andiy, AdHD (13}

v i)
Thix expression amay beowritten ax b, /(= %) where
. E3 P ) ~x )
s~y = AJ' dr-— » dr'e " Firor)
o A Jo (14
Fir ot = QdHy_, ~idi), AdHL.

asasserted in (7 6 and (7.7) In passing from (1 3) to (1 43 we have in effect multiplied
and divided by ~
Next we derive (7 10) Consider

1= .
]""RJ’ dr?-h(luiﬁl,, ndify (13}
s-0+Jo L

Proc B Sew Lond A (1W92)

(1533 J. AL Rolins aud M1 ferry

From (3.12). Q(din,. adify) = (R (dih, A /8 Muking thix substitution m
(£ 5) and integrating by parts over 7. we oblain

R B L. N . .
]‘m:l-lﬁ , dr o™ (), Adf Y = o2 J‘» dr{f (i, adli)) (146
But from (3.15). this last exprossion is just (A7) as axserted in (V10)

Appendix J. Time average as residue of Laplace transform
Assuming that fexists, we xhow that

lem ~Fis) = f 11
LI
where F i the Laplace transform of £ The pestiH = true dor constant fenetions (easily
verified; Then taking f:j—ftu be the o=cillators part of £t suflices to show that
lim oF i) = 0. 2
LR
where Fis the Laplace transform Uff, Iitegratiog the left hand side of (1 231 parts,
wie et
IIm‘\P(a) = Y ~¥ I drgine 13
-0 foon o
where gif) = ‘I':,llTﬂT) Rince the time average of franishes G010 -0 ass - 3 Thas
forany e > Uwe can take T sufficient]ly Janne o that [j)] < et for t > 8 Thendividing
the mtegral i (0 3) between [0.T) and |77 ]

dteie ™ -1 4)

7
linn |sF sy < bm &2 [ dtgenfe 4 i st
e a0 Ja T
Taking the » =0 hrit on the right-hand sidewe ot Jirs, F <o Sinee s
arbitrary, 3 27 follows I # has a meromarphie extension toa negehibonrhood of the
urigin, {1} 1= equivalent to

f= Rew, Fiol, (15
where Res, Fis) denotes the residue of £ at the omn Ff £ dues not exist we may
pegard (J 5) ax its definition, In this way we cansay that #7 (v > #) ared ¢ have tume

averages equal to zero.

Appendix K. The periodic orbit two-form

¥ N K} denotes 8 famibv of periodic orhits purametrized Iaoan angle #
tproportions} 1o the time). action 8 and putaneters £ For convemenee we drops the
subseript j from y,. Usually the K dependence Tett imphit. and sometimes the N
and @ dependence is left smplicit as well 7 as the perivd and o, = 2n/7, is the
def
frequency of the orbit: v = 2y/06 is projw wiional to the veloaty
The periodic orbit two-form is given Ly
TSy = = (Jdy. AdyDys (K t)
(3,5 denotes the orbit average (2m)7) [57 A While we will not use this result. let us

Prac K Soc Lond A (1992}
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point Gt that l‘:.(.\'} in closed. sunply hecans dp(f Ny closed, Note that in §X, the
perionlie orbit two-form i & function of eaergy mther than action. as N i~ xet egunl
1o SAET b general dilS ik #0
The t7 ongin along cacl periodic arhit s arbatrary and may be shifted by the
tranlotmntion
i S Ky -yt e FIN N, th 2}

However 1508 remaimns iy ariant under s transfonnetion. as we now s Under
(R 2 dyiy - dyitty Fi+ dFre+ F1oand the two-form (K 1} acguire= an weldational
terny = 2dqdy e oA GF We have that %ﬁ ¥ rl>h ={p l‘,,q,\J\ =581 Infleren
tating 4y > 0= edpvly o+ Gyddely =0 But {|y.delr, = Cdvee LI mne

folloma from tegration by parts over # awl reversing the argoments of the

symplectic i prochiets Fherefore
ledy o]t =6 ik 3
which i turn mples the i ntianee of the two form
Neat we dere st T enerpy ot oan rbit AN = o S RUR -
sndependent of o Therehon s varion with B N
mb M Ay SR 2RO H v W B ihod
el .
white w o Troy o gl #oedependdent Averazing Tk wronnnd the kot wnd
using the fact thid J CH (yr= wor swe obtam
af - vl LT -_!lij' r|l Sk + Loa f2mi(w PD)“S'\“ (kS
From (K4 dy rie o ovonshes Ao [wor| = TR bH ) CpieN = TOE N =
Thirfon ih S bevones abl = dffs 8l + A3 o of N regarded as o tunetion
of £ and £ )
dy = Tk ~_|l.”\')‘) RN
the Tegured resale Jeng
Tl Vst tesiiht 1o b diered = s 11 The starting prosnt s the alternative HEE
L1y for PR wbah o vabul i the annerocanoneal averane s replaced

et
by wn ot averagn lot Y b = aift 4wty ithe N and K dependinee i Je-f1

.

aler
inrplicit Eopvatontby Yoo yfn e in wpenersl £ = i e 1) or more

qiel
stmply Yy - g S Yorp watietios Hanndton s equations ats derivatoe with respeet
tor paruml-le b= B
A Y e iy, s by 4 et ik 6
o soduton ob 6% Frong (ho Gy 6 L1 and (881 we ubitamn

g = b s s o RIY0 A ST Ay Wy, s i),
th 7)
where the iy orage < 3 1= taken over the orbit with eneryy E. and tern= of the form
iy o>, venishon lghtor (K3 Both the tirst and third teems of (K 71 are equal
T IR T remains te show that the second term vamishes
Expressing it~ time average ns the residue of the Laplace transform at the oryan
fas in Appendin ] we may write the seecond term of (K 7Y as Resg Fe), where Fishas
the Laplace translorm of

fity = (d ¥ Sy )y d ¥ e (K %)

Proc K Soe Loed A 19N

Htu) JoM Robins awd 20 Berry

For the explicit evaluation of fif) we introduee o Floguet basis slong the orbit_in
terins of which 1he action of the lincarized fow Siy ) s sitnply expnessed. The
Floguet hasis consists of p=Tp/f0 tangent o the orlitw = 20 Cy /o8 fransverse to
fhe cnergs shell on which the orbit Tiesand & k= L N=owhichspan the

e hit e atable and unstable manifolds respertnclvoeow and £°7 ane functions of
¢ 5 K Then one van shaw that

Siyv.iyr=r Siy How o= WA i SN B
(».1) ' ¥ } o MUY ' (I\‘.‘)
Sip gt o= el Ty
UThe first erpmtion 1< wrnitten mots evphetly as Syt i e e 1 and

~imtarly o the others ) Both A, andd 84 may b romphes Lt we assume that
A, #F v L]
p oo that the stulahity exponents an erther elliptn o by perbali
The Floguet basiz can be Chimen to be svmpde ot so that

i 4

[ E T =0 T T T T T O L tK tla)

| =45 Tw ol (K L1h)

L
I

[

o
oo

A
Arnonry these telations the bomogeneons cogpiatans R T Eaare adinecl catsegueher
of R4 For example,

= IS T TR O A R AgtarEt R

e

ithe first equality follow s from the invariee of the svmplectie mme produet and the

wntnd Trom kv Theretowe
feapi— A, = Ao gt o=

S eapl A AT = cef TR Mty s rephes that i I = u Of the
b tog et cquations R LHEE [§0E0 ] - s py ot mahization convention
whetras fw e = T was shownom thie dimetiesion fobloavsg ol 5
Fxparudivg dym the Fioguet basis
LY
dy=z'r+a"w+ ¥ (2t et ] ]
k-1 (K 12y

= wody] a2t = eyt x e [EF iy J

the enpressinns for the vortheients 2 (which e funetioms of (08 faliow from
1y sebsthitutinne (B9 R T and dhoTzonte (RS e e show that

fitr=gr it gt =0+ (o ENP AU x et

+ N e gt e e v e L)

.y
where
deiity = Aty aaty,, @) = At T, et = cat a2t D
(K 14)
From (K 3j and (K 12} it follows that
L= =0 (K 13)
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Equation (K 15) in turn implies that the Laplaee transform of the first three terms
in (K 13) have no poles a1 the origing Ax for the remaiming terms, sinee ¢ (1) is T}
periodic, the Laplace transform of Gl +exp{+A, ) can have poles only at
3 A, +ine,: from (K10} nene of thee li: ot the origin. Thus Res, Fis) = 0, and the
wecond term in (K 7) varshies, as claimed, This implies om0 tun than 17(E) =
VU the required result (8 B
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Universal transition prefactors derived by
superadiabatic renormalisation

MV Berry and R Lim

H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK,

Abstract

For time-dependent two-state quantum systems, the transition
probability is exponentially small in the adiabatic parameter &, with the
exponent determined by a transition point £ in the complex time plane.
Here we swudy the e-independent prefactors associated with different
sorts of transition point {which need not correspond to complex
degeneracies of the adiabatic energy). Unlike previous approaches the
method we use does not make use of special functions. It consists of
applying first-order perturbation theory to the Schridinger equation
obtained by transferming to a series of 'superadiabatic’ bases clinging
ever more closely o the evolving state. If the original matrix elements
share a leading singularity (s-2¢), and their fractional deviation from this
is (¢-#c 3, the prefactor is

.2 )
45N —————
{E(Zr +5+ 2)}

This is universzal in the sense of being invandant under time
reparameicrisition and quantum changes of frame.

Short title: Transition prefactors
Submitted to: J. Phys. A., April 1993

PACS: 03.63

1. Introduction

In the simplest model for quantum transitions, a system with two
states evolves under 2 time-dependent Hamiltonian operator H(z). This
has many physical applications (see e.g. Garraway et al. 1993). It is well
known (see e.g. Davis and Pechukas 1976) that for Hamiltonians which
ere analytic on the real time axis the probability for a transition after
infinite time from one of the instantaneous eigenstates to the other is
exponentially small in the adiabatic parameter £ describing the speed with
which H(#) vanes. The exponent involves

e
W =2Jd:E(r) (D
0

where E(f) is the instantaneous energy, defined as the eigenvalue of H(r)
which is positive for real f (we assume E(?) has no real zeros), and fzis a
point in the complex plane where the adiabatic transition can be
considered to originate. Therefore these transitions describe real physics
in the complex plane. In the most familiar case, the transition point #; is a
simple zero of £2(r), and (when H(t) is real syrmetric) the ¢-independent
prefactor multiplying the exponential is unity.

