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1. Pattern Forming Instabilities

Instabilities in nonlinear systems driven far from equilibrium often consist of a transition from
a motionless state to one varying periodically in space or time. Various examples, widely
studied in the past years, are, Rayleigh-Benard convection, Couette-Taylor flow, waves in
shear flows, instabilities of liquid cristals, oscillatory chemical reactions, ... The appearernce
of periodic structures in these systems driven externally by a forcing homogeneous in space
or constant in time, corresponds to a bifurcation, characterized b, one or several modes that
becomes unstable as a control parameter is varied. Linear stability analysis of the basic state
gives the critical value of the control parameter for the prim=ry instability onset, the nature
of the most unstable modes and their growthrate above criticality. Many examples have been
studied for a long time and can be found for instance in the books of Chandrasekhar (1961) or
Drazin and Reid (1981). However, linear stability analysis does not describe the saturation
mechanism of the primary instability, and thus a nonlinear analysis should be performed
to determine the selected pattern, its dynamics and in particular the secondary instabilities
that occur as the control parameter is increased above criticality. Before considering these
problems, we present some examples of the charateristic phenomena that occur above a
pattern-forming instability onset.

1.1 Example : The Faraday instability

As a first example, consider a cylindrical vessel containing a liquid and its vapour (or any
other gas), vertically vibrated at frequency w, (Figure 1.1).

Figure 1.1. Sketch of the apparatus for the Faraday instability.



to the most unstable linear mode. Here, nonlinear effects are strong enough to overcome
boundary effects that trigger the axisymmetric pattern.

as a transient regime at instability onset; it is unstable to modulations perpendicular
to the wave crests (already apparent) and the final stable stationary standing wave
pattern is the square array (b).

We can think of the Square pattern as the result of two scts of counter-propagating waves,
perpendicular to each other and of equal amplitudes. When we have a liquid-vapour system,
We can approach the critical point at which the liquid-vapour interface disappears. Near this
critical point, the nonlinear interaction between the intersecting waves changes so that they
cannot both remain stable, and one set vanishes, We then get a one-dimensional standing



Figure 1.3. Near the critical liquid-vapour point of CO;, only one of the perpen-
dicular sets of waves can remain. Note the defects in the wave pattern.

In Figure 1.3 we see that some of the wave-crests do not reach all the way across the vessel.
The endpoint of a crest is called a defect. If one integrates the phase-gradient along a closed
curve around one of these defects, the integral comes to +2x instead of 0, because one passes
more waves on one side of the defect than on the other. At the defect itself, the amplitude of
the wave vanishes, so that at :his point the phase is undefined. Defects are widely observed
when a periodic pattern undergoes a secondary instability. In the above example, they
nucleate or annihilate by pair or at the lateral boundary and during their life-time, move in
the underlying periodic pattern. Their dynamics plays an important réle in the transition to
spatiotemporal disorder. Their shape traces back to the pattern symmetries. For instance,
defects of the square standing wave pattern consist of lines instead of points; they separate
two regions of the wave-field that oscillate out of phase (Figure 1.4).

Secondary instabilities of periodic patterns do not always generate defects. An important
class of secondary instabilities consists of long-wavelength modulations of the primary pat-
tern. The surface wave pattern in an elongated rectangular geometry or in an annular
container, i.e. when a one-dimensional wave is forced by the boundary conditions, exhibits

a secondary instability consisting of a long wavelength spatiotemporal modulation of the
primary pattern wavelength (Figure 1.5).
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Figure 1.4. Line-defects in surface waves on vertically-shaken mercury. The re-
gions on opposite sides of the lines are out of phase with one another.

Figure 1.5. Snapshot of the long wavelength modulation of the basic standing
wave in an annular geometry. The basic standing wave consists of 21 wavelengths
and the wavelength of the modulation is equal to the perimeter of the annulus.

