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hat are Genetic Algorithms °

Search procedures based on natural selection and
genetics iDarwinian approach).

How many variations ?

Evolution Strategies

On line adaptation using one basic operator
(mutation).

[German|school ‘60 - Rechenberg & Schwefel].

Genetic Algorithms (pure genetic inspiration)

Fixed population of fixed length binary strings (k-
ary , floating point, permutation like, Lisp codes)
and three basic operators : selection, crossover and
mutation.

[American school ‘60 - Holland, De Jong,
Goldberg].
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Genetic or Evolutionary Programming (Lisp
programming environment)

Instead of string of bits, S-expressions are used as
“genes” of the chromosomes (Lisp programs).

Paradigm :Population of programs, through the
three basic operators, generate better and better
programs.

[‘90 - Koza, Stanford University]

Hybrid Genetic Algorithm (Hybridization of pure
genetic algorithms with other algorithm)

Genetic operators and the problem representation
are taylored for a “specialized” algorithm.

[American school ‘80 - Davis and others]

and.....many, many others.
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How are Gas different from other methods ?

1. GAs work with a coding of parameter set, not
the parameters themselves

2. GAs search from a population of points, not a
single point.

3. GAs 1_ise payoff (objective function)
info nation, not derivative or other auxiliary
knowledge.

4. GAs qse probabilistic transition rules, not
deterxpinistic ones.

- What are they used for ?

1. Search and Optimization.

2. Decision making.

3. Classification.

4. Genetic learning (Classifiers)
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Learning the Lingo

Comparison Natural and GA Terminology

chromosome

string

gene

allele

feature, detector

feature value

locus

string position

geI;)type

phenotype

%

structure

decode structure

epistasis

nonlinearity

breedi;g techniques

selection mechanisms

introns

non functional patches

R — S —

Ideas and analogies might either come from nature

or the researcher.
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A simple optimization problem

Maximize the function : fx) = x2 on the integer
interval [0, 31].

1000

) 00 |

X

Initial population (4 strings) :

Let s ap OPI y the basic three operators :
diction

2 rosﬂover
3. Mutatlon
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Reproduction
Selection scheme : Roulette wheel selection

Rule : Roulette slots sized in proportion to the
correspondent string fitness.
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Optimization of function f(x)

le with Strings and Fitness Values

String

Fitness

% of Total

01101 169 14.4
2 11000 576 | 49.2
3 T 01000 64 5.5
4 10011 361 30.9
Total | - 1170 100.0
I IR '
Crossover (one point crossover)
Parents : ! Children :
o[1]1]o]1 0l1/1]0]o
crossing site — s randomly chosen —-———
l —
1/1/0j0]|0 11,001}

Genetic Algorithms: a:} Overview
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Mutation
Mutation simply flips with low probability some
bits when copying during crossover.

before mutation

l —

after mutation

0/0/1]0]0

Starting with a random population of strings,after
few generations the population converges to the
optimal value.

GAs wouldn’t be so interesting if “real” functions
Were so easy.

GAs can find global optima in difficult (non
derivable, for instance) functions with billions of
local optima.

Enﬂnnan Western Research Laboratory

Genetic Algorithms: an Overview May 1994 Page 9 of 32




Optimization of “difficult” functions

How about objective functions like this ?

In 1975 De Jong studied the problem of
optimization using GAs. He came up with new
perforrnance estimators and a set of optimal

parameter values for the various operators.
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The standard De Jong’s test suite

Test environment of five problems in function
minimization with the following characteristics:

1. Continuous/discontinuous
2. Convex/nonconvex

3. Unimodal/multimodal

4. Quadratic/nonquadratic

5. Low-dimensionality/high-dimensionality
6. Deterministic/stochastic

Different selection schemes, crossover and
mutation operators with optimal probabilities have
been tested and optimized over a a large number of
runs and population sizes.

Later,GAs have been used as parameter optimizers
of other GAs (meta-genetic algorithms)
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The Fundamental heorem
Assumptions :

1. Strings to be constructed over a binary alphabet ”
V = {0, 1} and binary decoding is assumed.

2. A schema is a template defined over the

alphabet {0, 1, *} describing a pattern of bit
strings in the search space {0, 1}! where 1 = length
of the string and * specifies a “don’t care” allele.

Example of strings and schemata

B Sm’ng_ _Repre;ntation_

T

B | owo0n

‘ schema 1 **0*11

L schema 2 i"0""""‘_-1
_schema_3 _ ***:11 |
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| andeltons

1. There are 3! schemata or “similarities’” over a

binary string of length 1.

2. Order of a schema H, o(H) = number of fixed
positions in the schema

3. Defining length of H, & (H) = distance between
the first and last specific string position.

4. Notation m = m(H, t) means : at time t, there are
m copies of schema H in the population.

5. During reproduction a string get selected and is
copied according to its fitness with probability :

.
Ex:
schema=011%1]**

oH)y=4,0H)=5-1=4
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After plckmg a nonoverlappmg populatlon of size g
n with replacement, we expect to have m(H, t+1) ¥
representative of schema H at time t+1 as given by
the equation :

mH t+1) =m©H. b xnxf(H)/zfl.

where f(H, is the average fitness of the strings
representing scheme H at time t.

But the average fitness of the entire population can
be writtenas : f- z‘fl./n therefore :

miH.o1, - ML <f I

Above-average schemata grow, below-average
schemata die off.

