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THE HISTORY AND PHYSICS OF BUOYANCY IN FLUIDS

Edward A. Spiegel

The study of convection is a venerable field. Before discussing any
detailed work, let us embark on an historical sketch.

1.1 Historical Sketch

c.250 BC

1657

1749

1798

1834

1840

1861

1885

1900

1903

916

1926

Up to 1940

Archimedes discovers the principle of specific gravity and thus
quantifies the idea of buoyancy.

Rinaldi demonstrates convection in experiments designed to
disprove Aristotles's ideas on the flow of heat (Middleton,

1908).

Ben Franklin gives a geophysical application - the moticn of air
in a thunderstorm (Middleton, 1968).

Rumford (in trying to discover why soup cools faster than apple
ple)does experiments with convection in which a trace {yellow
resin) is introduced for the first time (Brown, 1979).

Pruitt coined the word “convection” (Brown, 1979).

Rayleigh, Espy and others looked at the instability of an
unstably stratified fluid and derived the "Schwartzchild"
interior.

Lord Kelvin introduced convective equilibrium (Lamb).
Jevons discussed double diffusive convection.

Benard observed hexagonal convection cells upon heating a
thin layer of fluld above the critical Rayleigh number.
Unfortunately, he probably did not realize surface tension
had a very important influence on his results.

Boussinesq's approximate equations for convection in a thin,
almost adiabatic layer were published (1903, in his Theorie
Analytique de la Chaleus™).

Lord Rayleigh discussed marginal stability of Boussinesq
convection and introduced the bey stability parameter.

Jeffreys (See Saltzman, 1962) looked at the case of
insulating top and bottom and found that the most unstable
modes were horizontally infinite in extent.

Better B.C.'s and better calculations of the critical
Rayleigh number and wave length at convective instability
were done culminating in a paper of Pellev and Southwell
(1940) (See Saltzman, 1962). Thelr results are summarized in
Figure 1.
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Overstability was found in convection (See Chandrasekhar, 1961.)
These were of two kinds. Rotation could couple modes with
vertical vorticity to hor{zontal motion and produce over-
stability (later done by nonlinear terms with no rotation by
Busse, Busse and Clever). Computing instablilities like magnetic
and thermal effects could produce overstability in a generic
way. This opened the quantitative study of computing instabi]f{-

ties continued by Townsend (JFM, 1959), Stern (1961), and onwarc.

Vv
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Figure 1.

Malkus and Veronis found for R slightly greater than R, that
steady small amplitude convection motions took place and found
their form by perturbation theory.

Busse took this analysis to higher order to show that the

only stable steady convective solutions were two-dimensional
rolls. Above a second critical Raylefgh number Ry these
become unstable. Unlike the initial instability this bifurca-
tion depends on the Prandtl number & = ¥ - Foroso, | the
steady solution bifurcates into two steady solutions. For

L~ 7 » it bifurcates into oscillatory modes. The picture
is as in Figure 2, in which we are looking at the amplitude
Well = A of the motion vs R.

A *C R
| A

Figure 2.

1.2 A Motivation in Astrophysics

For the most part, the study of convection has been an ocutcast of GFD,
since most geophysical processes involve high Rayleigh number, turbulent
convection, which has generally been modelled as g small-length scale mixing
pProcess whose effects on larger scales has been treated as an eddy viscosity.
However, we will try to keep in mind a real problem which clearly involves
convection and several interacting length scales, namely the transport of heat
from the solar interior.

Photographs of the apparent surface of the sun in visible light reveal
"granulation” in the form of cellular patterns of about 1000 km diameter.
These cells clump into globs of about 5000 km, and the surface velocity shows
“super—granularity” at a 30,000 km scale. Superimposed on these convective
patterns are sunspots, magnetic flux tubes usually in pairs of positive and
negative polarity. In the sunspots, the strong magnetic field inhibits

convection and

€3 they are cooler at the surface, and therefore a prominent

feature of pictures of the sun.
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Sunspots obey an ll-year cycle of abundance; between cycles the maximum
number of sunspots varies dramatically. At some times, such as the Maunder
Minimum of 1550-1600, rediscussed by Jack Eddy, almost no sunspohs were seemn.
The goal of this course will be to try to provide a model which possesses

similar behavior.

We now go back and try to capture some of the features or buoyancy forces
{n fluids by looking at a simple model. It will be the scope of future
lectures to show how the set of equations describing such a model is relevant

to the general problem of convection.

We adopt a Lagrangian viewpoint and focus our attention on the motion of
an idealized fluid particle through a surrounding fluid. The fluid particle
has mass m, volume V, demnsity @ and is uniquely identified by its position z.
The forces on such particles are due to gravity, buoyancy and drag and can be
written in the equation of motion as:

MZ = - JpP-LIV- p=
We have chosen g to act in the negative z direction. - We can write m -p\/
and Lf the fluid is almost incompressible we can approximate m by writing
wm=~p£ V . Dividing through we get:

2e-g (L)~ vz .

Where, in the spirit of the Boussinesq approximation, we choose V¥V to be a
constant. This is the first of our equatioms. If the fluid is completely
incompressible P /J_ = const and {1) has solution:

z) = re Tt -2 (&;f)f (2)

After the transient decays (2) describes the motion of a particle moving
at constant velocity. The effective buoyancy force is equal to the viscous
drag and the direction of motion depends on the sign of ( f—ﬂ ).

More generally we expect the density of the fluid particle to depend on
the thermodynamic state and to cbey some equation of state like P =pr{p.T).
If we assume that the temperature and pressure of the particle deviate omnly
slightly from the ambient temperature and pressure we can approximate the

equation of state by:
p=p L1+ kelp-pr)— (T-T)]

Where we have defined the isothermal compressibility Ko = -L{gf)
and the thermal expansivity o = -/-é {:—_{-f)’, £ lop'T

Again, for a Boussinesq fluid the variations induced by pressure dif-
ferences can be shown to be negligible and the equation of state reduces to

P = /fo [" N(T—?:_)]

We now consider the heat exchanged between the fluid particle and its
surroundings; assuming this obeys Newton's Law of cooling we write

T=-g(T-7) + 3,15

for some constant g . The background temperature 7. depends on z, and
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possibly t. If we Introduce a temperature excess & = (T - To) and
f = — 3T /3z the last equation becomes

9 = /.‘;Z -_— 59 {(3)
This is the second of our equations. Equations (1) and (3) cannmot, as
yet, be solved as we made no assumptions regarding the evolution of /5 . A
possibility is to assume T, to be linear in z and A = /A = const and

then the equations are linear. For such a set of equations a solution of the
form 2 «eTt exist provided 4 satisfied:

VL p+g)(4+%) - g p.] = o (4)

We notice that the tramslational invariance of the system shows up with i
as one of the factors.

If ¥ = 0 we have no viscous dissipation, and for 12 > gap.
(1.e., the rate of exchange of heat is much larger than the rate at which
buoyancy does work) then the solution has

~ 3%Ppe

1% 73

which shows that heat conduction slows down but does not prevent the Sunaway
of the fluid particle.

If v#o there exists a marginal mode provided
A= &E’ = ]
gv
and solutions become unstable for A> 1. If # 1is not constant we can get

our third and last equation by, for example, writing the evolution of ﬁ as
an expansion in powers of the heat transport. To first order:

g=cl[zo - w(g-p)] (5)

for some constant C and K. The term =z & in (5) is the advection of heat and
the term Kf is the conduction.

-

Equations (1), (3) and (5) for variables Z {S , €& are known as the
lorenz equations. Their analysis is an interesting topic in itself, which
will be dealt with by other lecturers.

REFERENCES

Brown, 5. C., 1979. Benjamin Thomson, Count Rumford. MIT Press.

Middleton, W. E. K., 1968. Physics, 10, 299.

Saltzman, B., 1962. Selected Papers on the Theory of Thermal Convection.
Dover Publ. Co.

Chandrasekhar, 1961. Hydrodynamie and Hydromagnetic Institute, Oxford.

NOTES SUBMITIED BY
CHRISTOPHER S. BRETHERTON
AND FAUSTO CATTANEO
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SMALL NONDISSIPATIVE MOTIONS AND THE ANELASTIC APPROXIMATION

Edward A. Spiegel

Eguations

We first recall a few technical points in the study of fluid (and other)
dynamics. The fluid is often plctured as a continuum of particles obeying
Newton's Laws. A fluld particle or element has an orbit in space that is
parameterized by time. The distinctlion among orbits is made by other
(Lagrangian) parameters. Thus x(t), a particular orbit, contains in its
description parameters (not written explicitly here) which distinguish it from
the others. By % we mean we dx/at evaluated on an orbit, and to emphasize

this we write
Dx
pt

For any function defined on an orbit

. D
Ul fixed + X xf lt fixed = si .

Finally, 1f we can express the parameters which characterize the orbit in
terms of x and t, we can write
x(t, parameters) = (x,t)

So T = ux,r).
D .
Ff* fe +( & -2)f,
we shall alsoc write gg = f = £y,

We now introduce the three conservation equations that are the basis of
this course:

o+ TCPRY = o
(P8), + X (P%%> = 3p + & T + Zet
(PS)£ + V.(f”;.’:SJ = é}TP

where © 1s density, 4% 1is velocity, 'z is the fluld stress tensor, f,
is any externally applied force field in addition to gravity (whose
acceleration is g), S is the specific entropy and QﬁTP is a vague notation
for thermal dissipative processes. I use Malkus-Veronis notation, which is
based on the idea that a reader can distinguish among T, T ,q? and the

like.

The simple model used in what follows is

T = - P85 + ¢ (55 « 34) - T r(EY)

and we shall stay always 1n Cartesian coordinates. The tharmodynamic equation
will be written using dH = Tds + % dp where T is temperature and H is
specific enthalpy. Also we write

dH = Cp dT
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and get (with some further conventional assumptions)

DT bp _ & -
Pray - o == vF 4+ @

where f be heat flux and P be viscous dissipation into heat. We note that

3 = g,%;(T:j + P &y)

We take F = -K ¥ T. The equations of state that arise in convection problems
are varied but, in this course, we shall not deal with Messrs. Saha and
Grunelsen. We consider the simplest gas as an example:

p=RpPT
with R constant. The entropy for a perfect gas 1s

5 = Cydn [P/p'A]
where ¥ 1s the ratio of specific heats. For small perturbations, (p, & , P)
about the static state ( Pe , g . )

F,e + g-(("c%)’— o

(P"%)t = - VP + r3
P + 4.vP, = e (pe + %.0p)

where ¢ = TT.]F%

These equations are combined to obtaln a wave equation

*®

~

Bee = v (C"Y-lﬁ- + wg) 4 c‘g{fn 'F%'T} y.

For an isothermal atmosphere
-Z
Po > p, o e /4

where H = RT,/g 1s the scale height.

Note that
c2 = ¥rT,
and
-E. _ I—TA
s hge = (H)2

are both independent of (x, y, z). We seek wave solutions,

Ll + my + w2 ~ 4t)
b= d@) €
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and find the approximate dispersion relations

e = ALK 4 41{“)

dy = (T ( ak*
I € o )
ko= L+ om?

B L & B

where
T
QD=2 _ &
* H = S
Ou = (T‘l):
TH
Convective instabllities are associated with gravity modes where ad; <) .

Choosing a long time scale, relative to @, 1s one way to separate out
gravity waves. This is roughly equivalent to letting

7"5""’Jw¢-baojoob_~,%

For the polytroplic atmosphere

dT To

dz =~ 7 %
the dispersion curves look something like

(%

k

The time scales for the two modes in general do not separate, hence it is not
easy to filter out one kind of motion and study the other. If the temperature
profile is

"R E-ENEEEER

T@y = T, (' - 21':.)




Scale heights can be defined
- Z
H(z) H& (' E;)

The static state is

pizy = ¥, (i- g_‘)mq
plz) = r)}(,_g_)m

Where the polytropic index

m = |+ Zr
H?
In the limit Z/z, > o ( m > o)

Py = Pcz) o e'?"m"

Hence is the limit of large zx, the atmosphere can be treated locally as
{sothermal. The atmosphere characterized by

puel

with entropy profile given by
ds _ (p.y) 8dnp
-0 %

where 1'= '5;'-.' 1{s the polytropic constant. The atmosphere i{s said to be in

convective equilibrium where P = ¥y , i.e., m = —‘,1_-' .

Wave solutions 4% = gtz)e@thpr-m” admit gravity modes (see Lamb, 1931;

o~

Spiegel and Unno, 1962) with the dispersion relation

2z [ o el LY
G’E{?M(F“'a"‘“izkh LQ"JQ“ - mtf;:q)]"’l(f‘; wmet g 2k) = ©
where
alk L4 24 n
p - (G- ) B o

and M(a:b;c) 1is the confluent hypergeometric function (see Magnus and Oberhet-

tinger, 1954). The relation is obtained by assuming rigid boundaries at z =
(0,1). This law has the property

sign ( * ) = sign (%—n)

from which it follows & = 0 for M=y . Hence if the atmosphere is in
approximate convective equilibrium., the nongravity modes are suppressed by
setting

Pe = P =0
This is the idea behind the anelastic approximation of Charnmey (see Ogura S.
Phillips, 1962):

V.(p.L)= o
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In vrder to understand hot the gravity modes become unstable consider the
energetics of a displaced fluld element

0 8 = g8z + CFJT

The Schwartzchild criterion for instability is 3&<o or

a9

< o
dz Cp

from which using P = R P T we obtain

ds

<0

dz
as a necessary condition for instability. Hence, if the atmosphere is
marginally unstable, dS/4z = 0, i.e., P = 7 , and the anelastic approxi-
mation can be invoked to filter out the acoustic modes while retaining the con-
vective instability.