1.2 Analogy with phase-transitions : amplitude equations

The different phenomena described above are not particular to parametrically generated
surface waves; long-wavelength instabilities or defect-dynamics are widely observed above
the onset of most pattern-forming instabilities ( Wesfreid and Zaleski, 1984 ; Wesfreid et al.,
1988). An obvious unifying description consists of looking for evolution equations for the
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amplitude and the phase, i.e. for the complex amplitude of the periodic pattern generated
by the primary instability. Indeed, at the primary instability onset, the critical modes
have, by definition, a vanishing growth-rate ; we will show that adiabatic elimination of
all the other (faster) modes leads to nonlinear partial differential equations that govern the
amplitude of the critical modes, and so describes the slow modulations in space or time of the
periodic structure envelope : these are the amplitude equations. We will see that the form
of the amplitude equations can be derived simply from symmetry considerations, and that

the underlying detailed equations are needed only to evaluate parameters in the amplitude
equations. Another possible way is to use experiments to determine the parameters in an
amplitude equation, because we can know the form of the equation without knowing all the
details of the microscopic dynamics. This is similar to the description of a fluid flow using
Navier-Stokes equation the form of which traces back to conservation laws ; the coefficients,
viscosity for instance, depend on the microscopic dynamics and might be computed using

the Boltzmann equation; it is however simpler and more reliable to use the experimentally
measured coeflicients.

We will mainly be studying amplitude equations, rather than the microscopic governing
equations of the underlying systems. We take this approach because similar patterns are
observed in a wide range of systems, and their behaviour is a result of the broken symme-
tries at the primary instability onset rather than of the microscopic dynamics. Systems with
different microscopic description frequently exhibit, on a macroscopic level, similar patterns
which are governed by the same amplitude equation. The situation is analogous to the one
we encounter in phase-transions in condensed-matter physics where the behaviour of the
order parameter is governed by symmetries and does not depend on the “chemical details”
of the system. The close analogy between instabilities in nonlinear systems driven far from
equilibrium and phase transitions is now well documented experimentally as well as theo-
retically. This idea was fathered by Landau (1941), and developed by several people in the
context of hydrodynamics, electric circuits, nonlinear optics and chemical instabilities. In
this context, the complex amplitude of the periodic pattern plays the role of an order pa-
rameter and characterizes the broken symmetries at instability onset. Amplitude equations
are analogous to the Ginzburg-Landau description of phase transitions.

1.3 Long wavelength neutral modes : phase dynamics

The second area that we will study is the disorganization of the primary pattern through
secondary instabilities. When the primary instability saturates nonlinearly and gives rise to
a finite amplitude periodic pattern, only its phase remains neutral in the long-wavelength
imit. Indeed, a spatially uniform modification of the phase corresponds to a shift of the
periodic pattern, and thus is neutral because of translational invariance in space. Likewise,
other broken syvmmetries, translational invariance in time at the onset of an oscillatory
nstability, Galilean invariance at the onset of a pattern-forming instability, etc ..., may



generate long-wavelength neutral modes, i.e. modes that are neither dissipated nor amplified
at zero wavenumber. These modes are analogous to Goldstone modes in particle physics or
condensed-matter physics, and often lead to secondary instabilities of the primary pattern.
Because their growthrate vanishes in the long wavelength limit, we eliminate adiabatically
the other fast modes in order to obtain evolution equations that describe pattern-dynamics
through 1ts slowly varying phases. Thus, contrary to the situation at instability onset, the
pattern amplitude is no longer a neutral mode above criticality; for a perfectly periodic
pattern, it saturates at a finite value. However, phase instabilities, that usually occur at
zeéro wavenumber do not always saturate in the long wavelength limit; they often cascade
to short scales, leading to defect nucleation in the primary pattern. Although non-neutral,
the pattern amplitude locally vanishes, thus breaking the long-wavelength approximation.
A consistant description of this type of pattern-dynamics is still an open problemn.

1.4 Localized nonlinear structures

Shock-+.aves or solitons are well known examples of nonlinear localized structures. Defects
of periodic patterns are another class of localized structures. Although incompletely, we will

define the main characteristics of these objects, try to classify them and to understand their
dynamics.

109 in Van Dyke (1982), reproduced here as Figure 1.6. It is a turbulent spot, i.e. a region
of turbulent flow advected in & laminar flow. This type of structure is widely observed in
pipe flows or boundary layers. The turbulent region can expand when moving, but there are
also solutions where the spot keeps a nearly constant size.

