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INSTABILITY OF NONPARALLEL FLOWS

P.G. Drazin
School of Mathematics, Universily of Bristol,
University Walk, Bristol BS8 TW, England

This is an account of some strongly nonparallel lows and their strongly nonlinear
stability (as well as their linear and weakly nonlinear stability), involving mechanisms
of inatability entirely different from those of paraliel flows. First the distinction between
parallel, weakly parallel and strongly parallel flows is made. The importance of nonpar-
allelism on mechanisms of instability is shown by examples, first of Jeffery—Hamel flows
and flows in a diverging channel, and then of flow in a channel with suction through its
porous walls. Lastly, there is a review and preview of work on Long’s vortex, another
strongly nonparallel low. We treat this well-known exact solution of the Navier—Stokes
equations which represents a class of rotationally symmetric swirling jets, and their in-
stabilities. ~

1. Nonparallel flows and their instability

To find the stability of parallel flows, researchers in the nineteenth cen-
tury, notably Helmholtz, Kelvin and Rayleigh, used an exact solution of the
Euler equations of motion of an inviscid fluid as a basic flow, considered
the stability of that flow by linearizing the Euler equations for small per-
turbations of the basic flow, and used the method of normal modes. This
led to a boundary-value problem with a linear ordinary differential system,
which was an eigenvalue problem to determine the stability characteristics
of the flow. Researchers in the twentieth century, notably Orr, Sommerfeld,
Rayleigh, Tollmien, Schlichting and Chandrasekhar, similarly took an exact
(or a.pproximate) solution of the Navier-Stokes equations of a viscous fluid,
with or without heat conduction, and found its stability characteristics by
solving an eigenvalue problem with a linear ordinary differential system.
Researchers later in the twentieth century, notably Landau, Stuart, Wat-
son, Benney, Davey, DiPrima, Eckhaus and Segel, extended this method of
linear stability by considering weakly nonlinear perturbations, i.e. by using
essentially what is now called centre manifold theory. The stability of the



null solution of the linearized problem came to be called linear stability, al-
though definitions of stability, e.g. Liapounocv’s, refer not to linear, weakly
nonlinear or strongly nonlinear stability but just to stability.

The success of all these methods depends on being able to reduce the
linear stability problem to an ordinary differential system. This in turn
depended upon choosing a basic flow which has a strong symimetry, i.e. is
invarjant under some continuous group of transformations. It is for this
reason that the basic flows considered in the classic works of hydrody-
namic stability are all parallel, or rotationally symmetric. Most of the
flows treated are in fact unbounded and either states of rest or parallel
flows, which are respectively invariant under either a group of translations
in space and time, or the group of translations in the direction of the flow.
(Of course, the flow must be unbounded or periodic in the directions of the
translations for there to be invariance under a group of the translations.)
It follows that the linear stability problem may be reduced to an ordinary
differential eigenvalue problem by taking independent Fourier wave com-
ponents. Then the resultant simplicity of the solution of the linearized
problem enables the solution to be used as the first approximation to a
weakly nonlinear solution of small amplitude.

More recently the development of computational fiuid dynamics has
allowed researchers to trace the strongly nonlinear development of pertur-
bations of a basic flow, and to describe the transition to turbulence suc-
cessfully in many cases. Also the qualitative theory of dynamical systems,
e.g. that of bifurcations apd chaos, has given insight into transition. How-
ever, very little is known of the mechanisms of instability of flows which are
neither parallel nor approximately parallel, and it is timely to examine the
instability of nonparallel flows, which, after all, are the rule rather than the
exception in nature. The instability of nonparallel flows poses a challenge
to our physical understanding and mathematical skills.

