INTERNATIONAL ATOMIC ENERGY AGENCY
‘ c@ ' UNITED NaTIONS EDUCATIONAL, SCIENTIEIC AND CULTURAL ORGANIZATION m
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

LCTP. P.O. BOX 586, M100 TRIESTE, TTALY, CasLE CENTRATOM TRIESTE

@ ’ %a The United Nations

University

SMR/748 - 7

ICTP-INFN-UNU-MICROPROCESSOR LABORATORY
THIRD COURSE ON BASIC VLSI DESIGN TECHNIQUES
21 November - 16 December 1994

HIGH LEVEL LOGIC DESIGN METHODOLOGY

Magall ESTRADA
Facultad de Fisica
Unlversidad de La Habana
San Lazaro y L - Vedado
C.P. 10400
Havana
Cuba

These are preliminary lecture notes, intended only for distribution to participants,

leH LEVEL LOGIC DESIGN METHODOLOGY

.-.~£1 Ty,

Toi)—doﬁii} bottom-up design
tpp-jdoxén: the design starts with the specification of

‘the complete object of design in a compact
. form (global specification).

It 1s structured slobal representation 1s divided 1nto
sub~systems + their mterconnectlon

S Sub-systcms can be divided again until you represent
‘-"-_‘_5thc whole demgn by its simplest elements.

Thc ,'.dcsigner must have means for:

- cntermg ‘the description
- snmulatmg at diffemmrent levels
e synthcms and analysm
" = verification of interfaces at different levels
- generatlon of tests
L gcneratlon of topology

HIGH LEVEL DESIGN

The High-level design methodology requires:

abstraction - to conceive a global and then
~enter into its details:

formalism - to have the rules and proce-

~dures for working at each level;

concepts ~ $0 that everybody understands
the other;

It consists of a hierarchical structure of levels.

One can represent a design at any of these levels.

Each level of abstraction can be described by a:

a.= structured domain: in terms of the intercon—
‘ nection of more primitive

components.

b.- behavioral domain: by means of its
‘ input/output response. -

Level Structural behavioral
primitives representation

system CPU, memories, ports‘ performance.

chip processors, memories 1/0 response,

(RTL> ports, ctc. algorithms,

RTLanguage.

regis— registers, counters, Truth tables,

ters ALU, flip—~flops, com- state tables.
binational logic, etc.

gates gates, multiplexers, Boolean
flip-'flops, counters, equations_
adders, decoders, etc.

circuit transistors, Differential
capacitors, etc. equations.

silicon topology

Fig. 1.1

TRADITIONAIL SCHEMATIC DESIGN (no synthesis)

1.

2.
3.

Architecture is specified and partitioned
into functional blocks.

Schematic entry and further partitioning.

Gatec—-level simulation and analysis for
monitoq['ing function, performance and area.

Integration of blocks and verification of
the interface between them.

Complete design validation by gate-level
simulation.

Placing and routing.
Final gate level verification.

SYNTHESIS: Physical realization of a design

starting from its description.

ANALYSIS: The inverse process of synthesis.

VHDL: The'}#ardwarc Description Language used

for Very High Speed Integrated Circuits.

(B

TRADITIONAL DESIGN + PARTIAL HDL ENTRY
(with synthesis)
1. Architecture is specified and partitioned
into functional blocks.
2. Part of the design is captured using
schematic entry.

3. Capture of the rest by: netlist/schematics;
Boolean equations, state tables, VHDL, and
Verilog; synthesis automatically creates
the schematic. Applicable to state machines
and control logic.

4. Function, performance, and area arc moni-
tored.

5. Design blocks are transferred into the syn-
thesis tool and optimized. '

6. Integration of blocks and verification of
the interface between them.

7. Complete design is optimizedusing synthesis.

8. Analysis of the results from synthesis; ite-
rations until satisfied with the results.

Complete design validation (gate~level simulation).
10. Placing and routing .

Wy

11. Final gate level verification.

o)

FULL HDL.+ SYNTHESIS

1. Architecture is specified and partitioned
into functional blocks.

Entired dbsign is entered via HDL.

wWoN

May be further partinioned in HDL.

A

Validation with an HDL simulator

5

. Design is translated into gates.