Here we are concerned with the different prefactors that can occur
when the transition point is not a simple zero of E2(t). Demkov et al
(1978) calculated a class of such prefactors, in which ¢ is a higher-order
zero, and Joye (1993) has provided a rigorous treatment that also covers
more general sorts of transition point. Earlier, Pokrovskii and
Khalatnikov (1961) found the prefactors for the analogous problem of
above-barrier reflection in the semiclassical approximation. All these
authors use a comparison-equation technique, in which H(t) is
approximated near £ and the resulting approximate Schrédinger equation
solved exactly in terms of hypergeometric functions.

‘We have two reasons for presenting anothcr calculation of these
prefactors: first, to emphasise their wide universality class, and second,
because of the independent interest of the method we use. This is first-
order perturbation theory, applied not to states in the usual adiabatic basis
{which is known to give the wrong prefactor) but to a sequence of
‘superadiabatic’ bases that cling ever more closely to the evolving state;



the comresponding sequence of prefactors renormalises onto the correct
value. No knowledge of special functions is required in this method,
which can therefore be regarded as elementary. It was introduced by
Berry (1990a) and applied to obtain the prefactor of unity for simple
transition points, in a paper whose main purpose was to study the history
of the transition, that is the growth of the probability amplitude from zero
to its exponentially small final value (see also Berry 1990b and Lim and
Berry 1991).

Confusion should be avoided between the prefactors we study here
and the recently-discovered 'geometric amplitudes' (Berry 1990c, Joye et
al 1991, Zwanziger et al 1991}. Geometric amplitudes are also
independent of g but arise from spinor rotations associated with the
complex Hermitian nature of H(y), rather than from more complicated
transition points.

2, Preliminaries
We seek approximate solutions of the Schrodinger equation
e (1) = H{W¥ () 2)

in the adiabatic limit of small £. Here the dot denotes differentiation with
respect to time, and
(1)
Y= [ .
¥ (1)

Z(ry X ]—E(:)(COSQ(I) sin8(¢) J

X0y -Z(r)) " \sinB() -cos(r)

3
Ht) = (

We assume that 8(¢) is asymptotically constant as r—*ee. The adiabatic
states (proportionzl to instantaneous eigenstates of H(r)) are

v, ()= exp{¥ i } dr'E (r')}ui(t), where
£

4
cos$6(¢) ()= (— sin-%e(r)]
sindo(r) [ | cos$o(r)

uy (1)

Using these as a basis, we write the exact solutions of (2) as

F() = o (1) + e (Dy (1) &)
As initial state we choose

ci(=2)=1 c.(—0)=0 (6)
50 that the desired transition probability is

P =le_ (o) &)

It is easy to see that the conventional view, in which adiabatic
transitions criginate in complex zeros of E(#), misses the essence of the
problem. For all zeros can be eliminated by the transformation

t—w, where ()= 2.]‘ drE(r’) (8)
0

because this converts (2) inte
A cos@ sin€ Y'H
i€l . =3 (9)
b i sin@ —cos@ A,
{where primes denote differentiation with respect to w), in which the
instantanecus energy is constant. We will obtain a formula for P which is
invariant under all time reparameterisations, not just the choice (8). Two

particular Hamiltonians for which E is constant, and whose prefactors we
will study in §5, are H4 and Hpg, defined by

1 t
Xpl)m=—, Za{t)= — d
A P+12 Al) 1+¢% " (10}

Xp(r) = sech{] th), Zp(t) = tanh (1 m)

H A was also studied by Suominen et al (1991); Hp was introduced by
Demkov and Kunike (1969) (see also Suominen and Garraway 1992).

The true origin of adiabatic transitions is revealed by the further
transformation to the adiabatic basis (5). The evolution law for the
amplitudes ¢+ (now regarded as functions of w} is



cy{w) =:t16’(w)exp{ii %}c;(w) (11)

What causes adiabatic transitions are therefore the (complex) singularities
of 8{w), and these will play a central role in what follows. In §4 we shall
find that for a very wide class of functions X(¢) and Z{) the singularities
at w=w, (cf. (1)) are simple poles, that is

8'(w) > -7 (12)

W-WC

where 7is a real constant with the universality property that it depends
only on the 1ype of singularity and noi on any associated coefficients.
This universality and its significance were first appreciated by Davis and
Pechukas (1976) for the particular case of a simple zero of £2(¢), where
they found y=1/3.

From (7) and (11), the transition probability is

2

P=-! J dwc‘+(W)Q'(w)exp{—iﬂ} (13)
£

In a first approximation to P, we use lowest-order perturbation theory, in
which it is assumed that ¢4{t) preserves its initial value of unity. Then
(13) depends on the singularities of 8'(w) in the lower half-plane.
Assurming that there is one closest to the real axis (that is, ignoring the
‘Stiickeiberg oscillations® arising from the interference of singularities
with equal Im w), we use (12} to obtain

a0 Imw
P=f’u=fr‘r<:xp{-2m—f - C!} (14)

As is well known, in this lowest-order perturbation result the
prefactor 729 is wrong. One way (o get the right result is to iterate the
equations (11) to obtain the full perturbation series for c. This was done
by Davis and Pechukas (1976) for a simple zero, and by Berry (1982) for
above-barrier reflection from a turning point of arbitrary order. For small
€ all terms involve the same exponential but different (e-independent)

multipliers, whose sum is the correct adiabatic prefactor. In what follows,
we employ a different procedure.

3. Superadiabatic renormalisation

As explained by Berry (1990a - to which we refer for many details
of the argument of this section), first-order perturbation theory fails
because the quantity being calculated is exponentially small and therefore
beyond all orders in the small parameter £ However, first-order
perturbation theory can be used if the representation (35), in terms of the
adiabatic basis (4} is replaced by the r'th order superadiabatic
representation

lfl(w) = Cn+(W}Wn+(W) + Cn-([)an(W) (15)

for sufficiently large n. Here g+ are the series solutions of (2) in powers
of g, truncated at £, namely

w]| I

o) =expF 2| Semi ) 16)
26} =0

where the vectors um +{w) will shortly be determined. The zero-order

states in this sequence, namely Y+, involve the adiabatic eigenvectors u+

in (4).s The infinite series comesponding to (16) diverges, and as is well

known this 1s associated with the existence of the transitions we seek to
describe.

In §§2 and 3 of Berry {1990a) it is shown that to lowest order in £

the first-order perturbation sclution of the Schriidinger equation satisfied
by cpt(w) is

w

Cp(w) = —ig" I dw’cxp{vi %’}MT(W’)-HH+1_+(W') (17)

where T denotes the transpose. Therefore we require up+ | +(w), which we
find by expanding in the complete set u+(w}, that is

U (W)= g (W)ty (W) + By (Wi (w) (18)

and substituting (16) into (2). This gives



al
b, =2 9’: (19}
and the recurrence relation
a, = ‘"i|:'}{9'2(1n_1 +ay “‘?a;-»l] 20)

(ao(W) =1, ayyp(—e) = O)
Thus the first-order transition probability in the nth superadiabatic basis
is

2

oo

bian {4 Gnan(w) {_-i} 21
P, =|2ie de 5(n) exp)—i— (21}

—oo

Just as with the adiabatic basis (cf. (13) with ¢+=1), P depends on
singularities w of the integrand in the lower half-plane. Therefore it is
necessary to solve (20) for the coefficients a,, near we, where (§4) 8 has
the form (12). The exact solution of

.7 - l
ap = l{m Ap-1 ~ Gp-1 “w———wca”"l} 22)
(@(w) =1, apsq(-=)=0)
is

i"(n—-1-4yM(n-1+17)

a,(w)= (w=w) (23)
" (w—we )" (-1~ 4y (-1+ L7}t
With this we obtain, from (21),
P, = AE exp{—Zl C|} where
(24)

In the adiabatic basis n=0, the prefactor is Ag=ry, and (24)
reproduces the incorrect result (14). As » increases, the prefactor
renormalises onto 2 sin{ )2}, giving the transition probability

P=P = 4sin2{-%ny}exp{-2llms—w°|} (25)

This result could also have been obtained by resumming the divergent tail
of the infinite series corresponding to (16) (Berry 1990b).

4. Complex singularities

The universal form (12) occurs when X(¢) and Z(1) have identical
leading singularities at =t which give cancelling contributions to the
energy E{t). A sufficiently general form is

X(6)=flt —rc)(l +A(~1.) +)

2 =if(s -1 1+ Blr-r) +.), 550 o
Thus

EX0) =2 f(t-1)F (-1 ) (A-B+..) 27)
and, from (8),

w—w, =2 2(A—B)r_f:irf(r)f”2 . (28)

0
We assume that the integral converges.

Before proceeding, we make several remarks about this
formulation. First, a simple zero in E2 arises with f constant (i.e. not
singular at all) and s=1; this case is generic in not requiring any
conspiracy of singularities in X and Z. Second, some of the singular cases
can be made generic by considering a family of Hamiltonians depending
on several parameters, and varying these. Third, the cancellation of



ieading singularities need not imply that £ has a zero; from (27), £ can be
constant at t¢, or diverge there.

Now we must calculate the central quantity 6{w) near the
singularity we. From (3) and (8),

2 2
O el 7) o
Subsituting (26}, we find
. fis
SRR T LIRS
o Jarpmen oy
Fis
T 2w we) (r j}rc)”z“f(t—tc)(l o)
This indeed has the form (12), with the constant given by
T
[drf(r)rs?
y=Fis Th_rﬂ) Dﬁ)r”—’-“ (32)
whenever the limit exists.
A class that includes all interesting Hamiltonians we know is
flny=Ct™(1+..) (33)
for which
Y= $;§S—+—2 (34)
Thus the adiabatic transition probability (25) is
P = 4sin2{———££%—}exp{—2|hn—wc|} (35)
22r+5+2) €

‘Transition probabilities must be invariant under arbitrary
transformations to new time variables and orthogonal transformations to
new guantum reference frames, that is under

t—=1(f) ()
X(1) X'} [ X(t)cos¢ + Z(r)sing }
{Z(r)} - {2'(:)} - {—X(r)simp +Z(t)cos (b} (36)

ie. 8() >0 () =6{1)+ ¢

In appendix A we show that (34) indeed enjoys these invariance
properties.

1t should be emphasised that although (26), in which X(¢) and Z{#)
have the same leading singularities at r=/., generates the universal
simple-pole formula (12), it represents a class of special situations. It is
not difficult to find cases where the singularity of# is not a simple pole.
For example, if X{£)=B(t-1o)H , Z(tj=1+A(-1c), then &~(w-we i1 if 10,
and (w-we)(-1-20/+1) if <0, with coefficients depending on B. In such
nonuniversal cases, the prefactor in £ depends on €, and there is
probably no simple general theory.