It may be helpful to write of parallel flows, weakly nonparallel fiows
and strongly nonparallel flows by analogy with linear instability, weakly
nonlinear stability and strongly nonlinear stability. Then a parallel flow
is a flow whose velocity is of the form U(x,t)i for some constant vector
i, the unit vector in the z-direction, say. Examples are plane Poiseuille
fiow with U/ = V(1 — y*/h?} and plane Couette flow with U = Vy/h
in the channel —h < y < h, where V is the maximum velocity and
h the semi-width of the channel. A weakly nonparalle] flow is a nearly
parallel flow for which the assumption that it is locally parallel permits a
successful treatment of the stability characteristics by use of the stability
characteristics of the locally parallel flow as a first approximation. This
is a part of the theory of hydrodynamic instability which is covered by
several papers, some successful and somne controversial. Examples of weakly
parallel flows of a viscous fluid are the Blasius boundary layer on a flat plate



and the Bickley jet. A strongly nonparallel flow is a flow that is neither
parallel nor weakly parallel. Examples of strongly nonparallel flow of a
viscous fluid are Couette flow between coaxial rotating cylinders, Karman’s
flow on a rotating disc, Jeffery—-Hamel flows between inclined rigid planes,
Berman flows in a long channel with suction through porous walls, and
Long’s rotationally symmetric swirling vortex. Just as it is often said that it
is unfortunate that the negative word ‘nonlinear’ describes more interesting,
more challenging, more general and more realistic phenomena than the
positive word ‘linear’ does, so it may be said that it is unfortunate that
‘nonparallel’ is a negative word and ‘parallel’ a positive one.

2. Jeffery—Hamel and Berman flows

For cur first example to show the importance of nonparallelism, con-
sider the stability of Jeffery—-Hamel flows. Recall that these are steady
two-dimensional flows of a uniform viscous incompressible fluid between
two rigid inclined planes, say ¢ = +ea, driven by a uniform line source,
of strength @ say, at the line of intersection r = 0 of the planes, on use
of cylindrical polar coordinates r, ¢, 2. The Reynolds number may be de-
fined as R = }/2v, where v is the kinematic viscosity of the fluid. Then
the solution of the Navier—Stokes equations may, by seeking a similarity
solution for which the streamfunction depends only on ¢, be reduced to
the solution of a nonlinear ordinary differential boundary-value problem. It
has been shown that there is an infinite number of such flows for any given
pair of the dimensionless parameters R,«. Banks, Drazin & Zaturska
[1] treated the stability of these flows in some detail, and reviewed the
literature. They found that almost all types of Jeflery—Hamel flow are un-
stable always. They also found that if the semi-angle between the planes
a < 0.07° or thereabouts then a Jeflery~Hamel flow of one type is nearly
parallel in the sense that it is approximately plane Poiseuille flow and so
unstable to what are called Tollmien-Schlichting waves. (It is well known
that plane Poiseuille flow is linearly unstable to Tollmien—Schlichting waves
when another Reynolds number R' > 5772, where R’ = Vh/v, this having
been found by solving what is called the Orr—Sommerfeld problem.) The
mechanism of instability, with energy transfer to the perturbation from
the basic flow at the ‘critical layer’, gives a subecritical Hopf bifurcation at
the critical value of R (which is two thirds of the critical value 5772 of
R'). However, if a > 0.07° then the mechanism of instability is entirely
different, and the Jeffery-Hamel flow may be said to be strongly nonparal-
lel. This mechanism gives a subcritical pitchfork bifurcation at the critical
value of R, which depends on «. These results may be applied to flow
in a diverging channel by assuming that it is either weakly nonparallel or
nearly plane walled, so that its stability characteristics may be found by



approximating the flow locally by either plane Poiseuille flow or a Jeffery-
Hamel flow. The smallness of the angle 0.07° indicates that nonparallelism
is very important in practice, and that the weakly nonparallel approxima-
tion is useless except for very well machined and aligned planes in a careful
laboratory experiment,

For the second example of strong nonparallelism, consider the stability
of Berman flows. For these, a viscous incompressible fluid is driven along
a long channel by uniform suction through the plane rigid porous walls.
It is convenient to choose the z-axis along the channel and to take the
channel walls as y = +h. Berman [3] considered steady symmetric two-
dimensional flow in the channel by use of Hiemenz’s form of similarity
solution, assuming that the streamfunction is proportional to z ; thus he
reduced the Navier-Stokes equations to a fourth-order ordinary differential
equation with y as the independent variable. This ordinary differential
equation and the boundary conditions of suction and no slip at the two
walls comprise a nonlinear boundary-value problem. In the 1960s several
papers on solutions of this problem were published, but Zaturska, Banks &
Drazin [16] enlarged the problem by treating both asymmetric and unsteady
flows in the channel.

