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1. INTRGDUCTION

The magnetic fields of some celestial bodies like the Earth and
Sun  have long been of interest to physicists because they seem to
have maintained themselves for a long time . It is now known that
the magnetic field of the Earth has maintained its strength for a
time much longer than its free decay time of about 4.5 X 10 3. That
result was one of the reasons why the Earth must have a fluid
core.The presence of a fluid core of an electrically conducting fluid
permits the interaction of the fluid flow and the magnetic lines of
force to produce an e.m.f. which helps the magnetic field to
regenerate itself ( Moffatt , 1978).The subject of the study of the
process of regeneration of a magnetic field is known as dynamo
theory (because of the similarity with the simple electrical
dynamo).

The dynimo problem is generally composed of the equations
of motion of an electically conducting fluid together with those of
magnetic induction , energy and state . This is a fluid dynamics
problem. The complexity of the problem is due to its nonlinearity
and a full solution is extremely difficult to find. Consequently , a
host of simpler but -elevant problems have posed themselves as
essential for the understanding of the dynamo process. These
include many of the problems dealing with motions in rotating
and,or electrically conducting problems.

Four decades ago,it was believed that the main source of
energy to power the geo-dynamo was thermal,with the heat being
produced bv. radio-active materials (e.g..K40) in the Earth's Outer
Fluid Core (OFC) See Fig.l. This led to many studies on the thermal
stability of rotating and / or magnetic fluids (see,e.g.,
Chandrasekhar , 1961 ; Eltayeb, 1972,1975,1984,1992: Roberts and
Stewartson 1974 Eltayeb & Kumar , 1977; Fearn 1979),

Recently it has been realised that the heat supply due to
radio-active materials in the Earth's core is insufficient to drive a
dynamo with a large toroidal field like that :xpected to be in the
Earth's OFC, particularly in view of the fact that 2 thermal engine is
not a very efficient one.The gravitationally powered dynamo was
then proposed. The reader is teferred to the series of papers by
Loper and collaborators (Loper & Roberts, 1983,Roberis and Loper
1983, Loper 1983,1984).

The OFC of the Earth is assumed to be composed of an alloy of
iron and one or more lighter elements (e.g., sulpher , oxygen ) ., The
distribution of temperature and pressure in the OFC is such that
freezing of the iron component takes place near the Inner Core
Boundary (ICB) . This leads to the formation of a mushy zone on the
surface of the Inner Core containing a mixture of the solid heavy
element (iron) and light fluid element. The light fluid escapes in thin
helical fluid filaments (called composition:! plumes) to the upper
reaches of the OFC thereby producing convective motions which
interact with the magnetic field to produce a dynamo
mechanism.The studies by Loper and collaborators have shown that
such a mechanism is capable of sustaining a large toroidal field in
the Earth's Core,

The solution of the gravitationally powered dynamo is not
easier than the thermal dynamo problem . It is then necessary to
investigate simpler problems which deal with some aspect of the
gravitationally powered dynamo in order to gain some insight into
the physical mechanism of this dynamo process.

Simple laboratory experiments on the freezing of fluid alloys
can be made. A popular one is the ammonium chloride solution.

Here a 30% by weight ammonium chloride solution in water is

raised 1o a temperature of about 50 C. The solution is contained in a |-
beaker and the beaker is placed on a cold surface. After a while the
ammonium chloride will start to crystalize and a mushy zone forms
at the bottom of the beaker. When the thickness of the mushy zone
increases to a certain value, the fresh water in the mushy zone
begins to rise in thin helical plumes.(see Fig. 2). The flow associated *
with these compositional plumes is not known and the stability of
such flows is of interest to the dynamo problem.

The basic problem associated with the plumes is th: dynamic
influence of the interface between two fluids of different
composition : the fluid within the plumes is solely of the light
element of the alloy while the surrounding fluid is the (mixed) alloy |-
fluid,

The flow associated with these plumes has been studied by !
Eltayeb and Loper (1991) for the classical case in which both
rotational and magnetic effects are absent. Additien of vertical
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rotation leads to the same basic flow but the presengof the magnetic
field modifies the flow considerably.