REFERENCES

Gough, D. 0., 1969. The anelastic approximation for thermal convection. JAS,
26, 448-456.,

Lamb, H., 1945. Hydrodynamics. 6th ed., Dover Publishers, N. Y.

Magnus, W. and F. Oberhettinger, 1954. Formulas and theorems for the functions
of mathematical physics. Chelsea Publ. Co., N. Y.

Ogura, Y. and Phillips, N. A., 1962. Scale analysis of deep and shallow con-
vection in the atmosphere. JAS, 19, 173-179.

Splegel, E. A. and W. Unno., 1962. On convective growth-rates in a polytropic
atmosphere. Astr. Soc. of Japan, 14, 1, 28-32.

NOTES SUBMITTED BY
EVAN FISHBEIN and
PIERRE COULLET

CONVECTIVE EQUILIBRIW! AND THE WARM-UP PROBLEM
Edward A. Spiegel

vonvective Equilibrium

Consider a hydrostatic atmosphere of layer thickness Zgs with a linear
vertical temperature profile of gradient P = T#/z,. The vertical
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coordinate z is defined positive downwards, with z = 0 at the vop of the layer
(Fig. 1).

2o~ — -~~~

FIGURE 1.

—~y
In the static state, the pressure, density, and temperature satisfy

}E = 4p hydrostatic equation
P = RpT equation of state for ideal gas
T = f2 linear temperature profile.

where X and g are constant.

We can solve for the pressure and dens.ty of this polytropic atmosphere
as a function of =2

P= TR
r=E (&)

where 7/ 1s the pressure at z = z, and m, the polytropic index, 1s given by

g _ Ze

Hx being the pressure scale height {(Hx = %?F). In terms of the polytropic

exponent, defined as

p and /D are related by an equation of the form

s
p = const . /0 .

In a state of convective equilibrium, the temperature gradient is equal to the
so—called adiabatic lapse rate

po- /B adiabatic = g/c,




where ¢p 1s the specific heat at constant pressure.

P =

and

r'l
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In this case
=1
= ¥

where 77 is tne ratio of specific heats at constant pressure and veolume ( 77 =

Cp/C\, Y.

equilibrium
Lodr_ ﬁ’-): L ds
T\dz ¢ Cp dz

i.e., the entropy S and the potential temperature g

The sign of ds/dz

Using the Schwartzchild discriminant, we sec that for convective

%) - o

(=

are constant with height.

glves us information about the stability of a layer.

We expect convective instability if Ads/dz > o . For an ideal gas with
constant specific heats
S = O 4n (P/p7) + const
- -7 + const .

Thus = o I }j"f

ds /

= G TEE d—ﬂf‘
4z v () Az

and for instability /7 must be greater than 7 , since dlnp/dz > 0. Just as
the conductive heat flux can be written in terms of a thermal conductivity as

gconductive =<K VT
we may conjecture in this case that
jconvective = =K, V0 & —~ Ky vs
where Ky 15 a sort of eddy conductivity.

4s an example, consider the sun, where the profile of S with distance
from the center looks something like:

SA /

FIGURE 2.
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Here we assume that [ , which is evaluated locally, has a variation with
height. Curve 1 is the profile in the absence of convection, computed
assuming that radiative diffusion is the only mechanism for heat transport
from the interior to the surface. There is a convectively unstable region
where dé/dr<¢ 0 . If convection tends to bring the profile to convective
equilibrium we would expect a profile like curve 2, where ds/dr = 0 in the
former convective zone. The actual profile must be slightly super-adiabatic
in order for convection to be maintained (curve 3).

Response Time for Perturbation from Convective Equilibrium - the Warm-~up
Problem.

Suppose that we change the temperature profile of an atmosphere initially
in convective equilibrium by heating it from "the side”, that is, we introduce
a small perturbation to the temperature profile at time t = 0 by uniformly
heating the atmosphere from a vertical wall such that

T™(Z) =+ (1+ g)I(Z)=(1+ &) lﬂz

where ¢ is assumed small. What is the characteristic “"warm—up” time Z,
for the atmosphere to reach a new state of equilibrium with this new
temperature profile? This warm-up problem is analogous to the spin—up problem
in rotating flulds and to the heat-up problem in stably stratified incompres—

sible fluids (Veronis, 1970). We introduce:

a) The dynamical time T dyn for this problem as the time needed for a
sound wave (gravity waves are excluded in convective equilibrium} to propagate

vertically across the atmosphere. The scale height is given by

Hi = zo/(m + 1), and for m of order one, Hx ~ 2o+ Thus
Tdyn = zg/c ~ Hx /c

where ¢ is the speed of sound (c2 = < gHx). We anticipate that an
atmosphere subject to thermal disturbances alters its hydrostatic structure on

a time scale'ﬁan_

b) The thermal time of the atmosphere ‘Z;.~'Z:7K , where k is roughly
the mean of thermal diffusivity over z, weighted in favor of smaller values.

In the warm-up problem, the region that is at first affected by thermal
perturbation is that adjacent to the side wall on which the temperature
perturtation is made. Nothing very significant occurs until a time 7 dyn
passes. In that interval the side wall disturbance has had time to diffuse
horizontally and establish a thermal boundary layer whose thickness, S th
is given by

H ., 4
< 4

where & is the thermal diffusivity. We obtain for the boundary layer

thickness Va
K He

e WS R e well P
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Tuis 15 the analog of the Fkman layer thickness in the spin—up problem.

The physical response of the system to the perturbation may be summarized
as follows:

Initially sound waves are excited from the wall. These sound waves are
presumably of litile dynamical importance, much like the inertial waves which
are the initial response in the spin—up problem. In the thermat boundary
layer near the wall the vertical extent of the atmosphere locally changes by
an amount

SHx -~ 8z, = €2y

This change in thickness is caused by a vertical velocity in the boundary
layer which is
82, ~ EZ.C

W ~ =
HeiC H,

From continuity this vertical motion must also engender a horizontal suction
velocity u in the direction of the wall

L L% W W Ha
_ o~ == + = = - i
S.n\ “» Z. “» (' + Z.)

It 1s this induced horizontal circulation which ultimately determines the
warm-up time. Consider a ring of material of radius a with its axis
perpendicular to the wall (Fig. 3). The ring feels the effect of the suction
long before it feels the effect of the direct diffusion of heat from the
wall. As the ring is drawn towards the wall it expands isentropically

™ 3S=0=3(l %)
|

walf

A

\‘_‘—_

i
{
l
' /

FIGURE 3.

Using the ideal gas law and the relationship ST/T = € , we have for the
relative change in the ring's density

¢ , £
P
The relative change in the radius of the ring is given by

sa , 3p
a” p
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Assuming a 1s of the same order as z,

£2s

So ~

The characteristic warm-up time for this problem is ziven by the time it takes
for the ring to come to the new equilibrium dictated by the altered sidewall

condition- Since the distance traversed by the ring is of the same order as da

—Cp'\l

kS

Substituting in the previously derived expressions for 4o and u

'C;.) = (f‘:) (Z,Z:u,) ( n::h:«:3 )r,l

For z, ~ Ha, T  is approximately given by the geometric mean between
the dynamical time T dyn = Hx/c and the thernal time for the whole atmos-
phere T tharm = H#» /KX - Generally

T dyn < Tw <Ttherm

Just as in the spin—up problem, a characteristic response time calculated
assuming only simple diffusion without consideration of the induced circula-
tion is much too long —- the induced circulation brings the fluid to equilib-
rium much more quickly than diffusion alone could.

As an example of where this distinction between response times is fmpor-
tant, consider a two-layer model of the sun consisting of the base of the
convective zone and the top of the inner radfiative zone. The two layers
adjust to small perturbations on different time scales. In the upper
turbulent layer ¥ therp 15 about one month and T gyn is about half an
hour, yielding a warm—up time t, of a few hours. In the lower diffusive
layer the thermal time is very long —-- about 106 years, while z-dyn is
agaln about one-half hour. Thus Ty 1s on the order of a few years in the
subconvective layer. There is now a strong susplcion that the luminosity of
the sun is not constant -— it appears to vary in consort with the solar cycle
of 11 years. Why should we observe a phenomenon with a period of a few years?
Both the dynamical and thermal times of the diffusive layer are of completely
different orders of magnitude, but the warm-up time fits the bill, and we
should expect the sun to be very responsive on this time scale. A model has
been proposed where “ropes” of hot material are pulled up from below by mag-

netic effects, engendering thermal changes in solar magnetocline which manifest

themseives in a variable solar luminosity with a period of about T u-

Finally, we note that several other characteristic times may be defined.
Just as the thermal time Z7 /K represents the time for heat to diffuse

across a layer of thickness z,, the viscous time z3/v represents the

n‘ m‘
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time needed for momentum diffusion in a fluid with kinematic viscosity » .
The convective time is the time it takes for a parcel of flulld to "iall”

across the layer

¥
T convective v (Za/gz) *

where g& is the reduced gravity due to the buoyancy force. In the next
lecture we will study the anelastic mode when we move slightly off convective
equilibrium. This "quasi-anelastic” approximation is analogous to the quasi-
geostrophic approximation. Following Ogura and Phillips (1962) (see references
in ":Small Nondissipative Motions and the Anelastic Approximation”) , this
relevant time scale for the perturbation equations is

T convectiver As long as T convective 2 Cw we are near

convective equilibrium, and sound waves are effectively filtered from the
system.

REFERENCES

Veronis, G., 1970. The analog between rotating and stratified fluids. Ann.
Rev. Fluid Mech. 2, 37-66.

NOTES SUBMITTED BY
SATORU HONDA AND
BRUCE LONG

QUASTANELASTICITY
Edward A. Splegel

In many geophysical situations, we are trying to model a system in which
rapid vertical mixing is taking place. We would like to scale the equations
of fluid motion so as to use the nearness of the system to convective equilib-
rium. The result of such a scaling is the anelastic approximation.

We will, for simplicity, restrict ourselves to an ideal gas whose thermo-
dynamic properties —— K, the thermal conductivity; g , the viscosity; Cp,
the specific heat at fixed pressure; R, the gas constant normalized with the
molecular weight; % , the ratio of specific heats, and local gravity g —-—
are constant. Our first task iz to identify static equilibrium states of the

gas, which must obey: 4
= r3

47
dZ*
r = PRT
With the geometry of Figure 1, we can see that the solutions to the above must
have a linear temperature gradient and thus must be polytropic:

P =T Pz
~ =_FP1(Z)
T = @T,f!.)

= O
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where 7 , P , and ® are the pressure, density, and temperaturs at the
bottom of the gas, and

T=R2p

& = 4 Za/mR (1)

' _ W - ey
P = (/) , L@ = (2 | T (z) = 2/2,

lz

¢ PsfsT

FIGURE 1. THE Geometry of the Gas

To isolate the gravitationally driven motions we assume small vertical
entropy gradients, that is, that the atmosphere is nearly in convective
equilibrium. This condition,

d ~
g bhimo

implies

and thus that vertical temperature gradient is near its adiabatic value

— dTI B 3 (r—,)
Fo az "= L “ ?’
5]

Imaginre 2 real gas in motion. We would like to consider the motion as a
perturbation away from an adiabatic (1n = 0?-:) statlc state described by
(1). Which state do we pick? Out of the two parameter family, we can pick,
for instance, the static state which preserves the average mass and average
basal pressure of a fluid column:

77- = P(X) Z;)'&J

Zy Z,..
P{ [.),(z) dz = / /J (x,z,t) dz
- o

where p and [ are the pressure and density in the real gas, z its depth,
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and — 15 a herizontal and temporal average. If

oy
|

Pz, ) ~ i P2y
Tr ’Pu (zZy

the above atmosphere is near convective equilibrium.

The time scale of convective motions then becomes T .gpy = (5-5'
which is much longer than the other time scales in the problem:

Tt - it

Teonv ~ & P Tyam ~ € />7¢sound ~ £°

Thus, on the convective time scale other adjustments are effectively instan-
taneous, sound waves just being an ignorable background sea of noise.