Similarly, pattern forming instabilities can display localized structures consisting of a region
in the bifurcated state surrounded by the basic state. This occurs when there is a parameter
range in which the system has two stable states of different form; then one might observe
both of them in separate regions. Thermal convection of a binary fluid mixture in an annulus,

studied by Kolodner, Bensimon and Surko (1988), displays such localized patterns (Figure
1.7).

An earlier example is the localized standing wave observed in F araday instability (Wu, Keo-
lian and Rudnick, 1984). In the limit of small dissipation, we will show that these structures
trace back to the solitary waves of conservative systems.

|m'!\?::glm R R



Figure 1.7. (a) Periodic pattern of travelling convection rolls (b) The travelling
rolls fill only part of the annulus ; both the conducting and convecting states are
stable and coexist in different regions of the annulus.
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2. Nonlinear Oscillators

In this lecture we study simple dissipative nonlinear oscillators as the simplest examples of
temporal patterns, i.e. periodic limit cycles, quasiperiodic regimes and frequency locking
phenomena. Two different amplification mechanisms are considered to balance dissipation
and sustain an oscillatory regime:

- “negative dissipation”, for which the system is autonomous,

- parametric forcing, where an external time dependent perturbation is applied.

Our objective is to find an amplitude equation for the amplitude and phase of the oscilla-
tion. We show that its form depends on the amplification mechanism, because the broken
symmetries at the oscillatory instability onset are different, but that universal behaviour
of the oscillation amplitude and the frequency exists in both types of oscillator. We next
consider a negative dissipation oscillator with an external time-dependent forcing, and study
frequency-locking phenomena.

2.1 Van der Pol Oscillator

We begin with an autonomous system with negative dissipation. The canonical example is
the Van der Pol oscillator, introduced in electronics a long time ago (Van der Pol, 1934).
The governing equation is

i — 22 4+ vt + wlu =0,

Here, the dissipation is negative if A > 0 and the nonlinear term causes the system to saturate
when u? ~ A,

2.1.1 Global or linear stability

Some insight into the behavior of this equation can be obtained by studying the total energy
of the system, which is here a simple example of Liapunov functional. This is a useful first
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step before attempting a more detailed analysis. The sum of potential and kinetic energies
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and the time derivative of the energy is

E = wlut + wii = (24 — u?)a2.

Thus if A < 0 (linear damping), £ < 0. Moreover, there is a lower bound, F = 0, which
occurs if and only if u = & = 0, and consequently the motionless state is globally stable.

We are interested in the case A > 0. A linear stability analysis about u = 0 is done by taking
u o exp(nt), and if Re(n) > 0 the system is unstable. Substituting into the Van der Pol
equation and linearizing gives the characteristic polynomial

n?—2xp+wl=0

orn =A% m. If we let A = pe where € is small, 7 ~ petiw? and the system becomes
unstable as A changes sign; this is a Hopf bifurcation and the system’s behavior changes from
a damped oscillation to an amplified oscillation as A increases. Near the bifurcation point,
the growth rate is small and the time scale of the growth is T ~ 1/¢).

2.1.2 Nonlinear effects

The linear analysis predicts exponential growth, but this is eventually checked by the non-
linear term, which leads to saturation when u? ~ ¢. We can see this by studying the energy
balance of the system. We suppose that there is a harmonic limit cycle when A is small and
so we are close to the bifurcation, and we also presume that the amplitude of the oscillation
varies on a slow time scale, thus

u ~ a(t)coswpt and @ = —wpa(t)sinwet.
The energy balance over one cycle requires
1 (7 T p—
-—/ Edt =0 or 2A4? —u2y? = 0,
T Jo
where the overbar denotes averaging over one cycle.

Using the above expressions for u, we find a? = 8) = Bue, and so the oscillation amplitude
above criticality is, u ~ \/e.

Aot b Al R B A ALY LB B e e R . PR - . . - - T U
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A second réle of the nonlinearity is the production of higher harmonics and the subsequent
shift of the fundamental frequency. We show next that these effects are connected. If the
governing equation is multiplied by u and averaged over one cycle, the terms involving % all
average to zero and we are left with the virial equation

T2 — 22
u® = wgu“.