[n order to provide the best possible way to understand the
physical mechanisms involved it was necessary to consider simple
models which compare with other probelms of a similar
mathematical nature.The problem of the heated vertical wail
studied by Gill and Davey (1969) , Dudis and Davis (1971) provided
a convenient problem to compare with. We therefore consider first
the problem in which a single interface separates two semi-infinite
fluids of different composition. This case is referred to as the single
line interface . Next we consider the case of two parallel interfaces .
This model is referred to as the cartesian plume. Thumodel has the
advantage of adding the complexity of a second interface but is
simple enough to avoid the effects of curvature. The problem of the
helical plume was also considered by Fltayeb and Loper (1991) but
is not included here.

Here the basic flow is identified for both the single line
interface and the cartesian plume in the presence of rotation and
magnetic field. The stability of the single line plume onl, is
considered. The influence of rotation on the compositional mode of
instability is examined. The stability of the non-rotating cartesian
plume can be found in Eliayeb and Loper (1994).

2. FORMULATION

Consider a fluid whose density depends both on temperature
and material composition. Suppose that the Boussinesq
approximation is applicable so that

plpy=1-a(T=T)~B(C-Cp) @.1)

where P is the density, O is the coefficient of volume expansion ,
B is the coefficient of compositionai expansion , T is the
temperature , C is the concentration of light material and o denotes a

constant reference valu:.The fluid is flowing with velociy H ina
frame of reference which rotates vertically with angular speed Qi
the presence of a magnetic field B The equations are those of
linear momentum,mass conservation , energy , induction and

buoyant material . They are,respectively,

ou/ot +u . Vu +2Qixu=

—Vp+vV2u+(upo)‘]VxB><B+pg/p0 (2.2)

Vu =0 (2.3)

oT/dt+u.VT = kV2T (2.4)

OB/dt = Vx(uxB)+V?B, V.B=0 (2.5

0C/dt+u VC =0 (2.6)

Here p is the pressure , L the magnetic permeability , V  the
kinematic viscosity , K the thermal diffusivity , T the magnetic
diffusivity , § the gravitational acceleration and we shall always
adopt the notation that X is a unit vector along the x-axis. The z-
axis is chosen to be vertically upwards.The Boussinesq
approximation , in which the density variations are neglected unless

they occur in the gravity term in the eguation of motion , has been
adopted.

We now express the equations (2.2} - (2.6} into dimensioniess
form.We take C' and B as typical amplitudes of the material
concentration and magnetic field and Y as the vertical temperature
gradient. Define a length scale

L=(xv/oay)l? (2.7)

and an associated time scale



T:(K/a“{\)g)]/? (2.8)

L is the usual sali-finger Jength scale and 1T is the associated viscous
time scale. We shall use these two as units of length and time

respactively. Also let U(=ﬁ6(8 K/oayv) I% , Bé/a ,

poﬁé (g3VK'/0t’Y)H4 be the units of velocity , temperature

and pressure difference, respectively. The dimensionless equations can
now be written as

ou/dt +RuVu +Ta'2ixu =
—VIT+V24 +Q(0,R) "\ B.V)B+(C-Cy+T-T )z (2.9)

0(3/3t+Ru. V)T = V2T (2.10)

0, 0B/0t =0, RVx(uxB)+V2B  (2.11)
(d/dt +Ru.V )C =0 (2.12)

These equations show that the problem posed here is governed by
four dimensionless parameters : the Prandtl number © , the
magnetic Prandtl number G - the Reynolds number R ard the

Chandraskhar number Q ( which is the square of the Hartmann
number M). They are defined by

O=%.0m=%, R=pC(gx¥a3y3v5) 14 - UL

VK )1/2

- o

In 2.9 T is the total pressure defined by

M=p-(z-2,)/ BC+(2-2,)%/26 R +QB2/2 6, R

A solution of these equations is sought in the form

u= W) i+ eu”

T= T, +(z—z,)/0R +T(x) + eT"

C= C, + Cy+eC” @15
Ii= Py + px)+ ep*

B= i + 0 Rb(x)+ec R

The quantities with an ‘overbar' depend on the horizontal
coordinate x only . They denote the basic solution while the
quantities with the superscript "*' denote the perturbations of
small amplitude €, which depends on the vertical coordinate z , on
the second horizontal coordinate y and on time. We shall first find
the exact solutions of the basic variables. The equations governing
the basic variables are obtained by setting € =0 in (2.15) and
using equations (2.9) - (2.12).