5. Examples
In the familiar Landau-Zener case,
XLZ 31, ZLZ =i, ie. E2 :1+|f2 (37)

The form (26} is obtained in the lower half-plane by expanding about the
simple zero of E2 at fc = -1, and 1t is easy to see that = constant and
(because Z deviates linearly from its value at /¢ ) 5=1, so r=0in (33) and
(34) gives ¥=1/3. Thus the prefactor is unity and the adiabatic transition
probability is

P“"LZ = exp{— E} (38)
£
Next, consider the Hamiltonian H a, defined in (10). Again £ = -i,

and (8) gives we=-2i. Now f=1/N(1+2), so the singularity in X and Zis a
square root branch point, with r=-1/2 in (33), and (because Z deviates

10
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linearly from its value at fc ) s=1. Thus #=1/2 and the adiabatic transition
probability is

Fop = 2cxp{—g} (39

The invariance under time reparameterisation is nicely illustrated by the
transformation

¢t — sinht 40)

(suggested by Dr Alain Joye). This preserves the structure of (2) and
gives

Xa =1, Z, =sinhs, ie. E?=cosh’: (41)

Now the form (26) is obtained by expanding about the double zero of E2
at f¢ = -2, giving r=0 in (33) and s=2. These are different values from
those generated by the formulae in (10), but of course refer to the same
Hamiltonian HA and so generate the same yand the same transition

probability.

Our last example is the Hamiltonian Hg, defined in (10). Again
tc = -i, and (8) gives we=-2i. Now f=sechy, so the singularity in X and Z is
a simple pole, with r= -1 in (33), and (because Z deviates quadratically
from its value at £ ) s=2. Thus =1 and the adiabatic transition probability
is

Pg = 4cxp{— —i—} 42)

Each of these three Hamiltonians has a different status in adiabatic
theory. HLZ is exactly solvable, and the solution (Zener 1932) shows that
the adiabatic formula (38) is in fact exact. HA seems to have no exact
solution, and we suppose that the formula (39) is the first term in an
adiabatic expansion in powers of £. This is supported by numerical
exploration. (Computational solution of (2) for small £ is not trivial; the
method we employed is cutlined in the appendix B.) Hg does have an
exact solution (described by Suominen and Garraway 1992), namely

4
4exp{—~—}
1
. £ 2=P,°B(1+Zexp{—%}+...J @3)
S Tl

Therefore the error is exponentially small, and results not from an
adiabatic expansion associated with the singularity at we=-2i but from

contributions associated with other singularities (Suominen 1992).

Figure 1 shows the exact prefactors for the three Hamiltonians as

functions of g, indicating clearly the considerably lower accuracy of the
adiabatic approximation for Ha.
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Appendix A

First we show that the formula {34) for ¥, and hence the adiabatic
transition probability (35), is invariant under (36a), i.¢. time
reparameterisation, From (2) and (3), the new Hamiltonian involves

X ar (X))
{zm} - dr'{Z(r(z'))} ‘D

Now suppose

=10 (i —12)" (A2)
The quantities in (26) and (33) rescale as
s =us, r=>ri=ru+u-1 (A3)

and this leaves (34) invariant.

12
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Now we demonstrate the invariance under (36b}, i.e. quantum
orthogonal transformation. This changes (26) to

X'(1) =explig}flr—t.)

[1 +{t—1 )exp{-ip}Acosg + iBsingb)]
Z'(ty=texplig}f(r-1.)

{1+ (e - tcJexpl-ig}(Bcos + iAsing)]

(A4)

Clearly the form of (26) is preserved, with

fli-1)— f’(f - "c) = CXP{W }f(t 7fc)
A— A" = Acosg + 1Bsing {AS)
B — B’ = Bcos¢ +iAsing

Appendix B.

The numerical solution of (2} for small £, given a Hamiltonian
specified by functions X(#), Z(¢} is complicated by the fact that the desired
final transition ampiitude is an exponentially small quantity emerging
from rapid oscillations that are much larger. This numerical instability
can be reduced by solving the Schrijdinger equation not in the original
basis, or the adiabatic basis defined by (4) and (5), but in one of the
superadiabatic bases. As explained by Berry (1990a) and Lim and Berry
(1991}, the epumal basis would be the one whose order is the nearest
integer to hw.l/e (because in the nth basis the oscillations of the transition
amplitude ¢,,.(1) are of order en+1/n!)

However, 1t is not necessary to use the optimal basis; in the
computations with H 4 illustrated in figure 1, only the first-order (n=1)
superadiabatic basis was employed, and this was dramatically superior to
the ordinary adiabatic basis (#=0).

For numerical purposes the most convenient sequence of
superadtabatic bases is not that defined by the perturbation expansion
(16) (aithough this is useful for theoretical purposes), but that generated
by adiabatic iteration Berry (1987). In this procedure, the system is

14

transformed to a basis specified by the eigenstates of the instantaneous
Hamiltonian, and the process is repeated. If we define

X{)(!) =

2X(r) =22(!) 1
"““"‘““—E . 20(!)—_8 - EB1)

then with a particular choice of phases the successive Hamiltonians are
determined by

xn(t)in(r) — zﬂ(t)in({)
x%(:)+z3(:) (B2)

Xplt) =

2 2
Z.rz+1(t) =X (!) +zy ([)
These functions can easily be found by repeated differentiation,

It 15 also convenient (see also Suominen 1992) to solve not the
Schrédinger equation but the equivalent real equation for the spin vector
(expectation value of the vector of Pauli spin matrices) on the Bloch
sphere. For the ath superadiabatic basis this is

S,(0) = r{t) A S, (1), where
Sp(0) = {Sp (D), Spa (11,3 (1)}, (B3)
() ={x,(1),0,2,{n)} and $,(0)={0,0,1}

and we used the Runge-Kutta method for its numerical solution. In this
formulation, the transition probability is

P =4[ - Sya) (B4)
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Figure Caption

Figure 1. Prefactors (thick lines) multiplying the leading exponential in
the transition probability, as functions of the adiabatic
parameter &, for the Hamiltonians Hy z (equation 36}, H aand
Hp (equation 10). The [.Z prefactor is exactly unity, and the A
and B prefactors are asymptotic to 2 and 4 respectively.
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Lecture |

My i s 10 give d sell-contained account of the geonehie phase,

wihtich 18 helping 1o sweep clean a corner of gquantunn mechanies that was
for a long time dusty and obscure. The treatme will be thoronphly
clumentiry - these will be no (ibre bundles and Chern nustbers - but
nevertheless i the spirit of Linstein's injunction: physics shouald b
made ax simple as possible, but not simpler.

I do not intend to give comprehensive coverage of what s he-
come a large subject, und so will omil entirely severa] major topics tha
Lave heen treated elsewhere, such as notadinbatic corrections (ref [1])
and the reuaction of gquantum systems on their environment [2]. Nor will
I give a complete list of references, because with the assistance of
Richard Lim 1 am compiling a comprehensive phase Libliography that
will be frecly available, and becausc a reprint collection {3} has just been
published.

Petails of many of the arguments will be belt ax exereises for 1w
sudent. I these notes such exereises will be denoted by {E].

The geometric phasc is bascd on (wo deas: adiabaticity and an-
hotonomy.  Adiabaticity here refees to quantum physics on the border
between statics and dynamics, Statics s con_ccmcd with rfu'n_q.v, that 1s
persisting entities. In guaniumspeak these arc eigenstates of the Hamilto-
nian describing the systemy's environment. Dynamics is concerned with
heppenings, iy s case those induced by changes in the cnvironment.
On the border are things in cnvironments that change slowly: sueh
changes are the province of adiabatic theory.

Anholonomy is i geometric concept: the failure of some quani-
ties (o come back to their original values when others, which drive
them. are foreed o resum. The Gailure derives from nonintegrability of

the driving e, by this Jeetre | will voncentrate on an example of

anholonomy, intredacing 0 as pure geomeiry ura way thal veneradizes
cusily Lo guantum medinnes

el a veetor e, dying in the swrlace ol osphere i el
round o cireuit C (ig 18 " Transponed” means thar the ant adius
vector £, to which s anached s forced rand o leap crery wath
(=003 and "in the surlace” meins er=00 The Lew ol thaspord s
paraltel transpore. e never twists abont o Aber the cionto s lound
that ¢ has rotated, by anangle GC) that we wish to calealate. HCy
embodies anholonomy: ¢ has not returned, even thaugh #owhich drives
it, has.

This parallel transpost anholonumy is casy 1o denonsirate. Hold
a pointer at anm'’s length above your liead and pointing forwards. Move
your arm down till it is horizomtal, then rotate it sideways through &
right angle, and finally bring it buck up again. taking care never Lo Lwist
the pointer. You will find that the poinier now poi‘nls sideways, that is,
it has rotated, in spile of neves having been tumed! 1 have done this -
e trick many times, and yet it stifl seems magical.

To calculate (C) we must give mathematical expression (o the
Law of parallel transport. et the orthonermd Trame e o0 (with ¢
any fixed combination of and ea) rotate with angular velocity 2,
ic.

e=f{2~Ace (1.1)

(he overdot denotes dilferentiation). £2 has the gencad form

Q=qgr+ hr+vor aAr (.2

Paratled tansport meany i £2- has no compunent along rose w=l To
deteoming boand oowe impose the reguitement tal e enenn peipenidic:

alar 1o 7 e Geery =00 This wives JEY A 1o



LQ=ranar {1.3)

The law of paratlel trinsport is therefore

e=(rarine=—ce-rr (1.4)
We express the law in a form suitable Tor later generalization o
yuantum mechanics. Define a complex unit vector on the sphere by

0= (e, +1e )2 (1.5)

Thus ¢* ¢=1 _ I'rom the fact thal ey, cp sepurately transport accurding
1o (1.4}, 1t follows casily (T3] that

¢r ¢ =0 (1.6)

Now we cin cateutate the anholonomy XC). Chant the passage of
e1.e7 relative o o bl bases ol umt veetors w(ry w{r) delined ot cach
point r: {(fig. 1 23 and so singlevalved roand C by construction. For

cxample wand v coudd point along lings of Litude and longitude. Lt

the carresponding complex uni vector b

niry Lu YAV

(1.7
The relation between the transported basis ¢(r) and the tocal basis
a(r(1)) is {1 that they ditler by a phase factor:
¢l = eapl- O] n(r(e)) (8

where @ is the anele by which w, v must be rotated o coincide with

1.0,

6
The desired KCY is the ingrement of ¥ rouwnd €, that 1s the tolal
rotation of ¢;.e; relaive to 1.

We lind O using (£.6):
O=¢* ¢ =expliff(-i0n* n+un* mexpl=i8t (19
Now n*-n=1and so a*a is imagmary, so that
0=lma* u . (orin

s

8(C)

T _
* = ¥
fm {] n* ndi !m(f’C n*-dn (.