6. Gate leve blocks are optimized
via synth‘esis.

7. ComNeteq%desiEn validation
(gate levél simulation)

8. Complete ‘Fiesign is optimized.

9. Placing aqd routing.

10, Final gatejr-levcl verification.

BOOLEAN ALGEBRA

TRUE :
Van LOGIC
STATE OF A LOGICAL STATEMENT CONSTANTS
\— FALSE -
LOGIC GPERATOR - LOGIC 'SYMBOL HMW LOGIC PRIMARY ELEMENTS
S0
NOT , .

- -

OR + —

von 8 ::5:}_
comenmes ©)

EXAMPLES OF LqGIC OPERATIONS :

NOT RA = R—A-

BANDC = B-C

AORB = A+B

XOROFAANDB = A@B = A-B+A-5
COINCIDENCE OF A AND B = A@B = A-B +A-B

WAYS OF REPRES‘ ING EXPECTED LOGICAL VALUES OF A FUNCTION
FOR DIFFERENT CONDITIONS OF THE INPUT VARIABLES.

1.~ TRUTH TABLES ROW [A|B| W
0 [F|F| F
1 |F{T| F
2 |T|F|{ T
3 |T|T| F
2.~ LOGICAL VECTORS 0,01, 0)

3.- LOGICAL EQUATION A B =W

©

- '4 - FOR SEQUENTIAL BLOCKS € Operatlng in synchronlsm
3 wuth a train of pulses) ‘ﬁ‘ .

OUTPUTS = f '3 INPUTS t > . not alwa;}s |

-

» original value of the
~outputs when the clock
arrives. .

,J-K fllp-fIOP . 7. < D flipflop .
K IQ(n) I Qn*1) c°ndi'i_;i-;ml Dl a

CLK

.Reset

Set..u

H o om om MM -

X
X
F
T
F
T

ELEMENTS OF BOOLEAN ALGEBRA

1.- PROPERTIﬂs OF OPERATORS

COMMUTE A+ B B+ A

ASSOCIATE A + (+ C)>=CA+B) +¢C

B
DISTRIBUTE A * (B +C)>=A"B +A°C
A+ C(B*'C)Y>=CA+B)> CA+C)

order: NOT |
XDR, COINCIDENCE

AND |
OR

Parenthesis override the normal hierarchy

2.- FORMS OF “RIWING THE EXPRESSIONS:

A"B + B*C

a) SUM OF PROQUCTS
| A+B

CA+B)Y~CB+c)
A"'B

At A

B> PRODUCT OF SUMS

FUNDAMENTAL RELATIONS

FOR SUM OF PRODUCTS FOR PRODUCT OF SUMS
A+F=A i:A
A+T="T A'T=A
A+A=A A‘F=F
A+A=T A*A=zA

A*A=F
ATBE=-A-T MRBGAN'S LAW A ‘B =A + B

Other identities :

A"A +A'B A+A-B=A
A+A"'B
A

A (A +B)

A" (A+B)=A"A+A°'B A+A:B=A+8B

=A--B — —
A"B +A"B B (A +A)

B

o

RULES FOR MANIPULATION

1.~ To obtain LOGICAL EQUATIONS from TT as SUM OF PRODUCTS

= OR of the Mﬁ[HTERMS for which the function is T

Y =
Y OR of the MINTERMS for which the function is F

MINTERM = product term with all variables in it

EXAMPLE: A B C X X =m0 + m2 + m5

00 0 T . _ _

0o 0 1 F X = (CAB-C) + (A-B:C) + (A-B-O)
o1 0 T

0 1 1 F

1 0 0 F

1 01 T

1 1 0 F

1 1 1 F

;=m1+m3+m4+m6+m7

X = CA*B+C) + CA+B-C) + CA+B+C) + CA*B-C) + CA+B-O)

D

2.~ To obtain a TT from a LOGICAL EQUATION
as a SUM OF PRODUCTS:

A MINTERM will yield one row TRUE

A (NOT MINTERM> will yield TRUE rows for any value of the
missing variable.