The basic eguations and their solution

Since the basic state variables depend on x only we have

0=-Vp+(D*w+QDb+T +C)z
0=w-D2T

L

, 0=Dw+D% (2.6
where

D=didx (2.17)

(2.14)
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pitestrided. We shall consider two separate cases below. The first is '
the single line interface , in which The solution (2.20)-(2.22) is associated with material , heat and
buoyancy fluxes Fm , FH and FB , respectively, defined by
C = —$sn(n (2.18)

=1 =1 =
so that the fluid is light for x < 0 and heavy for x > 0.The interface of Fm_‘p wCdA FH—? wldA ,FB—aFH'*'ﬁFm (2.24)
discontinuity for material concentration is x = 0 . The boundary
conditions then are _
where the integrals are taken over a specified horizontal area and ¢

(1) W 7—15 are finite as x —> + 0 is a measure of the horizontal length scale of the interface. We use
2y w,T.b areregular at x=0 ﬁZCz(g K3/ vadyd) 1/4,

3y w,T.b,DW.DT are continuousat x =0  (2.19) - .

B Y ’ ﬁcz(g O.’K3/V 7’3) 1/43 ﬁ2C2(ga K's/‘-’ 73) 14 as units of

FH. Fm . FB to find that the dimensionless fluxes are

The solution of (2.16)-(2.19) can readily be written down as

T=24{ 1+ xladepFa; n-afep(Taz 0|} @.20)

I+

5 =] 00 _
2 P‘H=J wT dx, Fm=f wCdx , Fp=Fy +F, (2.25)

— — —_— Al -0 —

w=2 Lyl ep(Fayx)-exp(zagx)] @.21)

- — - These ‘integrals can be calculated f 2.20) - (Z.22) 1o find th:

b:‘QLXI azexp(+a1x)-alexl3(+azx)l R.2) s¢ integ e calculated from (2.20) - (2.22) to find that

___ 12 __ —~Q+3)/4
in which the upper ( lower ) sign refers to x> ( <) 0. We note that the Fm— (1 +0n)° H~™ (a1 + 0 )(Q+2) s
basic temperature and velocity are odd functions of x while the basic 1 2 1 2
magnetic field is even. Here we have defined Fr= Q+1)4 (2.26)
7 B=(a1+a3)(0+2) :
ajp={on=Vo-1 } x1=a}-a3 ,
The fluxes are also strongly dependent on the strength of the
Re(a|2)>0 2.23) magnetic field (see Fig. 4)

The solutions {2.20}-(2.23) depend strongly on the magnetic field The second case we consider is the cartesian plume . Here we
strength as measured by the Chandrasekhar number Q, The profiles assume the top-hat profile for the basic concentration :
of these functions are illustroted in Fig.3 . When the magnetic field is
absent ( i.e., Q = 0 ), the solutions are oscillatory but as Q increases 1 Lx]
from zero , the oscitlations tend to be suppressed. When Q exceeds 2 ¢ = for lxl<x, (2.27)
the oscillations disappear completely. - 0 for x> X, :

Here we solve (2.16) subject to the boundary condilions (2.19)
provided we apply (2) and (3) at xp and -xo . The solutions can be
written as



T {z[a%Slexp(—allxl)—-a%Szcxp(—azlxl)] > x, 2.2
N x[—a%Elcosh(alx)+a%E2cosh(a2x)]—1;lxl<x0 '

{X[Slexp(—allxl)— Spexp(—azlx)] ; ki>x,
W=

v X{—Eqcosh(ojx)+ Eqcos{apx)] § kl<x, (2.29)

b= xlonSiexp(—ajtxl)— g Spexp(—ap lxD)] ; W>x, 2.
"{ xlapEpsinh( oy x)— o) Epsinapx)] ; ki<x, =

in which

S1=sinl(a;x,) ,
El =exp(— alxa) s

Sy=sink{apx,) ,
Eq=exp(- 9 xp) (2.31)

The behaviour of this solution is illustrated in Fig. 5 .We again see
that the solution is oscillatory for small Q . As Q increases beyond 2
the oscillations disappear. It is also noticeable that the ampitude of
the soluwions decreases with Q so that the magnetic field tends to
recduce the vigour of the motions.We should mention here that the
apparent singularity at Q=2 is not a real one and a detailed study of
the solutions near Q=2 reveals that the solutions are well-behaved
there,

The ( dimensionless ) fluxes of material , heat and buoyancy
can be found by integrating the functions (2.28)- (2.31) It is
informative to write the expressions for the three cases of Q greater ,
equal or less than 2,separate.