—(]()jv du
where the tast equality 15 3 simple {12

To obiain the exphicit form ol 6(C) for any crrcut () we use
Stokex’ theorem:

o0 = [jVv
J5 =0 (M

wheie Vs the 2-form

Vzimdu*a -dau=1mVa*A Vu - d§
=-Vv -AaVu dS§ (.13

Here dS ix an element of arca on the sphere. and the integration is ove
any surfuce whose boundary is C. The scalur products - act between n?
and # . and w and . and the vector products A act between the Vs, OF

course the anholonomy 0 s andepemdent ol the basis e vy A



convenient chaice is 1he unit vectors carrespanding 1 spherical polar

angles, that s

rnoe, roau

N = , ¥ —_—
‘r.’\{’z ! (1.14)

where ¢, 1% a lxed veetor and we include the length ol beciese oo
convenient o have formulae valid in the whole thiee-dhisensional r
space rather than just on the unit sphere. From (5123, 0 swraightior

wird calenlation {12] gives
V=r dSir (1.15)

We thus obtain the final result, from {1.12):

oCy = Has rsed
= Nux through Cof wmt menopole atr = 0
= solid angle §X O subtended by Cat r =0 (1.16)

Anholonomy is the fact that €@ does not vanish. lts onigie s the nonmig-
arability of the parallel transport Lo (1.4).

An amusing abservation (hy V1 Smith) s thar ¢f 1O)Y cquales a
prane angle. measured in radums, 1o soluf angle, measured in steradi-
ans=(radians)2, This shows how wnnatund is the decision of the Inter-
national Comititiee of Weiplus and Meaxsures {47 that radians and stera-
dians shall be supplementary units e the ST system, witly dilferent di-
mensions. rather than being dimensioniess as any physicisi would think,

Wilh these preparations we can now consider anhiolonomy in the

\
transport of quantim states. Let N =]X).Y ) be parameters nfltu-
encing the quantum state lé> o a sysienn For given XL 1g> is deter-

mined up toa phase. Now Ter ¥ be varmed rond oevele 40

2

(X=X((X(N=X{M) {fig.1.3). We seck the phase ®C) accumulated
when [¢> is parallel-transported round €. The delinttion of transport is
obvious from the analogy with vectors: X is analogous (o position r,
and 1>, a complex unit vector in many-dimensional Thibeit space, is
anulogous 1o the two-dimensional complex unit vector ¢. Parallel trans-

port of 1¢> is now defined by gencraliving (1.6) o
{e1o)=0 (.17)

To Iind KChwe devclop the analogy Tunther, Letin{X)> bea
local busts state, defined 1o be single-valued on and mside C, coinciding
with {¢> up 10 a phasc.Thus ln> generalizes o, and mstead of (1.8) we

now have
totny > =expli P a( X () > - (1.18)

(1.17) pives

i< uln>==Ilm< nidy>/di (1.19)

where we have used the fact that <alezis oy (e bich follows

from <nhiz=1, Thus
Q) = -t alda) (1.20}

{cl. b1y and application of Stokes” theorem (Cf £ 12) now gives

no=- [V

|
a5 =0 (1.2n
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Lecture 2
In “reality’, quantum states are traosporied nol by any convenicnl
mathematical rule but by a Tamiltonian operator /f acting via the time-
dependent Schrodinger cquation. One way (6] to implement the paral-
led-transport rule (1.17) is to incorporate the changing parameters X
into 2 and make the changes aceur slosely, Thus we have the slowly-

cycied Hamiltonian

= 11X DT 1 e XY= X)) (20
and we can invoke the quantum adtabine theorem.

‘This stales that the time-dependent Schradinger equation is satis-
ficd by cigenstates of the frozen Hamilionian /7 at cach instant, mulii-
plied by the usual oscitlatory thne factor. Thus the adiabuane shes

(labelled n) are

-

1,0y > = expl = [ 0 £ (X (O AiLe () > 29

where 1g,> (assumed nondegeneraie) satisfies the cigencquation at 7

IKXNg, >=C,XMe¢,> (2.3)

The phase JAHEA(0)/h of the oscillatory factor is the dynamical phase; it
generatizes the famihiar "-ax” of any oscillatory process, and is present
even il X is held fixed. (Of coursc the simple form (2.2), in which
V¥(1)> clings to individual eigenstales [¢,> ix an exceptional case, vahd
only in the adiabatic limit T—rea. (hherwixe 1he chianging /7 couples
different dg,> via transitions, whose stady s the wsoal business of ting-

dependent quantum mechanics.)



9
where (¢f.1.13)

V = Im{d njald n) (1.22)

and A now denotes the wedpe product.

This is the main resull. 1 gives the phase anholenonty HC) as the
Hux theough Cof the 2-ferm V. o not be alred ol 2-fennss b yon
are mathematically innocent (like me}, think ot them as objeets wineh
deliver a number when integrated over an arca Aanote caphoy repiv
sentation of the 2-Torm can be written by deliing coordinates XX, on
the spanning surface S and expandig > inan X-dependent superpo-
sition of fixed onthonormal basis states I 0L

[n{X )»>= %crm(X $x,, > .
(in position representation, for example, m wounld label position il

(X)) woukd be e X -dependent {complex) waveluncton), Fhen

v

N* *
Im Yda, *ada,
™ .
* +
(lf r}l’“ (11’” (}fﬂl

IX dx iy = ) -
XA, I 2 5 XX, X,

1}

(1.2}
So far our considerations have beey rathes abstract and mathe-
matical. To turn them into physics we have to specity a realistie
mechanism for paratlel-transporting the state (¢>. This will be done in
the next lecture. TFor now | simply mention a case where the abstrac-
lions can be interpreted literally, namely the Aharonov-Bohm effect
|5.6). Here 1¢> is the st of an cleetron, the parameters X are its posi-

vion in ordinary 3-space. the 2-fonn Vois propoertionit te the field ol a

10

single line of ordinary magnetic flux, and the anholonomy yis the phase

change of the electron round a circuit € of the MQux hine
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Now comes the central point. Equation (2.2) does not constitutc o
complete speciticanon af the adiabatic stwe 0>, because the
cigenequation (2.3) provides nomeany to cotilicdd s salutions kg at
different pusamcters X0 we need a ransport law, This is provided by

the time-depundent Schrodinger equation, projecied on the subspace

>

O=< Y ynlfl -k f-.)!)i W) >

f
=< Myt Vi Jeapl I[‘: G b e (0>

b

=< @ N (2.4)

This i crvactiy the paridiel-tansport law (1 17), which we lound
10 be nonmmegtihle A ie end ol the vycie, PP as given by (2.2)
herelore acquires o phise from the non-retarn of 1, (0> as well ax the
dynanuical phase s
!
NS =S fdr 2 (X G/ teapli y JON ) >
0 (2.9)

Here Y(C) s the voomen e phase. given by (1.21) and (1 22) with
(X ¥> now bestg any solutien of (2.2) that ax single-valued in X space
on C and o e chosen spanmng sarface S

The oot cabling %(C) weomenne s thatat depends only on
e geomeiry ol Coan X space Gnd o wlnch state s being
transported tand not on e rides watly which difTerent parts ol € are
traversed (esuoing b course that the tansposn iy slow) n p.nllcul.u,
yis independens of the adiabane paramerer Founlike the dynamical

phase whsch {1} increases lincarly wath 1

|4

Itis amusing to sec how the geometric phuse is contained 1 the
path-intcgral represemation of the cvolving state. This was done with
S annay and M.Wilkinson in 1983 but never published (but sce [45]).
Introducing the time-ordered product for the evolulion over the cycle,
and dividing the time interval inte many small steps of duranon S=T/N

where N0, we have

LTy > = Texpl = 110/ R >
;NF
= Mexpl-a8 H(:k)/n} Ly >
k=1 (2.0

At each 1 we introduce e complele set ol Instniineous Crgensties

(X O> of () (single-vialued solutions of (230 Thus

=

(x‘kjlhllm(x j\-) > < mi Xk)lx

m

V() > = Yeapl -1 8L
k=m

il

)i () > . (2.7
This s cxacl, but now we invoke the adiabatic approximation to
etiminae rerns a2 i akh the intemicdinie sums, where
P> =ln (XN (00> s the il state Then sl the factons mvolving thy

£,, combine (o give the dynamical phase. teaving
7

CYT) > =t W0y > expl - 1 Jdol (0] x
0

=X < n(XN)m(X ) > <l Xl)ln(Xn) >

N~} (2.8

Terms in the product have the form

< H(XIHHH(X ‘)>:< alN o Sy

1]

(< only § < bl

1+ 3« nin >

1l

expld < wbn >t eapl ol e atdae = 1oy
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By (1.20), the accumulation of these factors gives precisely %(C).
By (1.22} the geonetric phase for the a'th state is the ux

throuph C ol a 2-form that we now call V,(X):

vV (X)= Im < dnlaldn > (2.10)
‘his is the mathematical object at the heart of the whole subject. It sits
LY paramcler space, wailing o he brought 10 hic as a phase when H 15
cycled.
Now we describe some interesting properties of 'V, ‘The first
concerns its singularities. To sce where these are {in X space), we in-
iroduce the complete set of cigenstates Im(X)> of H{X).

vV o=Im ¥ <dulm>n< mldn >
n
e (2.11)

Note the exclusion of the state m=r [} Froni the cigencquation for /7
it is possible {E 1o denve

< mld Hn >
< mldu>=- 2 : (2o

LT 'I"Im (212)

S0 il

< wid Hlpe > <omlddiin >
vV, = fm o 3
m#n {‘u - (2]1)

" Fi
This shows that he singulantes of W, occur where the speetnim of
HX) has degeneracies ivalving 1he trmsporied ste >, later we
<hall determine the precise natuie of the singulanty.
Ihe other propertics ol Vi, concern padtige invariance. LS sime-

plest Ton, s is 1he fact thar NV oandependent o the choice of single-

16

valucd eigenstates 1a(X)>. Different choices are iclated by i single-

vithued X-dependent phase Factor, mnd we ave {15

Im<dn’ ada’">s=lm<dnadn>
Hln (X )>=cxpliy(X Ha(X }> (2.14)
By contrast, the t-form <nldn> (el 1.20) does not possess this gauge
INVArianee.
Another quantity 1s mvarant under the gauge vansfonnation
tn>—|n'> To find out what it 15, introduce coordinates X i parameter
space and write

V=V_ dX. ~dX
y ! J {2.15)

where Vi is the antisynineiric sccond-rank twnsen 1y

Voo 2lme daldn
] ! i

. (2.10)
What about the real (symmetric} part of the tensor! s casy 1o show
[} that this is not gauge-invariant, but thit the foltowing Guantity 18
g =Rea dn(l-ln><abidnz
ij i \ (2.17)
The mterpretation 2] o g s s o meice o m N space,
measuring distance dy between states lnz Ll nerchlbanng points X and