Consider the small, order £ , perturbations to the basic state as given
by (1)

r= F(Pl‘f';?) .
p o= P (p )
~ (2)
LT = ® (7 +£7)

and nondimensionalize the kinematic variables with respect to the reference
length z, and the reference time Teonv ™ C '4F)

Upon the neglect of relatively small terms, the momentum equation becomes

Du r—f —~ ~ A 'Vz L£
=X = ~ (L — z + ¥
P 5t 2’) AP r z}gc) v Z (3)

here the nondimensional viscous stress tensor is given by

ou; 4 2 Usi .
py l'l' aKJ Lol a_x_:’ 3 é?k Jff

and the effective kinematic viscosity Y= ‘-—?{i « Similarly, the entropy
equation 1s simplified to

A~ . g 3 3 2 ‘V‘ 'h._
P %T‘ (7')“7? bt )[’35 Pq-v'* f";c) £ W

where § is the nondimensionalized mechanical dissipation. The substitution
of (2) and the rescaling of the mass conservation equation and the equation of
state is straightforward. In equations (3) and (4) some nondimensional
constants appear. The factor I,—',-‘ is just a number of 0(l). The constant
Gr =Z3gL /¥ , called the Grashof number, also appears and must be assumed to
be 0(1) so that viscous dissipation can be included. For thermal diffusion to
be retained we must also have the Prandtl number & =7%./K of 0{1). Only
when these two numbers are 0(l) are the convective, thermal and viscous time-
scales of the same order of magnitude.
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Having established which terms are neglected in the quasi-anelastic
approximation we can now return to the dimensional form of the equations. In
their general form, allowing for the variation of some of the thermodynamic

properties of the gas, they read
vo[Pc l;‘:) = Q

P = fc [l - X {T-Te) + K{T) (’P"P:)]

Du
Pege = —wvp - P92 + V.7

DT b
r’c. Cpe 5 o Te ?’IE = 2' l:;(c v (T"Tc—) + (K"K")ETC]

oPc
+r® 4+ (d-u‘)Tca—g - o (—"Tc);gl+ {—CF‘(f”fJ“ gc

- o 2]

The original equations have essentially been modified by ignoring the
effect of the small density deviations from convective equilibrium in the
inertia and in mass conservation. The equations have been linearized in T, p

and p , but the problem is still nonlinear due to advection of momentum,
temperature, and pressure.

The Boussinesq Approximation

In many applicationé the layer of convecting fluid covers only a small
fraction of a scale height. This is used in the shallow layer approximation
which will be dealt with later- If additionally the horizontal scales are
assumed to be of the same scale as the vertical motions, then the Boussinesq

approximation follows.

Long horizontal scales can be generated in the Boussinesq approximation*.
In such cases the approximation needs to be reexamined. It is important to
remember that the Boussinesq approximation may not be a consistent scaling of
some convection problems, e.g., convection at large Prandtl number, and even
as a model may not have the correct bifurcation structure.

The Boussinesq approximation follows from

S: %éil

where d is the convecting layer depth and H. 1s the minimum scale height in
the layer (note that % is now vertically upwards). All the previously defined
timescales are replaced by changing the atmospheric height Z. by the layer
depthd , the amplitude of the motion being determined by a balance between the
new convective and dissipative timescales. Using this assumption we find that

Po = et + OL8)

and thus . may be taken to be a constant Po + The pressure perturbations
in the layer are also small and can be ignored in the equation of state.

*For example, by constant flux boundary conditioms, large scale modulatlons of
small scale structures or in cells much longer in one direction than another.

|
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In the heat equation we find that the dissipation # is swall compared
with the diffusive term (at least for 0(1l) Prandtl number) and that to leading
order

Sl N

o

DP _  DP_
bt -~ Dt T T fe3v

Thus the Boussinesq version of equation (5) is just

by A a
/J°5"€='vf°+{°93+ [
Polp %E = —Pguw + 2.(KVT)
p o= Pt «x(T-T¥] (6)
4 = o

where Tals some reference temperature at which P e

The boundary conditions to be used at z = 0,d are somewhat arbitrary. No
simple and physical choice 1s obvious. Usually used are rigid boundaries:

x=0a2and T = given;
or stress free boundaries

g.ﬁ = gzxﬁ = 0; T = given.
U
Note that at a rigid boundary the above could be changed to y + C 5z xn = 0
where ¢ measures the mean free path of the fluid's constituent particles. If
an eddy viscosity is used, then perhaps c¢ should be related to the eddy size.

Nondissipative Boussinesq Linear Dynamics.

To simplfy the problem even further we consider the inviscid non-diffusive
Boussinesq equation ( p = K = 0) for small velocities. This allows the
nonlinearity in the velocity to be neglected. The analysis Is relevant to the
stability of the purely conducting trivial solutfion.

Let To(z) be some initial given temperature field and introduce the
dependent variable &= T-T, to replace T. The set of equations {(6) reduce

to ag A
f*’s; T vp o+ qu &2z
20 _
st ~ P¥ (7)
i = o
where

dT,
e-- (- 4

EBEREBE EEEEERESE

Taking the z-component of the ¥ x ¥ x of the first equation in (7) gives the
following simple equation ~

W
v‘-g__t, - vl‘- (Sue)
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Try for a solution »f the form
W t Wiz}
- 1
(&) = 5“‘"‘(@&1)
and the above equations give the following equation for ¢
IR
where k 1s a measure of the horizontal wave number. This equation guides the

cholce of the horlizontal geometry of convection, the question being: how to
tessellate the plane? Usually a planform of regular polygons is preferred.

The expression for the growth rate of the modes is

41‘: M

k* + n*a®

where n 1s the vertical wave number. The solid line in the following figure
1s a graph of n2 as a function of k2:

14

suﬁ o - e e e o e e o am e

> Lt

Notice that in the limit of convective equilibrium ( F *> () there is no
growth. The upper limit of the growth rate is given by 4g«§@ instead of
O( 94 ), and is due to geometric constraints rather than the fluid's com-
pressibility. The inclusion of the dissipative terms, which extract energy
preferentially from short wave lengths, causes the growth rate » to be
maximized at some finite wave number k, and gives rise to the dotted line of

the figure.
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DISSIPATIVE BOUSSINESQ DYNAMICS

Edward A. Splegel

We want to investigate how the inclusion of dissipative terms alters the
behavior of the fluid at the onset of convective instability.

We know that for a given horizontal wave number a, there is a valie of the

Rayleigh number R,, above which motion on the corresponding hori{zontal scale
becomes possible. Our first task is to determine the relatfonship between R

and a.

The full Boussinesq equations are:

UYL + ®.VU = -pivp + Guet + VI (1)

g = © 2

2:9¢ + «.ve = F.w + % ¥'p (3)
where u = {u, v, w), the temperature T = Tgearic + £ and (5 a('g-rz—‘ + .CQ.)
- r

At the onset of convective lnstability we expect the velocity and temperature
fluctuations to be small. We may therefore determine the initial time
dependence from the linearized equations with the understanding that 1if we
find instability the linearization quickly loses valldity. 1If we omit u .y u
from (1) and apply ¥Uxgx we find -

(3~ v¥)u = gu v*(6Z) - g« v(gg | "

A
where Z is a unit vector. Equation (4) has the comporents

(@e-vi)vu = —g% b (5a)
T

9 — v )YV = - qu By ©

(-t v )v g b] (5b)

fh

(D¢ - vet) T g» v'e (5¢)

while the linearized version of (3) is
(3¢ - k1)@ = g@w (5d)
Before we proceed further we discuss the kinematic boundary conditions:

A number of possibilities are available but it is usual to restrict the
cholce to:

rigid boundary w = _5.%_ =0
top and bottom

free boundary W, u, Qv =0.
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We postpone the cholce of the thermal bounda*y conditions. If we take

9y(5a) - 34(5b) and define the vertical vorticity & = &V - 3yu

we get:
9, — vt} 9t = 0
(t ) [« )
We can seek solutions of the form:
+
3o ety Z
1 - _ .t
Then we get v, f; =~k {5 and
(s -v (- ]{(DP-k) Z > =0
(7
where
v: - [ T 1 * Q.t = o
Vo + D >v"9§-*93'> D = 3z

If z =0 and Z =d are the top and bottom, the free B. C.'s give g¢or ,
Z(dy =0 and we get

- n'r* 2
ScoE v k) (8)

which implies that in the linear regime the vertical vorticity decays.
Clearly we expect it to couple to other modes at finite amplitude, but for the
moment we leave 1t at that.

In a similar manner we may separate the horizontal structure from (5a) and
5(d) to obtain A

[2-v0uo)lo- €18 = - g o0

_ o

{1

P
L2¢ - x(p-k)) ®

V‘J}

(9b)

If

- (9c)

where W and /é are functions ¢f Z and t only.

We choose d as the unit of length, d2/k as the unit of time and AT =
Fid as the unit of temperature, and let

R - fatd o - 2
VK
(the Rayleigh and Prandtl numbers respectively).
The nondimensional equations are
(o9, - &)ahh = - Ra* ® (10a)
(3¢ - Y® = L (10b)
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where O = D2-22 and a = kd is the dimensionless horizontal wave number.
We still have the choice of thermal B. C. Again we conslder two ideallzations
that are used in the literature for the top and bottom boundaries:

@y = @) =0 fixed temp.

fixed flux
@ = 2, B =0

corresponding to perfectly or poorly conductive surfaces at Z = 0,1. Clearly,
for physical applications a combination of the two would be appropriate but
for t1llustration we choose & = 0 on top and bottom. Then 1if we try
solutions of the form:

(&)= ()

we obtain trigometric functions as the eigenvectors of tlie operators inm (10).
This was, in fact, the motivation behind our choice of B. C. Equations (10)

give

‘Eg_‘&

Y = o
! - Cr+ g

as the dispersion relation for 1 , wWhere Z‘ = N7+ at +« This gives
"

-_(_g- + 5‘) -
det

41_—,-‘_2-_3‘(|+o-) l-—l 14'*(:%)1(%—|) 7_,]

(11)
and if I% - , «| the two roots are
~ o R
1= (ru) (?o"‘) (12a)
(12b)

12 ~¢ (v o)

The condition for marginal stability is cbtalned by setting ﬂ =0; forn=1

this gives
. R =R, = %6/32 (13)
where q2 = qi-

In the R, - a plane we get a curve like Figure 1.
4

Re

G a
FIGURE 1.
The marginal value of R as a function of horizontal wave number.
The minimum (or critical) value, R. occurs at ac.
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We now want to find how the curve in Figure 1 is modified by a change in the
thermal B. C. This time we fix the flux and consider the equations governing
the steady state:

A'w = RAW® (14a)
8® = —wW (14b)
The boundary conditions are D® =0 top and bottom. In effect, this

problem was partly solved by Jeffrey, though its meaning was not appreciated
until the 1960's by Sanl and Hurle, Jakeman and Pike (1967). The essential
point 1s that R has its minimum at a = 0. Since a is small, we rescale W;
let & = W/a2, Integrating (l4b) from Z = O to Z = 1 we find that

)
a’*S'@) dz = f w dz (15)
o o
To zeroth order we find
D1G9° = 0
>*'Q. - R @,
This gives @&, = const 5o, = Ro ®o P} where P(Z) is a 4th order

polynomial such that PM(Z) = 1. The next order glves
P®, = @, (- RP@)

which 1f integrated from O to 1, becomes, on use of (15)

|
K =)_L'P(z) dz] = Ko=51
It can be shown that the linear stability curve becomes Figure 2.

4 o

FIGURE 2.

Linear stability calculations are a useful tool to determine the value of R,
and the initial structure of the motion. They are clearly unsatisfactory when
evolved in time as they predict that the amplitude of the motion will grow
exponentially without limit. To get a more reasonable picture we must include
the nonlinear properties of the equations. These describe the reaction of the
stable modes to the exponential growth of an unstable one. We expect these
modes to provide, eventually, a way to prevent the unlimited growth of the
unstable modes.
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If we describe the amplitude of the motion by A we expect thet for R just
supercritical the evolution of A is governed by the Landau equation

3
Bt A =-,”ﬂ A - E ’A

N
exp growth nonlinear int. with virtual modes.

(Terms of order A2 are omitted as the equations are invariant under A = -4).
We now seek to derive the coefficients of the Landau equation for the case

of 2D convection. The velocity is solenoidal and can be written in terms of a
stream function: '

[/ (—q’r v 9, t‘P-z.)
The equations for Lf and © become

(3¢ ~o9) WY = - oREx + Ty, v'¢) (16a)

~ $ + J(%0) (16b)

(3{— -vt) 6

where J (f,g) = fyg, - fgy. We fix the temperature concentrate on top
and bottom and assume that on the sidewzlls of the cells (x = 0, 2x /a) that
there 15 no heat flux (&% = 0) and tangential viscous stress ( ¥ = 0). On
top and bottom, & , ¢ , v'¢ all vanish. Let R be slightly above
marginal:

R = By(1 + £2).

-

The natural time variable would be 7{ but suppose that o~ 1 and use £'t.
We rescale the variables:

t > ¢/¢v ¢ > ey > & > £08/2
?:21' A = 20 + 512”-

and get

VvV = T (17)

CASEEES FY- ¥ ) . ( v4 Ana..)
(_ )eay v L - Aoa?‘ qt
ot Iy, V') o™l 9 W Ar Ox
+ &t

jtYJ Q)

where

i3

i"

I= ¢ V

A,9x 3t
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V= (%)

We than expand V in powers of € : NV =V, + € v * ¢'vy.
and find

1 = -uo + £ I[, + Etﬂz

At each order n in powers of £ in order to solve for ¥, we must impose
~
(\./J I ) =0 (18)

+ o~
where £ Vv = 0. This {s known as the solvability condition in classical per-
turbation theory, the removal of resonant terms in the suppression or the sup~
pression of secularities.