EXAMPLE: Y=J-K + J-K*L + J-K:L + K-L
TRUTH TABLE CONDENSED TT

ROW| J K L Y I K LiY

0 0 X] F

0 0 O 0 F 0 1 O]F

1 o o0 1 F o1 1]|T

2 o 1 9 F 1 X x| T

3 0 1 1 T Due to terms 2 and 4

4 1 o O T Due to term 1

5 1 o 1 T Due to term 1

6 1 1 0 T Due to term 3

7 1 1 1 T Due to term 4

(A%)

KARNAUGH MAPS

Another way to fexpress TRUTH TABLES (less than 4 variables)

Each row in TT = square in K-MAP

\AB
c \\ 00| o111 [10]

‘ 2 vd v4
0 YO|Y2| Y&l Y

1 jy1{y3|y?|v5

(Simplification)

For example:
V= A'B+B+A-B*C

AB+A.B.C=A.B

A'B+Bz=A+8

c \0o]|o1]11 |10] A B C| V|
0 0 0 0 F T
o ﬁ N N> o o 1| gl €T coLE+ simplification
llo &&Z J/ g i ? | ¥ C=A B+C A B+C *A- B+
(Simplifying with [} O O | T| 4c.X ptc-A-B+C-A-B=
K-Maps) 1 0 1T - -
1 1 0|T| = CB+C-A+C-B+C-Az=
VzA4+B 1 11 T} - as+8

S

3.- To obtain LOGICAL EQUATIONS from TT as PRODUCT OF SUMS

Y = AND of the opposite of each MAXTERM for which the
function is F

Y = AND of the opposite of each MAXTERM for which the
function is T

MAXTERM = sum term with all variables in it

EXAMPLE:
—
0 0T
0 1 F
1 0T
1 1 F
X =MOeM?2 X =M1 eM3
X=C(P+Q) (P+Q)=zq X=C(P+Q)C(P+Q)>=Q

4.- To obtain a TT from a LOGICAL EQUATION as PRODUCT OF SUMS

Each sum term iwill assure a FALSE expression, whenever all
its variables are the opposite of the form in the term.

EXAMPLE: G =(A+B+C)*CA+B)sCA+B +C»>
(011> opposite of ¢ 100) = M4

(01x) opposite of (10x) = row 4 and 5
(000> opposite of (111) = M7

TRUTH TABLE% CONDENSED TT

ROW A B C G A B C |G
0 0O O O T 1 0 X F
1 0O 0 1 T 1 1 11 F
2 o 1 o |T 11 o] T
3 o 1 1 T

4 1 4) 0 F Due to term 1 and 2

S5 1 0 1 F Due to term 2 -

6 1 1 0 T o

? 1 1 1 F Due to term 3

REALIZING LOGIC IN HW

CONVENTIONS: T = H ALWAYS POSITIVE LOGIC
T=HORT=L MIXED LOGIC

ADVANTAGE OF MIXED LOGIC: Presents the logic in
the way the designer originally thought.

1.- CONTAINS SYMBOLS + VOLTAGE REPRESENTATION
2.— Circles DO NOT change the logic operation

X =A"'B

AH [\ xy AH_—, XL AH jin
B.H — =" BH_)"_" Bl g

s A b

3.~ VOLTAGE INVERTER (no logic is performed)

T.H D T.L T.L E T.H

4.- LOGICAL INVERTER ¢ NOT> = SLASH (/)
X =A-B
AH—— X.H

. AH_ X.H
B.L o-g— Lﬂbﬁq—}
=

CHOS INVERTER Digital Simulation
VCC
| . ——
P-MOS | input v
E MODELS
output]
INPUT OUTPUT I
i i_ ‘ tp
uﬂ ! Prmava, i = { t s i pe,
N-MDS H‘ apagation delay = £ { tech, device type
= Csal, T, Pw)
cCHOsS NﬁND CHOS NOR
;|VCC vCC
il 1
| |
| INPUT1 |
INPUTZ, [T _{H E | IE__
i] OQUTPUT
INPUTZ2 | -
" |
L
INPUTZ . meuTs |
| |-
—] OUTPUT
INPUT3 Lo LJ
H = — —4& —

TT for logical identity operation

AlY
F F
T T
AHI ¢H | AH Y.L AL [¢.H AL | ?.L
L| L L| H H | L H | H
H| H Hi L L H L | L
. AH ¥.L A.L A.L Y.L
A.H v.H D Y.H a o
Piece of Voltage Voitage Piece of
wire inverter Inverter wire

Fig. 3.3 Realization of the logical identity for four
choices of voltage.