XX in the most natural gouge-svannt sy,

(l.\‘2 = g”dX,(IX - ptX Wl N !
1 ! ) (2.18)

(Both tensors, Vi and g, also contribute w impanant ways (21 o the re-

actioit of tha QUuanium sy oo s cnvisiient. n the Torm ol the dy-
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pamics of the X when regarded selt cconsistently nobas pasumeters hul
as quantmn variables.)
In elementary physics the most fnmiliar ginge imvarianee Is that

of magnetic ficld

B(ry=VaAlr) (2.19
ander e translomition of te vector potential A 10 A" where

AT= AV Al (2.2

and A is @ single-valued scalar tuncoon ol £ This type ol sauge truns-
formation has o be considered when studying the geometric phase for u
charged patticle whose slowly-cycled cnvironmeint (paraneterized by
X) includes amagneng bekd,

We expect Y0 1o depend oA because A occurs n the
Thuniltonian. But afl physies muad be nvariang under (2.20), even when
this transfoinndion o paramicler-depeneent, e, A=A XN). The ctlect
of A s to contubute a phase tactor 1o the wavelunctions <rin{X)> in
position representation. This s so sinilar to the type of transfonnation
in (2.14) - a pluse factor sulupiying the Hilbert-space veetor - that i
came 8§ a suipise 1o lind e not only the 2-form V,, but also £{C)
iself change under (2 200, the tmastomiation law for Vy, being [E}

v ”( Xy= v .t dom< oald Al > (2.21)

Physics is saved iom mconsistenes however, by the fact that a
parameter-dependent A aho senciates anelecire Neld (hrough the slow
change i X) wnless 1is allowed o tansform the scalar potential as

well, Inthe resulime complete gauee transtormation. the dvnamical

18

phasc is changed in o way that exactly compensates the ef

Details arc given in 7]

fect of (2210,
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Lecture 3

Al Tirst the geometric phase appears vnobservable hecause us de-
Lection based on (2.5} seems 1o require superposing the systen at =T
its Tormer sell (at £=0), which is impossible. There are however at least
iwo wilys in which 7, (CY can be - and has heen - measured.

I'he way that was nrigin;llly.sllggcslcti [6] was hy interlerometry.
A systeny i the state In> (e.g. a coherent b ol particles) s splical
=0 into two subsystems. One is slowly cycled and the other not. Both
subsystems will acyuire dynainical phases, sy Yy anel Paaya - but the
cycled one will, in addition, gain o geometric phase. I the subsystems

are subscquently recombined, the intensity of their superposition is

o

e Cxp[i(yldyn + 7“(C)] * Cxp{i Y’lclyn}

= 4 costtt - )
= 4cos™ {31y 7 Trggn T ol (3.1

TMierefore 1,(C) can be detected as a Shil ol interfercnce fringes - as in
the Aharonov-Bohm cxperiments |51

One can say that the erferometric experimenis involve the same
state and 1wo Thamilionians (one Tor cach subsysiem). The sceond class
ol experiments, on the other hand, involves Gt least) twae states und the
same Hamiltonian, Let the imtial state be i superposition ol Lwo cigen-

states b and x> of H(0)

[ Q) > = a,fm >+ T (.

"
[
=

“This is 2 non-stationary ste, which alter the eyele s beeame, i i

obvious notation,

20

by >=alm > cxp{ilymdy” + 7, L)+

+ a ) n>explily + 7 (Ol
ndyn n (3.3)

Now measure the expectation vadue of some operator A thut does am
comntule with /7 we Tind {11]

[N e 2 :
< eEy ALy )>:Lu” < nlAly >0 |“"”i TR R T

POy L0l

F2Rca *a < nlAlm > expl|y
] i nidyn "

ndyn
{34)
The interference term reveals the dilference of the phase sufls experi-
ence by the two constituent states, and of course this invludes the dilfer-
cnce of their geometric phases.,
Many of the experiments that have been cained cni ) Y invaelve
e tarning of spinning particles. 1 will now sork ont the underlymg
theary, which is uselul mseveral ather applicatons e wl! Consider a
particle witly spin £ (integer or half-integen), descnbied by the vector ol
three (2 412 1+ D dimensional apgular-momentom matiees ¢ Salise

fying the familiar commutation rale
TFA T=10 (3.5

Lot 71 at each instant be rotationally symimetoe ahaut e direetion de-

scribed by a vector in the parameter space K IR SVA R I

uy= rF{R - of (3.0

An evnmple s o particle with magnenic moment ey e hd

pd Lo swhich s linem and 10 el
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To fnd the phase 2-torm Vi) (here u::_::mlcd as oovector o i
SPAEE), We s e sty stides (230, replacing d hy Voo The stdes
Wi are (2041 )-compenent spinors libelled by ihe compuencul ol angular
momentem alon: 2 mns Ton - e +f) and the cigenvalues are
FOiRY where ®OIRE 1o 0213 the dependence on 2 canceds and we

.

obtain [0}

! \ < ulaglm»>a< mlaln >
V. (K- j [ Yo —- 5 .

B i ont - {n — o) (4

Now, the s clemeits are 2eio unless m=a orm=nk ] {1} and
the contribution m=n 15 cacluded by the a. Therelore we van ke
(n-n)2=1 out of the sem, chonate the siwm-over states and use (3.5 10
get

V“(R): rr[jlma’ nta oA G!u>:—l2-< nlaln >

K R
:
o IR (A ™)

where the last cgoality Tollews frony the fact that ln> s an cigenskue ol
the component of o atong Ko which the perpendicutar compaonents
Nave 2ero expoviation vaiug

The 2 tocan s therclare the Diekd ol w menopofe of strength o,
sittated at K0 The ceometric phase is srious the Huy tioughC ol
this monopoic, that

12 CO RIS KRG (1 9)

The siepion case osospin 20 for whieh o e the thiee Pauh
matrices o doesenbos tfor evample) setrons, whose coome e
phitse wis mesaed et mgeimons expertent by Botes and Phrhbwers
[B]. They serta beam ol neuttons along the o duecnon e ieheal

vsEneiwe et

Bz Hcosd sin Deos(2a fly s t! s 2 A1)
< <y (310

The maving neutrans seea Al chanees witll firme, sweeping ont il

cone with solkd angle {12}

(O =250 - con O (311

Their expenment was ol the sccond type deseribed above, with

the initial state being polanved aloog 20 Thus

L) > = UJ =cos{@/20 > am{(21- >

(31D
where .
| _ cos(d/) i | - s i/ 2)
2= linoy M T T T oy AR

are the cigensiates ot/ =pordi along the it ducction of #2112, Al

Ihe end of the cyche,

PV Y o = cos( /2y expl — 0 alte >+ sin(d/2ieaphs - »
_ (cn\ (- s fr Lo (f\;

T = iaan Oeos oo / (3
where
= pbE 20 820 Y

Glie Fiest tenm s the dy a0 ploser B and Oabbers imeiasuted o,

by again passmg e e though i polanzer T eypediation virlie 1

bt
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2 < I’l(‘r)l[(l] _ (l))‘ l!l(-]‘ ) >

I
Q
v
n

lz(wxz 0+ cnx?(rsinz o) (3.16)

Ihey detected §2 (and verified the formula 3.11) theough its effect on
(3.15), by measuring the phase of the ascillations of the cos2ertermas
3 was varied.

The spin- 172 case has the wider importance that il describes any
2-state quantum system. The resingtion 1o rotational symmetry, and the
generality embaodicd in the function £in (3.6), arc here unnccessary
because the most general 2-state Hamiltonian is (up 1o a rrivial multiple

ol the identity)

if £ X +iVY
=0 R=3 Y _iy _y

(3.1
An interesting recent applicanon is to the cleciron nticroscopy of crystal
dislocations 9] in the 2-beam approximation: i dislocation cuuses dis-
tortion and disruption of micrograph fringes, which can be interpreted
entirely as an effect of the geometnic phase.

Another application is 1o degeneracies. From the sum-over-states
(213) i was clear that degeneracies of ihe transported L Sn>are sin-
aularities of V,(X). We can discover the natuse of the singularities by
realising that close 1o the parameiers X* where they oceur the domi-
pant contribution s o (2.13) comes from the state depenerating witlh u
(we assume the typical situation where there is only one such state).
Therelore we have, locally, a 2-state problem, for which a lincar change
of parameters brings the non-trivial part of 7110 the form (3.17).
Application of (3.8) for n=1/2 shows at once that the singularity of Vs
4 monapale witl strengh + 140 (1w sign depends on whether i

devenertes with the st above of B losw, amd swhether the trnstori.

R

tion Lo local parameters R is proper or improper. Qriginally (6] 11eh
vutl the Iatter condition; it was stited correctly by Simoo [10L) Mon-
dragon and | [7] have explored the detaits of the monopuole singuiartties
in severi] numerical examples.

An important special casc of degenceracy occurs when H s real
(for example when the dynamics at cach instant has time-reversal
symuneley). Then in the localb moded (3.17), ¥=0, and circuits Clic in
the X7 plane with their spanning surfuces like hemispheres, which have
solid angle €221t (if C encloses the degoieracy) The geometric phase
y=n{d=£(2n)/2=2x therefore contributes w sign change (which is of
course the only phase change that a real cigenlunction can have}
Llsewhere |2] | lrave deseribed some carty history associated with this
sign change, in the differential geometry of surfaces and in molecular
pliysics

Now | want 1o discuss some oxpenments ivolving photons,
whose interpretation has been contreversal. Hhese p.nticl;;.x have spin
I, s0 ¢ are 3x3 matrices; the cigenvalues of o f are +4, 0, <R,
Photons have no magnetic moment and so cannot be tmmed with a
magnetic ficld. But they have the properiy of ficliciy: along their
propagation direction ¢ they vy Tive states will a ey =41 but nol
zero. ‘Therefore the photon spinor can be tuned by wrming its
propagation veetor k. Chiao and W [TH and Tosum and Chiao [12]
had the clever idea of achieving Uus with the light i a coiled optical
fibre. & is the forward tangent direction of the fibre, and can be cycled
willt 2 coil whose ends are parallel. The geometsic phases for the two

helicities would then be (¢f.3.9)

Y, (A0 (A8

where 205 the sobid angle swept ont by ep on s unit splwere,
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Momentarily clioosing the z axis along &, we can wrile the

helicity staes as

} 0
f+L>=101 I-1>=]|0
0 | (3.1Y)

Classically Uese cortespond 1o heams of circndarly pelarized fiehi,
whose (gencoally comploa) umt polacization veetor e, the elevine

Ficld

2= Reeexplit bz — cil) (3,20

is related 1o he spior P45 by

c_[ -1t \
1Y > = 0 ING)
ety (3.21)

The states [+ and k> correspond e right and deft polarization, with
ey=+iegund -iey.