By inspection we see that I, = 0; also it is easy to deduce

I = [o*" T, T) ] _ | ©
‘ J (e, 2 l_:)-("t’o-;eo}

L= [0 [T ,ve) + 3,
T

-Uh' qtat 7\;3:

Vo

Jw,0) + J(4%,8) M 2 ¢

To zeroth order we recover the linear theory result U=V, = 0.
A sinax sin®z 34 Ao
Vo = LV& = VQ =0

- ot
B cosax sinmz Aa K

=5 A= E‘/c. choosing the +ve¢ root and B = -9A. A = A(t) and is arbitrary

thus far. Clearly we also have ’\\/’u. sinax sinwxz\ . We plug V5, into our
cosax sinsxz

expression for I, , and get
oo
i =- 7 8T | sazng
Condition (18) is satisfied for all A and we find

A CR P c- A2g

C Swmznz

| =
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We now go to the next order ard calculate

-5 ax sinrz (0'"/'\'31- X Aga)

I, =

(19)
~ (oSax Siﬂ “z(g.A_. Ata_‘A + HQ-AC) + Il-a. AC CG%QX slﬂ 3!1’)(
Condition (18) now gives an equation for A, namely
. 2z 4G aro 32
-_ —_— — = 0 20
A g(mr) A + Flo+t) A (20)

This describes the bifurcation of steady solutions from the static one at
R = R.. Schematically the result is displaced in Figure 3.

A stable

—s/te:ﬂy_ - unstable
tatice ———— e R

FIGURE 3.

One of the characteristics of this result is that the value at which
steady solutions bifurcate is independent of o . By following the evolution
of the steady solution Busse has shown that at € = oo two more growing
branches bifurcate from the stable steady ones and for © finite two over-

stable branches appear. Near Gc. We may expect codimension two behavior
(see below).

A steady C growing
M—~

o >oc

steady overstable

static

o < O
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Linear modes (including vertical vorticity modes) for fixed temperature and
slippery btoundaries. Ledaux, P., M. Schwarztchild, E. A. Spiegel. Ap.J.

NOTES SUBMITTED BY
FAUSTO CATTANEO and
PIERRE COULLET

CONVECTION ON VERY LARGE HORIZONTAL SCALES
Edward A. Splegel
1) What are the realistic boundary conditions?

The determfnation of boundary conditions fs not a trivial matter,
especlally thermodynamic¢ ones. Usually a constant temperature Is imposed at
the boundaries, thus assuming perfectly conducting walls and inhibiting large
scale horizontal motions. Consider the more realistic situation (see Fig. 1)
of a liquid layer bordered by two thick conducting plates

ks plate

kf liquid

k, plate

FIGURE 1.

(constant conductivity kg, kg respectively). In the plates heat is trans-
ported only by conduction, hence, in the static state v'€s = 0, where 6%
is the temperature profile. (We consider only the case of the upper plate; the
arguments can be applied to the lower plate as well.) The horizontal depen-
dence can be decomposed in periodic solutions of horizontal wave number a.

The vertical axis Z is positive upward, the origin is the lower surface. The
solution is

g = A“‘nj’) msh(a.z) + 3(y,y) simh (az)

where A and B are combinations of sinusold all with wave length a. The upper
boundary (not in contact with the fluid) is a constant temperature, hence

A(x,y) = -B(x,y)tanh(ah)

At the interface of the fluid and plate & = A(x,y). It iIs natural to assume
that flux and temperature are continuous. Thus, we have

Bsto) = 8, 10)

A G = & Z2eo

\.
.
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where &¢ represents the temperature in the fluid. Then,

A = 9}:{0)

o,
7(5“-3 = tér 9%}(0)

Eliminating A by using the former equation and the boundary condition, we get

e _ A AdEF
Br (o) £ L{%@‘ﬂ £

or where glc = l.ﬁ' Z‘u-L(a/u)
$ O

Betey , R, dbrio)
k Jdz

Az =0
A similar calculation shows that, at the upper surface of the lower plate, we
get

9F‘o) - K"—g{ = O

The change of sign results from the presumed antisymmetry of the geometry.

As a result, we are able to generalize the boundary condition at the inter-
face to

BO* +cH =0 at the upper boundary
and B ~C8B =0 at the lower boundary

where B and C are appropriately determined functions of x, vy, a and the
geometry of the plates. It 1s interesting to consider two limiting cases of
the above equations. That i1s, when ¢ > O, we obtain the constant temperature
condition, and then, when B = 0, we obtaln constant heat flux case which was
already discussed by Hurle et., al. (1967) in the case of the Boussinesq
problem (see "Dissipative Boussinesq Dynamics”, this volume). The change of
boundary condition greatly affects the stability curve (Hurle et. al., 1987).
Such a change is schematically ifllustrated in Figure 2.

R |

\

FIGURE 2.

As the boundary becomes a poorer heat conductor the critical Rayleigh number
becomes smaller and the wave number of the most unstable mode approaches zero
(in the case of fixed heat flux condition it becomes zerc). These phenomena
can be understood as the thermal penetration of the convection layer into its
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boundarfes. If the boundary is perfectly conducting, the thermal penetration
does not occur. However, on the contrary, if the boundary becomes a poorer
conductor, 1t will penetrate deep Iinto the boundary and in case of fixed heat
flux, it will do so indefinitely (see Fig. 3).

4 - I |
Perfect Conductor t | ! '
1 + 4 i
| : { 1 ! 1
r ( ' ' ' |
| I : , ! q
Perfect Conductor : [ —+ |
i I I {
LS | ' l
Poorer Conductor ‘Fixed Flux
FIGURE 3.

This is the reason why the large horizontal scale motion may be preferred In
linear theory with fixed-flux boundary conditions.

2) Some Examples of NonBoussinesq Convection

As an example of nonBoussinesq convection, we consider a fluid
containing micrcorganisms, (such as tetrahymena pyroformis) which are
negatively geotactic, i.e., like to swim upwa.d. The density is expressed as,

P= ALt Ef

where C is the concentration, satisfying the equation of motion,

G, +v,[c0:2 - K 9C + cu.]
At -~ ~
upward dispersion advection
swimming

where -U is the geotactic velocity, K(c,Z) is dispersion coefficlent that
models random swimming, and y is the fluid velocity. If &4 = ferm c® you get
a polytropic solution, ¢ « z% . The convectlon arises as high concentra-
tion fluid descends and organisms swim up to maintain the concentration
gradient.

Another example of nonBoussinesq convection very similar to bio—convection
are: “chromium plated”™ stars which have an excess of (Cr, Mg, —-—--) in their
spectra. These elements sense the radiation force, and are levitated to the
surface, giving rise to a positive concentration gradient, in an analogous
fashion to the negative-geotactic microorganisms. A similar instability
occurs as shown by Lin (1980, Columbia dissertation).

3) NonBoussinesq Convection on a Very Large Horizoantal Scale

When we consider convection having large horizontal scale, we can
find that nonBoussinesq *erms may become significant. In other words, to
guarantee the validity of the Boussinesq approximation, the condition that
horizontal scale be much smaller than a critical value is also necessary when
the heat flux is fixed on the boundaries (Depassier and Spiegel, 198l).
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Tonslder convection having large horizontal scele. We suppose that
the thermal boundary conditions at the upper and lower surfaces are those of
fixed flux. We find, from the first order perturbation analysis, that the
most unstable mode has the wave length of Infinite length {(Hurle et. al.,

1967).

Assume the equation of state is slightly nonBoussinesq,

r"= F, [l— < (T-T) + otSaCT-T,)] (1)

q 1s an arbitrary function with q(0) = 0, and & s a measure of the
deviation from the Boussinesq condition, assumed small. The basic equations

are

po {4y + 4-9g)= - gp - 3(-’2 + pVu 2
q.% = o

(3)

Polp (T + 4.9T) = g, (koT) (4

We restrict ourselves to two-dimensional flow, and introduce a stream function
. After normalization d (depth of convective layer) as a unit length,
Pelpdd® [ &, as a unit of time, 2 as a unit of density, Fd/K. as a unit
of temperature (we use conventlonal symbols of fluid mechanics). We obtain

oy R -sgon]e e ofoh .« AER]

o = - e, Y)
v Oy YV, + yotd (6)

4+ 1 z &
where the primed means sz , R = gxd P CPF/{F’ > = 'it and &

1s a perturbed temperature defined by 7 = 7, - Z+ & . We take the
coordinate as indicated in Figure 4.

fixed flux = F

Z=1/2d
7z =0 —-- e e e e e
Z = -1/2d

fixed flux = F

FIGURE 4.
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The boundary conditions are

¥ =0 at z =% g (7)
G, =0
We rescale the above three equations as follows:
. +
F=¢tx , s= &%, Y=ry , §=¢ (8)

and obtain

921

It

e/ 6y - ¥ - Or + ¥y 6. *+ €% ] (9

Varee = R0 = 53/ (o) 05 = 28 By + £ 28 1

Integrating Equation (9) over Z from ~1/2 to +1/2 we find

gf<ogd = <O>p 4+ <¥> - <ye>
5 (11)

L
yhere Cee> < gl cae dz

1
1

In the process of integration, we used the temperature boundary conditions at
Z = +1/2 of (7). Equation (11) is an evolution equation for <©> .

We expand

Y., + €Y o+ ey,

.

o + &0, + c*6, + -

]
[

(12)
R= R, + €' & 4+ eg*R. +---

and substitute these into Equations (9) and (10). We obtain the lowest order
linear equations

90:7 = O
(13)
Veveze = RoOoy
Considering the boundary conditions, we have
0. = {9 (14)
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Then we can write as
Yo = Ref; P (15)
where
P (16)
At this point we use the kinematic boundary condition of (17), that is,
]
P=0 , P =0 o z=%% (17
We have
L + 1 @i
=% (27- £28 4 ) (18)

Now, the probiem is to derive the equation of f by wusing (11). Putting
Equation (15) and (18) into (11) we get fxx = 0 or R, = 6 in the leading
term. We need the computation of the next order. Selecting the case of R,
= 6. which is coincident with the critical value of R derived from the
Boussinesq approximation, we find

forofy ¢ g - pls)y - Ty -

(19
where = B/R = R/6 | FU)=Re(Qr 0y + Q) por 2 and
K = éﬁ . Q is defined as
Q — td Il Ih-l
n = 4 5 j‘i J‘_.?L' g({—g“) dg, (20)

If we assume that (T-Ty) & (T—TO)Z, that is, the expression which
we can expand by the Taylor series, we find that F = £f2 + const. We have
the evolution equation as follows:

3 1
'Fs ¥ r{ff + chynr - P(‘FI); - l(.{ )ff = O (21)

(note F = A2y,

In this equation, A represents the nonBoussinesq contribution. In
solving equation (21) we must require sulitable boundary conditions. They may
be ©, =0and Y, =0 at the end points describing no heat flux from the
neighbor and shear stress free. These conditions are converted to

fe=-

'-FIH = o on

oy
1]
t+

RiA

(22)

Another important condition derived from (22) is

gs. =0 (23)



where

R

{ ds

r . =
{‘ 2 _
To the order of our present approximation conservation of mass gives

{=0

To snlve (21) with conditions (22) and (24) we expand f by a new small
parameter ﬁ , that is,

{-\(;,s) =-f. + g{,(§,319) + gl f;(g, g‘s)

LA

~ A
r = Mo + drl + é‘rl + -

In leading term we have

fo = A8 crlay)
vith ry = Kat
(i.e., R = Ry = 61(1 + £ Kka™) = R (1+ Kka'))

In higher order we find a Landau equation,

A=wnA - F(rd-z2)p°

I

where ry measures R—Ry. Equation (28) states that bifurcation from R =
Ry to the subcritical area exist, if the wave number &« is less than a
certain transition wave number «, .

4 2 12
€ % o or O, = L4341

The rough sketch of this situation 1Is shown in Figure 5.

Al

ok

db

oy

Tm FIGURE 5.

Y
>3

It is clear that, if we do not take the nonBoussinesq term into account

( % = 0), we cannot find such a solution. This may be interpreted as follows:

(24)

(25)

(26)

27

(28)
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d
The small parameter 8 may be considered as 7§ where H1s a vertical
To guarantee the

characteristic length assocliated to a nonBoussinesq effect.
Boussinesq approximation we require the condition

d d . o7
Q; ~ {F Hd
must be small.
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NOTES SUBMITTED BY
SATORU HONDA and
EVAN FISHBEIN

MILDLY NONBOUSSINESQ CONVECTION WITH FIXED FLUX

Edward A. Spiegel

Using the scaling
+ -
E= gx S= £t > Y= e

2

we have arrived at the evolution equation of two—dimensional fixed-flux
convection for the leading order temperature perturbation &= f( § , s) +

o(¢g* ). 1t is
{5+ Kjfgm + r]fzg :v(g’;‘); Ay o

where the Rayleigh number of the flow is determined by r in the relatiom
R = Ro(l"" L“' r)

and K and ¥ are constants depending upon the boundary conditions (K = 17/462,
¥ = 10/7 for rigid boundaries, and A 1is a parameter measuring the non-
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Boussinesq effects. Equation (1) is solved on an Iinterval f- § of length
2T /k subject to zero velocity ( = no neat heat flux) and no viscous stress
boundary conditions at ; =0, 2T /k.

