r'" INTERSNATIUNAL ATOMIC ENERGY AGEINOY | g
i % \ LinITED NATIONS EDLCATIONAL, SCIENTIFIC AND CULTURAL ORGANIS aTION m
i ERNATIONAL FOR THEORETICAL PHYSICS

lu INT CENTRE

L.CTP. P.O. BOX 586, 34100 TRIESTE, ITALY, Castt CENTRATOM TRIESTE

g% The United Nations
o> University

SMR/748 - 2

ICTP-INFN-UNU-MICROPROCESSOR LABORATORY
THIRD COURSE ON BASIC VI.SI DESIGN TECHNIQUES
2 November - 16 December 1994

LOGICAL DESIGN

Magali ESTRADA
Facultad de Fislca
Universidad de La Habana
San Lazaro y L - Vedado
C.P. 10400
Havana
CUBA

These are preliminary lecture notes, intended only for distribution to participants.

’ ~ o ~man ey

AL T ALNTOY Ammrar o (i Macinn Vi Gaumann 9 T 224241 Tawmax 224531 Tasx 460449

™

LOGICAL DESIGN

1.- GENERAL CONCEPTS
1.1.— High-level deeign; Top—down and structural deaign
1.2.- Logic constants and variables, | logic operators and
logic primary elements.
1.3.- Truth tables, and logic eguationpb.
2_- BLEMENTS OF BOOLEAN ALGEBRA
2.1.- Properties of operators
2.2 .- Fundamental relations
2.3.- Rules for manipulation
2.4 _- Karnaugh maps
3.- REALIZING LOGIC IN HARDWARE
3.1.~ HW representation of logic constants; logic equationa
A.2_.— Mixed logic: its representation and theory;
analyveis and synthesis.
3.3.-Common bulilding blocks
3.3.1.- Combinational blocks
3.3.2.- Sequential blocks
4_- DESIGN METHODS
4.1.- Main steps
4.2 _~ Notation for expreseing abatract' algorithms
4.3.- Traditional synthesis from an ASM chart
4.3.1.~ Traditional method
4.3.2.- Multiplexer controller methbd
4.3.3.- Gne-hot method
4.3.4.- ROM-based method

1 .- GENERAL CONCEPTS
1.1- High-level design; Top-down and strucitural design

The design methods of complex digital syatbmﬂ, have been object

of intensive development through the last | decade. At present,

they are based on a well-define set of techniques, and described

by such concepts as: high-level, top-down and structured.

Top-down design: is used to express that the design start with
the specification of the complete object
of design in a compact form { global

representation of the aystem) .

Thie global representation at the top level is subsequently
divided into sub-unitas. Each sub-unit and their inter—
connections, muet be describe in more detail, and once again
subdivided into new sub units. This process will continue until

the system is completely specified to itas very finest details.

This structured or hierarchical (by levele), top to down
conception of a system, provides an organization that permits
its implementation or deacription by meansa of well-established
programming techniques, the automation of the designing process,
including synthesis, analysis, feedback and testing of the re-
sults. This feedback permits to incorporate bottom-up technical

information, for the adjustment of critical parameters.

The High-level design: incorporates both the top—down plus the
bottom-up designs, and provides design
capture, high-level and gate-level
gimulation, synthesis, verification of
gate-level logic, generation of test

vectors, among others.

The High-level design methodology requirea:
abstraction- to conceive a global and then enter into
its details;
formalism - to have the rules and procedures for
working at each level;

concepts - 80 that everybody can understand the other;

It conaiats of a hierarchical structure of levels. The lower 4

levels are well defined and recognized in all publications on

this subject. The upper levels are still in debate, and their

quantity, as well as their denominations and definitions wvary

from one author to another. Without loosing in generality, we

will congsider for our analysis, that the design process consists

of 6 levels of abstraction, shown in Fig. 1.1.

Level Structural
primitives
aystemn CPU, memories,ports
chip processors, memories

{RT level) ports, etc

registers registers, counters,
AIU, flip—flope, com-

binational logic, etc.

gates gates, flip-flops,
adders, mu:ltiplexers,

counters, decoders, etc.

behavioral
representation

performance specifications

1/0 remsponse, algorithm,
macro-operationsa, RT Language

Truth tables,
state tables

Boolean equations

circuit transistors, capacitors, Differential equations
etc.

silicaon topology -

Fig. 1.1

Each level of abstraction can be described by meana of:

a.— A structured domain : when a component is described in terms

of an

interconnection of more

primitive components.

b.- A behavioral domain: when a component is described by
defining its input/output response,
using a given procedure.

One can represent a deaign at any of these levelas. The lower

levele are closer to the physical implementation, and it tis

intended for the designers to have little to do with them. Their
influence on the design ia included in the models for

gimulations for a given technology and firm..

For many years, the gate and register levels were the main
levels for ASIC designeras. At the gate level, AND, OR, and
inverters are the elementary blocks used. Their interconnection
give rise to more complex combinational and gequential
functional blocks like XORs, COINCIDENCE, flip-flops, counters,
adders, etc. Within this level of abetraction, we can create
more complex blockse which we describe structurally as the
interconnection of more primitive blocks, but no matter how
complex we make these blocks, while we stand at this level, we
will describe their behavior by means of the Boolean algebra. In
this case, the creation of more complex blocks give rise to a
hierarchy by complexity and a degree of nesting inside the
level, which should not be confused with the above definition of
hierarchical or structured levels into which we divided the
design procees.

At the reglster level, the main blocks are registers, counters,
multiplexers, etc., which can also be uased at the gate level,
but their behavioral i1s expressed at this level by means of
truth tables, and atate tablea. The gate and register levels are
tightly related to the HW implementation.

For the chip level, the satructural primitives, (microprocessor,

memories, ports, controllers, etc.) are still more complex blocks,

which are described by single model entities not represented by
the interconnection of more simple primitives, but by the

-

s "

ey -

procedure they executed (through data flow, ASM, RT
Language). For example, an 1I/0 port will not be described as the
interconnection of registers and counters, t as the algorithm
the device executes. This level is also called Register Transfer
Level. It tells not only the “"what”" of the Heaign. but also in a
good deal the “how”, but has the aﬂvantaga of being
technology-independent .

In the system level, again the functional blocks can be some of
the onea found at the chip layer, or otharq more complex. The
main difference lays again in the fdrm the behavioral
description is made. In this caese the @pystem is described
through ite performance. For example, the ﬁehavioral content at
this level describes the MIP ratio of a proceesor, or the
bandwidth in bits per second of a data path. This level =says
only what a design is eupposed to do functionally. The
expreasion of the behavior of components at this level are
called behavicral description. Since the béhavioral synthesis im
s8till emerging. not all the high-level CAD systems include 1t.
This means that in many casee the transformation of the
behavioral description into the RTL has to be done manually.

(Be careful not to confuse the behavioral representation in
Fig. 1.1, with the term “behavioral descriqtion" related to the
system level.} i

The expreassion of the behavior of componente at each level may
be pictorial or textual form. Block diagra@ﬂ, timing dliagrams,
state diagrams and truth tables are éonsidered pictorial
representationa, while equations, natural languages, or
specialized languages are considered teitual. For the last
years, the introduction of a hardware descfiption languages for
high level programming, specially construcﬁed for describing and
modeling hardware, has become the Ekey for incrementing the
productivity of designers, aa well as the certainty that the
asystem will function correctly. Cne of this language is called

VHDL [Very High Speed (VHSIC) Hardware Description Languagel].