TT for logical NOT

A Y

F T

T | F
B'vyH Ainlwr I |l%H
!AL)H Ll L rH H H L’
"H]| L HLH L | L L | u

A.H‘D} Y.H A.H fo Y.L AL Y.H A L Y.L

Voltage Piece of Piece of Voltage
inverter wire wire inverter

Fig. 3.4 Realizati&n of the logical NOT for four choices of
voltage.,

TT for AND

mom e

A.H B.L Y.L

ma s g

- o

Y. H

e - -

A.H B.L

- W I

- amm

Y.L

Tmma

A.H B.H

o3

SR N.

’A.H B3.H I?.H

R

SJmam

S RN

A.L B.L Y.L

o i

w3 o

oo aa

A.L B.L v.H

W3 gk

o g

Wi a g

A.L B.H Y.L

inmag

Hmam

DX aa

ES -

A.L B.H |Y.H

. RS R

B aa

.ﬁ\);

M

-

___(_3_/

—G

___QL—-J

}_

p—

M

N —

—_—

Fig 3.5. Realizations of logical AND for eight choices of voltage.

AN

o~ B B B

) b B B B

| B oy, B

TT for logic OR

i .
A aa g

-

-

R .am g
.M Hamn
M oo
M < .
‘MLLHH
RS R NE

-

o SN S
m
.m S m
———
H o

W ma
-
MLLHH
A B

= g —
= \\W.P/.
. ;7 N
Mimama]
MHHLL _ ‘
MLHHH —
e
=3 7 b
o [T ! .y
LH %
£ o 0. IR !
HiEaan _
=t
TWlamam s
=] ’ .ff
)
Zlmmas T
2
uLLHHH —
N...LHLH .\.\\X......
m 4
y
L 3
MHHLL ,ﬂ
_

gical OR for eight choices

Fig. 3.6. Realizations of lo

of voltage.

GH)

W=AX *+Z.R
Positive Hixed

A_— M

X - B.H :] .

o “}__N e j \}_H.H
Z —_ \ L-‘J,‘I’" Z.H.__ \Tlo___“ LI_‘_-J"
R e R.H_| /’

U= AX . ZR
No longer expresses the

ﬂ [=
B __)O_L-“)o_ primary logic.

I
z_[™ I
=

L

(2%)

Y =qa+B.CD

POSITIVE MIXED
-—_—_‘.4— ri—
?=a.{BCD) Using NANDs ¥=A+BCD
3 A.L
i I Lt
T | —"“'L\ BH \\\ Y.H
p [}H" . % CH =
——— "‘3-0——-——-—-! /fo— D L H?".__j__-r P.ﬂ'
B "o

¥=a + B.C.D

Using NORs

45

POSITIVE MIXED
Y =aA+B+C+D Y=A + 3.0.D
A.H
A |
: {;& h""a‘_s) \\‘Q{ ‘.'H.Q—? C'ﬂ{\ ".."" -
¢ Mot | N P N e 3
n—{«*ﬂ-\ ”%'z‘ e CL; | j o
S L

ANALYZING A LOGICAL EXPRESSION FROM A CIRCUIT

1.- Ignore circles and inverters, since they
perform no logic by themselves;

2.~ Interpret the slash as logical NOT, and the
others AND, OR, XOR and COINCIDENCE symbols
as the logical operations they implement, and
derive the logic expression from the diagran.

Logic equation from analyzing the circuit

o | 'I"-u_\“
) ot
éf"
C.H T\b
-
0., o—oc :}——' !." 9

OUTPUT FUNCTIONS FOR A BOOLEAN FUNCTION OF THO VARIABLES

AB Z0 Z1 22 23 24 25 26 27 Z8 29 210 211 212 213 Z14 215
FF F F F F FF F FT T T 1 T T T T
FTFFFFTTTTFFFFTTTT
TF F F T T FF T T F F T 7T F F T T
TT F T F T FT F TF T F T F T F I

The outputs execute the following functions:

Z0 = F

Z1l - A AND B

Z2 = NOT (A IMPLIES B) Z10 - NOT B

Z3 = A Z11 = B IMPLIES A

Z4 = NOT (B IMPLIES A) 212 = NOT A

25 =B Z13 = A IMPLIES B

Z26 = A XOR B Z14 = A NAND B

Z7 = AOR B 215 =T

Z8 = NOTCA OR B)

49 = A COINCIDENCE B

()