Now suppose that we are interested in that part of the parameter regime
where the behavior of f Is weakly nonlinear. Hence f can be represented as an
asymptotic sequence in some small parameter h that measures the nonlinearity
in f. Thus substirute

T =hs
f=nhgo + W FREo + -

3
r=r.+L\ﬁ 'f’hr-l"'"-

into equation (1), group like powers of h and solve the resultant recursive
set of equations.

The first order equation is

with solution

Fo = A(T)cos(kE) , 1y = Kk2
where the condition r, =«k? implies that near linear behavior of f is

only found for values of r near this particular o+ The equarion at second
order is

nFyp + o Fuggy = 6 AK aatkp) - 22 A et (24)

To eliminate the secular forcing term in cos(k § ) we must choose rj = Q.
Thus the second order solution is

Fi = B wslksg) - AA cos (2kY)

6x k-

Substituting the solutions of the first and second order problems into the
third order equation we find that it has the form

. L +
F.F!.:g R Fs;n; = [“A + KA *(sj-? - E;k)Agj Cokg

Fle anakn 4 -] eablokp)

where A = Ar. To eliminate the secular term in the solution for F3 we
must again have that if the coefficient of cos(k.g } in the righthand side is
zero, hence defining

= (5) w (2)
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we end up with the following Landau equation for A(t)
A = rok2A + (1_5)(1{3' - k4)ad.
78
From this equation we see that the amplitude of the steady -olution is

nE

Ae = g

It is then also easy to see that for k < k, we must have ry < 0 and the
steady solution is unstable; while for k > ko we must have rz > 0 and the
steady solution is stable, see Figure 1.

A/\ A A
) e A/
= T > T
k<k, , m<o FIGURE 1. k >k » 12 >0

We now turn our attention to the steady nonlinear solutions of the
evolution, equation (1). Firstly, note that since fg = 0, f is constant in
time and mass conservation requires that this constant be zero to the accuracy
of the Boussinesq approximation. Define new variables & and y and new
parameters /o and o by

g = (%) @) fa) 4 = kg

(ozi « = % /4,

where k, is defined by equation (2) as before. Substituting into equation
(1) and integrating once we find the following nonlinear ordinary differential
equation for &

LY

ﬁ‘%}gi‘sﬁﬁ‘*f;{:o (3)

where ¢ denotes olfdj + Note that there is now no A dependence appearing
explieitly in the problem, it does, however, occur implicitly through the
definition of kg .

Replace P by the new parameter P where

f’=d1+P

then for P near zero equation (3) has solutions that are only weakly




- 38 -

nonlinear. In terms of this new parameter the Rayleigh number is given by

N R=Ro[1+t<a2+nagp]

where a = ¢ k and ag = £ kg are wave numbers in the x coordinate.

Thus we are looking at solutions for Rayleigh numbers near the warginal R, =
Ro(1 + Ka?) for the given wave number,

the difference from Ry is
measured by P.

Equation (3) can be integrated twice by introducing the function

G(#) = ¢
which transforms equation (3) to the equation
dl (L - C-?.
= = + 6 ~ 2
dg* T 1 Fj F

which can be solved to give

F: = 2h wshg &+ 2B sihg - 6F 4+ 2p (4)

where A and B are integration constants.

This equation can be written in the
form of a particle in a potential well.

Let
Bos - Mgy P, = " gy
® = & 4 &,

X(&) = ﬁ(j) "'go

then £ measures the amplitude of the motion and X represents the "particle's
height”. Equation (4) can then be written as

FX+wx) =0
where

<
i

IX 4+ E(wshx-1) + ¢ swhx
c= [E (- sinh 3) - 28] /smh%

E= P+ 234

X = &

Observe that the shape of the potential well varies as the "energy” E is
changed. The outcome is that there are no solutions unless

( Sinh & ~ i:)
= P 2 - 3.
e I+« > 3 D)
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This behavior is summed up in Figure 2 where we see that for ol»| there {s
a supercritical bifurcation to a nonlinear steady solutlon; for & <1 there
is a subcritical bifurcation and the subcriticality {s limited by the & =0
asymptote at P = -3,

%A

> P
FIGURE 2.

Amplitude of steady nonlinear sclutiens for
various wave number parameters & = k/ko.

Transition to Finite Critical Wave Number

Consider the sltuation

] |

j«

-
<

-]

1
l
C |

where the convecting fluid 1s sandwiched between two conducting plates of
thickness é D. The fixed flux temperature boundary condition is now applied
on the cutside of the plates. In the fluid we use the p-eviously derived
equations of motion while in the plates there is the purely diffusive problem

5t < K¢ V'O

Al

We consider the case where the temperature boundary conditions of the fluid
and the plates are just

82 =0 on z = £ F(/+Dp)

b chg_z.a continuous on z = ¥ ..ZL

As before we can obtain (Poyet, 1979) an evolution equation for the
temperature perturbation which is

(D) ofs + rfey * “ferrg = "(ffs)f B Mfz)ff
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But now & depends on D and ® = Kg/g {the ratio of the plates to the fluids
diffusivity). The relationship is given by

~ 1[68 + 23 DE — /5‘4(0:)1/2; -~ ze2 (pc)?'] //345-

and the regions of different behavior in the (D,t) plane are shown in Figure 3.

DM
thick
plates
K <o
K =0
thin K> o
plates
—
A
bad good
conductors conductors
FIGURE 3.

We conclude that in the regime of plate configurations where K % O the
Rayleigh number versus wave number marginal stability curve looks like

Figure 4a, the situvation is similar to the previous discussion and so there is
a subcritical bifurcation for wave numbers smaller than some critical value.
For K » 0 the Rayleigh number, wave number curve looks like Figure 4b and
bifurcations are supercritical.

A
> > a
(a) k>0 (b) ®<eo
FIGURE 4.

The transition between one sort of behavior and the other, when K is small
and of order £* , is also interesting. We have to go right back to the

beginning, set
= 4+
R=R,+ &%ry

and scale the time with £€ and @ with £ . Then the analogous evolution

equation to equation (1), involving a term in f§f§f¥F , is sixth order

instead of fourth order. It turns out that R4 is positive and so Figure 4b
can be redrawn to give Figure 5 for values of K just less than O.
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S
= - P 7 ¥
K <O, K=0lE) L1GURE 5.

In conclusion we remark that we know that the Boussinesq approximation
breaks down on a horizontal length scale (dH)1/2 corresponding to some wave

number ap, say. Then the Boussinesq approximation may still be reasonable
for situations covered by Figure 5 whenever the wave number of the minfimum of
the R(a) curve occurs at a wave number bigger than ag.

Equations of Shallow Convection - One Version

We now derive a variation on the traditional two-dimensional shallow-water
equations. The usual shallcw-water model assumes a homogeneous fluid (not
necessarily water) with constant density A , but here we relax this
assumption and include a Boussinesq contribution

y L/O = u/% (/ - x8)

where ©t is again the thermal expansivity and © 1s the temperature
perturbation. Bulk parameters such asg o » X and .+ are assumed constant
throughout the flujid. Although both friction and baroclinicity will be
included in our model, we will assume that to first order both ® and the
horizontal velocity component u and independent of Z. The height of the free
surface above the bottom is denoted by h(x,t) (see Figure 6).

Z
- #-’ﬁ,

h (xt)

R AR Ty R 77T 7777 TSR T T RIS 75y > X
FIGURE 6.

The boundary conditions are that w = Cat z =0, p = Pg at z = h(x,t), and
that a particle on the surface remains at the surface, i.e., z = h {5 a materi-
al surface. The boundary conditions for and u remain as yet unspecified.

Assuming hydrostatic balance

Pz = -1 .

So, upon integration

)
p = f P dz + Po
z
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where we have used the fact that p = py at z = h. Substituting for JO
h
P = pp t+ gfb[}l— z - o g e dz] .
z
Now usinz the fact that z = h is a material surface, we have for z = h
P
pt (h-z) = hy + uhy ~w =0

or
w(z = h) = hy + uhy .

Integrating the incompressibility condition .y = v vertically from z = 0 to

z =h

h
5 (uy + wy)dx = 0 ,

huy + w(z = h) = 0

which implies

where we have employed our presumption of O(1l) absence of vertical shear in
u- Using the result for w(z = h),

he + (hu)y = O

which is the expression for conservation of mass in the context of
shallow—water theory.

In the Boussinesq approximation the x-component momentum equation, with
the previously derived expression for the pressure inserted, is

— h
{JO (ut + (.Lu,( T Huz) = —_ 3F°,'h -7 — ™ fze AZ] -+ FVZLL
x
This can be rewritten in flux form

h
Ueg + (LwW)x + W)z = - thx““—*[z exdz]

+ PV Ux + higher order terms.

The higher order terms might include a boundary term in & if we stray from

a constant temperature B. C. on the free surface or a + uz; term if we have
a no-slip bottom boundary layer.

Again integrating vertically and ignoring any z -dependence on u and O

kut + h{uuxy 4+ w(Che + why)

=‘3[h|n, - -'iuag,‘h’-] F vV h
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or, collecting terms

Emt t (hw), = ~[Eght), 4 Vhib 4 L gy hre,

The thermodynamic equation can he written
Dy + V.(ue) = xvtp + gw

Here

Fs'-'- - g—g + j%/adiabatic)

where the temperature T = Ty + @ , and To(2) is the static temperature
profile. Performing another vertical integration

hoe + hiue), 4 B Chy + wh,)
h
= heo, + (AT- %)w(z:k)
Regrouping, we have our third governing equation for h, u and @
he), + (hus)y

= <hOm v (AT- ) (hy towh)

The existence of a free surface now allows the Propagation of gravity
waves — in particular a thermally-induced bore or shock wave might be possible
if the fluid is heated from below. Another approach is to use amplitude
expansions as in the derivation of Boussinesq or Kortwig-DeVries equations.
That has been begun by Depassier in order to study the possible existence of
convective solitary waves. The corresponding double-diffusive problem with a
free surface does seem to show coherent wave-like solutions at marginal
stabilicy.

REFERENCE
Poyet, J.-P., 19B0. Dissertation, Astronomy Department, Columbia University.
NOTES SUBMITTED BY
BRUCE LONG and
ANTHONY ROBERTS
DOUBLE CONVECTION
Edward A. Spiegel

"If I have seen less far than other men, it {is because I have stocd
behind giants”. - Et. al.
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In this lecture we will explore the codimension two bifurcation of thermo-
haline corvection, which occurs when the heat and salt gradlents are so adjust-
ed as to make a direct and an oscillaiing instability both close to marglaally
stable. The idea 1s to study the mechanism by which competing instabilities
bring in complicated dynamical behavior in a situation which permits the use
of current analytical techniques.

1. A Mean Fiel?d Model

First, let us imagine a qualitative generic physical model of double
convection such as semi—convection (Moore and Splegel, 1966). Imagine a blob
of fluid, volume V(t), which has average density @ (t ), temperature T(t)
and salinity 737 (t), and which is moving vertically in a medium with

density  Pe(z) | temperature To(z), and salinity 2% (z) (Figure 1). We
make the following assumptions to strip the physics to its bare bones:

(9 J@ @, 2,6 1=

FIGURE 1.

a) Variations of fo » Tg, Z, are small enough so that they can be
neglected except when their vertical derivatives appear explicitly.

So, Fo » To and [, are “constant with a nonzero derivative".

b) Pes To, Z, are not influenced by the parcel. We concentrate on
the kinematics of the parcel, but at the expense of two more equations
for changes in 9%/d2 and d%ydz caused by excess heat or salt
transport by the parcel (see "The History and Physics of Bouyancy in
Fluids”, in this volume), we could get a fully coupled fifth order
system analogous to the modal truncation of Veronis {see Weiss in these
proceedings), coupling the mean field back to the representative blob.

¢) The drag on the parcel is negligible.

d) The rate at which salt diffuses from the blob is much slower than the
heat diffusion rate, and so can be neglected (at least for a few
thermal diffusion times). This is a good approximation, since Xs/«x,
10-2 in brine.

The momentum is:

PVZ = -30p-fyv )
Now, by assumption (a),
_%#% N P—f°n,_.%wr—70 v oo, (2=

The parcel loses heat by Newtonian cooling:

P e (114 (2)) (2)

-——-—-ﬂ-——--—_—-—a
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and keeps the Initial salinity:
Z= 72 (t = 0) = constant.