The process of creating a physical realization of a logic,
atarting from its description is called synthesis, while
analysis is the inverse process of obtaining the logic
expressions that describe a given circuit from its physical
representation. At each level, the representation is transformed
to the representation of the next level. Thia process will be
called synthesis step. The design procees consists of the
following tranaformations (synthesis steps):
1.- Transformation from a language representation, +to an
algorithmic representation (language synthesis);
2.~ Translation from an algorithmic representation to a data
flow or a gate level representation (algorithmic
aynthesis);
3.~ Translation from data flow representation to a structural
logic gate representation (logic mynthesis); at the same
time the behavioral domain tranaforms into a structural
domain;
4.- Transelation from a logic gate representation to layout
representation (layout syntheais);

In Appendix 1, 2 and 3, we show the basic stepa of traditional
and high-level design, for comparison.

The design cycle steps can be carried out automatically in all
the stages. Nevertheleas a design engineer must know in some
degree what is done at each step in order to “help” the
designing tools, and at one of the levels, he must specify what
the object of design must do.

In order to be able to do this, he must have the necessary
knowledge of logic design. The next classes will be dedicated

to review some general concepts and rules of logic design.

1.2.- Logic constants and variables, logical operators and logic

primary elements.

The state of a logical statement, is described by one of two
possible values or conditions: it can be true or false.

The logic constants define the condition or state of a given
logical statement. If we want to describe that the radio i=s
working., we can use the variable RA for representing the phrase
*the radioc is working”, and a constant TRUE to specify that it
is working, or FALSE, to specify that it is not working.

For example:

TRUE

FALSE

RA
or RA

If we want that if both, the radio AND the television are
working, some action is to be executed, we can verify 1if this
condition is TRUE, in order to execute the predetermined action.
In a similar way, if we want to do something when either the
radioc OR the television is working, we can verify if the given
condition is TRUE. The function of the element "NOT", is to
negate a statement. For example, Mary arrived is converted to
Mary did NOT arrive.

The different condlitions to verify can be implemesnted starting
from these three logic primary elements: NOT, AND, OR.

In addition, two more functions will be included in cur set of
basic building blocks; they will represent the concepte of
“different” (RXCLUSIVE OR, EOR, XOR), and “"same"” (COINCIDENCE
or EQUIVALENCE). The first is true only if its 2 inputs have
different logical values, whlle the second is true only when
both inputs are the same { both are true or are false).

Rach of this actiona is represented by means of an OPERATOR.

There are several ways of representing these operators. We will

use the following notation:

NOT RA = RA
BAND C =B x C
AORB =A+B

EXCLUSIVE OR (XOR) A B = A * B+ A ¥ B

COINCIDENCE Ac B=- A *B+ A % B

In order to implement these logical operatione in HW, there is a
logic primary element corresponding to each of these operators.

1.3 Truth tables and logic equations

They are three forms of representing the expected logical values
of a function for different conditions of the input variables:
the TRUTH TABLES (or EXCITATION TABLES), LOGICAL VECTORS and
the LOGICAL EQUATIONS.

The truth tables (TT), describe the expected values of a
function in a tabular form, for different conditions at the

canonical” (atandard), if the rows
n

are represented in binary notation (number of rows = 2),

input. They are said to be

starting from all zeros, and incrementing each by one, for

example:

-

18

where A and B are the input variables and W the function
described.

The logical wvectors (LV), indicate tﬂe variables of the
function, and at the right in parentheads are Iindicated the
values of the function for each row, separated by commas. For

example:

W{(A,B) = (0,0,1,0) is the logical vector of the above truth
table.

The logical equation (LE) describes thrnujh the Boolean algebra,
how function W depends on A and B, in thid case:

2.- ELEMENTS OF BOOLEAN ALGEBRA

2.1.-Properties of operators:

COMMUTE A+B=B+A
ASSOCIATE A+ {(B+C)=(A+B)+C
DISTRIBUTE A x (B + C) = (AXB)+({A%C)

A+(BxC) = (A+B)*(A+C)
The operations are toc be executed in the following order:

First NOT, then XOR and COINCIDENCE, then AND and then OR

Parentheses override the normal hierarchy
The expressions can be written aa:
1) SUM OF PRODUCTS

Y = AX¥B + BxC
X=-A+RH

2) PRODUCTS OF SUM
Y = (A+B) % (B+C)
X= AxB

2.2_- FUNDAMENTAL RELATIORS

For sums of products For products of sums

A+ F = A

A+T=T AxT = A
A+ A=A A¥F = F
A+A=T A*A = A
A+B=-AXB A*A = F

A +B+C-Ax*XBxC AXB = A + B

AXBAC = A+B+C

The last two expressions result in the principle of duality, or
the Morgan e Law. These relations are very important from the
designing point of view, permit the conversion of AND elements,
to ORs, and vice versa.
Other identities used in simplifications are:

Ax(A+B) = A A+A¥RB = A

Ax(A+B) = AxB A+AxB = A + B
A*B + A*B = B

2.3.- Rules for manipulation

There are several simple rules to obtain the logical egquations
for a function represented in form of a TRUTH TABLE (TT). For
example:

a) To derive a logical equation in the form of SUM OF PRODUCTS,
for a function represented in a canonical TT, write the OR of

N

the MINTERMS for which the function is TRUE.
A MINTERM is a canonical product term with all variables on it. ROW J K L Y

n
For n variables, there ars 2 possible MINTEKRMS m , where i s = 777777 = == ===~ =——=-—
i
the row for which it is TRUE.

b) To derive a SUM OF PRODUCTS form for the complement of a
function, write the OR of the MINTERMS for which the function is
FALSE.

Due to terms 2 and 4
due to term
due to term

d
c)To derive a PRODUCT OF SUMS of a function from a canonical TT, ue to term

write the AND (product) of the oppoaite of each MAXTERM for
which the function is FALSE.

A MAXTERM is the term that contains one occurrence of every
variable_If all the terms of a PRODUCT-OF SUMS are MAXTERMS, the

product-of-sume is canonical.

o I+ T & B N % B S B]
i R = T = B o R
H o= QD D0
B OO RO = Q
H A A3 A A = = =

N

dua to term

|
1
t

For the PRODUCT-OF SUM, each sum will assure a falae expreasion

whenever all its variables are the opposite of the form in the
term.

d) To derive a product-of-sums of the complement of a function
In the example below, the second term is not canonical, 8o it

from a canonical TT, write the AND of the opposite of each
will yield two FALSE rows:

MAXTERM for which the function is TRUE.

Similar rules can be used to obtain TT from logical equations. G=(A+B+C)*(A+B)*x(A+B+C)
For the SUM-OF-PRODUCTS, a MINTERM will yield one row with an
ocutput TRUE. A product term with fewer variables yields more ROW A B C G

TRUE rows, since it is true for any value of the missing

variable. Y 0 0 01

1 0O 0 1 1
—— — 2 0O 1 0 1

For example, the equation Y= J*E+J¥KX[+J*¥K*[+K*L will produce 2 0 1 1 1

the following canonical TT:
4 1 0 0 0 Due to terms 1 and 2
5 i 0 1 0 due to term 2
[1 1 0 1
7 1 1 1 0 due to term 3

11

=

18

ry ™

g) Another procedure:

. Condenaing a TT when both values of the logic constant at one

jnput produce the same output.

2.4 .- Karnaugh maps

It is another form of representing a tru?h table, specially
useful for simplifying Boolean equations. They are easy to use,
when dealing with 4 or less variables. They are also useful if

you have to prevent the presence of glitches.