Suppose a schema H remains above average an
amount of time ¢ xf with c a constant.
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The schema difference equation can be rewrittem
as : ?

| C_ f
mdH, t+1) = m(H,f)x-( J?f) =l+oyxmH. b

|
Starting at t = 0 and assuming a stationary value of
¢ we get the equation :
| mH. 1) =m(H,O)><(1+C)t

Oor a geomeric progression, the discrete analog of
an exponential form.

How crossover affects schemata ?
. 8$;=0111000
Hy=* 1 ** % % (
| H,= * * %|] ( * *

crossover site (randomly chosen)
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In the previous example crossover destroys
schema H1 while schema H2 will survive.

The longer the schema the more likely is its
disruption by crossover.

Survival probability under simple crossover :
p 1. O H,
\ [-1
If we introduce crossover and mutation with the
respective probabilities (p. and p_,) and similar
consideration, for every scheme H we get :

Hy .  O0WH 1
mH, t+ )y <mH,» xf(f)-l_ ch‘ _J-O(H; <P,

Conclusion

Short, low-order, above-average schemata receive
exponentially increasing trials in subsequent
generations.
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Implicit parallellism

If we co¢s1der a population of n binary strings of
length | ,a lower bound on the number of schemata
processed at each generation is O(n°)

 The Building Block Hypothesis

Highly ﬁ*F schemata of low defining length are
sampled and recombined to form better and better
strings if :

1. They are consistently emphasized by selection.

2. They aire respected and exchanged by the
genetlé operators.

The buﬂcﬂmg block hypothesm suggests an analogy
with Fourier Analysis, in which an arbitrary curve
(penodlc} can be approximated by the sum of
sines and cosines of progressively higher
frequenmies (Walsh function analysis with GAs).
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The Minimal Deceptive Problem

Suppose we have :
ok (et Rk k(K > £

ek (kR R k> £
sk | skarcokkokskokok 0% > o

otk ] dkskkordokkRR k>

LK== Q(H) —==>

Let’s assume fq; is the global optimum:
F11>fo0’ Y117F01’ F112710)
Element of deception :
£f(0*) > f(1%*); f(*0) > £(*1)

These “low-order” schemata lead the GAs away
from “high-order” schemata. Today deception is
one of the major areasof research in GAs.
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~ Is it really that simple ?
Simple answer : NO

For selection there are three main categories of
schemes: stabilizing , directional, disruptive and
all of them can have scaling.

(A few) alternative selection schemes for the first
category:

1. Deterministic sampling

2. Remainder stochastic sampling with/without
replacement

3. Stochastic sampling with/without replacement

4. Stochastic tournament

5. Competitive selection

6. Bipartite competition

7. Tournament fitness selection
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Advanced Operators :

1. Dominance

2. Diploidy

3. Abeyance

4. Segregation

5. Translocation

6. Multiple chromosome structures.
7. Duplication and deletion

8. Sexual determination and differentiation

Why do we need so many different strategies?

One simple reason is that we have finite (and
usually small) populations and we want a fast
answer.
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Premature convergence and diversity

GAs with small populations and conventional
reproduction schemes suffer from premature
convergence (all members are the same).

The basic idea is to let fitness increase, but also
keep diversity in the population.

Reproduction schemes :
1. Generational replacement.
2. Steady-state reproduction.
3. Elitist schemes.

4, CHC Cno mutation is used, but after the
population converged, it gets “restarted”.

5. Restriction on mating and sharing.
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One solution : Niche and Speciation

In sharing, fitness is scaled depending on the
neighbourhood and how close individuals are
~ between each other.

No sharing

X

Sharing

X
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Hybrid schemes

Why don’t we separate global (genetic) from local

(gradient-like, hillclimbers, etc.) optimization ?

Genetic
Algorithm

3 Local Search

; . Calculus
. Greedy
3 . Others
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Parallel Genetic Algorithms

Grefenstette (1981) examined :

1. Syncronous master-slave

2. Semisyncronous master-slave

2. Distributed asyncronous concurrent
3. Network

CP CP CP GA

CP CP CP GA

CP = concurrent process Network GA

SM = shared memory
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Reordering operators

What abq&ut problems which involve finding an
optimal order for a sequence of N items ?

Instead of a Cartesian space we have to deal with a

Permutation space (problem of representation) and
crossover doesn’t work any more.

Example :

Children

<--- Crossover sites --->

generates unacceptable permutations. Two basic
solutions : 1) new operators, 2) penalty function

ﬂﬂanuan Western Research Laboratory

Genetic Algorithms: afn Overview May 1994 Page 26 of 32




Salibeasit cbcicickustoe Y T -c B LT ITEIN ERETI T

L] T O LI TR oL )

J-ﬁn \E.w ﬂ.&,wwwﬁ%

Reordering Operators

Crossover :

1. Partial Matched Crossover (PMX)
2. Order Crossover (0OX)

3. Cycle Crossover (CX)

4. Uniform Order Crossover (UOX)

5. Inversion and, many, many others....
Let’s see one of them, PMX :

Children :

Exchange (swap) : 3<-->5,4<-->1,5 <-->4
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The penalty function method cannot directly be
applied to the space of permutations.

From Stirling approximation :

n

ns~,2an(g)

so the probability of a “good”permutation if we
have n independent variables 1s :

p _ F4A N 2Hl’t

n I{
p n €

For the interesting cases (n > 1000), we will never
get a single good permutation! There are other
representations, but decoding is computationally
very expensive.
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