11 1or a physicai NANUD

AH B.H Y.H AH B.H Y.L
F FolT F F | F
F T 1 F T | F
T F T F F
T T) T T | T

_"""Ph""“ia

——INaMD

¥z A NAND B

A B 1
L L H
L H H
H L H
H H L
A.H B.L v.H A.H B.L y.L
F T |T F T |F
F F |7 F F |TF
T T T T T F
T F F T F T
=—1Fhvys. Phys.
—— [J—
NanD ——LINAND

Y=A IMPLIES B

Y=A IMPLIES B

A.L B.H [v.H J_A,L B.H ?.L AL B.L [¥.H A.L B.L v.L
T F IT] LT F | F T T T T T |F
) T [T T T |F T F |T T F |F
F F |T] F F | F F T |T F T |F
F T F F T | T F F |F F F |T
——9Fhvs. | ———|Fhys. ———Phya, ———qPhys=.
- e —— r—
T [NAND | ——I|NAND NSND Anane
Y =B IMPLIES A Y= B IMPLIES A Y- AORB Y = A NOR B

LOGIC PERFORMED BY A PHYSICAL NAND

Y

HOW CAN A MIXED LOGICIAN READ
A POSITIVE LOGIC CIRCUIT ?

1- Append .H to the positive logic inputs and output,

Z.~Replace the negated input or output by
non-negated mixed~logic forms.

3.~-When the circles do not match at the ends of a line,
insert a slash to emphasize the implied logical NOT,

4 ~Where a gate 1s surrounded by slashes, vyou mavy sim -
plify the solution by altering the AND and OR gate

symbol to its mixed=-logic OR and AND counterpart.

29

COMMON OPERATION WITHIN A CIRCUIT

a) Movement of data from one part of the system

to anpther;

b) Selection of the given data from several possible:

¢) Routing data from a source to one or several
destin#ti01as;

d) Transformation of the data from one

representation to another;

e) Comparing data arithmetically with another data;

f> Manipulation of the data, arithmetically or logically:

e

a7

COMMON BUILDING BLOCK®

COMBINATIONAL BLOCKS

.- MULTIPLEXER: Selects one of several inputs

: S
s selects lines can manage 2 inputs

(2] --F

bill

G.L

A | A L

e L ST{?""%"—“D—L_ ¢ G. LST-[W D"— LJ“ ¥
b—a[:;__c)r} R gm— 3
3 B

2.- DEMULTIPLEXER : Sends data from a single source
to several destinations.

CRY ST PT e s o
o Y1.L B A
Ytz=B:A:G | ZLFJ =Dins .| B
- 3
Y2 - B 'A 'G’ » : va2. L
Y3i=B "A+*G E:: ¥3.L

T

3.~-DECODER: Identifies a particular code.
BCD to decimal decoder; operation codes

Same physical circuit as demultiplexer code ¢ B A instruction
o — am o oo A
o e A
_JNMS

JMP =C .B. A

4,- ENCODER: Forms an encoded representationof a set of
inputs. For example: codification of numbers 0 to 9

5.~ CODE CONVERTERS: For example BCD to 7~segment

a

fpigdIUCC 700
el le bl 1 1 11
e o

You can implement the logic of the TT or use ROMs,
PLA, PLE, PAL

(22

a) PLA Programmable Logic Array.

b

c)

Logic function as a sum=-of-products
matrix of ANDs and ORs

A PLA of 3 inputs will accomplish on each row

the function A.A.B.B.C.C. .A.H
B.H j‘[:"
CH

- - - - L T T N\ TESTH
TEST = AB + AC + ABC

PLE (Programmable Logic Element) a PROM
that provides all possible product terms of its input.

To generate a logic function, program a ”1"
if the canonical term contributes,

PAL (programmable Array Logic) allows
to specify the nature of the product term.

The way in which the product may be form

into sums is fixed in the chip.
' TN

6.- COMPARATOR: Verifies the coincidence of 2 patterns
of n input bits.

A EQ B =(A0.BOY'(Al « Bl .. «(An * Bn)

A3H __

B3H]| _[
For n = 4 A2 4 f .