It is convenient to work with a temperature perturbation & (t, z(t)) =
T(t) - To(z) and a salinity perturbation $(z(t)) = & - Z_(z).
From equation (2)

hd 'dTo
& <-3°-*x

Rewriting the momentum equation (1) in terms of & and §, we get
Z = 3{-%9 + uzs]

Elimination of @ gives a third order equation in time,

[ G S *3{"’7%-“:5—;{:’}i+ goy ¢ 8= = o 3
Imagine a parcel which, due to strong convection or nonBoussinesq effects has
vertically varying gradients of T, and ¥, , as in Figure 2. Then (5)

can, because the terms in z and 2z are nonlinear in Z, can produce complicated
dynamical behavior since, depending on the parcel position, both, either, or
neither direct or oscillating instability can be important, and the blob is
kicked between different dynamical regimes.

I N FFPEEYE

] {
‘ D | | ouillat:
-y
—=, Tndability
P L I 1
—N
T | Stable
5
L —
l'r.r
Fig. 2. Typical Mean Temperature Fig. 3. Stability diagram for
and salinity fields. ideal thermohaline convection

However, to look at the nature of the instabllities, we restrict ourselves
to a constant environment in which d%/dz and 4%/dz are independent of z.
Measure z from the level at which the salinity of our blob 1s equal to the
ambient salinity Z (z). Then

dZ,
S('&) = ra a-z
and (3) is a homogeneous linear equation for z with eigenmodes z(t) & elt y

for which

2 dTe dZo
Ao g r g g - 4 E]"ﬁ“zzg"=° (4)

A direct instability ( A > O, real) is found if

4z, > g—f“' > o

go(t ;[—7:>o

2

4

A B - - I -
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An oscillating Iinstability (Re A > 0O, A complex) is found for

dZ. dTe dz, dZ, dZe dTo
S“zga"z' <o Z{“TJZ—”""; ;z:(<‘ﬁ°‘z;ﬁf?&;_‘;g;<o

In this case, in any situation in which the potential energy can be lowered
there is an instability which does it.

dz,

Physically, 1f iz

>o y @ parcel displaced slowly downward radiates
off its excess heat and falls due to its high salinity, causing "salt
fingers”. 1If d%/dz<o and dR/dz<o a blob displaced down feels a strong

upward buoyancy force due to the stable density gradient, augmented by the
buoyancy produced by the heat diffusing Into the parcel, shooting it up faster
than it came down to produce an overstable oscillation.

Clearly, when there are very small gradients of T, and X, , both
instabilities are nearly marginal, and small inhomogeneities in the mean field
(perhaps produced by the convection itself) can bounce the parcel between
regimes of oscillating and direct instability. z(t) may at different times
reflect both of these behaviors. The influence of nonzero viscosity and salt
diffusion changes the particular gradients for which the instabilities
compete, but the qualitative behavior near the point of competition is much
the same.

2. Reconstitution

We will now aim to describe a co-dimensional two bifurcation in the
realistic thermohaline case, by suitable recombination of the equations found
by an amplitude expansfion. The “reconstituted” equation, which gives a
complete description of the dynamics near the bifurcation, is a Van der
Pol-Duffing equation for the roll amplitude. It can be derived by a variety
of means, which do not expand all variables in powers of £ and thus reduce
manipulation. One such technique is described in Knobloch and Proctor
(preprint).

We examine Boussinesq thermchaline convection in a box with stress-free
boundaries (Figure 4). The temperature and salinity are fixed on the top and
bottom, while their fluxes through the horizontal boundaries are zero. Define
a streamfunction ¥ withu= ¥ , W=-% . Nondimensionalize distances
with d, times with d*/k, and temperatures and salinities by their difference

across the layer. Work with perturbations T and S from the conduction state.
Then - . .
v"’?' — tT [, + ‘R‘ SF = o [v ’h + J(V ’r.! T>}

T - ¥ = Te + JT )

VS o+ Se + 35,

(5)

it

The nondimensional parameters are
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o= V/Kr (the Prandtl number)
T = KKy (the Schmidt number)

R, = IMATL  p | guss L

> 3 s > A (the Rayleigh numbers, with o %;>5)

Our interest centers on values of Ry and Rg within a small distance,
call it Ocg*), the codimension bifurcation, that is, of the joint occurrence
of the two instabilities. There are two times in the problem an O{ € )
frequency periodic orbit due to the oscillating instability and a slow O( £%)
frequency on which dissipation and forcing act. Thus, define

ty = ¢t
s = £ t
so Fp = [ F, + ¢ F,
'f'—.: v")”go
z = -
Ty 'T‘ Bz Z mo
V. Kr, Ks Y=o Ou = Zumo =220 |fmdpe e
Sy
O X = O
1270 L Y= Yao
(7] x
%
Fig. 4 The physical situation Fig. 5 Boundary condition on

the scaled equation

Rescale the variables to symmetrize the linear operator and take into
account the weak supercriticality

?r=Mt 5 ,/?5=-'P‘

£y

\.{
{i
X
8]
n
1l
R
M
~
f

The scaled equations are

V4YHM93"_ r-'z)s
Ve - My

+ (6)
V'Z o+ ™ Y;

fl
"
h—ﬁ—")
™M
-+-
M
™M
<
[
-,..
[na]
[
™M
MR
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We expand
= §° + £ §| + -
= N, +Ed,
M= M, +EM +--
to get a sequence of linear problems, which determine the §..’, « The
boundary conditions are (Figure 5)
’F"=Vt’1’=9=z =0 at Z = 0,1
rA
¥ = v =6x=2. =0 ot ®x= © T
0¢1)
The analysis is pivoted on the linear operator:
A - Mo ax -y OF
L = [-*& vt o (7)
Fa a! © 'th

At O0(1) or system (6) reduces to
L$, =0 (8)

With the given boundary conditions, we can have solutions with 9. asin nmz.
However, when n » 1, the system will be violently unstable to a sin nx z
mode when the n > 1 mode is marginally stable, so we restrict ourselves to the
ansatz.

-Ao (s,ty) sinax singz

fi

B, (c,ty) obax  Sinxz

Co (s.te) cotaxr sinwz

whence (8) yields a homogeneous linear system for A,, B,, C, which has a
solution only 1f

e p
o),
[~ )

L ol

Mo = £ = = ;o et 9

Then the eigenvector has

’_ I sing¥pin (R 2)
io = Aotsf(-") Moa

- .%—1— corhysin (K z)
4 cosaxsin {n z)
- ‘G’gl

FEEEEEE T EE T EE IR NN
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Adjoint
For higher order in ¢ » Wwe require a condition on ‘*he righthand side of

such that a solution @&, exists. Therefore, we Inspect the ad joint operator

V4 Hﬂay —_ r:,gx_]
LT =
= Mua’ vl o
e [ Ox 6 GV

and require R, be orthogonal to all solutions  of l."cpso + The form of

#®, hints that any solution @ with vertical wave number unequal to u or
horizontal wave number unequal to a will automatically be orthogonal to €. .
Thus only one solution CP is important:

sinax sin n gz
=3 cosax sin « z
?“ + (P &

Ead

cosax sinnx g

with the innper product defined in the natural way. Explicitly

_ a
0 =<:..n sinaxsin = z> + 'l'-::< H, cosaxsin x z7+ :US_‘ < z cosaxsin z> (10)

where < > is the spatial integral:
Tira,

t
= dz
<> = f Cdx foz
0(€)
At this order the Jacobian terms and the time dependence of the slow

pPeriodic orbit come in to produce an inhomogeneity on the righthand side, and
the system (6) can be written

L# - (%)

here ] o ]
Q
= 8 A+ B (M B0 s snee
- - [ £ a7
H‘ = f”-‘le ﬁg_i_ Aos] Gebox simgy |4 z %A: H,Sinznz
Z. {'*F:A.A, -f-..% Aos] Wiax sianz M
- N L‘—_—"s' ez
The resultant solvability condition implies T N

M- = go foae Moty = G 0.0 = o
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which, combined with the zeroth order condition (9) implies

PEE) ) () e

oo

The second condition merely tells us that the only allowed O( € ) changes in
the Rayleigh numbers are perpendicular to the marginal stabllity boundary for
oscillations. This is because an 0( { ) movement away from the doubly
degenerate parameters along that boundary caused an oscillation with a
frequency O( £"* ), which is not allowed by our scaling. In fact, since we
want growth and decay on a time scale 0( &% ), and only an oscillation on
I:ime:E of 0( £ ), we must choose the supercritically to be O( £* ), not

0( ), so

Hl = 1= 0
We can now solve for §u « The most general solution 1is
A Sitax cimgz o
- aMm Mea ) .
éf = |- -g—l-’A, + ?: Aos Colay ginmz 4 _ al Mo}w SiviZnz
T
p grg (13)
aly e
A ~ D2 cohax $intZ z
Gqr Tiga Aos ax 2 L sinzaz
8 08 vughgt (e Ao

where Ajx is the coefficient of the O( € ) contribution to the homogeneous
linear problem

oCer)

One can compute from (6) the 0( € ) inhomogeneity. Thus

=

L3, = | §

Zy

where we can calculate with tedious algebra

a o 8 - at
o= ( & A §A°t, + g Q, A.,) Sinax sinaz

- Moa
H. = (‘E&' Aog +M,aph, — MifA°tp)Cﬂ“‘ Sinnz

+ Ez—r:g—f‘t (* (1+ %:)Aosﬁm + g’“A,A,) Sinxz
+ :_";f A3 cotax sinzz conmy
Z, = H%E:__%“ Aogs — Malhd + Z},; A,t_)usmsinn + *'-;;P%;{ ((H ,f,:-)Aqu
._%‘A,A‘ Sinzwz — I%_%: A} wbax sinnz cosznz



i B B B 3 M BN

4 I E A ERAREEEREEAN

- Sl -
We have defined the symbol:
QM»\ = MM ~ v

The solvability condition for the existence of &1 is

Q01 AOSS + zQu 34‘A0 = é'alzt G03 A—D‘ =0
(14)

Note this is a conservative equation. To leading order, energy exchanging
effects on the slow time t, do not enter the equation, because A, moves
around the orbits so much faster than it crosses them that the latter effect
i1s subjugated to the next order. This system Is not structurally stable,
since the addition of infinitesimal dissipation destroys most of the periodic

orbits of (14), so we must go to next order to recover the dissipation and get
a true picture of the behavior near the bifurcation.

So, we compute &, and use it back 1in (6) for the 0( &% ) behavior. To
save space, its precise form will be omitted.

o £%)
The equation to be solved is

Lé1=(%ﬂ

3

We will only use the solvablility condition, so we expand oA 3, H3, Z3 in
Fourier components. The only resonant term is sin ® z /sinax ;50 we isolate

cosax
cosax
the coefficient of this term.
( o E:“sinaxsin T z
B3 = H?%osaxsin " z + nonresonant terms
<3

Z?Eosaxsin nz

Knowing §1 » We may calculate the inhomogeneous term. We find

@ al 1
E:": 'g—: Qn A It Q;y_ Ao.s - gAzg - 'E: Ah&,

' g‘
w M.a (4 My
3= Maa Ay - -,E-; Prs ~ 'ng st + 'E?A'tu + M__.,Ta A°st»

rra LA+ U]
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23 = Pz ad 4 (Egl) Azs Tgt Zz.s + ‘_E‘—Et A + Ef_g"‘- Ao;t*
" o
+ EQLZZUAo + ZNUA:]
3

Hﬁ‘” ZE,L) are the Coskaxsin] p Y components of Hy ang Zm which
©an be deduced frop Our earljer €Xpressions for Hy and 2 . = 1,2,
After 8ruecome agony we deduce the solvability conditiop

4
2
+ 7—8"011 AOS = {3;;—‘ at (4'+ E)AOA'::S - QOB A (15)

zn* ost,

Qo1 Al.u + 23‘ Qu A, ~ Eﬁ'l«ngos A:Aa = é”- (og /40:55

J

Now, here We can take two tacksg. First, we €an find the -
slow time dependence of 4, that Tesults frop insisting that 4
To do this, we nultiply (15) by Ay and avera

Periods of 4. Let P{(tx) be the periog of the fagt oscillation of A,.
Then

'L- LhP[Qu Aiss + 2¢*Qu A - 3‘%}‘001 A:Ac] Ao ds

L 2 (16)
= n£ L*g‘ Qo Aosss As ds + 220, A - Q. %1(4.* a' )A:Ao:

2t

Integrate the left-hang side by Parts to get Some boundary termg, which if
A] remaing bounded 4re O( ¥ ) and ap integral of the 0 (gr) solvability
conditiop, Thug, the left-hang side ig 0( ), The right~hang side ig
simplifieq by substituting the o¢ ¢t J solvability condition tgq get

(17)
The €quation (16) now reads

R 8 ok a g

Lt

or, taking the limie 0 =p0

e e B
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the orbit (and can be used to find the orbit which is asymptotically approached
for large tx).