Note that both the nonlinear and dissipative terms have averaged to zero. However, the

effect of nonlinearity still enters, since we assume that u contains some higher harmonic
components:

u = Z an cos (nwt + ¢p).

n=1

When this is substituted into the virial equation, we obtain
S ntutal =i Yk

(@ —ud) S -1d
wi S-n?a?

Assuming that the successive harmonics amplitude decreases fast enough with increasing n,

and this can be written as

the freouency shift, Aw = w — wq, is to leading orders,

Aw 3(12 ag
—~—gg —dg

Thus the shift of the fundamental frequency is related to the existence of higher order
harmonics. For the Van der Pol equation, there is no quadratic nonlinearity and az = 0;
thus there is no frequency correction to leading order. Note however that the relationship
between the fundamental frequency shift and the harmonics amplitude, is in general not so
simple as the one above. For instance, replace wju by wisinu in the Van der Pol equation
and try the same exercise.

2.1.8 Amplitude equations : the multiple-scale method

In cases where the amplitude varies much more slowly than the underlying oscillation, we can
use the disparity in temporal scale to obtain a simplified description of amplitude variations
independently of the faster time scale. This is sketched schematically in Figure 2.1. The
oscillation has time scale {. We introduce a second time variable, T' = et, to parameterize
the slow variation in amplitude; indeed, in the vicinity of instability onset, A = pe , the
instability growth-rate scales like e.
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Figure 2.1. Amplitude varying much more slowly than the oscillation gives mul-
tiple time scales.

We have already seen that the saturation amplitude for u scales like \/€, so we take
u(t) — eii(t, T).

Using
6 0,9
&% Bt ar

we rewrite the Van der Pol equation:

i

ot

2~ 2~ 2

ou
3/2 1/2, 2~ _
€ —)+eFwsu=0.
+ 3T) 0
We can factor /¢ out of every term in this equation; then to order ¢°, we have a simple

harmonic oscillator: ,

3] .

It will prove convenient to define £ = 5‘9; + wé. We can now introduce a perturbation
expansion
i =dig + €24, + etig + ...

and collect terms in increasing powers of

€ Lip=0

61/2 : £ﬁ1 =
04 ot ou
1 - 0 _ 2 1] 0
¢ L= 2uaF ~Higy T2 ot

and so forth. The € equation is easily solved:

do = A(T)e'°t 4 A(T)e~ "ot
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where A(1') 1s the slowly-varying amplitude of the oscillation. We could write such a solution
to the €!/? equation as well, but since %; does not appear in the equation for @,, we don’t

need it until we go to higher order. Substituting the leading order solution into the !
equation yields

A . . . .
Lig = 2uwe(pA(T) — -Z—J—_;)e""“ - zwo(lAlee“"“ + A3ea“"°‘) + ce

“cc” in this (and subsequent) equations refers not to a specific expression, but to the complex
conjugate of the preceding expression.

In order to avoid secular growth of iz, it is necessary to set the resonant terms—the terms
in e*“**—to zero. Doing so yields

(2(pA(T) - j—; — |APPA)e" —cc=0

Since €' and e™* are linearly independent, we can set the displayed expression and its
complex conjugate to zero independently. Hence,

dA 1, ..,
ST = uA - -|APA.

Taking A = Re'?, factoring out €'® and separating real and imaginary parts, gives

dR _ 1.,
ar =W 3RIR
de
ar =

The amplitude R approaches /2y when u > 0 and the phase  does not vary with the slow
time scale at all. This second feature is not generic for a Hopf bifurcation and traces back to
the absence of frequency shift to leading order. As a simple exercise, you can again consider
the Van der Pol equation with wf sinu instead of w2u, and show that a term proportional
to R? occurs the 8 equation.