AlH |
BLE :)
AO0.H |
BOH —1 D

7.~ GENERAL PI;HRPOSE DEVICE (Only logic>

A 2

SA ‘ ‘ ISS
en

8.- FULL ADDER

SUM =
=A®B3ICIN

COUT = AB +CIN A+ B

S
')
w
w
>
)

] t
)

p

e

a

s

CouT

CIN . (AB + AB) + CIN. (AB + AB) =

A0 BO

SUM 3 SUM 2 SUM 1

SUM ¢

CIN
&}

9.~ Arithmetic Logic Unit (ALU) combines the universal
logic circuit with binary arithmetic operations.

arithmetic operations include:

addition A PLUS B

subtraction A PLUS (MINUS B), MINUS B is realized by the
negation (complement) of B,
incrementing A PLUS 1

decrementing A MINUS 1}

A PLUS A < 16 operations,
8 MINUS A 4 control inputs
MINUS A > 1n

* 1 t
MINUS B selection input

2 4-bit inputs,
1 4-bit output,
CIN,

COUT.

perform the 16 logic functions of two variables

plus the 16 a"ri:thrnctic functions.

€

AH T -
i N (A+A)L
[\ "'_4-'_'7’ J‘})
— -
| AH
L
SN
L
s
]
1 | |
AR _
boor
| I i
! | |
: ~— Hazard
ArA)L
'td td

Fig. 3.10. Appearance of a hazard.

G

SEQUENTIAL BLOCKS

DATA

1.- LATCH HGLD

2.~ RSFF FLIP-HLOP S

F-1

CLK
A Q.
R y_/ "
1.« D FLIP-FLOP
CLRICLKID | Q
Data storage D T | %] % O
Time del ‘ Q.L i e g
e aelay CLY _ o—" F|T]o| o
synchronizenr
CLR
4.- JK FLIP-FLOP § R CLK J K (C(n+l)d
o L H x X X H
H L %X X X L
L L X % ¥ -
H H [L L L
H H J L H Q¢n) Hold
H H J H L G<n) Toggle
H H J HH H

5.~ REGISTERS For Data storage
Enable D flip~flop

in

CLK

6.~ SHIFT REGISTERS performs lateral movement of data

aone position to an ad,jacent one,

Types: Serial to parallel
Parallel to serial
Serial to serial
Parallel to parallel

PATAM q.L_n aﬂL.D

CK

] inl out| Di
Qi+l lip2
Qi=1. lin3
DATA |in4
s1 | CK
$0 | K
S§1 SO [OPERATION
O +] Hold
.E.? 0 1 Shift R
1 0 Shift L
1 1 Load new

CK CK CK
e [T— [T |

/20

T I |
{‘_ - — @3.H

CLK.L R !

O cp Sl r

—k T an ah
.
GLR.L [|
D

Asyncronous counter,

(40)

CLOCK SKEW

tpl

A(DY| nﬂ T : : L
Sta-t;ts-b Combinational Commands > .*,‘I' IR S JI :I f
Logic (2tp) A :f‘"fﬁ -
—P A z £ A,B) | T{u'-f:.' e
BCD) = £ (A,B) BDy T4
1, : .,-"I.f : o
B oL &4 1
R
i [T T T

D) !

2 —a b qE EEREREREEE
L R S S T T
CLKB | CLKA Lo Lo L
T T T
T T R R T T S A T S

[T 1] 1
. * ro Pt o Eo
A Q D 4 ALDY 1 b 7 I
1 1 Y 1 | e p———
CLKXB o b T
CLXA T o ™7
—— I e T T T T T T TR
T T S R T T T S TR

clock skew { td1l
tdl - time when outputs of combina -
1.- Don’t gate clock lines tional bhlock starts to change.
2.~ Use all positive gated FF
3.- Same length of lines
4.- Same buffers for all lines

DESIGN METHODOLOGY (Start top~down)

dtep one: separation of control algorithm
from architecturs to be controlled by it.

CC

ARCHITECTURE: Elements to perform the original problem.

CONTROLLER: Algorithm plus HW

ALGORITHM: A properly sequenced set of command signals
to make the architecture perform the original

problem
(42,

Algorithm State Machine notation
for describing synchronous circuits.

