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1.  INTRODUCTION

Tibaldi and Molteni (1990, hereafter referred to as TM) had previously investigated operational
blocking predictability by the ECMWF model and the possible relationships between model
systematic error and blocking in the winter season of the Northern Hemisphere, using seven years
of ECMWF operational archives of analyses and day 1 to 10 forecasts. They showed that fewer
blocking episodes than in the real atmosphere were generally simulated by the model, and that this
deficiency increased with increasing forecast time. As a consequence of this, a major contribution
to the systematic error in the winter season was shown to derive from the inability of the model

to properly forecast blocking,

The inability shown by forecasting models to properly enter into a blocked state (both in the initial
value problem sense and in a climatic sense) and the consequential existence of large systematic
errors are limiting factors of paramount importance also for extended range forecasts (Tracton et al,
1989; Tracton, 1990; Miyakoda and Sirutis, 1990; Tibaldi et al, 1991; Brankovi¢ and Ferranti, 1992), where
the consequences of such errors are amplified by the longer integration time. An improved
understanding of the reasons for blocking forecast failures and of the positive relationship between
such failures and model systematic errors would therefore have an even larger positive impact on

extended range dynamical forccasts, and climate simulation.



In this study, the analysis performed in TM for the first seven winter season of the ECMWF
operational model is extended to the subsequent five winters, during which model development,
reflecting in both resolution increases and parametrisation modifications, continued unabated.

In addition the objective blocking index developed by TM has been applied to the observed data
to study the natural low frequency variablity of blocking. The ability to simulate blocking of some
climate models (developed at the Deutsches Klimarechenzentrum, Hamburg, FRG) as also been
tested.

2. DESCRIPTION OF THE DATA SET AND OF THE ANALYSIS PROCEDURES

The database for the study of the performance of the operational ECMWF model consists of daily
Northern Hemisphere winter 500 hPa geopotential heights analyses and the corresponding day 1
to day 10 forecasts. Winter is here defined as the 90-day period spanning the months of December,
January and February (DJF period). For each winter day, eleven fields are then available: analysis
and day one to day ten forecasts, all verifying on the same day but started from progressively
lagging initial conditions. Such an arrangement of analysis and forecast fields is commonly known
as a "Lorenz files" dataset (Lorenz, 1982). The total set includes twelve complete winters, from DJF
1980-81 to DJF19 91-92. |

The database for the study of the natural low frequency variablity of blocking consists of daily
Northern Hemisphere winter 500 hPa geopotential heights analyses, from the NMC and ECMWF
archives, from the winter 1949-50 to the winter 1991-92.

For the climate models 5 different runs with two different models have been analyzed. The models
are ECHAM2 and ECHAM3 (developed starting from the ECMWF model at the Deutsches
Klimarechenzentrum) which differ for the physical package and for the fact that ECHAM2 can run
only with orizontal resolution of T21 (both models are spectral and T21 stands for triangular
truncation at the 21st spherical harmonic). Climatic or observed sea surface temperatures (SSTs)

have been used. The main characterisic of the runs are reported in Table 1.

The TM blocking index has been used on the different data sets. The geopotential height gradients

GHGS and GHGN are computed for each longitude

Z(by) - Z(d,)
(d’o - ¢,)

GHGS =



Z(d,) - Z(dy)

GHGN = @, - o) ,
where

¢, = BO°N+A

¢, = 60°N+A

b, = 40°N+A

A = -4°,0°,+4°

A given longitude is defined as blocked at a specific day if the following condition are satisfied for
at least one value of A:

(1) GHGS> 0,

(2) GHGN < -10 m/deg lat.

Similarly to TM, the two main NH sectors are then identified and defined, with the following

longitudinal limits:

Euro-Atlantic: 255° W 335°E
Pacific: 110.0° E 170.0° W

A sector is then considered to be blocked if three or more adjacent longitudes contained in it are

blocked according to the local and instantaneous TM index definition.

3. OBSERVED AND PREDICTED BLOCKING

Figure 1 shows the longitudinal dependency of blocking frequency as measured by the index
applied on subsets of ten years of the observaed winters (1949-50 to 91-92) of 500 hPa geopotential
height, and is shown here only to give a measure of the different behaviour of the atmosphere, that
shows appreciable intradecadal variability. This behaviour is of particular interest when the

performance of climate models has to be assessed.

The four panels of Figure 2 show the blocking frequency relative to the first seven winters of
ECMWEF operations. Panel (a) shows observations alone, while in panels (b) to (d) forecast day 3,
6 and 10 respectively are superimposed on the observed longitudinal frequency. The disruption of

the observed maxima in correspondence of both the Pacific and the Atlantic sectors is quite evident
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already at day 6 and is almost complete by day 10. Figure 3 has the same layout of Figure 2, but
refers to the last five ECMWF operational winters, 1987-88 to 91-92. Now the picture is quite
different and shows a marked improvement in model climatology of blocking, with the model-

produced frequency profile becoming measurably different from observations only by day 10.

Figure 4 summarizes the analysis performed on the climate models. The two top panels show the
longitudinal dependence of the blocking frequiency used for comparison, the right panel is relative
to the years for which observed GSTs where used in the simulation. The improvements in the
phisical parametrizations from ECHAM?2 T21 to ECHAM3 T21 do not produce relevant changes in
the simulation of blocking. The increase of resolution from ECHAM3 T21 to ECHAM3 T42 has a
positive effect on the simulation of Euro-Atlantic blocking, but does not affect Pacific blocking. The
use of observed SSts seemes again to have better effects on the Euro-Atlantic blocking. The lack of
an ECHAM2 T42 makes impossible a valutation of the effects of increasing resolution without

changing the physical parametrizations.

4, CONCLUSIONS

Measurable improvements have been achieved by the ECMWF operational forecasting system in
modelling blocking. Such improvements range from a better overail model blocking climatology
to an improved deterministic predictability of the phenomenon. Such improvements make it more
realistic to plan for extended range forecasts. Unfortunately, the practical set-up of operational
forecasting and the related model development efforts make it impossible to ascribe such

improvements to a precise cause, be it model resolution (horizontal or vertical) or improvements

in the physical parametrisation package.

Blocking diagnostics in climate models show that improvements in resolution and in the physical
parametrisation package produce a better blocking climatology, but also in this case a clear

distinction between the effects of resolution and physics are impossible.
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Table and Figure Captions

Table 1.
Figure 1

Figure 2

Figure 3

Figure 4

Main characteristics of the five climatic runs analyzed.

Longitudinal distribution of winter (DJF) blocking frequency for differen decades.
a) 1949-50 to 1958-59, b) 1959-60 to 1968-69, c) 1969-70 to 1978-79, d) 1979-80 to
1991-92.

TM blocking index applied to the first seven ECMWEF cperational winters (80/81 to
86/87). (a) analyzed data; (b) forecast day 3 and analysis (dashed); (c) forecast day
6 and analysis (dashed); (d) forecast day 10 and analysis (dashed).

As Figure 2, but for the last five ECMWF operational winters (87/88 to 91/92).

Longitudinal distribution of winter (DJF) blocking frequency for observations and
climate models runs. a) for the complete data set available, b) for the ten winters
from 1979-80 toA1987-88. panels c to e for 20 years runs of ECHAM?2 T21, ECHAM3
T21 and ECHAM3 T42, all with climatic SSTs. Panels f and g for 10 years runs of
ECHAMS3 T21 and ECHAM3 T42, with observed SSTs. The dotted line on panels ¢

to g are the observed frequencies.
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Winters 49/50 — 91/92. Analysys
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