Generically, the amplitude equation for a Hopf bifurcation is of the form

dA
—— = uA-BlAPPA
T = M BlA|

with 8 = 8, + 18, some complex number. Then, the equations for R and 8 become
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T = —BiR*.
If 3. > 0, The leading order nonlinearity saturates the instability and the bifurcation is
said “direct” or “supercritical”. Above instability onset, the oscillation amplitude is propor-
tional to /. Otherwise, the bifurcation is “inverse” or “subcritical”. In the supercritical
situation, the phase increases linearly in time, indicating the fundamental frequency shift
proportional to . Oscillatory instabilities observed experimentally often display this charac-
teristic behaviour for the oscillation amplitude and frequency slightly above criticality. The
correponding measurements are a useful check that the system undergoes a Hopf bifurca-
tion. Note however, that the frequency wy itself usually depends on the experimental control
parameter (proportional to x); this dependence is generally linear to leading order and adds
to the one due to 4;. This makes B; difficult to measure precisely,

R
)

Figure 2.2. Diagram of the supercritical Hopf bifurcation.

2.1.4 Symmetry arguments

We show next that the form of the evolution equation for the oscillation complex amplitude
A is determined by symmetry constraints. It is clear that the original Van der Pol equation

=20+ w4+ wlu=0

describes an autonomous system, l.e. it is invariant under trensiation in time and is unaf-
fected by a change of variables t — ¢ + 6. This does not mean that any solution should be

translationaly invariant in time; any oscillatory solution, and in particular the expansion we
used for u

u = e[A(T)er! + A(T)e o 4 ey, + .. ,

obviously breaks translational invariance in time. However, the ensemble of possible solutions
should have this invariance. In other words, any image of an oscillatory solution under the
transformation corresponding to the broken symmetry must be a solution of the autonomous
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system. Thus, if u(t) is an oscillatory solution, so is u(t + ). This obvious requirement is
enough to determine the form of the amplitude equation, if one assumes, and this is 2 crucial

assumption, that dA/dT can be expanded in powers of A and A in the vicinity of instability
onset.

Making the transformation t — t + 8/wg, one get
u(t + 8/wp) = Ve[A(T)e' o' e* + A(T)e *°te™ ] + eu; +...
The dynamics of the transformed u is to be the same as the original u, therefore the dynamics
of A should be invariant under the transformation,
A(T) — A(T)e*.

This transformation selects the combinations of A and A that can appear in the amplitude

equation: only those which also transform with a factor of e will do. Consider all the
possibilities up to cubic terms:

114 - - .
A — Ae A N Ae—l@

A2 —>A262£9 AA—'*AA A2 _')AQB—ZiB

A%, 4338 AA — A?Ae* AA? s AA%em0 A% _, f3-3i0

Only the boxed terms scale appropriately, so only they can appear in the amplitude equation.
Hence, we could have deduced the form of the amplitude equation simply from the symmetry
of the original equation and the solution to the zeroth-order equation that fixes the broken-
symmetry.

Note that we consider t and T as independent variables and did not change A(T) — A(T +

€8/wg). This is only approximately correct, and if we sought higher order perturbations, we
would have to make the more complete substitution.

2.1.5 Discussion about symmetry arguments

A. Roberts pointed out that symmetry is not suffictent to reduce the possibilities to the few
mentioned above. Rather, there 13 an tmplicil assumption that there are no memory effects.
He presented an ezample term

T —_
A(T)/_ A(TYA(T')K(T — T')dT"'
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which would satisfy the symmetry requirement but include memory effects.

The locality assumption is obviously made when one looks for dA /dT as an expansion in
powers of 4 and A. It would be interesting to work out a simple example with memory
effects.

R. Salmon argued about the relevance of the symmetry requirement. He said that o differential
equation has many symmetries, and that any solution can break some of these symmetries.
He felt that the reason we constder time-translation symmetry and not some other symmetry
13 physical rather than mathematical

The symmetries that have to be considered are the ones that are broken by the linearly un-
stable solution. The symmetry requirement for the ensemble of possible bifurcated solutions
constraints the form of the amplitude equation. A symmetry of the original problem that
1s not broken by the linearly unstable mode gives no constraint on the amplitude equation.
Amplitude equations can also have syminetries that are not forced by the original equation.
As we will see when studying frequency-locking phenomena, the form of the linearly unstable
mode .5 of crucial importance ;an amplitude equation is meaningless without the expression
of the original field as a function of the amplitude.