How to convert a truth table intc its Karna?gh map:

|
1 .- Each sgquare in the EK-map corresponds Fo a row of a truth

table; each combination of variables identifies a sgquare in the

map-

2 _ The first and second variables (if more than two) are the
iabelas for the horizontal agquares. The second variable { if only
two) or the third an fourth (if more than 2), are the labels

for the vertical squares.

3.~ Each square contains the value ;of the function Yi
corresponding to the appropriate truth tab]e row, as specified
by the labels on the edges of the K-map.

4.- The order of the labels are 8o, that when moving from
pquare to square across a row (or column), the value of only

one variable changes at a time.

For example:

13

A B C D Y \AB, 00,01 11 10
————————————————— D
YO 00 [YO| Y4 Y12| Y10

Y2 01 |Y1| Y5 Y13, Y11

Y4 11 |Y3| Y7(Y15| Y9

Y8 10 [Y2| Y8| Y14 YB

Y8

Y10
Yi1
Y12
Y13
Y14
Y15

B R R e e 00 000000

H R = = 0 0 00 k=R OOCOO

[= T = T R i o R R = B = B = = B =

- O R O+ QO QRO HO RO~ O
3

To write a logic equation from a K-map, each isclated 1 produces
one of the product minterms of the sum of products. If there are
adjacentes ones, simplification is possible.

How to gimplify with K-mapsa:

1) Draw circles among adjacent ones. You can have one, two,
four, eight,... ones.

- Circling two ones, causes two canonical terms to collapsae
in one term:; the variable that changes, when passing from one to
the adjacent “one", drops out.

—Circling four ones, causes four terms into one eliminating
the two variables that change.

~Circling eigth ones, causes eigth terms into one,

eliminating the three variables that change.

Some examples are shown in Fig. 2.1

14

3.- REALIZING LOGIC IN HARDWARE

3.1. HW representation of logic constants;logic conventions.

In order to use the logical relationships mentioned above, it is
necessary to find a physical way of implementing the fundamental
logic constants TRUE and FALSE.

The simplest way to represent these constants is by means of a
gwitch that can be in one of two states, closed or open. In
digital electronic circuits, these logic constants are usually
represented through the parameter "VOLTAGE". By assigning one or
two predetermined levels, you can represent that if the voltage
is greater than the higher level, one of the logic states ia
represented. If it is leas than the lower level, the other logic

constant can be represented.

For example, the well known TTL (Tranasistor-transistor logie)
of the T4LS family of standard digital circuits produces two
voltage levela: < 0.5V for the low level (L or logic 0) , and >
2,7 V for the high level (H or logic 1).

The CMOS circuita of the family 74HC, for a 5 V power supply,
produce the levels: < 0.9 V for the low level and > than 3.15 V
for the high level.

Any of these levels can be associated to the TRUE or FALSE. The
digital circuits mentioned, as well as some others, are called
standard digital circuits, 8Bince they are used for general
purposes, to bulld more complex blocka. They are based on
elemental circuits, named “gates”, that perform the basic
logical functions NOT, AND, OR described in chapter 2.

These gates, are alsc used as elemsntal blocks for designing the
Application Specific Integrated Circuits, (ASIC), so0 we will

15

analyze in more detail how to work with them. They are part of
the vendors library, as well as other more complex gatea and

functional blocks, which can be prepared on their baais.

The two logic levels can be represented in two ways by the

voltage levels:

When TRUE is always associated to the High level, the logic is
called positive. If TRUE is associated to the LOW 1level, the
logic ie called negative. When one of theae relationshipe is
used consistently throughout a complete design, it is said that
the design uses the positive-logic convention, or the
negative-logic convention. If both the posmitive and negative
convention are used at different parts of the same design, it is

gaid that the mixed-logic convention is used.

3.2.- Mixed logic: its representation and theory; analysis and

synthesis.

First of all we will show how these elemental blocka (gates),
are represented. This notation is necessary to deecribe the
circuits employed in digital applications. They are used during
the design and documentation. Although at present., some
different notations are used for the same purpose, we will use
the mixed logic representation, since it is quite adequate for
incorporating in design tools. This notation fulfilla the

following requirements:

1) It represents the Boolean expressions in AND, OR and NOT
form, which is the natural way we develop our logic.

2) The correspondence between a logical value (TRUE or FALSE)
and its voltage implementation (H or L should be evident

everywhere in the circuit diagram).
3) The notation should clearly identify sach physical device

in the circuit.

10

ETd

P

The mixed logic notation was first published by [Kintner, P.M_,
Computer Design, August 1971, pp 55), although the technique is

somewhat older.

The symbols in Fig. 3.1 are used for the basic operations NOT,
AND, OR, EXCLUSIVE, COINCIDENCE.

Inputs to the symbolas are connected to the |left, and outputs, to
the right.

For example the notation in Fig. 3.2 a and b will represent the
logic equations Z = X * PDQ and XYZ = A + B.

It must be noticed that each graphic symbol implies a physical
device that performs a logic operation.

When T = L, we represent it by a emall circle on the
corresponding terminal of the logic Bymbolf The absence of a
small circle means that T = H at that point. It is important to
remark that in the mixed logic notation, 'the circles DO NOT
CHANGE the logic operation.

Since we know the truth table (given by tﬁe symbol ‘s shape) and
the voltage representation of the truth on !sach input and output
(by the presence or absence of circles),? we can immediately
write down the voltage table for any symboi. Then refarring to a
data book for integrated circuits or library parts, we can
identify the device.

If a signal has T = L, we will append a teqminal .L to the logic

variable s name.

If a Bignal hae T = H, we will append a terminal _H to the logic

variable s name.

17

In Fig. 3.3, there are 4 poassible choicea for the representation
of the voltage at the input and ocutput of this functional gate
representing an identity. In this case it is an evident result.
It is interesting to notice that in case T= H at the input and T
= L at the output, the identity function is realized by means of
a voltage inverter, represented by the triangle with a single

circuit at the input or output.

In the case of Fig. 3.4 we must consider that the logical NOT
implies that the input variable MUST BE INVERTED. Care must be
taken to notice that, since the saymbol for the logical NOT
includes a circle at the output, when the voltage repreaentation

at the cutput is H, a complementary circle must be included.

Similarly, if the True at the input is low, a circle at the
input must be incorporated. Also, since the operation converts a
T in F, if we define that T- H at the output, the implementation
of the voltage relationship that, if the input is T the output
is F, is indicated only by a voltage inverter; if the T value
at the output is L, then the T at the input is H and the F at
the output is H alaco, so the logic inverter is implemented by a

wire and no voltage inverter is required.

This interesting feature of the mixed logic representation
implies that, while positive or negative logicians have only one
way to implement a logical NOT (through the logical NOT), the
mixed logician has 4, two using a piece of hardware, and two

just using a wire that connects input with output.
Since a logical NOT can be generated without a device, the mixed
logic notation requires for a symbol to indicate logical

inversion. This is made by means of a alash.

Something similar is obtained for the logical AND, Fig. 3.5,

18

and for the logical OR, Fig. 3.8. In the last two, the number of
possible symbols that repregent the same truth table is 8.

It will be important to determine to which physical devicee they
are associated. For example the first and second representations
of the AND in Fig. 3.5 can be implemented by means of a AND and
NAND physical device respectively, while the last twe by wmeans
of the NOR and OR phyaical devices. This is a very important
feature of the mixed logic representation.