We shall make only one point about the nonparallelism. Berman'’s
symmetric steady flow in the channel is [16] unstable if R > 6, where
the Reynolds number is here defined as R = Vh/v, ie. it is based on
the suction velocity and semi-width of the channel. However, Hocking
(10 calculated the stability characteristics of the asymptotic suction profile
by solving an Orr—Sommerfeld-like problem, and found that the flow is
unstable if R, > 54370, where the local Reynolds number is defined as
R; = Uh/v and U(z) is the velocity of Berman’s flow outside a boundary
layer on a wall for large R, i.e. the definition is based on the local velocity in
the middle of the channel and the semi-width of the channel. Now the local
velocity I/ o« = in Berman’s similarity solution, so we have the following
situation in a channel of finite length { as the suction velocity V is slowly
increased. If { is so large that the maximum of U in the channel is large
enough, then R, will exceed its critical value 54370 before R exceeds
its critical value 6, and Tollmien—Schlichting waves will occur in the flow
lacally near the walls where | x| is large; in this event the flow might be
said to be weakly nonparallel. However, if { is so small that R exceeds its
critical value 6 before R, exceeds its critical value 54370 then there will
be a global instability over the whole channel [16]; in this event the flow
might be said to be strongly nonparallel.

3. Long’s vortex
A third of a century has passed since Long [12, 13] found a remarkable
class of exact solutions of the Navier-Stokes equations. They are similar-



ity solutions representing steady rotationally symmetric swirling jets of an
incompressible viscous fluid. They are quintessentially nonparallel, having
helicity density u.(V x u) which is not identically zero, where u is the
velocity of the fluid. So they are flows of great interest in the theory of
nonparalle]l flows and their stability, allowing us to study some strongly
nonparallel flows by analytic as well as numerical methods. They are also
of practical value as models of some jets and vortices, and, as we shall see,
provide yet another possible mechanism for vortex breakdown.

Long [12] assumed a steady flow of a uniform incompressible fluid of
density p and pressure p with a Stokes streamfunction ¥(r,z) such that
the radial and axial velocity components are

oy | _1ov
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respectively. He also assumed that there is a flow of similarity form with

U, =

Wir,2) = K2F(z), ug(r, z) = KG(z)/r, p(r, z) = —-pK*H(z)/z*, {3.2)

where the independent variable is » = r/z, and R is the constant swirl of
the vortex at infinity, i.e. ruy — K as » — co. The Reynolds number

is defined as
R=FK/v, (3.3)

being based on the swirl. Another fundamental parameter is the dimen-
sionless ‘flow force’, defingd as

2 o0
M= K-2/ f (ul +p/p) rdr d¢ (3.4)
0 0

=27 ” 2 _ g2 z dz .
p fo (F?— 22H)/z da, (3.5)

in fact, independently of the value of z. This flow is a combined vortex
and jet with axis r = 0 and velocity components

u = K(eF' ~ F)/r, up = KG/r, u, = KF'[r, (3.6)

where a prime denotes differentiation with respect to the similarity variable
z . Substitution into the Navier—Stokes equations and a little manipulation
gives

(14 2))H' + 32*H = —(F* — 22 FF' + G?), (3.7)
z(1+ z9)G" + (222 - 1)G' = ~RFG', (3.8)
z(l+ 2)F" -~ F' = R(z*H — FF"). (3.9)

The boundary conditions are
F(O)=F(0)=G(0)=0, F(o)= 2-%, G(oo) =1, H(oo) =0. (3.10)
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This nonlinear boundary-value problem specifies the family of Long’s vor-
tices in terms of given dimensionless parameters R, M . Note that M is
determined by equation (3.3} afier the solution has been calculated.

Long [12] rescaled this problem, re-posed it in the boundary-layer limit
as R — oo, solved it, and found then that there are dual solutions for
M > M. and no solution for M < M., where M. is a critical value,
in fact 3.75. His results are indicated in the broken curve of Figure 1 for
R=o00.