2.2 Parametric Oscillators

We will now discuss the bifurcation structure of parametric oscillators. Parametric amplifi-
cation occurs widely in physical situations. Examples include Langmuir waves in plasmas,
spin waves in ferromagnets, surface waves on a ferrofluid in a time-dependent magnetic field,
or on a liquid dielectric in an alterning electric field. As shown in the first section, parametric
amplification of surface waves on a horizontal layer of fluid vertically vibrated, is a simple
expenmental model of pattern dynamics. Let us mention also that parametric amplifiers
were widely used in electronics. We study here the simplest example which is a pendulum
whose support is vibrated. The pendulum angle u(t) from the vertical axis, is governed by
the damped Mathjeu equation

U+ 2 e+ wi(1 + fsinw,.t)sinu = 0,

where A is the damping, wy is the natural frequency, f is the forcing amplitude and w, is the
external forcing frequency. The resonance characteristics of the Mathieu equation are well
known to occur whenever Nwe —wy = wp and are shown in Figure 2.3.
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Figure 2.3. Resonance tongues of the Mathieu equation (unstable regions are
hatched).
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We now examine the strongest resonance w, = 2wy in detail. We c¢btain the amplitude equa-
tion by the method of multiple scales. The three parameters in the equation are damping,

forcing and detuning § = =% — ;- To bring in all the effe~ts at the same order we use the
scaling § = €A, A = €A, f = ¢F and let

u(t) = ve [uo(t, T) + Veu (£, T) + .. J,

where the slow time is T = et.

After substituting these in the equation and collecting terms we obtain at the zeroth order

d?

,C’UQ = (at—z

+ wé)uo = 0,
which has the solution . _
Ug = A(T)e‘“’"‘ + A(T)e~1wot,

The first order equation is the same and its solution can be incorporated into uo. The second
order (e!) problem is

2 1
O -~ ZAa—uO— —nguo sinw,f + Ew

otorT ot

2,3

E'U.Q = -2 oUp-

Using the fact that w, = %y — 4eAwg + O(€?) the solvability condition to eliminate resonant
terms is

dA (.U()F T —4iA T Wy . 2 7

—— —AA — A tawo - _""IA A.

dT A 4
By moving to a frame of reference rotating with w, /2 (instead of wp ) with the transformation
A = Be#8w0T we obtain the autonomous amplitude equation

dB

—% =(~A+w)B + uB +ifB’B



where v = 2Awy, p = woF/4 and § = —wo /4.

The form of this equation could have been guessed by using symmetry arguments, the rel-
evant symmetry of the Mathieu equation being ¢ — ¢ + %, which restricts terms in the
amplitude equation to be invarient under B — —B. This symmetry 1s a much weaker re-
striction than the one for the Van der Pol equation (A — Ae'®). The term proportional
to :B in the amplitude equation corresponds to a rotation of B at constant velocity in the
complex plane and thus to a detuning. In other words, v # 0 indicates that w, /2 and wp)
are slighty different, thus that the forcing frequency is not exactly at parametric resonance.
Moreover, collecting all the terms with pure imaginary coefficients, i(v + #{B|?)B, shows
that 8|B|? is a nonlinear detuning. It is associated with the amplitude dependence of the
oscillator frequency, and this nonlinear effect is the one that saturates the instability, by
shifting the oscillator away from parametric resonance. This is to be contrasted to the Van
der Pol oscillator where the instability is saturated by nonlinea: damping. The term uA,
that breaks rotational invariance in the complex plane of the amplitude equation, is precisely
the one that results from the parametric forcing.

Let us now study the linear stability of the solution u = 0. Writing A = X +4Y and inserting
a mode proportional to e we obtain the following quadratic for the eigenvalues:

n2+2An+(A2—p2+u2)=0.

Since the damping, A, is positive, we see that there is no Hopf bifurcation contrary to
the Van der Pol case. There is a stationary bifurcation at a threshold forcing amplitude

pe = VA% +v2 This is shown in Figure 2.4 which reproduces the 2 : 1 resonance curve of
Figure 2.1.