ForQ«<2

, A=+ 1-Q%4

Fy =AY { b—exp-2ax,) lasin(bx,) +beos(2bx,)] }

Fy =Fpg-Fp,

_.‘0._

Fp=}Fpp+ (4437 { x, A% exg—ax, ) sin(2bx )
+% Qb [ 1—exp(-2ax,)cos(2bx )]
+_<22. [a3sin(2bx ) — x5 Acod2bx Nexp-2ix,) } (2,32
ForQ=2:
=1 [1-(1+2xp)exf-2)],
Fp=31-(1+2x,-8:2 -8 Bexp-20)]  233)
ForQ>2:

Fp= (4)()"1 [o1- g +ogexp-201x ) - o 1eXH—20px,)],

- 2-1
Fp=4F &Y “ZQ(é?iaz)) R

XX [exp(=20tpx ) - exp(—201x,)] +
%(al—az) [ (-9 exp(-20px,) + (1-ad) exp(-20 1 x,) ]+

O 1+a2)

dy [ Cl+xp(@-a)) exp(—20px )+

(I+x o - a)exp(-215p)] } (2.34)

The dependence of the fluxes on Q and xg are illustrated in Fig.6,



3. The stability Analysis

In this section we examine the stability of the basic state
solution to disturbances of a single interface separarting two fluids
of different material composition (see Fig.7). The perturbation
equations can be obtained by substituting (2.15) into (2.9) - 2.12)
and subtracting (2.16) :

du*/or + Riwou* oz +@* % 2 +Tal/% xu*]=
_Vp*sV2u*+QDb"
+00, RIBOb 3z +( RF 21 +(C*+TH 2 (B 1)

63T 101+ GRWIT *joz +(w * BT 1 +u* £=V2T* (3.2)

G b 1 =™ [3x + V2™
0, R1B0u™/o—b (u* 3)e+® . X)W 2-wob &] (3.3)

@/t +Rwdfaz)C ¥ =0 (3.4)

*

Vu™=0 , Vb =0 (3.5)

Here the accent denotes differentiation of the basic state variables
with respect to the argument x . Note that the perturbation
equations are linearised by neglecting all products of perturbation
variables.

Our purpose here is to examine the stability of the basic state to the
disturbance of the interface at x = (. We then assume that the intetface is
disturbed infinitesimally by

en(yz,t)=cexfilmytnz) +t)+cc  (3.6)

The perturbation variables then take the form

(w*p*T *}={iu,v,w,inp;T} nQ,z,t) (3.7)

where the variables in the curly brackets on the right of (3.7) are
functions of x only.

Let us examine the simplest case in which there is no rotation. i.e.,
when £2 =0.

- i ingle line interf:

We first write the equations in component form

(D?-a2— Qu)u =nDp (3.8)
(Dz-—az—.Q*)v =-mnDp (3.9)
(D2-a2- Q)w—iRW u+C +T=—n2p (3.10)
(D% -a2- 6T -ioRT u—w=0 (3.11)
Du+mv+nw =0 (3.12)
Q C=0 (3 13)
where @ and the Doppler-shifted frequency are defined by
Qe=Q+inRwE) , a2=m2+n (3.19

It follows from (3.13) and (3.14) that C=0.

The equations (3.8) - (3.12) must be solved subject to the condition
that all perturbation variables decay to zero as X —>%oe ( or satisfy the
appropriate radiation conditions ) . Also the wvariables and their
derivatives must satisfy certain compatibility conditions across the
interface described by (3.6). These conditions arise from the requirement
that the interface be a material surface and that the full variables and the



fluxes of momentum und heat be continuous across the interface.Using
(3.12) and continuity of velocity , it may be shown that continuity of
momentum flux normal to the interface reduces simply to continuity of
pressure.Since the basic state vertical velocity has a discontinuous second
derivative at x = 0 , the perturbation vertical velocity must have an
offsetting discontinuity in its first derivative.The full set of conditions can
be summarized as follows :

(i) uv,w,p and T decay to zero as ixl increases indefinitely

(i1} uv,w.p,T,Dv and DT are continuous at x = 0

(iii} Dw{x(-} - Dw(x0+) = 1

(iv) Ru=-i Qx at  x=0 (3.15)

We note that equations (3.8) - (3.10) and (3.12) give

(D2 —a2)p-T +2RW u =0 (3.16)
and  (3.10) , (3.11) and (3.16) govern the evolution modes so that only
three modes are present.