Tomita and Cliao led their fibee with light finearly polunzed in
direction @, 1.c. e,=cosa, ¢ =sine . 1ls is a superposition of the two
helicity states:

eapl - () )

IV > = 0 /\/2“50,\13(ﬁl(Il|+>+C.\'p|Ei(X“->
eapl vl (122
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They were carcful to coil their fibre without twisting it. Because of
s, there was no stress-induced circular birefringence and the two
helicitics propagated at the same speed. In other words, the two
components in (3.22) acquire identical dynamical phases (equal to &7,
wliere L is the length of the fibre). But their gecometric phases are cqual

andl opposite, leading to emergent light with state

Ly >
= explikl Yeapl - il + DY+ > + explifex + (D} >) (3
This is again lincasly polarized, but along a+§2 rather than .

So the effect of the geomelric plase is Lo rotate the direction af
lincar polarization by £2. In ather words, the coiling induces ‘geometnic
opticat activity' or ‘geometric circular birefringence’. Experiment [12]
verifies the elfect very accuruely. Recalling now the geometry of
lecture 1, we can replirase the description in yet anofher way: guanium
anholonomy of photon cigenstates 1s cquivalent to parallel ansport of
lincar polarization along the libre.

This raises the question: is the effect quantunt or classical?

Several authors Tuve |31 argued that i is classieal, Chiao aimd Wu

“would rather think of these elfects as topological
features ol clussical Maxwell theory which eriginale
at the quantum Ievel, but survive the correspondence
principle limit (4—0) into the classical level™.

Further questions now arise: where in Maxwell's theory 15 the
anholonomy? Why is it so tricky Lo undesstand the cffect classically, yet
so straightforward quantem-mechanically? I have answered the first
question [15] by deriving the parallel transport of linear polanization
from Maxwell's equations for a fibre (the result cannot be justified by

appeal 1o the known parailel trnsport along curved ravs because these
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cxperiments tvolve monamode libres, for which geometricud oplics is
nat i valid approximation}.

‘The second question is @ pseudo-prablem, wid so in fact s the
whole discussion of whether the fibre effect 15 classical or quantum,
heeause for the optical processes considered here the quantum and
classical descriptions are the same! This is the view of Feynmian [ 16)

"Ihe plioton cquation is Just the same as Maxwell's
cquations....”
‘I'o appreciate the intwition underlying this assertion, consider Maxwell's

cquations in a fibre:

BD=Vall,B=-Val.
I = ;IU H, D=¢e(r)k (3.24)
Vere the dielectric permittivity fuaction £r) deseribes he glass
refractive index which confines the light inside the tbre. These
¢quations have the form
r)r(l'icltl.\') = (nutris Lincar in V) x (fickls) (3.25)

Multiplying by il gives

mf)l(ric[ds) = (mutrix lincar in p = - i T V) x (fickds) (3.26)

and makes Maxwell's classical equations ook like Schridinger's
QUL equation.

“To make this interpretation legitimale, we lave to ensure that the
operator on the nght of (1.20) is Hermitian, Severad authors [17-261}

have carried out this regranuae, but twn resilis are wseless lere
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hecause they are restricted (o propagation in free space, for which the
permitlivily s constant so there ¢ be no guiding of the hight. In
discussion with A Pines [ have however found the Tollowing exuct (and
essentially unique) Schrindinger implementation of the fibre cquations
{3.24) (which also allows the magnctic permeability pr,; to be reptaced
by u function p(r).

Define the six-camponent spsnoer

/ = A,‘#
Iy (r,:)>=[M_]

(3.27)
where
M, = &8 pi (3.28)
In terms of the releactive index
112 ’
eir) pir)
MO =\ TE
0noo (3.2%,
we define the modified momentum operitor
ns= ”-112( rp a2 (3.30)
and the inhomogeneity vector
£
= ot Viog| - L)
an(r) wir) (3.31)

It can now be shown [E] that 19> obeys a time-dependent Schrédinger

equation with Hamiltonian

I o ihE o
o= i ;
-ihé o o (3.32)



where @ s the Tollawing vector of spin- 1 matrices:

00V 0 Yo -30
G0 b=i|ju 0000
01 0 -0 0 \() 00 (3.33)

H is manifestly Hemntom

To apply i Schiodinger Tnokalike” formalisim o the Libre
experiments. wo replace (> by a wavepackel traveling with the
speed of light n the Db This allows the replacement

(J’J' —) hk/u = ftu)t'k(l) (}36)
where @ is 1he Hequency ol the light and ex(r) the fibre direction at the
place reached by the packet at the nme 1. Then we reject the off-
dingonal terms n (3.32), on the grounds (hat the inhomogencity veelors
E in (3.31) i parpendicnli o that behieity component @ which in the
adiabatic (guiding) approsunation is along the fibre. Now My and M.
are uncoupled i 17> | giving the two separate Schrodinger equations

ihe Moy L T v o M (1) (3.3%)

This descubes photons” {light panticles in the sense Newton
meant) with cnerey =L The eiveostates with ATy correspond {E] to
Hght with the two haids of crrcular polanizanon. Each of (3.35) also
bas an cigenstate with = o These ntphotons” are not new particles
but redundant descnptions of the buckward-ravelling parnicles with
positive eacrey and & reversed (the redundaney can be traced 1o the Tact

that the phyesieal Tiekds e eal - ¢1n 320,
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With the two cguations (3 35) we have disdilled from Maxwell's
cquations a description of light ina fihre s @ stream of spin-1 particles
driven by u time-dependent Hemiltonizo ol the form (3.6}, The
anholonomy (3.18) fotlows ut once, justifying the argument of Chaio
and Wu.

Optical anholonemy of a diffcrent sort was discovered long ago
by Pancharatnam [21]in strikingly original work whose significance
went unapprecimed untid recently 122,231 Terz [have space only fora
bricl description. Instead of eychically changing the dircetion & of hight
in a fixed state of polarization, Pancharatnam was concerned with
cyclic changes in the polanization of light travelling in a fixed dircction

Such light can be represented as a 2-component spinor, whaose
state of polarization is an eigenstate of (3.17) determined by the
dircction R/R, which is a point on the Poincaré sphere. A polarization
cycle is then a loop C on this sphere, Pancharatnam showced that there is
an associated geometric phase $(C)/2, where £21s the sokid angle
subtended by C at the centre of the sphere. and thereby anticipated our
result (3.9) for n=1/2,

[ have given clsewiere [23] the reconciliation” of the
Pancharatnam {272 (on the Pomcaré sphere} and the Chiao-Wu-Tomita
£2 (on the sphere of directions ex ). It is of course possible to combine
polarization and direchion cycles: Bhandan | 24] describes how to

calculate the resulting geometne phases.
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lLecture 4
Suppose the cycled 1 Lomilionsan has o closival Tunir,
corresponding 10 & systen with N [recdomis. Then anstead of heing an

operator, /1 is o Tunction

Ho=H(x. X)) (4.1

where

xE(q,p)=(ql...(;N.p]...pN) (4.2)
is position i the 2N-dimensional phase space. 11 is natural to expect the
quantum phase anhofonomy 1,{C), and the underlying 2-form Va(X},
(o be nirrored by anholonomy in the classical system. Mystery still
<hrouds the nature of that anholonomy in the general case, but Hannay
125, sce also 26] discovercd what it is in the important special casc of
systems whose motion il cach fixed X is muedtiply periodic.

Iannay reasoncd as follows, A quantum cigenstate for Nixed X s

like an oscillator:

Ly >=ln>expl - wi) . where @ = E,/h (4.3)
We have seen that it exhibits anholonomy when X is cycled. Now there
are of course oscillatars in classical mechanics 100, so we should
likcwise expect thent 1o possess anhelonomy. lnstead of 12> we will
have the oscillator coordinate, and instead of > we will have the
oscillutor amplitude. The phuse will now represent an angle 0. This
may be literally an angle i space - as with @ wheel - or, more
commonly, an abstract angle variable [27) chosen o make e motion
usiform s phiase spiice - as with o swinging pendulum. Tnoan

adiabatienlly eycled svsteny the anholonomy shoukd show up as a shilt in

the tokal change of

,
Oy - 00y = [dr @ N () + AL
0 (4.4)

The first term is the dynamical angle change, which s the obvious
sencralization of @f Tor changing @ The sevond terms the geomelnce
angle shift, nos called Timay's anzie. OF conse for multinly-periodic
motion there is more than one angle, the nxunum (fully ntegrable
motion) being M: we shall denote the )'th ungle by 40,

By geometric arguments, Hannay found a formula [25] for A 8,
which has spawned a considerable amount of new classical phase-space
scometry [28-30% T reformulated Hannay's denvation, and showed [26]
how, in the semiclussical limit, A 0, is related 1o the guantum phase.
Here 1 will not repeat those arguments,but will instead outling a new,
general approach to the semiclassical linnt ol the 2-Term, developed last
year afier conversations with M Wilkinson. Ax well as reproducing
known results this gives a hint of what might happen in thc.
nonintegrable case, where the motion is chaotic rather than periodic,
and no angle variables exist,

We start with (e following formuta (intermediate between .21

andd 1.22):

V”(X):lmd/\«:nltln> (4.5)

Lo Tingd bl we dilTerentie the eigeneguaton tor 1)

(A, - >+ (1, - 1)idn > =0 (4.6)

wherg

I Y rd N N (1
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Thus
. ] .
Wae= lim———F——— ¥l -dINIn>
£ —i) - r n_ | L( H ) (4.8)

where £ is necessary to provide a lemporary resolution of the essential
ambiguity in <aldn>. Substituting into (4.5), and introducing an
integral representation for the first operator, we obtain {E}

Vo= dim ke [drexpl - @i d A< nl|(d Hy, = d £ jin>
c-a g (4.9)

in which (d/7) denotes the Heisenbers-evolved aperitor, namely

(d i) =sexpliihiny dit exp| — 1 Hif k)
0 4.1

The purpose of these dubious Tormad manipuliations was 1o get V
i tenms ol an expectation vidue, Now we can use the correspondence
principle: the classical fimit of the expectation <al A In> of any
observable A is the averave of the corresponding classical phasc-space
function A{Vover the manilold concsponding [31-33} 10 the state > .
Because bi> is u stationary state. the manifold must be invariant under
the dynansics. For an intcgrable system, it is a phase-space torus with
given quantized values of the actions f=(/;..._In). Foran ergodic
systern, the muanitold may be - at least in some averaged sense - the
whole cnergy s fuce wuh the encrey £,=Hix) of (he state. It mipht
also happea that the nunitold s a single closed orbit. Hencelorth we

denote such classical averages, which replace <nldtn> | by

SACY > Tl Aaoe (4.1

34

where a=(ary,an..) 18 aset of coordinales on the manifold with dea
mpvariant measure; the choice of @ will be discussed later.