Y

—

Figure 2.4. Linear stability in parameter space of u = 0 with 2 : 1 forcing




19

1ue nonhnear stability is only slightly more complicated. We write A = Re*® and obtain
the equations

dR
pra (—A + pcos28)R,
dé
S =v- psin 26 + SR

To find the stationary solutions we set the right hand side of the equations to zero. Defining
the finite amplitude stationary solution to be Ry we obtain

BRE = —v £ \/p? — A2

Without loss of generality we take 8 > 0 (otherwise we consider the complex conjugate
equation). For real solutions we need u > A. Then if v > 0 only the positive sign is valid
and there is one solution for the amplitude, i.e. two solutions with different phases labeled
here by 2 x 1). If v < 0, then for 4 < v»Z + AZ we can have 4 solutions (2 solutions with 2

phases). Figure 2.5 shows these different regions.

'Y
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Figure 2.5. Bifurcation behaviour in parameter space

The behaviour is made clearer in the bifurcation diagrams. For v > 0 (Figure 2.6 a) we have
a supercritical bifurcation at p. = V¥ + A?. For v < 0 (Figure 2.6 b) we have a subcritical
bifurcation which is why we have 2 x 2 non-zero solutions. The point v =0, u = Ais a
tricritical point {in the language of phase transitions). As usual in subcritical bifurcations
one of the solutions is unstable (shown by the dashed branch in the diagram). The stability
of the branches can be derived by perturbing the finite amplitude solutions. If we write
R =Ry +r and 8 = 83 + ¢, then the eigenvalue o of the perturbation satisfies

o2 + 2A0 + 48R3(v + BRE) = 0.

Thus, the bifurcated solutions are stable if v + BRZ > 0.

Scaling behaviours above criticality display an interesting feature: for the tricritical point
at v = 0, if one writes g = pc + ¢, the amplitude scales as Ry ~ ei; for the supercritical
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case Ry ~ €7 as for the Hopf bifurcation. For v ~ 0, one expects a cross-over between the
two behaviours. The bifurcation diagram of the parametric oscillator is richer than the one

of the Hopf bifurcation. This is because parametric forcing involves two control-parameters,
the forcing amplitude and its frequency, instead of one for the Hopf bifurcation.
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Figure 2.6. Bifurcation diagram for the parametric oscillator (a)v>0,(b) v <0.

2.3 Frequency locking

Two independent oscillators have generically incommensurate frequencies. In simple words,
this means that if one sets-up two clocks, even as similar as possible, they oscillate at slightly
different frequencies and thus finally indicate a different time if one waits long enough. It
has been known since Huyghens that a coupling, even very small, can lock the phases of
the oscillators i.e. force them to oscillate at the same frequency, or more generally with
commensurate frequencies. In the phase-locking process, the system thus bifurcates from a
quasiperiodic to a periodic regime. A similar situation exists in crystallography for spatial
patterns, known as the commensurate-incommensurate transition.

Let us first show experimental results in Rayleigh-Benard convection. Convective rolls in a
horizontal layer of mercury heated from below become unstable to an oscillatory motion as
the temperature difference accross the layer is increased above a critical value. The mercury
temperature thus oscillates at a “natural” frequency wg/2m (Figure 2.7 a). We apply an
external periodic forcing by rotating the mercury layer about its vertical axis, with a sinu-
soidal angular velocity of frequency w./2x. Figure 2.7 displays the different flow regimes
when the external frequency is about twice the natural one. One can observe locked (b) or
quasiperiodic regimes (c, e). These regimes are located in the experimental parameter space
displayed in Figure 2.8. At small forcing amplitude the locked regime is observed within a
tongue (the “Arnold tongue”) that begins at twice the natural frequency for vanishing exter-
nal forcing amplitude. When the detuning is increased there is a transition from the locked
to the quasiperiodic regime. For large forcing amplitude the natural oscillation is completely
inhibited and the temperature oscillates at the forcing frequency (“forced” regime).
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Figure 2.7. Temperature-time records of a layer of mercury heated from below,

for different forcing amplitude and frequency, see Chiffaudel and Fauve (1987) for
details.
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Figure 2.8. The locked, quasiperiodic and forced regimes as external forcing am-
plitude and frequency are varied. The bars correpond to experimentally measured
transitions, the solid and dashed curves are calculated transition curves using an

amplitude equation (the two theoretical curves correspond to different coefficients,
see Chiffaudel and Fauve (1987) for details.
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The transitions between these regimes can be modeled by considering the simpler system
of a forced Van der Pol oscillator that is externally forced. The governing equation for
this system is as considered in section 2, except for an additional forcing term |/ef cosw,t.
Assuming that the dissipation is small (A = pe) and rescaling u by /¢ we have

i +wlu = e(2u — 4t + f cosw,t.