In general a Boolean function of two input variables may have 16
different output functions, some of which we have already dealt
with.Its TT is the following:

AB ZO Z1 Z2 Z3 Z4 25 26 Z7 Z8 Z9 Z10 Z11 Z12 213 Z14 Z15

FF F F F F F F F P T T T T T T T T
FT F F F F T TTTPFF F ¥ T T T T
TF ¥F FP T TP F¥F F TTVFUPF T T F F T T
TT F T FTTFTFTFT F T F T F T

The outputs execute the following functiona:

Z0 = F
Zl = A AND B
Z2 = NOT (A IMPLIES B)

Z3 = A

Z4 = NOT (B IMPLIES A)
Zh = B

Z8 = A XOR B

ZT = AOR B

Z8 = NOT(A OR B)

Z9 = A COINCIDENCE B

19

Z10 = NOT B

Zil1 = B IMPLIES A (If B =T output = A)
Z12 = ROT A

Z13 = A IMPLIES B

Z14 = NOT(A AND B)

Zi5 =T

Enowing this generalize truth table for two input functions, it
is pomsible to determine new possibilities for the different
physical devices to implement mixed-logical functions. For
example, in the case of the physical NAND gates, they can
implement the mixed logic representations shown in Fig. 3.7.
Something similar occurs with the rest of the physical devices.
It ia this characteristic of the mixed logic convention that
provides its main advantage of presenting the logic in a way
that allows the reader to retrieve the designer s original

expression.
For analyzing a logical expression from a circuit you must:

1.~ Ignore circles and inverteras, since they perform no logic
by themselvesa);

2.- interpret the slash as logical NOT, and the others AND,
OR, XOR and COINCIDENCE symbols as the logical operations they
implement, and derive the logic expression from the diagram.
For the example, the resulting logic equation from analyzing the
circuit in Fig. 3.8 is:

Y=AxB+{(C+D)

As you see, the process of synthesis, that is the creation of a
physical realization of a logic, starting from its description;
and the analysis, consisting in obtaining the logical expression
that describe a given circuit from ite physical representation,

are gquite adequately implemented using the mixed logic notation.

20

-

For comparison, let us analyze a similar process when using
positive-logic convention. In this case the T = H and the F = L
everywhere. The symbols are fixed to a tru#h table, that means
that each symbol corresponde only to one truth table. In Fig.
3.9 are shown the examples for the NAND, inverted-input HNOR,
inverted-input AND, NOR; AND,NOR, inverted-input NAND, and OR,
implementing the 4 of the B different truth tables for the AND
and the OR in the mixed logic. In this loglic, the emall circles
do represent the logical inversion operatipn_

How can a mixed logician read a pos@tive logie circuit?

Transform graphically, the positive—logic #onvention into mixed
logic. To do this, append .H to the positiﬁe logle inpute and
output. Replace the negated input or oﬁtput by non-negated
mixed-logic forms. When the circles do not match at the ends of
a line, insert a slash to emphasize the Fmplied logical NOT.
Where a gate is surrounded by salashes, you may simplify the
solution by altering the AND and OR Tgate eymbol to its
mixed-logic OR and AND counterpart. This ip an application of De
Morgan“s law, and on the diagram the resulf is an inveraion of
circles and a change of the logic symbol to ite dual. The circile
inversions require rectification of the Elashes on the gate

input and output lines, leading to a Bimplpr circuit.

3.3 Common building blocks
|

Logic theory shows that all digital operations may be reduced to
elementary logic functions, but in this CQBB, a complex digital
aystem had tu be treated as a huge collectiion of AND, OR and NOT
gates, very difficult to understand. A |SW analogy would be
comparable to programming only in binary machine language. The
concept of structured design allows the use of commonly used
blocks, inserted in the available library as basic elements, but

21

which are constructed on the bases of the already studied
elementary gates. These blocks are at least one level of

abstraction higher than the elementary gates.

Among the common operations to be performed when designing, we
have the followings:

a) movement of data from one part of the system to another;

b) selection of the given data from several possible;

c) routing data from a source to one or several destinations;

d) transformation of the data from one representation to
another;

e) comparing data arithmetically with another data;

f) manipulation of the data, arithmetically or logically, for

example, the sum of two binary numbers;

The building of these blocks, allows us to suppress much

irrelevant detail and design at a higher level.
3.3.1 Combinational blocks
Combinational blocks are those which outputs depend only on the
present value of the inpute. The followings are examplea of
combinational blocks, present in almost every library for the
design of ASICs.

1.- Multiplexer; permits to select one of several possible

input signals, which is transeferred to its output. A Boolean

equation for desacribing this circuits will be:

Y = GX(AXS + BxS)

22

If we need to select an output among more than two inputa, the
numbear of select inpute should be greater than one. Each select

line can manage 2 inputs, so if we have 8 select lines, we can

8
manage 2 inputs. The multiplexers can differ in the voltage

representation of the true at the inputs and at the output, in
the number of inputs, in having enable input or not, etc. When
it is necessary to select, look up or address cne of a small
nunber of items, the multiplexer is a good solution. Several
multiplexers can be addressed by a common signal, forming a
multibit lookup.

2.— The demultiplexer: it sends data from a single source,
to one of several destinations. It is a data distributor or a
data router. Below we have the loglic eguations and the truth

table corresponding to a 4 output demultiplexer.

YO = B*A*G
Y1 = B*AXG
YZ = BxA*G
Y3 = BXAXG

Demultiplexer logic

3.- The decoder: associates an encoded repreeentation of a set
of itema at the input, to one of the output signals, in other
words it identifies a particular code, for example a

BCD-to-decimal decoder. Another important use is for decoding

the operation codes of a processor.

For example the TT for the BCD to decimal decoding is the
following:

output inputs
valid DC B A

O @~ oA WN RO
- - 0 0 0 09 O 0O
O Q ki == 00 0 O
O Q ki = O O p = O O
L= B R = N = I T = I

The operation codes of the following TT can be decoded by means
of a 4-to-10 lines decoder, or a 3-TO-8 lines with enable. Each
operation code (input logic variables) is tranalated inte the
output variables (instructions).

Code C B A INSTRUCTION

|
|
1
]

0 0 0D AND - —

1 001 TAD TAD = C.B.A
2 010 182 - —
3 011 DCA JMS = C.B.A
41 100 JMS

5] 101 JUMP

6 110 DOT

T 111 OP

24

R

B}

4_.- The encoder: formes an encoded representation of a set of
inputs. An N-bit code is generated depending upon which of the
inputas is excited. The Boolean notation an@ truth table for
encoding the decimal numbers 0 to 9 are shown below.

inputs outputs
WO W8 W7 W6 WHh W4 W3 W2 W1 WO Y2 Y4 Y5 Y6

)
I
|
I
l
!
i
i
L
|
E
|
1
|
:
|
!
}
i
I
:
|
I
1
|
|
|
|
|
|
l
|
i
i
!
i
A
1
|
1
|
|
|
|
i
]
i
1
|
|
|
|

= O 0 0 g OO0 0O 0 Q
O = O 0 O O O 0 O O
©C O = Q O O 0 O O C
[+ T B B o B = B = B o S o I o
SO0 O - O 0 Q9 o 0
O O 0 Q0 QO = Q O C O
[T = = T = T = - T = I = B e]
O 0 Q00 o O Q- O O
O 0 0 0 C 0O 0 O+~ O
o 0 00 0 Q0 0 Q0
= = 0O 0 O o OO0 O O
O O == Q0 00
[« =T I - o
= O e O O MmO = O

{
b
i
|
1
|
!
|
|
:
t
I
I
}
1
|
|
1
|
|
(
|
|

5.- Code converter:

One example of this circuit is he BCD to! seven-segment code
converter. It im very easily done, using a 16 word by 7 bits ROM
with 4 address inputs consisting of the BAD code. The truth
table of this code converter is the followi+g:

25

Row D C B A a b ¢ d e f g
0 ¢ 0 0 O 111 1 1 1 0O
1 o 0 0 1 0 1 1 0 0 0 O©
2 0 0 1 0 1 1 0 1 1 0 1
3 0 0 1 1 11 1 1 0 ©0 1
4 0O 1 0 O o 1 1 0 0 1 1
5 o 1 0 1 i 0 1 1 0 1 1
8 o 1 1 ¢ 0O o 1 1 1 1 1
7 g 1 1 1 1 1 1 0 0 0 O
8 1 ¢ 0 O 1 1 1 1 1 1 1
9 1 0 0 1 i1 1 o o0 1 1

=

(=
|

-

th
|

I

l

|

For implementing this code converter you can use combinational
logic, but you can also use a ROM. In this case each row of the
TT will correspond to an address of the ROM. The table will

consist of a 16 word memory, each word of 7 bits and a 4-bit
address.