Methods for synthesing ASM

STW 00 L= Traditional
Select write mode 2.~ Multiplexer controiled
p———p Issue GO signal
Present write DATA 3.~ One=hot
Present MA
Y 4.« ROM~-based
WAIT ¢ 01

cC

OUTI1

(25)

TRADITIONAL METHOD

1.- Encoded representation
of present state
2.~ Campute the code for

Status Tambinational Command next state
inputs _ o . outputs 3.- one FF for each next
P 1
' 053‘:1 State

4.- write STT and equations

PRESENT NEXT

i e STATE STATE
rese S next Out |name code code | name
state oo STH |0 | % | 1 WAIT
’ OUTL{MAIT| 1 1 0 STHW
CLX.H HAIT| 1 0 A WAIT

CLR.
OUT1 = A.CC
|
CCH = ouTLI —

A.CC

A —H) , ACD)
[—l ADYH
- tal]

present | & next
state = T state

'I CLK.H

@

MULTIPLEXER CONTROLLED METHOD

NEXT PRESENT NEXT
STATE STATE ADDRESS 1.- Encoded representation
BITS of presenta state
T ACD) 2.~ Compute code for next
—X0 Y i) N state
CC.L Q=0 ¥1 CLK b 3.~ one FF for each next
r"—;CK state
T 4,- write STT and equations
Jt.-H SO —— ‘.1 D -
MUX ' 5.~ use a MUX at the input
' of each State FF.
CLR.L
NEXT STATE FF
OUT- PRESENT NEXT COHDI-
PUT STATE STATE TIONS
CC.L OUTL H CODE NAME|NAME CODE
A.H | 0 | STW |WAIT| 1 X_
1 WAIT | NAIT| 1 cC
ouT1| L WAIT | STH 0 cC
MUXAWD) =
MUXACL =
ouTL = AC

ONE-HOT METHOD

1.- Use one FF for

each state
2.~ No encoding

WAIT....__T_‘\ - STW.L X 3.~ Only one of the
CCH L) D Qo—o state=FF can be T

- at a time
L = 4.~ Compute the FF’s
CKEQ Input
WAIT — 1
| R WAIT.H NEXT PRESENT CONDITION
| ' e WAIT STH "
(L - ‘ HAIT WAIT cC
— STH WAIT ce
WCK _ Qp
o
CLEH_| !
o—-=f-—
GLR'L EQUATIONS:

NextStateWait = STW + WAIT.CC

NextstateSTH = WAIT.CC

ROM-METHOD

ADDRESS | OUTPUT
A CC | A OUTI

0 X 1 0
1 1 0 1
i 0 1 0

AD) = A.CC
ADDR1
01
- ADDRO
09 0UT1
ROM
A 0 D ALD)

I
o~

c “n
o)
CLR CLK

(Y

Fig. 4.3 A more complex ASM.

le

v.H

S

B.H
AH

X0
X1
¥
X3

51
§0

AH

CLK

*.H
Y.L ; J)"|

F —

F .

¥.H

LLK

XQ
X1
Xa
X3

31
50

SCK

C

=
]

U

o2

ﬂ’
CLR.L O

Fig. 4.6 Implementation of the ASM of Fig. 4.3
using the multiplexer method.

Aa

P.H

LILJ—\) o) V) —
M’g‘- | Yal:
T . - = PL
RH : 3 5 W |lg—a
S.H ""\ £’
o—a- !F- }(LP'_H_____' Q.H
13 S| e s
Y.H g— it
Foup
P.H = -
XLg gc— l
o ¥.L o—0"— "
] — N ——— RH
|])’,
'_"'j i~ B— i
SIH B - I—
x H_“— _, c HEs!
7.H __/
PR -
x.a_)——:) ™ —— =1 S.H
| ; """'/ sk
§H [™ -
2L] }_ il ¢
O . 1

Fig. 48 a. A onéy-hot controller for %A\SH of Fiz, 4.3,

Qi Mo
WL }Qﬂ v
3 -
RH AR
’ e e ——— O
S.H ._-\\‘ lJ_'_)_J',
ZE Ilc_-
o3 ./ yy PEH_ ™ — Q.
XL o Yoo o al—
vH g— i
o
PH -
XLg ge] jo—
EnL Ha?ﬁ—‘ 7
:}i \p —J?‘) ™) (3 R.H
wf w ’,;——---— (2 e
L——") Lo — ok
5.H B -
H_)}_ -
Z2.H e ¢ T
PH — -
WE > } 1 SH
e MO,
sE_ T T
ZiL : }_‘ T
oG

Fig. 4.8b. Same as Fig/.,_\4\.8a, using NANDs.