An alternate way of using (15) is to use it in conjunction with the solva-~
bility condition for Aw » (14), to get an improved amplitude equation for the
total amplitude A = Ay + ¢ Al. While it is not essential for small & s

the use of (18) to eliminate A osss from (14) puts the equation in a Van der
Pol-Duffing form and reduces the order of the equation to the minimum order

necessary to describe the small & physics. The time derivative is also

resunmed by defining the total time derivative, in term of a time T = £ ¢
2 . 2 2
st - as t Bag,

We add (14) to £ (15), using (17}, tb derive the "reconstituted"” equation:

AG‘S 4 —z}c;%' A - %at 34]_-A3 *3£A:A|] = &[%E; (Qu - %‘004)

- § 2t (10 2) A e

But
A 4 Za_AZAu = (Ao te A + Ocey
and
A= A+ oy
S0

(2247 Q 0
+ —_ Ly a o4¢ * 3
A-(;.G 12 {Q‘,; LQ“ Qo3 -~ Q|4 T a:x (l+-2ﬁ'lr_‘)A]At (19)

+ ZQ'u%‘A = _zlf‘atﬁLQoJ AP - 0(e")

All the dependence of A on the slow time can be incorporated in g%,(19) is a
"post-asymptotic equation” insofar as it combines two orders of the equation,
and i1n fact contains both time scales of the problem. It is proposed that

for g hot small, that (19) is the most robust description of the dynamics,
even though it now neglects corrections of 0( £ ) ~ 0(1). The reason 1s that
it represents the normal form for the co-dimension two bifurcation of thermo-
haline convection, and is structurally stable to the addition of higher order

terms, in the sense that small perturbations make no qualitative changes in
the phase plane dynamics.
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NOTES SUBMITTED BY
CHRISTOPHER BRETHERTON
and FAUSTO CATTANEO

RECONSTITUTION METHOD FOR A SIMPLE EXAMPLE AND THE LONG
BUOYANCY WAVE

Edward A. Splegel

Reconstitutlion Method for a Simple Example.

Let us consider the third order differential equation

rr)

Z + 2 4+ (ou-az’lz 4+ pz - bz = o (1)

Linear theory: =z velt

M or M o o+ p= O
According to the values of the parameters, two types of instability occur for
the solution Z = ©

- Direct instability or statlonary bifurcation (pitchfork due to symmetry
22 )

B=o ” MR+ o ¥ =o > M=o
-~ Overstability or Hopf bifurcation

& = = i
p=e>o Pt s S =0 B yotie (41500
Now the interesting point is that we can choose the values of the parameters

such that the two types of instability occur almost simultaneously.

~ Codimension two bifurcation

Ci-‘-'(ﬁ.:o 413_‘_419-:0 = "1120 ( = :1:_!7

near the degenerate situation & = {3 = 0 the characteristic polynomlal is
written as

(“IH +O(m))(ﬁ‘[1 +ox-p [;)

such that we can expect that the dynamics near the bifurcation is then
governed by a second order differential equation whose linear part is written

obviously as
Z + (P“Oﬁ)i -+ Fg?. =0

Gl S e AaE Py S SEE B B e O emee Erew
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The problem we want to solve is to find the pertinent or asymptotically
relevant nonlinear terms of this second order differential equation.

Fortunately, normal form theory tells us what the generic terms are for
the interactlon between two instabilities described by the characteristic
polynomial

»

"11+£.~1+£

The answer is

Z + (& + aA22 + (& +bz*)z =0 (2)

Now we try to find the correct amplitude expansion method to derive (2) from

(1).

Scaling
2
o = £ IL F = EY Vv
z = gX t = tot
X = X, + EX: & -~
QD = Wy 7+ £ *- -
so at the first order we get
- k1
CgX+ v x, — bXs =o (3)

This 1s the Duffing equation

S
/\/\

At this order the absence of dissipative terms does not allow us to determine
the solutions. In other words this equation (Hamiltonian system) is not
structurally stable in the set of dissipative dynamical systems. In some
sense this equation is qualitatively false but for short enough times, it
describes qualitatively the behavior of solutions of (1) for B small.

At this stage one alternative is to pick solutions of this equation and
try to use the next order to determine their staullity to higher order
effects. In fact, we are not interested in this alterpstive which allows us
only to determine the asymptotic solution. We want to find the correct or
generic amplitude equations. At the second order we get

ca."i.a—vx.-—sbxo‘x. =~ 3 ;C'.,—woc,.k_,axg—),}' (4)
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Reconstitution Procedure.

Step 1. Remove the resonances using a solvability condition for any

initial condition; X, is a given periodic orbit of the Duffing problem of
period P.

Now 1t is easy to verify that if we wmultiply (4) by Xy and integrate
over the period P the left-hand side vanishes identically. This gives the
solvability condition. We get at this order

P .
[7Cu-axsy x2 ¢
CO:’ =

P
50 Xo dt

Step 2. In general the right-hand side of the second order equation (4)

contains higher derivative in X,. We use the first order equation to
compute these derivatives

’_was Xo = Yo )E, - ab x¥ ;(o
Then (4) becomes
t“ - - o -
g X, *+ VX, - b xX x, = L(v-fﬂ + (a-sb)x;']“."o (5)
¥ Xy
Step 3. let
X = X‘ + €x,
where
X = XEt)
and form
(3) + £(5)
we get
X ¢ E[(P'“)-Ca—gb)x1]§+vx-—b¥3=o (6)

This is the first order reconstitution of the asymprotic sequence of egquation
for small amplitudes. This gives the same equation as the equation obtained
using the normal form procedure. The reconstitution method In the case of
thermohaline convection gives the same kind of amplitude equation

A+ e[x + TAIJA -+ A -3A - o e)

A and Ware given by

- RS
(E T)l and (1?5) 5 - ’RT)S . T,5

£ and % depend on the Prandtl numbers. In the phase space the divergence of
the flow assoclated to (7) is given by

a- -
. = 3_: + g—,[% where B = A
= —€ (K ¢ };A‘)
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Soluticns for smal}l & using the averaging
nondissipative case (Duffing)

Ao+ 24, - TAZ = 0
integral:

€ (Ao, A,) = 3 A2 + LAY - Lgas
Let £ = E(A,A)

E=-¢& (K+g A

E = # /OPZ (T) ot
and A, = A, (€,E) we get ?:-= - c{( z ). This equation glves the
selection of a given orbit due to the dissipation term
~ & (K + EA) ,&

Long Buoyancy Waves.

Motivation: Study long buoyancy waves in the two-~dimensional thermohaline
convection with fixed flux boundary conditions.

Basic Idea: 4s we have seen in the previous lecture, the thermohaline

expansion method. In the fifth lecture we heard that fixed-flux boundary
conditions favor large scale motionsg. The idea here is to derive a second
order partial derivative equation using ordinary amplitude expansions,
describing a wave packet with small wave nunber, in the case of the thermo~
haline convection with fixed-flux boundary conditions. This equation will
describe long buoyancy waves. As we shall see, the wavers produced by such an
equation are in some sense degenerate (lack of dissipation as in the Duffing
equation). The next lecture will be a derivation of a "structurally stable"™
wave equation including dissipation using the reconstitution me thod.

Equation of the Two-Dimensional Thermaline Convection.

(’e“”’)v'sﬁ FORNO + T So T =

= JU =
v ¢) stream funtion equation
-— 7t _
(at v ) 6 -y = Jy; ©) temperature equation
(3, ~teyz - 8:1(1 = Jy, =) salinity equation

where R, S are the Rayleigh numbers
wvhere o, ¢ are the Prandtl numbers
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Boundary Conditions.
9,6 = S =p
N Oz flux fixed
z2=%*3
— 2 .
¢ = 9_1‘4, =D stress free but not deformable boundaries

Scaling and Scaled Equations.

R=%, +¢*%,

S-;gc-(»g‘sl

Ry, S5 are the values of the Rayleigh number which render the fluid
neutrally stable and Ry, Sy ave arbitrary

-~

9’ = E‘# > X = £ X 5 t = e® t

We now rewrite the equation dropping the tildes

Ll’uu = ROx - 0S 2, + ¢ ,."zq}xxzz e Wz_ Yzzx ~ Y L{"uz)]
¥ é 4’*12 +e® [" Foxxx + o (¢, Prgx = ‘x "Pxxz)]

+ csq--q 4-’t‘r

Oz = 51(‘&‘9#)‘ +‘{’sz—‘& ©z) + £%:

©2,, = ¢ (%“‘UZW VYT -3, ) e S,

Now we expand ¥,6, Z in power of €

L|’= 4’0 +qu| + C‘%"'"'
O = o + £B, + E¥Oct+ -

g =Z, + EZ 4+ T+

The boundary conditions are
= + 4
e,‘lcznt -:..gkq :LJ/";,L = 0O ai 2= = 37

Perturbation Expansion.

— 0Oth Order.

"K. = (?.f -t S, q Ix 'P(;), where P(Z) is a given polynomial in 2
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8, = ',E“‘i{’)
2_°= S(K}'&)

f and g are arbitrary funtions to be determined.

- 1st Order.
k{/I = (?°‘E“ _t’gosi )x PLZ)
6, = -;; (x,+)
Z,= 3; (x,t)

£1, 81 are arbitrary functions

= 2nd Order.

The solvability condition arises at this order and gives a relation between

RO: SO

(Ry - Sg) = 5!

This determines a critical value for the total Rayleigh number (direct
instability). We have at this order a relation between f and g

f-v3

We have for ¢, ; 6.
\Pz = L?o‘fs -t So 31 + (R~ Sx)]x P(z) + V() ‘F!“ + szz}x ‘flmr

0 = L2000 4 i, + Gl (§)°

i}

]

'Z'x_ 31 Cx,'f) + 'C'l HI(Z}-FKF + C\z(‘?.} ({r)l.

Pe, Qv , Ha» Gy are given polynomial in 2 and where fj czad g7 are yet two
more functions to be found.

= 3rd Order.

The compatability condition gives
Re = T'6, = ©

Then we have

®o = (T-Lt) s! Se = (&) s

2

This gives the condition of the double degeneracy and we have
{i—- T
'anr - T S‘Kx = - (?) AF*

We can also compute Y4, ©3, Z, but these expressions will be useless to
compute the nonlinear wave equation for f obtained in getting the next order.
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= 4th Order.
We get as a solvability condition the nonlinear wave equation
3

- — = O
-F'&‘t Ht {tuxr Ko {X'“xnt -V ({K) X x x

where

wo= (?z“g‘t) /5'|

and K, v are given numerical constants. This equation is a nonlinear wave
equation whose properties we are at present trying to understand.

Long Buoyancy Waves.

When the amplitude of f is infinfitesimal the evolutiou equation may be
linearized and it has a solution of the form

t
f: el <o kx
This gives us
g 4
"= ok (g~ kkY)
s0 we have instability whenever

M2 ue = xk?

i1f the situation is only slightly unstable, we can once agaln make an
amplitude expansion.

Scaling and Unscaled Equations.

2
Mo ¢ (%J s i1s an arbitrary parameter

/.(.

jf = S F , 4 = dt

We get

T ('C;xx;x,, + ‘ét/'-kxxw) = 61 [F;J - g‘/::txxr - I)(F")iwx

We expand again
F = R = 8/ +&8F, +

- Oth Order.

z
F" XX¥ ¥ )X + Kk F; Xaxp T O
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with the solution
":o = XL Co&(kx) + Y (&) St kx
- 1st Order.

The solvatility condition (orthogonally to sin and cos of the righthand
slde) gives two coupled equations for X and Y.

We define
X:Am§
Y= Bsm@

and get for these variables

-

-z 3 _
A-Ad - 2kTA- 2vksA =
and

A& + 24d=o0

hence

$ = b/A
where b is arsbitrary. We get the equation for the amplitude
"N P 3 S A3 _
A= (b/g) - 2k*A - EvkTA =0
This has the integral
E = :%'14 e V(A

where

VA %(_El_ AT AT - 3V KPAN)

and £ 1is a constant. Solutions may be expressed in elliptic functions, but
it is instructive simply to look at plots of the amplitude and phase in the
following figure, here for b = .001, 4= -2 and k = 1.

Bound solutions of this system exist only for negatives E and those may be ex-—
pressed in tems of elliptic functions. The waves found are in some sense
degenerate. Their amplitudes are arbitrary and determined by initial condi-~
tion. This is due to the fact that the amplitude equations are nondissipative.
The next step will be (anext lecture) to use the Teconstitution method to get a
more generic wave equation.
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FIGURE 1. Amplitude and Phase as a Function of Time.
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NOTES SUBMITTED BY
PIERRE COULLET and
EVAN FISHBEIN

LONG BUOYANCY WAVES AND SOLAR VARIABILITY; A GEOMETRICAL VIEW
OF DYNAMICAL SYSTEMS

Edward A. Spiegel

1. A Model for Stellar Varlability.

One of the aims of this course has been to indicate a convective explan-
ation of the magnetic activity cycles of the sun and certain other stars. If

we look at a plot of mean annual sunspot number, we observe several important
features:

1) There is a definite time scale (one crudely would say periodicity) of
about 11 years -- the well-known solar cycle.

2) There is also erratic, nonperiodic behavior.