In general a ROM can be used to implement an arbitrary logic
function. Since the ROM is a canonical structure, when used to

aynthesize logic functions, only a part of it is really used.

There are other structures that can be also used.

a) PLA stands for Programmable Logic Array. It expresses the
logic function as a sum-of-products. The matrix is formed on the
basis of ENDS and Mrs and are used to generate complex logical

functions. For example a PLA of 3 inputs will accomplish on each
row the function

A_A.B.EC.C.

26

Programming is made by connecting only the necessary elements.
The function is accomplished by the connections shown in
Fig. 3.9

TEST = A B+ A.C + AB.C

b) PLE (Programmable Logic Element) is a PRCM that provides all
possible product terms of its input. To generate a logic
function, program a “1” if the canonical term contributes, and a
"0" if not.

c) PAL (programmable Array Logic) allows the designer to
spocify the nature of the product term. The way in which the
product may be form into sums ie fixed in the chip.

Since the actual tendency is toward accomplishing as most

regularity in the design as possihle, these featureas for
implementing logic are widely used.

8.- Comparator: verifies the coincidence of two patterns of n
input bite. The function is described by the logical eguation:

AEQ.B = (A0 © BO)*(Al © Bl)*__.__. *(An © Bn)

The implementation may be as shown in Fig. 3.10.

The comparator may also verify that a digit is greater than or
smaller than another.

7.— Universal Logic Circuit: We already saw that a 2-input
Boolean function can have 18 different outputa. If we consider a

27

block with 4 input control signals to select one of these
functions we are dealing with the universal logic circuit.

8_- Full adder: is described by the following Boolean expression
for the sum and carry bits:

SUM = CIN®A%B + CIN*A%B + CIN*A*B + CIN#*A*B = A @ B @ CIN

COUT = CIN®*A*B+CIN¥AXB+CIN*A*B+CIN*¥AXB=A*B+CIN%{A+B)

A 4-bit full adder is shown in Fig 3.10. Although thissimple
block performs the required operations, there are several
different approaches that include speeding techniques.

9.- Arithmetic Logic Unit (ALU) combines the universal logic
circuit with a general set of binary arithmetic operations.

The basic arithmetic operations include:

addition A PLUS B
subtraction A PLUS (MINUS B), where MINUS A is realized by the

negation (complement) of B.
incrementing A PLUS 1

decrementing A MINUS 1
A PLUS A
B MINUS A
MINUS A
MINUS B

and other not exceeding in total 16 operations, which means that
4 control inputs are enough for their selection.

Since we already saw that the Universal Logic Unit requires also

Lt

-

4 control inputs, adding one more ¢to determine when we are
dealing with logical operations and when with arithmetic will
be enough to perform the 16 logic functiona of two variables
plus the 18 arithmetlc functiones. In addition our block will
have Z 4-bit inputs, 1 4-bit output, CIN, COUT.

PROPAGATION DELAY EFFECTS

The propagation delay of the signals, when they pass across the
gates, muat always be taken into account. They give rise to
spurious outputs, called hazarde or glitches, which must be

overcome, usually waiting for a given amoun¢ of time.

For example, if we introduce the time effecﬁa when we analyze
the circuit in Fig. 3.11, we can see in the waveforms
corresponding to the input and cutput signals, the presence of a
spurious pulee that lasts one gate delﬁy.For combinational
circuits, if we wait sufficient time, (more than the expected
delay time), themse apurious outputas will disappear and the
outputs of the gates will assume the valua@ predicted by the
Boolean algebra. ‘

The use of Karnaugh maps provides another t&ol for cleaning the
circuits of these aspuriocus pulses. It can be shown that a
function having two adjacent ones that do ﬁot share a common
circle may have a hazard. Building circ?ita for which the
adjacent ones are all included in common circles overrides
thess problema, but as the circuit becomes more complex, the
solutions also become complex, so the first method that consists
in waiting for a fixed time after the inputs change, so that the
hazards die out, is the bamia of the synchronous (clocked)
design, used in current design methodologies.

3.3.2 Sequential blocks: these blocksa nper?ta in synchronism
with a train of pulses. The value of the cutputs after the

29

setting time, depends not only on the external inputs, but also
on the original value of the outputs. This becomes poasible

because of feedback connectiona of the output to some inputs.

In the case of mequential circuita, the presence of these time
effects in feedback connections, give rise to memory effects.
The value stored in the "memory"” can be controlled through the
external inputs. The most common sequential building blocks are:
latches, flip—flops, and registers. As in the case of
combinational logic, they are conformed using the elementary

gates.

LATCH

In Fig. 3.12 is shown the diagram for a latch and the

description of its behavior.

Capse A: HOLD = F, Y = DATA

Case B: HOLD = T. Any occurrence of DATA = T will be capture,
and the output will thereafter remain true until HOLD becomes
false_ We consider 3 subcases:

Case Bl: Data is false throughout the period when HOLD is true.
Then Y is false.

Case B2: Data is true when HOLD ia true. When HOLD becomes
true, the latch captures the true value of DATA and stores it aa
long as HOLD remains true. After HOQLD becomes false, case A
applies.

Case B3: Data is false when HOLD becomes true. At the beginning,
Y is false. The first occurrence of a true signal on the DATA
line will cause Y to become true; the output will remain true
until HOLD becomes false.

RS flip-flop

It is a bistable device. Ita behavior is described by saying

30

that the circuit is in a atable state when gate 1 ocutputs L and
gate 2 outputs H. Once the circuit assumes this state, it will
remain on it ae long aes there are no changes in R and S
inputs.There is another stable state during which gate 1 outputs
H and gate 2 outputs L. By convention the set state corresponds
to @ = H and the reset to Q@ = L. This flip-flop is called
asynchronous because there is no master clocking signal
governing the activity of the flip—flop, therefore 1t is
sensitive to noise and glitches. For that reason it is
recommended not to use RS flip-flops as a general deeign tool.

The excitation table for this block is shown below, and its gate
implementation is shown in Fig. 3.13a. The excitation table for
sequential circuits, is eguivalent to the truth table for

combinational eircuits.

t Wy ey e
L L q x qQ x Hold
L H q x L H Reset
H L q x H L Set
H H q x Disallowed

Clocked RS flip-fleop

It ip the same RS flip—flop but with a clock aignal that enables
the inputs R and § is shown in Fig 3.13b. The flip-flop may
change its outputs at the time the clock is true (level-driven
} or during the transition of the clock signal (edge-driven)
from L to H (poslitive edge) or from H too L (negative edge).
To avoid hazards it is only recommended to use edge-driven

flip-flops.