We also need the classical counterpart of the operator (4.10). this
must incorporate the X-dependence of the classical manifolds. Let
xfr,a; X) (Fig.4.1) be the phase point at time ¢ on the orbil which stuis
at =0 from the point o with coardinales @ on the nunilold
paranciers X, Then corresponding to (4.10) we have (¢l 4.7)

() = H(x(na: X)X +dX) - H{x(t,a;X ) X)

t (4.123
The quantity di,, in (4.9) corresponds to the encrpy difference dF
between manifolds at X and X+dX.  This is the same for any pair of
points, one on cach manifold, and we choose points with the same @ and

~

{. Thus

di = H(u(naX +dX )X +dX )= H(x(t o X ) X) (413
Subltraciing, we obiain

(dH) -dE :——&—’d.r =p, dg, g, dp,

i ax (1.1.1)

where

dy, = vt a:X +dX)}-x(r,a X) CHES
Now, the coenttor d m {(4.9) conimutes witls the average (4.11)

Sevwee can b bow t foact on (40100
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(Iz\|((ll’1’)r S =g, A dg, =dg, ~-dp,

I

dp, ~dg, v dg, ~odpy

=(|(—|,df’,""”h (4.16)
The chassical limit ol the 2-form now becomes
v, h—-)xl Lh—n::)-fl'_ Re < Icl texpl — alh }ﬁ- dp, - dg, >
= - W(X)/h (4.17)
where the classical 2-fornt W(X) s casily Tound o be
W(X)=<dp a-dg> (4.1%)

The wedge A acts between the d's in X space, and the - acts between the
veetors poand g ‘There is no longer any time-dependence: dp and dg
refer to displacements linking points labeled aat X and X+dX, that is
WO X+dX) and w{0,a:X) (g, 4.1).

The result (4.18) has lwo impostant invariance propertics. TFirst
L), W s invariant under conviical ransformations of the phase-space
variables x, provided ihe transformation docs not involve the
narameters X. Second {E, not casy] W is invariant under arbitrary X-
dependent shilts of the manilold coordinites et ix, wnder the
chiange 1o coordinates

. -
a}. = rxj + I}.(X } (@.19)

“I'his latter invariance is (he classical analogue of the quantum gauge

mavarianee (2T

Because of the simple appesrance of (4.18), and these two
invarinnees, it scems it the result we ave Tound s sarely the correct
classical limit of the phase 2-form, But appearances can deceive, and in
fact (4.18) is a subtle and slippery formula whose meaning is proving
hird to extract,

Consider first the manifold correspending to ln> - We do not
know what this is in the general cne. The corespondence principle,
combined with the quantum adiabatic theoren, strongly suggests that the
manifold is labelled by the {(quantized) vilue of some classical adiabatic
mvariant, which is conserved as X varies slowly, However, no sueh
invariant is known for a general system, whose motion is neither
inteprable nor ergodic. For ergodic (e.g. cempleicly chaotie) systems
there is an adiabatic invariant, naumely [34] the phase space volume
within the energy surface H(x)=£. When quantized, this invariant yields
the Weyl rule §31] for the energy levels, which gives quite o good
scmiclassical deseription of the average behaviour of the .\];ccwum, But
the difficulty in an ergodic system is that there seems no sensible choice
of coordinates @ an the encrgy surface; this s necessary in order to be
able to associate phase points for different X and so give meaning 1o dp
and dlg.

No problems arise for integrable systems - the case considered by
Hannay, where motion is multiply periodic. Corresponding to ln> is a
phase-space torus, lubelled by the N action vanuabies |/, which are not
only invariant under the motion for fixed X but adiabatically conserved
when X changes stowly. And the nataral covrdinates «, labelling cach
torus with an invariant measure, are the N angalar variables
f = (UI...UN) conjugate to £, Theretore (the classieal 2otorm WiN) s

vivers wanthignously for this cose.
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Using semictassical analysis that T will not repeat here, s,
possible to show [26] that the J'th Hannay angle (¢f.4.4) corresponding

10 a circuit C is the tollowing flux through C:

.

20O = - LW
] 2l
J (1.2

We can expross this very siply interms of the quantui phase by
nating (4.17) wnd the fact thae forinteyrable systems stales are labelled
Ly N quantwn numbers = (ng oy}, one corresponding to cach action
1j » which is quantzed inunits of A The result is
d
88(0) = = 5o 7,00
j 4.2
After ali this abstraction, it is healthy 1o do a conerete caleulation.
I will illustraie the inner workings of (4.18) by cvaluating W (and 4 0)
for a edassical spin. This application was mentioned brietly i Flanmay's
paper [23] and worked out in dewail later [35]. Consider an angular
momentum vector § whaose dynanuies is determined by an cncrgy
function £(5 ) hrough the cqyuation ol molion
SV eI (4.22)
This conserves the fenath v =1SH s0 8 moves on the surface of asphere.
To make contact with our carhier analysis of guanunm spius, we
choose £7as o tancton of SR where B s o given vector whose
components (X YX) e the paramelcns, soon o be cycled. For fraed
R the compooeat of § along R is conserved {E]L Theretore the

mation is precession about & and § moves uniformly round a circle

KT

(fig.4.2) on i1s sphere. This motion can be described by the evolution of
an angle 0.

Now let B be slowly cycled. At the end of the cyele C, S is back
on its original circle, at a position shifted by a Hannay angle A €. These
assertions follow (rom the (act that (4.22) desceibes a Tamiltonian
system with one Ircedom, whose phase space 15 the S phere. Toxee

this, choose o Tived direction z i8S space and canomeal vigiables

13

l:m_i{ 5 ¥ AN }

azimuth ungle of polar coordmiies with axis z (4.23)

P80 g

|

Thus dg dp is the arce element on the § sphere. As Hannltonzan choose

the energy in g.p variables, e,

2 2 .
g, p) = E(\/S - pz Cos () S - pz S o, p) (424
Then FHamilten's cquations reproduce the dyninmics (4.22) (L}
Morcover m our case where Fis a function of §-R(r), the admbanically

conserved action variable is (]

f =500 r(t) (425

where ro1s the it vector KR T conlines § 1o L-torus onons
sphere: this is Just the cirele in Tig 4.2, and congugate 1o /s the angle
.

i wortl renvirkime that the anholonomy A0 nivolves o
bicrarchy of three levels of rotation: the spia (axis S1thie precesiens

(of § round the axis B, and e tiern (o B nound ()
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Now we caleulate W(RY from (4.18). We need

dpadg=dS, ad (I:m—j{ SylSch
IS, A (5,48, ~5,d5,)

Intraduce a univariad roue,v onthe B sphese. With these Tocal axes
(fig.4.3)

. .2 2 [ 2
S=lr+~vS -1"cosOu+ .S"vfzsinev (4.27)

Ihe aim now is 1o express <dp adg> intenns ol de and dv (and
ultimately in1enms of B through r = i ar),

it helps to choose mstantneous axes v,y.: along wvr i,

w (100N vy =0y 00D

(4.28)
Then '
du = du du.)
dy = (dv 0, dv,)}
dr=(-du., ~dv. .M (4.29)
Fronn (4.27) wah O lixed, we Tind
. 2 2
dS, == Tdu, +~ 8§ -1 sin0dvr,
Y 7
dS == ddv, + V8 -1 emt du,
- [ ol 2
dS. =V § -1 (cos @ du, +sinfdv,) (4.30)

Suhstituton o (4,26) and averazing over @ leads o (1)

(4.26)

A0
1 (2n
<clp;x:lq:‘-"ﬁn dtrdp g Fdusady, 4.31)
Reinstaling penceal axes gives the iesult
W=cdpadgr=-1dunr dv (4.32)

Apart from the factor -/ s the same as the 2-Torm (1.13)
that occurred in our carlier study of paraliel transport. Therefore we
can use (1.15) to give the monopeie formula, which (with d replaced by

VH}iS

W=~ R/J‘?3 (4.33)
For quantized actions /=afi this inunediaiely conlinms the correctness of
the relation (4.17), because it reproduces the quantum spin 2-form (3.8)
(here 4.17 is exact, rather than beme a semichissical approximation).
Feom (4.20), Hansay's anele s the Tlas thrbugh C ol unit

monopole, namely

AD = Q(C) (4.34)

This dynamical angle anholonemy s exactly the same as the geometric
anhiolonomy in the parallel tansport of o vector (ecture 1), We
encountered a similar ideniity in the optical hibre experiment (lecture 3)
an the duality between photon spin phase ashslonomy and the parallel
transport of finear polarization. A purcly mechunial ustration of the
duality is the Foucault pendiduni,

Tonagine fiest that the pendulumos rotaning comcally, with angutar
velocity @ Ceirealar polarization), rather than swinginyg te and fro
Clinear polarization’) as it usually does. Ouwr general classical spin
analysis can be applied, with the Tocal upward vertical -g - playing the

role ol the parameter K As o canih turnes, the vertical tms with il
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Alter o day {1=7 R has cycled, and the angle 0 of the conical pendulum
has increased by the solid angle
$2= 2 - sm{lunuade)) {4.35)
as well as the dynamical e/, This anholonomy is the same for both
senses & o of conical rotation.,
Now et the pendulum swing lincarly, and regurd this as the
superposition of two oppesile comeal rolations. I the bob swings inthe

xy (honzonul) plaoe, aod wonnnalty x0 polarized, we tave

at the start: & + 0y = expli ey + expl — | i),
te (v Ly )y = 2cos wr (1,0)
al the end: v+ 1y = eap{i £232cos wr,
Lo (v v = 2008 i (cos £2.81n £)
(4.30)

The etfeet of eyching s therelore to rotaie the direction ol swing by 2,
I other words the directon s pavallel-transporied. From the rotating
)

carth this appeans o sdow rofation ot o nile

) i'n S - sin{lantude)
Lo il voth

(1.0
(n Bristol this o TE7T wihour). A clever mechanical analogue of the
Foacaul pendulun, whose anholenomy can be seen withoud winting i
day, was developed by Kogler and Shieikiman {361,

It scomes that we huve come Tull circle inthese lectures, We
started with parallel transport onsphere, wid now once agiin wy
cacaunser poralfel traaspoit v a sphere. But as wath our other oycles,
the end ix subily different from the beginning. In ecture 1, paratied
transport was ntrodouced ax apurely mathemancal construcoon. Now
we find thar what was nuthematically naural is enlorced physically by

thes s o Noatre Gonhs vise Nesston's),

phase

space

fig 41
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l.ecture 5

Here | will deseribe three generalezatons ol quantnm adiabatic
anholonomy. ‘e first, from Wilczek amd Zee [ 374 allows the
transporied states o be degenerite. Consider i group of N
(orthonormal) stales Hix)> 12(x)> .. INEN ) >which are degencrale
for all X on C, with energy XD Such o situation usially arises wiicn
10X ) has some syrshelry. Becne ol the degeneray, adiabuically
evolving states 41> will not cling o mdividual members in> ol the
group. Al that can be caidd is that the 197> will remain superposition
ol members of e group, (e, there will he no frasisibions 10 stales
outside the group) so that the adinbatic ansatz gencealizing (2.2), 18