3) There is intermittency where the solar cycle is apparently turned off,

as exemplified by the Maunder minimum of the late 16th century when sun-
spot abundance was extremely low.

These features have usually been explained as an effect of the solar
dynamo and in some sense ultimately are. But we may imagine a model in which
the underlying physical mechanism in all of the phenomena of the activity
cycle occurs as an offshoot of the main process. We focus on the instability
of a thin layer beneath the convective zone. The model permits either
monotonic growth or growing oscillations (overstability) of perturbations to a
static state, and for low frequencies the nearness of these instabilities in
parameter space allows quite complicated dynamics. In the simplified set of
third-order equations for magnetoconvection with fixed-flux boundary
conditions we will consider, the asymptotic solutions for small but finite
perturbations are of the form of nonlinear waves propagating in the meridional
direction. The strict Boussinesq equations require an extra term in the heat
equation, but we consider a simplified version (Speigel and Weiss, 1981). The
period of these waves is determined by the rate at which the toroidal magnetic
field is forced down by penetrative convection from the overlying convective
zone, and can be matched to the ll-year solar cycle. At this level of
simplification we do not Yet see any erratic behavior or intermittency, but
the extension of the model to triple convection shows the destred chaos.

Since the fixed~flux boundary condition favors large horizental scales, we
will use the 2-D long buoyancy wave model which we developed in the preceding
lecture as out starting point.

¥
i
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2. Llong Buoyancy Waves.

Picking up where we left off, we recall the evolution equaticn for the
zeroth-order nondimensional temperature perturbation

R O (0 PR

where & 1s the ratio of magnetic to thermal diffusivity, p 1s the degree of
Instability

u o= g'E-l -Sz)
5

and Kk and V are numerical constants. For small amplitude this nonlinear wave
equation can be linearized and we obtain a solution of the form

jﬁ x e’?t otk x
with the dispersion relation '
T = o k®(p- k)
We find that whenever
H 2 e = KK

we have instability. If we consider only long waves of small amplitude,
l.e., fr only slightly greater than Mo, we can again make an amplitude
expansion. Letting

fos e s @

where & &/ and 1 is an arbitrary parameter, and scaling the amplitudef
and the time ¢ by & , we expand in powers of & to obtain, after removing
resonances by a set of operatioms analogous to those used to obtain the
original JC equation, the zeroth—order solution

f =8 R(St) cos ( hx + 0c88))

Here the amplitude function X¢st) and the phase Hrat) satisfy the equations

f—(bz/zl’) ~Ak*R - 2v(SR®P =0

where b is another arbitrary constant and the dot denotes differentiation with
respect to the slow time J¢ .

|
l
8 - bz |
|
l
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The amplitude equation has the first integral

L2 4 viz)y = &
where
Vo= 'é‘[;?'z - KT R - %vksf‘y

and £ 1is a constant. 5 can be thought of as the total energy and Y as the
potential -- we see a loose analogy to central force motion- Bound solutions

to this system exist only for negative E , in terms of elliptic functions.
The form of the solutions as a function of time is shown in Fig. 2.

—

t : 1
: FIGURE 2
We see a sort of “"solar cycle” in the periodic behavior shown by the
amplitude function, while the phase diagram shows a latitude drift of magnetic
activity, a magnetic curtain traveling north-south. There is no indication of
any erratic behavior.

To obtain a larger class of phenomena we need to reconstitute the problem to
get a more generic co-dimension two equation analogous to the Landau equation
in ordinary Rayleigh-Benard convection (Childress and Spiegel, unpubliished).

We return to the basic equations as scaled in Lecture #9:

9&:51(%—93,+-&9x—%92)+£59T

B, = (th -8, thno-ted)+ £4

L{}ZZZZ = Tbx + 864 + 5:"(-2.9‘;(,22 * o_—f(/)z (//zz,x _6_-’% %2)
* Esc-_l‘krzz +£4(“f’

woxx F cr"q/z "kr;-.- - —’% Yx2) * 555“"‘9

T

o

fl

J((KJ"_) £ £° F(K,Z)T)
g = 9,7) + £2G(x,2,T)
Y = (Kf r5S59)x Pz) + &%

PV =0 P(*f)=0 , Pl(z3)=o0

I

fi

P
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We find, on Introducing
A Y

that

Faz = PP - P - HPxPrefy v [o]re €[]

8Gze = Pur P=%9g * 3/ P +eg, re ] + 3G, * 84[:".7
So

F = (fp-fo) g@ [ p@) wfop, pley + OCE)

G = CE9r=G9n) ) + Pup®) + Gfx PO+ OCEN

where

i _ ;
(z) = 1 J P, = P
with

(Efr —fo) §(24) « P p'(23) = ©)

(375 9u) §'(24) + Py pr(ed) = OF)
Thus, F and G can be worked out. Then we get

Ko = (RF+ 856X = 2pwm P' + T AP ( P P — PP")

+ £97 P PY o+ oOter)

This leads to X . Putting it all together, we find
Ur - 4T Vx = <TG Dy ~ ("3'7?:) (32 )x
£ [(’* E)f‘ Unx + € (1+ B)er x 1+ ﬁtﬂ'—' 17'7-),){

+ 20GR (r+T) (U;’-'ux)x]-.— o

U U = E[TT T+ praR Y ([ = o

where s

u= Rf + §3 , v = Rf + S57g

and

ol (%")/51 s T = [R+ 575 - (Ro+ r"s.,)]/e:l

and the other quantities ( K, Vv,3) are numbers that depend only on the cholce
of boundary conditions.
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These are the reconstituted wave equations and the waves they give have
well—determined amplitude and velocity that vary slowly.

3. Some Speculation on Turbulence.

What I have been trying to do in these lectures is open up .opics for
further research. The problems I have presented can be divided into _hree
parts. The first category is the fundamentals. There are still veins to be
tapped even at this level, as the warm-up problem attests. At the next level
we have the problems occupying the tillers of the field how to extend the
standard calculations we have become familiar with. And next we have the
Impossible dreams...

In the last category we might place the current interest in strange
attractors as a model for chaos. In the usual dynamical problems we are handed
a flow field U(X) and asked to compute the Lagrangian variable X (which we can
think of as a streakline) from a set of equations of the form

X = UCX)

If divl is negative, a swarm of points contracts to zero volume and we have an

attractor. An example of this sort of behavior is the damped harmonic oscilla-

tor, where the dependent variables shrink to a fixed point. Other examples of
an attractor are a limit cycle, or in 4-D, a torus.

A vorst possible definition of a strange attractor is an attractor that is
not a point, limit cycle, or torus. This does not help us much. A distin-
gulshing characteristic of a strange attractor is the existence of erratic,
nonperiodic behavicr. Consider a 3-D orbit in phase space. If we insert a
surface of section we get a pattern of polnts where the orbit intersects the
surface (Fig. 3). We call this a Poincare map.

-—

/"' A Y
/ \
- \
_ \ q?/r~surface of section
Y
. \
\ \
A \
A
\
intersection and orbit with
\
N t“’(/ﬂsurface of section
\ -
A e
orbit ) - -

FIGURE 3

For a strange attractor we get an infinite set of points on our Poincare map,
with a distribution showing a self-similar structure on all scales —— a Cantor
set (Fig. 4).

In the real world a system governed by a strange attractor would thus be
highly sensitive to noise. Just as in the hydrogen atom, where ideally there
are an Infinite number of discrete energy levels, but in real life we observe
a finite number of levels due to the inevitable environmer*tal ncise, the
number of leaves on the Poincare map of a strange attractor is dependent on
background nolse. A strange attractor could be viewed as a sort of noise

amplifier. Nevertheless, we do not need noise to get chaos. Erratic behavior
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is part of the very nature of the strange attractor. This inherert chaos and
that introduced by the noisy real world may both be important in realizable
dynamical systems.

Some people have actually called the chaos exhibited %y the strange
attractor turbulence. There are others who claim that the sort of truncations
that have been made on the governing equations to obtain systems with strange
attractors have nothing to do with real fluid mechanics. Then what is
turbulence?

The word turbulence has its root in either of the two Latin words
turbo-vortex, or turba-mob. Mob is an old abbreviation for mobile. A mob of
mobile vortices, if you will. Vorticity lies at the heart of turbulence. I
now offer some conjectures on the nature of turbulence and the possibly
related class of convectlion (thermohalence). These run as follows:

1) Solitary waves or objects occur in many real flows, thcugh they are
a secondary phenomenon and hard to get our hands on. We found possible
solitary wave solutions in double convectinn; solitons can be shown to
run down vortex tubes, and, vorticity beipg at the heart of turbulence
we might expect solitary waves to be important in turbulence, too. In
convectlon thermals are solitary objects, so are oceanic gyres.

2) Solitary objects in an unstable situation which have "metaphorical
minds®. On a fast time we see a nonlinear wave on coherent structure,
but on a slow time the amplitude and phase are governed by dynamical
systems (ODE's) of the form

t.\ = -fCA) ; A a vector

The attractor of this system is what I mean by the metaphorical mind.
The standard KdV and Schroedinger solitons are “mindless”, while waves
whose attractors are fixed points are “simple-minded”. The waves we
just studied already show interesting behavior that we might call
Zitterbewegung. Certainly, waves whose minds are strange would move
chaotically. These solitary waves are the elementary objects of this
vague turbulence model. An example arises when we study the reconsti-
tuted equation for triple convection with fixed flux.

m En R OB BN M BE AN 4N
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3) In a fast collision our solitary objects collide more or less like soli-
tons (particles), but on a slow time the collisions are “telepathic” in
that the attractors (or metaphorical minds) interact. As a possible
example of what I mean by a solitary wave with a mind of its own, the
Great Red Spot of Jupiter presents itself. These are my reasonable con-
jectures: we enter the truly conjectural part of this lecture. If we

think of solitary waves as particles, we can write thelr orbits in the
usual way

X = th + )(o

where ¥", on a long time scale, is governed by a system of equations
with strange attractor and may behave chactically. The "old cne"” does
not need to play dice to know what such particles will do, but we have
to. 1If we have a large number of solitary waves we essentially have a
problem in statistical mechanies. Fast collisions ar. assumed elastic
while slow collisions are strongly telepathic. Unfortunately we do not

know the collision rules, but some clues ought to.be calculable from the
bucyancy wave theory.
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The plcture this suggests Is an analog of kinetic theory in which the
particles can interact slmply on a fast time and in which the representative

points on each attractor can disturb each other. In fact, one may simply
assume that all of the particles have ldentical minds so that we can visu.lize
all of their representative points on the same attractor. When two or more of
them interact, they conceivable distort the attractor ltself. So that is the
kind of problem I want to study: a large number of representative polnts
moving on an attractor, but with the attractor itself influenced or even
shaped by the int2ractions. How can we write a theory that allows such
possibilities? Consider the system

X = U(X)

The effect of the attractor is measured by 94 ; I see this as similar to a
gravitational attractor. Let

_oo U aly
Jij = 21 ax

and think of g4 as being like a gravitational potential. Similarly, think
of ¥xu, the vorticity, as being like a magnetic field; and since WU is the
vector potential for vorticity, it is like the electromagnetic potential. So
motion around this attractor has a loose analegy to motioms in an EM +
gravitational field. This should not be taken literally, but the analogy
points to ways Iin which we can model the attractor. One description that has
been used to study motion in gravitational and electric fields is to introduce
Finsler geometry {Stephenson and Kilmister, 1953). That is what I do for the
dissipative dynamical system.

Suppose you consider a space with coordinates xi and a line element

ds = L (x%, dx")

such that

L ykdei} =k L', dxd)

Let Xi = i « Then the geodesics given by

SYL(X‘, X)ds = o

are the orbits of a Hamiltonlan system with L as its Lagrangian.

Let

do = W:dx* 4 a“‘jcj dx‘ dyi

where units are chosen suitable to make this nondimensional. The first part
of ds, uds, is the usual action. The second part corrects in some way for the

effect of the attractor. The second part corrects in some way for the effect

|
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of the attractor. The geodesics are given by

. t ., .- »
X' ¥ {lk xixk + g4 Wi« x¥ = o0

where
(] = 4"
k] z J kT jk!,J‘ “ Jjk,t

and
‘ oY QU
Wik = § ( ¥y T 9X )

In other words, this geometry contains all the kinematic information of
the original system and it has some close correspondences. These will have to
be fold in a future summer. I just want to close by noting that the model,
too, can be closed by expressing 81 j in terms of what the particles on the
attractor are doing. If there is a strange attractor for turbulence, I
imagine that it will be like that.

I cannot prediet this yet, but it appears that the Hamiltonian system
develops caustics near where the original system has an attractor. So the
particles in the associated system spend a lot of time in the right place.
This opens up the possibility of a statistical mechanic for such systems when
they are embedded in a heat bath. I am sorry that my time is up and I cannot
tell you more about this, but you can perhaps see how it goes.

These are problems for one's dotage, perhaps. I now end the course, and
propose to begin my dotage.

NOTES SUBMITTED BY
SATORU HONDA and
BRUCE LONG