31

JK flip-flop
A typical excitation table for a JK flip-flop is the following:

Clock J K Q(n) Q(n+1)

F X X a a
T h 4 X q Q
F F q q Holad
F T q F Reset
, T F q T Set
+ T T q ¢ Toggle (complement)

The JK flip—flop can be used:

1) when we must sat, clear or toggle a signal to form a
specific value for later use;

2) to transfer the data stored in Q(n)to Q(n+1);

3) for entering data, for example entering D into the flip-
flop on a clock edge by having J = D , independent of the value
of K.

D flip—flop
The excitation table of the D- flip-flop is:

a) The active clock edge can be positive (L --> H) or
negative (H -——> L).

b) It may include asynchronous set and clear inputs, usually,
low active.

R

- ™

£

The D-flip—flop can be used:

1) To delay the value of the signal aﬁ ita input by one
clock time;

2) As a synchronizer of an input eignal;

3) For data storage, where the data ia‘loaded every cycle.
When you want to change the stored information only at a given
time, you should use the enabled D flip—flép of Fig. 3.13b. You
should never gate with a clock Anded to a ‘ontrol aignal. This

is not a good solution.
\

[
Registers:

A register is an ordered set of flip-flops. It is normally a
temporary storage. They are usually preparpd ueing D flip-flops
with enable.

Counters:
A typical ecircuit for a 4-bit(modulo 18) %ynchronoua counter is
shown in Fig. 3.14. The same for a rﬂppla or asynchronous

counter is shown is Fig. 3.15.

The synchronous counterse have all their odtputa changing at the
pame time, tp after the clock edge. The a%ynchronous counters on
the contrary change their ocutputs in a staggered fashion. The
change in an output must ripple througﬂ all the lower-bits
before it can serve as a clock for a1 high~-order bit. Its
configuration is aimpler, but they are recommended only if you
do not require any temporal relation of Qj to any lower Dbits.
They are usually used as frequency dividers.

The counters have also a clear, that carn be asynchronous or
synchronous, and some other control inputs {enable, set, count
up or down, etc). It ias recommended not to use the asynchronous
clear to implement any logic except clear%of the counter during

power—up or general reset.

Shift-regiater
They perform an orderly lateral movement of data from one
position to an adjacent one, every time a clock arises. They can
have the following configurations:

- parallel-in, parallel-out;

- serial-in, =serial-out;

— serial-in parallel-out;

- parallel-in, serial-out;

They include the following functions:

a) data loading;

b) shifting of bits one position right or left, while
accepting one bit more at the input and discarding one at the
output.;

c) storing the data, while shifting is not done;

d) possibility of examining the output without changing
their content.

A typical excitation table is ashown below:

Clock S1 S0 Result desired Selected Required
mux position mux input

] 0 Hold present data 4]

0 1 Shift right 1

1 0 Shift left 2 Q

1 1 Load new data 3

Other blocks present in ASICs libraries

- Processora: The architecture of a typical processor can be
represented as shown in Fig. 3.16. each of the elements in it
haas already been mentioned. This general blocks for processing
units are available in different vendor’s library, to be

incorporated into ASIC designs. These circuits require a
previous study of its characteriatics, (architecture, set of
instructions, and timing) in order to make a correct use of them

in your design.

Register
> file

ALU

Shifter

L 1

Fig 3.18 Architecture of a processor

- RAMs

A memory that requires the same time to access esach data bit is
called a Random Access Memory (RAM). They can be static, when
the storage cell closely resembles a D flip-flop, and the data
is stored without losssa; or dynamic, when the data is stored in
form of a charged ("1") or uncharged ("0") microscopic
capacitor, that as all capacitors, has a discharging time.
Therefore, to maintain stable the stored information, a
refreshing periodical pulse is necessary to maintain the
capacitor in ite programmed state (charged or uncharged).

This RAMa contain also internal decoders for the selection of
the row and column of the cell to be written or read, and other
internal logic for selecting the mode of operation (Read,
write, chip select) and for input and output of the data.

Timing requirements vary from one memory to another, and differs

35

also whether you are working with a static or a dynmamic RAM. In
any case you must carefully study the time requirements and
adjust your design to fulfill it.

~ Deviceas with three atate outputs:

An identity block or a logic NOT is said to have a tree state
output if it provides in addition to the usual H and L levels, a
high impedance mode called Z, in which the output appears as 1if
it were disconnected from its destinations. They require an
enabling tree-state control input. This structures are specially
used in the Output Pads that connect the ASIC with the external
world.

Mefastability

Digital devices are in practice, analog devices that behave
digitally only when stringent rules of operation are obeyed. In
addition to establishing proper voltage levela at the inputs, to
assure proper operation of a sequential device, you must adhere
to the =set up times, hold times, and other timing
spocifications. When this requirementa are met, the devices will
function proper, and the changes at the inputs and cutputs will
occur cleanly, showing the proper wvoltage levels. In this
saquential circuits, except during the periocd of transition, the
circuit will remain in one of its stable states. As long as no
more than one input is changing at a time, the sequential
circuit will perform well. If the voltage level of more than one
input is allowed to change at nearly the same time there is a
timing reguirement that must be fulfill. If it is vioclated, the
circuit may fall into a metastable state, during which the
outputs may hold improper or nondigital values for an
unspecified duration, which are indicated during simulation as
errors, indefinite states or violations. Metastability can be
disastrous. In eynchronous design, we try to avoid metastability
by never changing the inputs in the vicinity of the clock.

as

™

ry "

vy .

4.— DESIGN METHODS

We will describe them with an example that consiste of a
1K-by-eight-bit memory board connected to a hypothetical bus.
The interface block provides timing and cbntrol for the memory
chips and also implements the bus handahaking logic. There are
six signala that interconnects to the ext%rnal world.

4.1.—- Main steps:

1.~ Separation of the control algorithm from the
architecture to be controlled by this algbrithm. The design will
be partitioned into a control algorithm | and the architecture
controlled by this algorithm. Fig. 4.1.

2.- Details of the control algorithm ht an abstract level,
independent of the HW. A complete flowchart can be done without
becoming engaged to an specific HW. This broceaa may go through
several iteration. Afterwards the control| aigorithm will suggest
the HW for the architecture, so the algorﬁthm should gulde you
to the HW solution. The deecription of Fig. 4.1, textually, will

sound something like this:

A problem requires that a word be written into a memory. The
memory will require the following inputs: a memory address MA on
n lines to tell where to write the data, B word of DATA of m
lines for input or output, a line R/W to tell whether to read or
write, and a G0 signal to start the read br write operation. The
only status returned by the memory will be memory cycle complete
CC. The numbers n and m depend on the characteristica of the

memory Belected, for inatance a 1K-by 8 bits memory would have n
10
= 10 { 1024 = 2) and m = 8 (length of the word).

In a similar form we can describe the algprithm that initiates a
memory write operation, without knowing exactly how we will
translate that algorithm into hardware. The algorithm will 1look

something like Fig. 4.2_. The purpose of the first step STW is to
issue a GO aignal to the memory, along with the necessary data
and commands to initiate a writing operation. The next step
WAITS until the memory has finished the writing.

A very good recommendation is to realize as much as possible of
the design, under these general consideration. The decisionsat
this level are more easily to alter than once you have entered
the HW frontier.

Ao we go down in the design, we must precise the knowledge of
the architecture of the system, seeing it as a set of high-level
building blocks. The following rules ehould be carefully

observed:

1.- It ies very important that the selection of the elements
should be made on the basis of what specific building blocks the
developing control algorithm requires, and not by looking what
we have in the libraries or in the data book.

2.- A good architecture must be as simpler, clear, and easy
to control as possible.