In order to ascertain that the instabilities identified below are due
solely to the presence of material composition let us examine the case
when there is no interface. Here we must revert to dimensional quantities
since the non-dimensionalization used the amplitude of the concentration
of the light material C. We can assume that the x-dendence is exp(irx)
since the equations have constant coefficients in this particular case. The
dispersion relation is

(V> + Q) [ (VA2 (ch? + D12 4 apg (r2+mD)] =0 (3.17)

in which hZ =2 + a2 . The solutions are

Q=vh2 ,

2,210
~Lr2v 42 d[nt (v- x)2—4fcayg(1f2m— (3.18)

This readily shows that all three modes decay to zero .

T

When R is non-zero , we shall assume that R is small and adopt an
expansion in the small parameter R. Thus

o0

]
{uyw,p,T}= Eo {ug,ve,we,pe, Tg RS, -Q=SZI QRS (3.19)
5= =
We substitute (3.19) into (3.9) - (3.12) , (3.16) and (3.15) . and equate the
coefficients of the various powers of R to zero to obtain a hierarchy of
systems of equations which can be solved in succession.We need only
consider the first two such systems’in order to close the stabilty problem

to leading order.

Problem 0

The leading order terms give
D?-a2)p,-Ty=0
(02 —az)wo +T, +n2p0 =0
D?-a)T,-w,=0

(D%-a2yy=-mnp, Duy+mv,+nwy=0  (3.20)
These equations allow solutions of the form exp(;\. x ) so that (3.20) gives

1Po—To=uw,+T ,+n2p, =T~ w,=0
Wp+mnp,=2Asguxu,+mv,+nw, =0 (3.21)

where

p=A2-g2 322
Straightforward application of the boundary conditions (i) yields the
solution

e ®

ey

oy T



(pVoWoPol o) = 3
s . U21A cexp=A kD) (3.23)
> {—nljsgr(x),—mn,y;’,uj,)uj}Ajex;i g )

Jj=1

The boudary remaining conditions give

faj oi?uj 12,33;1]“1 =0 (324
=1

u7

) (3.25)
S ary (3Z+2u))

7\.1 are given by
u§+yj+n2=0 (3.26) |
d (3.22) . provided we impose the condition that Re(:‘\.j } > 0. We also
an . .

find that

;=0 (3.27) .
4 i so that it
The leading order solution represents a neutral standing wave[
¥ i i i i tate.
merely undulates the interface in conformity with the basic sta

Pr i

Here the equations take the form

(D2-a2)py~T =F,
(D2-atywy+T1+n2p =F,
(D2—a2)Tl-W1=FT
(D2-a2) V{=—mhpy+inwy,

Du = mv nw (3.28)

where

Fp =-2%wu, , Fw=im4“;w0 +HWu,, F T =io] T+ u , | (3.29)

The solution of (3.28) and (3.29) can

be obtained in (he form of
compementary function and Particular integ

ral

Y1 =% =yp
Using the Superscripts + and -
X < 0 ,respectively, we have

(3.30)

to refer to solutions in the fegions x > 0 and

{(wpET) =¢j§'1 {uj”,u j,,u};- ViB jexp-A J) (3.31)

for the complementary function, T,

he basic state solution for this case can
be written in the form

wi=zl 31m[exp(-kxl)] , T""i-—-lm[z—ze,\p(—klxl)]

It then follows that

(2.32)

3
(w, P, Tpi} =ilinlm[j§1 Ajiw;piT j}expl-d jHO]] (3.33)
in which
wi=D7 [nzyj 2kA; +y2(y3+/cA 0 +n2)agu2—zkl 0l
pj= D*l[-(w})zk;t +y}+k1 +ongu2—zkﬂ. N
T;=D7 2242, +ngu}+k/1 )+oy}(,u2—zu 5
D; yj3+yj+n2 J-(/?.J+k) -a? | k=(14)§3 (3.34)