Some years later it was found [6, 15, 8, etc.] that both these flows of
an inviscid fluid are unstable to helical modes, i.e. to modes which are not
axisymmetric. In view of this fact that the vortices are always unstable
in the boundary-layer limit of small viscosity which Long considered, it
is surprising that work on Long’s problem has been largely confined to
this limit. An exception to the rule is the paper by Foster & Jacqmin
(7], who generalized the asymptotic solutions of Foster & Smith [8)] for
large flow force M and R = oo, by considering large M for arbitrary R.
Burggraf & Foster {4] considered some small spatial perturbations of Long’s
boundary-layer flow at large values of R. All this work has slowly built up
an understanding of the class of vortices and their instabilities, but much
remains to be discovered.

There is a considerable literature on laboratory and numerical exper-
iments on swirling jets, not least the paper by Long [12] himself. Exper-
imental work 1s perhaps best traced by use of reviews [9, 11]. A recent
paper [12] on numerical integrations of swirling jets of a viscous fluid gives
access to the numerical literature on the problem. However, let us add that
experience of integrating the slow algebraic decay of the basic Long vortex
and its perturbations suggests that the influence of the walls in a laboratory
or numerical experiment may depend crucially on the location and nature
of the walls, inlet and outlet in practice. Of course, walls, inlet and outlet
always occur in experiments, even though they do not in Long’s similarity
solutions.

Next we preview some forthcoming work [6] on Long’s vortex. The
property of dual solutions found by Long [13] is characteristic of a turning
point, known so widely now when bifurcation theory is fashionable but little
known when Long found his solutions. This knowledge leads us at once
to conclude from the generic case of a turning point that the bifurcation
where the flow force M = M. corresponds to a change in the sign of the
real eigenvalue of one mode of the linearized stability problem of the flow,
so that either one of the dual flows is stable and the other unstable, or both
are unstable to a different eigenmode. Similar ideas of bifurcation theory
are relevant when the Reynolds number R is finite.

Drazin, Banks & Zaturska [5] report results for all values of R, not
Just large ones. In particular they have solved the problem asymptotically



in the limit of small R for arbitrary flow force M , and linked their re-
sults with those of Long for large R by direct numerical integration of the
system. This gives an overall picture of the results, the occurrence of mul-
tiple solutions and their instabilities. Mostly rotationally symmetric steady
perturbations consistent with the similarity form were treated, although,
of course, limitation of the class of perturbations of a basic flow permits
a demonstration of its instability but not of its stability. This excludes
consideration of Hopf Lifurcations to time-periodic flows, which in general
occur when the least unstable mode, i.e. the ‘most dangerous’ mode, is not
governed by the principle of exchange of stabilities.

Below we write of ‘spatial stability’ when considering only steady per-
turbations. Note that by considering only steady perturbations one can
treat instability only indirectly, because stability is defined in terms of tem-
poral evolution of perturbations. However, the close relationship between
spatial and temporal modes, and between instability and bifurcation of
steady solutions, is well known. So spatial instability informs us indirectly
of the instability of Long’s vortex.

Benjamin’s mechanism of vortex breakdown [cf. 9, 11}, namely the sud-
den change of one vortex regime to another, depends on the coexistence of
two conjugate flows, i.e. equilibria, so that a disturbance may lead to an
abrupt change of equilibrium, as in a hydraulic jump or a ‘catastraphe’.
Other proposed mechanisms of breakdown involve the hydrodynamic in-
stability of a vortex. These possibilities were considered in the context of
Long’s model, limited though that context is: the occurrence of multiple
solutions, losing and gaining stability as the governing parameters vary, is
a natural framework for sudden changes of flow regime.