3.~ The preclision obtained with the above recommendations
should lead to a better conception of the algorithm and its
relation with the architecture. After we complement and optimize
the algorithm, we can reconsaider the architecture and our choice
of building blocka. Simplifications or speed up by using
different architectural components can be achieved. When this
iterative process ends we should have:

a.— The architecture: as a detailed set of blocks and
data pathe, the specificationa for these blocka, a statement of
the command signals these components require, and the statua
signals they produce. The architecture does not include any
logic to generate these commands, since the generator of
commands is assigned to the control algorithm.

b.~ The algorithm: as a set of command signals to make

the architecture perform the original problem. At this level no
hardware is yet define to implement the algorithm.

4_- No one designes a system strictly from the top—down. A
knowledge of low-level components and techniques always
influences the design, even at the highest levels. The best
top—-down hardware designers have an intimate knowledge of
hardware, and this knowledge tempers and guides the high-level
design decision. Good designers use their knowledge of low—level
technology to avoid unproductive approaches. One can dip for a
while into lower levels, but invariably returns to the top. The
high-level design methodology provides the diescipline that keeps
the designer thinking for the most possible time at the most
praductive level.

4.2_- Notations for expressing an abstract algorithm

For aynchronous circuits, among the pictorial - descriptions, we
have the Algorithmic State Machine (ASM), having much similarity
tec a tipical flow chart in computer programming.

Synchronous circuits have state times determined by only one
master clock, wusually a periodic saquare-wave voltage. The
transition from one stage to another and other actlionas of the
circuit are triggered by either the positive (transition from L
to H)or the negative (transition from H to L) edge of the clock
pulse. The time in H is equal to the time in L. Each active
transition of the clock causes a change of atate from the
pregent state to the next. A state is represented usually as a
rectangle with its symbolic name enclosed in a small circle at
the upper left hand corner. In Fig. 4.2 we represented the ASM
for Fig. 4.1. It has one unconditional output (OUT1), two
states (STW and WAIT); one condition for +transition given by
the variable CC. The states can be represented by one variable,
for example A. In Fig. 4.3 is represented another ASM with four
outputa (OUT1 to O0OUT4), the second and fourth being a

39

conditional outputs. There are 4 atates, P, R, Q, 5§ ; there are
four conditions for transition given by the variables X.Y,Z,W.

The 4 states can be represented by two variables, in this case
A and B.

4.3.- Synthesis from an ASM chart

4.3.1. Traditional method

The traditional technique for state generation is to produce an
encoded representation of the present. state and compute the code

for the next astate. If the code has n bits, it can describe
n

to 2 states. On the ASM chart, the binary representation of
each state is written on the right-hand s8ide of the state
rectangle. The test diamonds or the conditional output do not

up

require a label, since they are part of a atate. The values of
the state variablee are the address that pointa to the present
atate at each moment. The next address is computed by means of a
combinational circuit and etored in flip-flopa. Jk flip-flops
result in less combinational logic than D flip-flops, but
require more input linea. In the example we will use D
flip-flops which provide more clarity

The combinational logic must compute the value of the next

addresa. In the example of Fig. 4.2, the logic must implement
the following state transition table:

Present Next
state astate
A CC A(D)
x 1
0
1

40

ey -

EN

L2

|
It is also necessary to take into accoﬂnt that there might

appear possible patterns of the flip—flop?s outputs that are not
used by the algorithm. Nevertheless it ie completely necessary
to prevent these situations and force the algorithm to return to
the main loop (go back to state 00), if by an unexpected
situation they are reached. This rule must be strictly
complimented in any estate generator.
\

From de logiec table above, the eqguation for the state
flip—flop s input A(D) is:

A(D) = A + A*CC

The equations for the output Is:

OUT1 = WAIT.CC

1f the equationa are complex, K-maps can be used to simplify
them.

The HW for the ASM is shown in Fig. 4.4, Unfortunately the
traditional method results in no obvioua ¢orrespondence between
HW and the algorithm, so our goal of clarity in design is not
fulfill.

4.3.2_- Multiplexer controller method.

The main advantage of this method is that it produces a design
that has a direct correspondence with the algorithm that
generated it.

The main difference with respect to the traditional method is
that instead of using dates to compute the next state code, it
uses a table look up, implemented with multiplexers sach of
which provides the input to its reﬂpectivé state flip-flop. At

the same time the assembly of multiplexers yields the code for
the next state. The multiplexers must have at least the same
number of inputs that states the ASM. The present-state address
code is the ordered output of the state flip-flops which is fed
into the select inputs of each multiplexer te select the
appropriate input for the present state of the aystem. The
design must provide that for each present state, the mux inputs
provide the 1 or 0 neceasary to produce the next-state code. The
following table showe how to produce the next state standing in

each state.

State transition data for the ASM in Fig. 4.2

Present state Next state Condition for
Number Name Name A transition
0 STW WAIT 1 T
1 WAIT WAIT 1 cc
STW cC

The resulting state generator is shown in Fig 4.5.

The synthesis of the ASM shown in Fig. 4.3 will look as in Fig.
4.7.

Resuming the rules for synthezising by means of the multiplexer

method we have:

1.- Create a State transition data
2.- Use an encoded representation of the present state and

compute the code for the next state.
n
- n bite describe up to 2 states

3.- Write the equations for the flip-flop “s inputs;

42

4. - Write the equationa for the outputs;
6.— Use a D- flip-flop each next atate;
6.- Use a miltiplexer at the inpput of each state fflip—flop,

to produce the new input to the flip—-flop. The multiplexer must
n
have n selection lines and 2 inputs;

7 - Check that all unused states return the machine to the

start position.

With the increase of the number of states above 16, the number
of inputs +to the multiplexers can become too large. An
alternative solution in this cases is the One-hot method.

4.3.3.- One-hot method.

In this method one D flip-flop is used to generate each state.
There is no encoding of the states. Only one of the atate
flip-flops can be true during each state time, so combinational
logic at the flip—flops® inputs must provide the one true input
at each state. This property of only one true flip—flop at a
time is called the one-hot, and has the advantage of being easy

to implement in design sinthetizers.

This me thod requires a specific initial condition,
(initialization), that provides that only one flip-flop, the one
representing the atarting state is true and the rest are false.

In Fig. 4.7. is shown the aynthesis from the ASM chart of Fig.
4.2, implemented by the one-hot method, and in Fig. 4.8 the one
corresponding to the ASM of Fig. 4.3.

Resuming the rules for synthezising by means of the one-hot

method we have:

1.~ Create a State Transition Table;
2 — Write the equations for the flip—flop s inputs;

43

3.- Write the equaticns for the outputs;

4.- Use a D- flip-flop each state;

5.— Arrange so that only one flip-flop is true at each state
time.

4.3.4.-The ROM-base method

In this method, the look-up table is implemented by means of a
ROM, PROM or EPROM. It has the advantage of being very
regularly, but as the ASM becomes more complex, the size of the
ROM may become too large. The looks-up table in this case is
shown in the following table, and the HW implementation in Fig.
4.9.