We can now use the last two in {3.28) 1o find thas



vi=tiaB 4 exp(-ald)F imnj é:l B jexp(—/l i)

3
tdintm{ X A v expl-@ o] } (3.35)
J=1

3
uF=timBy exp(-alx) - inj‘l:l B A jexp(-A xl)

3
+3inlm{ _Zl A ju jexpl-@ j+ki] } (3.36)
J =
where
(pj +1) _ (’"Vj +nwj-) (3.37)

Application of the boundary conditions yield the relations
él (P ju31B; = {wpT ) (3.38)
aB4-mnj§1 B;=7, .QQ-—mB4+nj=lzljB j+R (3.39)(3.40)
in which
a1 E
y=—3n Im[jé'1 Ajyj] (3.41)

It then follows that

2T 41 o—n2p
B.=_[‘u1T+‘uJW n<p]
J #j[3'12+2ﬂj]

We can now use (3.40) to express the growth rate in the form

, Bg=Vla-mw+p)an (3.42)

P |, <

£ =c,+00cy (3.43)

where

~ ma [m2 ) 2 R R
cr=iy~ 0, +[ G-nM  }o, + [ Bren3M ) |p-n M, T, (3.44)

for r=0,1 where

A juk-1 3

S - 1
= —_— =—=nlm ZA' 1
k JE1 32420 ) T2 [j=1 i)
Yji=Yoj t N1 (3.45)

When  growth rate Qz > 0, the interface is unstable and its
amplitude grows exponentially with time. The two terms in (3.43) can be
taken to represent the influences of thermal diffusivity (i.e., ¢o ) and
vicosity ( i.e., ¢l ). The growth rate is computed as a function of the
wavenumbers m and n for fixed values of the Prandt! number. The
computations have shown that the interface is unstable for all values of
the Prandi]l number ie., for any value of the Prandtl number , there is a
pair of values (m,n) for which the growth rate is positive.Some of the
results are itlustrated in Figs. 8-11 below.We notice from Fig., 11 that the
most unstable mode is three-dimensional for all Prandilt numbers greater
than 0.065.

The growth rate varies as R2 and instability is present for
all non-zero forcing (i.e., material concentration) . The main cause
of the instability canm be traced down to the release of
compositional energy and the horizental temperature gradient.

-~ \

o =

e



The rotating single line inter

Here we find it more convenient to scale the y-component of the
velocity by

v —nTall2y (3.46)
It is also found appropriate to define
¢ =—icurlu (3.47)

and apply the operators Z.curl, z‘.curlz to (3.1) and neglect
magnetic effecte 1o find the set of equations

w+V2=F)| (3.48)
V4w +n2Tal +47 = Fy (3.49)
V2p-T-Tal=F, (3.50)
V2T —w=F3 (3.51)
Dv=i{ ~mu (3.52)
Du=-Ta Vomnv-nw (3.53)
in which
F1=8{ +nRwv,
Fh= Q2w +iRIN2W ut 20 Dwn 2w+ Aur 20" Duskiv”'u]
= T +ioRT u
Fy=-2iRWu
A=V2_32:2 (3.54)

The boundary conditions are

(i} U.V.P,T.W,C —0 as Ix} — oo
(ii) u,v,p.T.w,DT,C,Dt_, continuous at x = 0

(iii) Dw(0.) - Pw(0+) = 1
iv) Q% = R u©) (3.55)

The method of solution proceeds in the same way as in the case of
the non-rotating interface.The leading order problem demands
that m=0 so that rotation inhibits three- dimensional motions.The
solution is

{Wo’To'Co’PoFi%nélAf W}#} ,—,u% Hj(1Ta) leFAjx | (3.56)

(k) +li‘,4 fl{nuj,i}}eﬂjx . (3.57)

in which

{=3.C (3.58)

The next order problem provides an expression for the growth
rate

=8 [a-Myw+n2M p-M3+Lom pT+ L2 2] (359)

Here

C [w + 41 (A +k)/}L ] (3.60)

The growth rate is examined as a function of the wavenumber n
for fixed values of the Prandtl number. The main purpose here is
to identify the influence of rotation on the stability of the
interface. this is illustrated in Fig. 12 .