The work of Burggraf & Foster [4, §3] was generalized to reveal the
importance of its context by treating not only all values of R but also more
general dependence of the steady perturbations of the flow on the axial
coordinate 2z ; this leads to the following spatial eigenvalue problem which
governs the decay (or growth) of the flow downstream as it approaches (or
leaves, respectively) Long’s flow. Write

Y= Ko +v1), up= K(vo+uv)/r, p= pK:(po +p1), (3.

where g(r,z) = zF(x), vo(r,z) = G(z), po(r,z) = —H(x)/2*, give the
basic flow as in equation (2), and then linearize the Navier-Stokes equations
for small perturbations ¥, v, p1 . It can then be seen that the variables
may be separated by taking solutions of the form

Pi(r, 2) = 2 (), vi(r,2) = 21g(z), pi(r,2) = —z’\'3h(z), (3.

where A is the separation constant, possibly complex. The linearized
Navier-Stokes equations imply at length that

221+ 22" — 2%[(A = 1) + 3(A — 22" + (A — Dz[1 + 3(A — 2)z7]f
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—AA = 1)(A - 2)2*f = R[-a®h — 2’ Ff" + (A + 1)z F f!
+(A =322 F'f' — A2?F"f — MA = 3z F'f — 2AF f — 2Gy), (3.13)
(1 +z%)g" —[1+ 22 - 2)2%¢ + (A = (A - 2)zg
= R[-AG'f ~ Fg' + (A - 1)F'g], (3.14)
(420" — 214200 - 27" + [1+ (A = (A — 2)2?)f

= Rlz*h — (A= 3)zh — cF " + (A= 3)zF'f' + Ff' — McF" = F')f], (3.15)
and the linearized boundary conditions that

f(0) = f(0) = g(0) = f'(00) = g(o0) = h{x0) = 0. (3.16)

In addition, there is a linearized equation to ensure that M is fixed. This
poses a problem to determine eigenvalues A and corresponding eigenfunc-
tions f,g,h. There is spatial instability, with some steady disturbances
growing faster than the basic flow as z — oo, when there is at least one
eigenvalue, of three sequences of eigenvalues whose real parts decrease to
~00 , such that R(A) > 1.

It can be verified that a special solution is given by

A=0, f=zF' -~ F, g=2G, h=2H+2H. (3.17)

This solution is a simple generalization of a result of Burggraf & Foster [4,
§3] for the boundary-layer case. However, it is an eigensolution for all M, R
because it in fact also satisfies conditions (3.17) and the linearized form of
equation (3.5). Drazin, Banks & Zaturska [5] have solved this eigenvalue
problem completely in terms of special functions in the Stokes limit as
R — 0 the solutions are, not surprisingly, spatially stable.

Further, the spatial stability of Long’s vortices with respect to asym-
metric perturbations was treated similarly, since both variables ¢,z may
be separated by assuming that the perturbations are resolved inte modes
proportional to €'®# so that v,(r,¢,z) = z"‘Ie‘"‘”ﬁ(:c) etc. In this way the
linear stability of the fiow to spatial helical modes may be treated without
recourse to solving a partial differential system. Thus we express

(tr,ugp, 1) = K(ug + up vo+ vy, wo + wy)/r, p=pK:(po+p1), (3.18)

where (ug, vo, wo) = (2F — F, G, F"), po = —H/z?, as in equation (3.2).
Then, on linearizing the Navier—Stokes equations for small perturbations
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u1,v1, Wy, P1 , it can be seen that the variables may be separated by taking
spatial modes of the form

(u1,v1,w1) = AP ((z), (), w(x)), pL=-

where the non-negative integer n is the azimuthal wavenumber and the
complex eigenvalue A gives the rate of spatial growth or decay in the axial
direction. The linearized equations and boundary conditions may now be
found at length. This leads to the spatial eigenvalue problem for general
asymmetric steady perturbations.

Finally we shall give a few snapshots of the numerical results of Drazin,
Banks & Zaturska [5]. The aim is to give an overall view of the multiple
solutions of Long’s form, their qualitative properties as the parameters
R, M vary, and, in particular, their stability characteristics. The methods
of bifurcation theory are suitable for this task.