State generator and ocutputs for the ASM of Fig. 4.3, using a ROM

Addresass Output

B A XYW2Z B(D) A(D) OUT1 ouT2 oUT3 0UT4
¢ 0 00XZX 1 0 1 0) 0
0 0 01XX 4] 1 1 0O o [4]
0 0 1XXX 0 o] 1 o 0] 0
0 1 XXO0X 0 o)] 1 1 0
0 1 XX1X 1 0 0 1 o 0
1 0 XXXX 0 0 o] o] o] 0
1 1 XXXo0O 1 1 0 0 0 0
1 1 0XX1 0 0 0 0 0 1
1 1 1XX1 1 0 0 Qo 0 o]

4_4_- Other general aspects to take into consideration
4_4.1. - Clock skew

The combination logic required to generate signals B(D) and A(D)
in Fig. 4.8 will generate the correct new values only =some time

44

P

"

gy

after the new values of signala A and B (transmitted with CLKA
and CLKB) enter the combinational logic block. 1f both CLKA and
CLKB arrive at the same time, no problem pccurs, provided we
wait for this settling time. Now suppose thﬁt CLEA arrives, and
CLKB is delayed in such a way that it arrives before the
settling time has elapsed. Since B(D) may hpve momentary wrong
values CLKB edge can record a wrong value. ﬁf on the contrary
the settling time has elapsed, the new valuh of B(D) based on
the correct new value of A and the unchangeh value of B will
yield a new pair of values A(D) and B(D), which are incorrect.
When CLKB arrives, it will store anyway an incorrect B.

The clock skew arises from gates connected Hn the clock path or
from different wire length between the clock source and the

clock inputs.

To avoid this problem:

1.- Try not to insert gates in the clock lines. For example
do not use mixed flip-flops with positive hnd negative active
edges, so you do not have to introduce inverters.

2_- Diatribute the clock lines radiahly from the clock
aource, rather than connecting them along opne chain. Try to use
lines with more or lese the same length.

3.- If buffers are required to manage pFwer , try to use the
same kind of buffers for all the lines.

Manual designer wusually had to solve this problems by
themselves. The automated design tools, take into account this
problems and at the different levels, durhng synthesis, they
provide programmed solutiona for the diffarbnt canes. 0f course
they can not take into account all possiblaicaaes, go in a great
amount the idea already expressed that an Pxperisnced designer
that has a good idea of the problems arisin? during the physical
implementation, will produce better designai

45

Y
PLEE. yAO ! Aol
0 1 010 [1\ 0 @D o
o W) Y] 1o @
YzA Y=A+B Y zAB +tAB

AB gor0l | 1110
00 1] [+} 4] 1

01 1 0 ffr Y=B+C+A'D

1 T T

Fig. 2.1 Simplifing with K-maps

- - =

o— -

EXCLUBIVE COINCIDENCE

Fig. 3.1 Synbols for tha alementary logical oparations.

¥
Py
Fig. 3.2
TT for logical identity operation
AlY
F F
T T
I ¥.E B Y1 . . AL | ¥.5
| L H 5'1
AE R AR R A AL D R Ag-l-_':l.
Piece of Voltage Voltage Piece of
wire inverter Inverter wire

Fig. 3.3 Realization of the logical identity for four
choices of voltage.

L1

TT for logical NOT

AlY
F |T
T.F

N

AH ¥.H AR L VL AL, Y.H AL ¥.L
°+.

Valtage Pieoe of Piece of Veltage
inventep wire wire inverter

Fig. 3.4 Realization of the logical NOT for four choices of
voltage.

TT for AND

R
AW
e B Bl

L= =D -

Fig 3.5. Realizations of logical AND for eight choices of voltage.
i O

2

ry -

. A BlY
TT for logic OR ¥ PP | AL
FT|T 3L Q_O(
T F|T g N
T T|T ‘ ok
ag pulvm | |an smlvn | [am sn|vn | |am ai]lve CR ™
L L[L L L H L. H|L £ H H p.L o—o0 ”
L H| R L H| & L L |H L L
H# L|E L| L H]] L
H H| H H H| L H L b ¢ H L L

The logical squation cornesponding to thiz cincult i

|
i
;L‘Jl;’
T
v
>

AB+{C+D)

AL BLH|YVL.H AL BH{YL A.L BL|V.H A‘ L BL|YL . M . T
S e e e B j, & Pig 3.8 Analysis of a circuit.
H H H : | H L o L H H L L
L L H L L L L H ’ ;: B L
L H H L H L L L H L L

e e T -

Fig. 3.6. Realizations of logical OR for ecight thoices
of wvoitage.

TT for a physical NAND

D - D~ -

HAND Inverted-input OR Inverted-input AND
-t L \\——
- _,/
AND Inverted-input Inverted-input OR
NaR HAKD

Fig. 3.9 Symbols for the positive-logic convention.

¥ A NORD

Fiz. 3.7 LOGIC PERFORMED BY A PHYSICAL NAND

ALH [\

B2 —}

ABH [™

nE LS (A =mE
ALE [

e) —4_)

ACE [N

H __/

Fig.3.10 Circuit for comparing two 4=bit signals.

AR 3ﬁf>ﬁ___umbm
\” =g
e Kd
AR

A
|

Fig. 3.11. Appearance of a hazard.

DATA v
HOLD

Fig 3.12 Schematic circuit for a latch.

¢t g
R Up
(a)
S.H
Q.H
cLK o~
Q.L
RH d ST
)

Fig. 3.13. a) RS flip~-flop; b)> Clocked RS flip-flop

§2

e

s -

SEI.L

L™

-
A

2=l

=
]|
wl
o

(2]
[
4

Fig. 3.14 Synchronous counter

SET.L
I l H l T I 1 l |

cL s 8 J ¥ g E oa J 8 o WE
p Ci¢ va, 1.4 b O1¢ pCi¢ .
de T ap b—qr T a Ak T ap x & &

C.L

=

—
b—q 01
—C
L__do

Fig. 3.15 Asynchronous counter

CONTRO-
LLER

Fig. 4.1 Step one: separation of control algorithm
from architecture to be controlled by it.

STW 00

Select write mode
———pl Issue GO signal
Present write DATA
Present MA

WAIT i 01
F i

Covm D

Pig. 4.2 Description of the control algorithm.

Faal R

Fig. 4.3 A more complex ASM,

CCH OUTLL
H
AH
(- |]

t
present A0y nex
state = - state

CLK.H
LR.
ACD) = A.CC

Fig 4.4 HW for ASM in Fig. 4.2 obtained
by the traditional method.

c

NEXT PRISENT NEXT

STATE STATE ADDRESS
LS
AD)
L Ko [H u
CC.L Oump¥ X1
CHELCR
o]
AE 80 pyy ¢

CLR.LI

HEXT RTAYE FF

cc.L
AR ﬁ) ouTL.H

Fig. 4.5 Implementation of the ASM of Fig. 4.2,
using the multiplex_er-controlled method.

X.H

Xo

b aLAE
F___Ixs
2L LA y __J—— '»

[t — £ | HEK
BE g &
CLE 1
X.H)
Y.L
X0 _ B.H
:-—- X1 ’ —v ur
—ix2
ﬂ-§:: 3: %9 y K
3L $1 _ -
L0 T Unp
CLK L e |
) CLE.L J.l

Fig. 46 Impiementation of the ASM of Fig. 4.3
using the multiplexer method,

L~

o

P 4

IT .
cg l? ’_>-| D QOEZW L

. j
o]l ‘ji\} 5L VAITH

CCL

CLEK.H__
o
CLR.L

i._a

Fig. 4.7 Implementation of the ASM in Fig. 4.2
by the one~hot method.

1 - Nj)n i
ot) xi PE E
R n—aj)o—ob T
V.1 Qe
Pr.H z 2
i | S—
e

Pig. 48b. Same as Fig. 4.8a, using NANDs.

ADDRS
% ADDR4 gf
. ADDR3 o3 —
. ADDR2 23 it
) ADDRL DUT2
ADDRO &') t
ROM
A g ,1 AD)
Bla B(D)
) | cLX

Fig. 49 Implementation of the ASM in Fig. 4.3

gy

e