Muluply (3.a8) ny o w  {3.9) by v* and (3.10) by wi | where
the superscript # denotes the complex conjugate , and integrate to

find
action of thermal buoyancy while J represents the action of
Re(€)Epy=—Dpg +Rre(M )+Re(B+/) (3.61) compositional buoyancy resulting from the deformation of the
interface. ET represents the gain of wave potential energy , DT the
Im(Q) £y =—nREw;+RIm(M)+Im(B+/) (3.62) T rep & P &y . T

rate of thermal dissipaion and H the rate transfer of energy  from
the basic state thermal profile to the perturbations.

whgr Equations (3.61) , (3.62) , (3.64) and (3.65) give

o T R
EM=J uiZax, Dy=§  [BEF +a21uP]arx
—oo . Re(Q)[Epg +ET]=-Dys +D7) +RRe(M+0H)+Re(J) (3.6%)
Im( ) [Epg — 0 ET]=nREWwT-E ;) +R Im(M +0H) Hm(J) (3.6%)
M=_,'J°° A ytax EWU=f wlul dx

(3-63) These last two equations show the strong influence of the jump in
ial concentration on the growth rate and frequncy of the
dw dw > materia
J*“’#(O)[?E(O—}'E(O'**)] , B= - w# T dx disturbance.The solutions obtained above vyield
Next we multiply the complex conjugate of (3.11) by T and 0=—(DMO+DTO) +W8 (3.69
integrate to get
so that the major part of the dissipation is counterbalanced by the
ORe( QY ET=-—D7+0RRe(H)-Re(B) , (3.64) release of compositional energy. Higher orders show the
—Glm(Q)ET=nO'REWT+O'R Im(H)-Im(B) (3.65) contribution of transfer of energy from the basic state to the

wave to enhance instability,

in which

ET=I°° IT12dx ,DT=I [I%I2+a2ﬁ12]dx
H=i£:‘2—?:u#de . Ewr=|_wrPax (.66

Note that the first terms in (3.61) and (3.62) represent the rate of
change of wave kinetic energy , DM represents the rate of viscous
dissipation , M the rate of transfer of kinetic energy from the
mean flow through the velocity shear , and B and J the rates of
gain of wave energy by the action of buoyancy. B represents the

e
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Stability of vertical double-diffusive interfaces. Part 1 167
0.605 L | ) 1
0.004 -
0.003 4
o . oy - 0.002
Stability of vertical double-diffusive snierfoces. Part 1 : 2,
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Figure ,f The profile of the growth rate £, of the single plane interface when the horizontal
wavenumber m = 0 for three different values of the Prandt! number ¢ near o = o,z 1472, to
illustrate the manner in which the region of instability develops with incressing ¢ for moderate
values of the vertical wavenumber n.

|
‘ 1.50
13 x
" 00— =3 $ 7. 10
0.75
0.50
0.25
=i
0.2 04 056 03
i® m
Fiaurz " The regions of stability for the single plane interface in the (m, n) wavenumber plane for
5 various values of the Prandt] number ¢, as abelled. The region of stability lies within the respective
" 10 ° ” Lo curve and instability prevails outside. No stability is possible if & < 1.472.
Flumﬁ Isclines of the growth rate, ,, for the single plane interface for four Tepressntativ:

values of the Prandt! number ¢ (6} & = 1.0 (minimum valve 0, meximam value 0.00570, contor
interval 0.0008); (b) ¢ = 3.0 (minimum valus —0.008 80, raaximum valus 0.00448, contot, ey
0.0005); (e} o -_5:0 (minimum valus —0.0139, maximum value 0.00394, contour interval 0.001)
{d) & = 10.0 (minimum valve —0.0345, maximum value (.003 36, contour interval 0.0026),

F\va& 8

L]

-

vy B



The maximum growth rae for the rotating single
fne- interfcce as a function of the Taylor
Stability of vertical double-diffusive interfaces. Part 1 171 number mr vanous Vallles 0[ 0 'as |ab9”9d.
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Fioure ?( The maximum growth rate Q,. and the associated wavenumbers M., and n_ . for
the single plane interface as a function of the Prandtl number o. Note that Mo = 0 for o < 0.065.
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