First, look again at the bifurcation diagram in the (M, w/R)-plane for
R =15 in Figure 1, where we define a scaled axial velocity at the centre of
the vortex as w = [zu,/K]r=o = [F'/T]r=0. Then lock at Figure 2 to see
the bifurcation diagram in the (R,w/R)-plane for M = 4,6. Incidentally,
note how well the asymptotic and numerical results agree. Next picture
the solution surface in the three-dimensional space of w/R, R, M . Figures
1, 2 indicate this very imperfectly: they are related to a few perpendicular
sections of the two-surface in the three-space. Long’s asymptotic results for
large R and the asymptotic results for small R fill the picture a bit. The
preliminary numerical restilts suggest that there is more than one basic so-
lution, and more than one stable steady rotationally symmetric flow in var-
ious various parts of (K, M)-space, and that various kinds of catastrophes
arise. Perhaps the most noteworthy result of the solution curves found in
the (R,w/R)-plane for various fixed valves of M is the occurrence of both
a simple curve for M = 4 and a looped curve for M = 6 ; it may be inferred
that there is a cusp for M = M*, R = R, where M* = 5.3,R" = 17.
(There is, in fact, no bifurcation where the looped curve crosses itself.) This
may be described fopelegically by views of a non-planar smooth curve as it
rotates, so that the cusp appears as a singular view but not a singularity of
the curve; again it is topologically described by the conchoid of Nicomedes,
with equation (R — R*)?w?® = (M* — M + 1+ w)?(1 — w?). However, it is
plausible that solutions in the neighbourhood of the loop are spatially un-
stable, though two stable steady solutions coexist for some values of M, R,
In summary, the set of solutions has a rich structure in need of careful and
extensive investigation.

Drazin, Banks & Zaturska [5] will publish full details. At alate stage in
the preparation of their paper they learned of independent work of Shtern
& Hussain [14] on a closely related problem. Shtern & Hussain used the
same similarity form of solution of the Navier-Stokes equations, but used

9
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spherical polar coordinates, whereas Long and the other authors have used
cylindrical polar coordinates. The former coordinates lead to a simpler form
of the ordinary differential system, which seems to be make both the ex-
pression of the problem and its solution somewhat easier. However, whereas
Long and the others have imposed the boundary condition F'(c0) = 2-1/2
Shtern & Hussain have imposed (in our notation) lim; .z 1F(z) = 0.
They alsc used a slightly different definition of the flow force, M , from
Long’s, namely

2r =]
Msy = K‘Qf ] (uZ + p/p - 200u, [8z) rdr dg, (3.20)
o Jo

2 =5
= M 4 WK j f (8(rus)/Or + Buy/0d) dr do
0 0

=M+ 47K [ru,)3 = M +47vR™ [z F' — F].

Both definitions coincide in the boundary-layer limit. By properly account-
ing for the viscous normal stress, it would seem that Shtern & Hussain’s
definition is preferable on physical grounds. However, the long history of
the problem gives some authority to Long’s definition, and changing the
definition changes the method of describing the results of the problem but
not the results themselves. Some of the results of Drazin, Banks & Zaturska
[4] are qualitatively similar to those of Shtern & Hussain [14], although the
latter did not treat stability at all. It may be said that the two sets of
results are complementary, illuminating the rich structures of two closely
related families of strongly nonparallel lows of a viscous fluid.

Long’s vortex is a strongly nonparallel flow par excellence. It and the
well-known flows due to a rotating disc are rare examples of a flow with
nonzero helicity density which can be expressed in fairly simple mathemat-
ical terms. It can easily be shown that the helicity density of Long’s vortex
is in general nonzero, although it is singular at the origin z = { of the jet
because the velocity is singular there, so the helicity itself is unbounded.
Thus the stability of Long’s vortex is of importance both for its practical
applications and its fundamental theoretical properties.
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CAPTIONS
Figure 1. The bifurcation diagram in the (M, w/R)-plane for R = 15, 00,

where the scaled axial velocity at the centre of the vortex is w = [zu, /K]0 =
[F'/x]s=0. The broken curve is for R = oo and the continuous curve for

R=15.

Figure 2. The bifurcation diagram in the {R,w/R)-plane for M = 4,6.

Broken lines denote asymptotic results due to two terms of the Stokes expansion
for small R and dot-dashed lines denote asymptotes taken from the boundary-
layer solution for large R. (a) The continuation of the solutions of type I. Note
that w is plotted for R < 1 and w/R for R > 1. (&) The continuation of the
solutions of type II.

11