L X
Ly > = exp] - [0t ECX N | Tl X (0)>
' (5.1}

“I'o Finl the evolution of the coc [Tciens dy (). 1115 DCCessiry 1o
use the Sehrddinger equation. The cesull is that the Tinal superposition
is the resubt of a unitary matrix actng on the initial supempasition:

N ,
1= L Uk ) 0,00 52

where (1F)

Uk O = Perpl il (5.3)

i, wliich P odenotes path-ordernng and Agpn(=aA Ty 1 e I Termitian
pattix b-form

A=< uldm > (59

i
This generalises ouy previeus case, where N=1 and s aunt

comples numibier whose phase s 500 Pven when A -4 abean
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appen. exceptionally, it Apgy, is chagonal; then the constipent sttes
cemiiin uncospled and so acquire separite geomelig phases Yl ) just
as though they were noen-degenciaic, This occurs i the optical hibre
experiment (lectuge 3), because the change in one helicity state, induced
by change in the fibre direction, hus no overlap with the other {E}

Usually, though, Agm(X) 15 not diagonal, and the Ay Wt
dilterent X do not commnite, o vopAbelon” propery ot makes il
mposaible 1o write U as the Tlux o anything simple. But it causes the
final coelficients ay to have different amplitudes as wellas phases. n
other words, the populations of degencrate levels can change, without
any transitions involving the absorption or ennission of energy. Scgert
[38] has proposed an interesting spectroscopie expernment, involving
cycling the direction of parallel clectric and magncetic ficlds whose
magnitudes are tuned so as (0 make an atomic level degenerate (by
cancellation of Stark and Zeeman shifts). N

The seeond generalization, Trom Ahatonov ad Anandan (391,
provides a sciting in which the geometric phase can appearn cvolutions
Uit are nob adiabatic. Let F(T) be chosen to make the stale (e} >

retuin exactly, apart from a phase, ic.

< O w(T) > =1 (5.5)
Such ‘cyclic cvolution' can be made 1o Ut mE Nty sy 139], cven
with an 1 that does net change at 1l

10 witl usually be the case that Tyge)> s not i aigeinsbiic ol 1.
Nevettheless, it is pussible to delie the dynamical phase s 1he integril
of the nstanlangous cxpectation value ol 41 ihis can be tactored out by
detining (ef 22

f
I gets) > c'xp{ - i,(df’ < v,uu')I HC (e Yy il a(n >

r.
0 ! {5.M



As in our carlicr examples. the anholonomy of 19> is determined by the
Sehrddinger cquation, which again yives exactly [15] the paraliel-

tansport baw (ol 2,43
< ¢pig>=1 (57

The anbiolonamy -t is, the peonmietae phase - s convenienlly
calculided o rcons o sy Dose state Dz than comendes wath g up
1o phase but ooamglevalucd round © Thus g plays the same role as
the singlevalucd cigenstale bz nnhe adiabatic theary, and leads 1o the

saine result as belore {of, 1203 nanely

Ly (1) > = :_'\;r{ - ,:j"m' < oyl WHG Y p Y s T+ O w) >
(5.8)

where
N = -l aﬁm (e (5.9)

Note that i this tonmulation there s no parameter space, The
cirenit Casothe Ailber space ol sates without phase. Sometimes this
is catled ray space. or density -t space. or projective Hilbert space.
I dudTers Tron the tall Philbert space ol ald staes Ty by regarding as
identical any ~nex dilfering by complex scalar multipliers.

Alaronoy and Anandan’s theory is both richer and poorer than
the adiabatic theory B nicher inthe sense that the adiabatic theory is
a special case. where the base states 1 are the #'th cigenstates of o
family of Hamsltonins Tahelled by parameters Xo Thos parameter space
is a submanitold of projective Hilhert space. However, in applications
{c.g. Bom-Oppenheimer itheory) paameters accor waturally, and can

lave wricher veamietey (cfothe 2-foim and s singelarities
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degeneracics, and the geodesics generated by the metric 2.17) than the
big 1lilbent space - just as geometry on a curved surface can be richer
than the geometry of the Euclidian 3-space in which it Tives. Morcover,
in the adiabatic framework, where the Hamilionian is cycled exactly and
states follow s best they can, there is a hicrarchy of corrections 1o the
geomeltric phase, of higher order in the adiabaticity parameter, which
reveal F1] additicnal eich anholonomy (of Familtonians obtained by
successive transformations 1o moving frmes).

The third generalization, from Gaerison and Wiight [40],
removes the restriction to unitary evolution, Constder a vector ' (1)
driven by a first order differential equation with & general time-
dependent operator. For convenicnce we can still write this in
‘Schrodinger’ form, but H{X) is now nol a Hamiltoniun but an arbitrary
and usualty non-Ilermitian operator, with cigenvialues £,(X), possibly

.
complex, corresponding 1o which are left cigenvectors <I{X} as well
as right eigenvectors InfX)> |, chosen singievalued on and within the
circuit Cin X space.

The catculation uf adiabatic anholonomy 1s almaost the same as

belfore. We make the adiabanc ansatz (ef 2.2 and 1,18).

ol
19 (1) > = eapd = T 0r B XN+ w0 P x () > (5.10)

with the expectation that now Hr), and its value at r=T which is the

anholonomy, will be complex. A simple argument {E] gives

< hldu >

YH(Q = IJ) e ————

< fmlu > (5011
To conclude, here is aninteiesting applicaton of the
nontlermitian theary, b the semiciassical asymiptalics el the time-

fedependeny Schosdieser cquatoon, there occu phose sbiles ob e
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WK B-Maslov type |31, appearing as multiples of 72 in quantization
conditions and seflection awmplitades. People luve olten wondered
whether these phases can be sterpreted as anholonomy. Long ago.
Voros gave one such micrpeetation in his thesis [41], and Littlecjohn {42]
has recently published a similar argument. Here L give a different
interpretation, achicved alter a conversation wiih A.Shapere.,

A guantum particle wath mass e and energy W, moving along a
fine in a polential V(x), sulisfics

2

2 7z
dz u(z )+ ———2-1:(2 y=0

h (5.12)

LT

involving the ¢lassical momentum

2
Poezy=2m(W - V(@) 5.4
We write 7 rather than ¥ because we winl 1o conlinue the wavelunclion

i into the complex plane,

Define the two-component ‘spinor’ state veeior

|y _ 1 2} ]
CREG S PR (5.14)

Then (5.12) is cquivalent to e "Schridinger’ evolution

Q
YWiiz)>

LY > = 5
Vi { _ ii’j( 3 0 (S.IS)

The Hamiltonian' w1 this equation is not Hermitian, even on the real axis

c=x, although its cigenvalues

K2y =2 ) (5.16)

are redl in classically allowed regions of the real axis. The cigensiates
it(2y>, and their duads <& teorresponding o forward () and
buckward (+) travelling WKB wives i allowed regions), wie (12}
Ii(:)>=(~l } SEN= (L)
+1P0:2) - -

<

(5.17)

Degencracics (K =10} correspond w elassical termng points, which
are read or complex vzerox ol WaVo) o D thie usual case ol simple
zeros, these are branch points of P'1z) and hence of the spectrum £7(2)

and the cigenveclons,

s casy {12) 10 show that

< Tt > FE i(
i~ =i = (e P(2))
< ¥ a4 (5.18)
Thus the anholonomy (5.0 1) associed with o complex C can be written

as the contour integrul

naO

H

H}n : (log Py

\]

,
- r?(- % (numiber of zetos of £27( 2} nside ©) (5.19)

{If the wming points are not simple, they must be counted with their
mu!liplicily.)' Note that ¥ is real, that is the anhelonomy takes the form
of a phase shilt, in spite of /{ being nonklermitian.

The two-state Tormsatism based on (5.15) bears a superlicial
resemblance 1o the spin-1/2 problem cansidered in Lecture 3, but its
nonunitarily is responsible for two important differences. Ifirst, the
geometrie phase is the same for the two states 1+> and I-> in contrast (o
spin whiere the n=11/2 have opposite phases (el 3.9). Second, the phasce
associated with i planae cirenit ol o degeacracy is ®/72 ather than

This is becatise degeneracies are b painis Tor nonklenmitian
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operators, und dinbolicat poinis ([431, expecially the final rentarks) for
Lermitian ones.

An immediate application is to oxscilfarors {c.g. harmonic, which
have two real uming points bounding a classically atlowed region. For
i circuit of this region enclosing both branch points, the stales rclum,‘

with phase shilts {dynamical plus geanetric)

-1

LT VYRR
PP (5.20)
Single-valucdness ol w {or 1'% wequares that thas phase be 2er Thus we

reproduce the wellb-known quantization condition

$rdz=(n+ U h (5.21)

with the hall-mieger appearing as s consequenge of the nontiennitian
;eomelric phase. In this fomulation the "1/2° is the combined cffect of
the branch peints - as though the oscrtlator were o composite of two
particles with span 14 ce alt-Femuons |46
Another application is te the ampliade for reflection above
barrier, Ax iswell known {44] s process is clussically forbidden, ang
the reBlection dumnishes exponennally as & -2 00 This is becanse there
are no real turming points und we have 1o take C around the nearest
complex one, al z*, say. Afler the circuit of this branch point, I has
changed sign {c 5.16) and 5.17) and so [+> changes into I-> (and vice
versa), physically this mcans the transformation of an incoming wave
into a reflected wave. We nniediuely wientify the reflection aniplitude
p= - cxp{ 2 ._j'l’d:/h lt
U [

where 2, sl point onahe real axes Drom which the phase of the

(5.22)

incident and retlected waves s recheacd "This s exponentially small

Because the niegal in the expenentod - the dyvnanieal “phase’ - s oio fact
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not a phase because it has a positive imaginary part. The phise Fiector -i
is a consequence of nonliennitian anholonomy.

Of ¢ourse these one-dimensional semiclassical turing-potnt
problems have been solved long ago by other meuns (44]. Qur main
resubt {5.19) is just a fancy way of dealing with the multivaluedness of
the amplitude factor 272 in the WKB solutions of (5.12).
Nevenheless, it is pleasant o discover how casily and naturaliy these
phases appear, without any sign ambiguitics, when inerpreted as

anholonomy.
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