The method of multiple time scales is used to determine the amplitude equation for this
system in precisely the same manner as for the previous systems.

We first consider non-resonant forcing (i.e. w. and wo incommensurable). The leading order

term in u is

——3 Cosw,t,

ug = A(T)e™"! 4 c.c. + 2L
“o ¢

where the last term is due to the external forcing. At the next order we have

The solvability condition then gives

dA 1.2
—— — — A
ar = ¢4 5lAl4,

Yy
t~u-i(otm)

This amplitude equation is same as in the unforced case except for the form of the coefficients
(when f = 0, € = ). The additional forcing term shifts the onset of instability to larger
# by reducing €, see Figure 2.9. One knows other examples of stabilization by applying a
periodic forcing ; for instance, the unstable up-position of a pendulum can be stabilizated

by vibrating the point of support.

where

|A| ‘T un(’orc.e.&
forced

; >

Figure 2.9. Variation of amplitude |A| with u for unforced (a) and forced (b) Van

der Pol oscillators.
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(n is an integer), imposes the invariance A — A
on the terms in the amplitude equation. For wy and w. incommensurate, this is a constraint
as strong as the rotation in the complex plane, A — Ae*®. Thus, the form of the amplitude
equation is the same as in the unforced case, and phase-locking terms that break the A —
Ae*® invariance, cannot be found at any order in the amplitude equation. This is due to the
form of the leading order solution, ug.

21m

Note the symmetry, t — t 4+ ==

Indeed, let us consider small amplitude forcing with w, = wg+¢€o and f = eF. As the forcing
is of order € there is no term due to the foreing in ug, and the leading order solution is

uo = A(T)e*! + c.c..

However, the additional term F cos(wot + o) at the next order changes the solvability con-
dition so that

d4 tF T
=udA— - A 24 - —e7t,

Writing A = Be'°T | gives the amplitude equation
dB oF

(,u-w)B—-|B| B— .

daT 4wg

This transformation amounts to writing
ug = B(T)e™" + c.c.,

and thus to looking for an amplitude equation in the “reference frame” of the external
oscillator. For this new choice of ug, the symmetry ¢t — ¢+ Zﬂ, only requires B — B!

There is no constraint on the amplitude equation, and indeed the rotation symmetry in the
complex plane is broken to leading order by the forcing through the constant term i F'/4wo.

This simple example shows how important is the choice of the leading order solution, ug(t).
The second choice is called “resonant forcing” although with a non-zero detuning ¢ one can
describe a quasiperiodic regime. However, to leading order the response is assumed to be

at the forcing frequency. It is the correct choice if one wants to describe frequency-locking
phenomena.

Let us now generalize to the case : we = nwo/p (n, p are integers), where the system is
invariant under discrete translation in time t — ¢ + 27 /w, . The equation for the amplitude

B of
up = B(T)e's awel Lo,

must be invariant to the rotation B — Be*?™/"_ Therefore an additional term B"~? related
to the forcing is allowed, and the amplitude equation is of the form

j? (e +ww)B - ﬁ|B] B —aB™ L



The coefficient v represents the detuning, while « is related to the forcing. When n=1, 2, 3
and 4 the forcing term is of at least the same order as the B term, and these are known as
strong resonances.

The three different regimes correspond to :

1 B = (, the forced regime,

2 B = const, the locked regime,

3 B time dependent, the quasiperiodic regime,
We consider the specific case n/p = 2. For simplicity we choose # to be real and equal
to unity. The lineur stability of the the forced regime A = 0 is exactly the same as that
of the parametric oscillator considered earlier. It is stable when p < 0and a® < u? 4 2.
The boundary at o = p? + »? corresponds to a stationary bifurcation (in the reference
frame of the external oscillator), while the boundary at 4 = 0 is a Hopf bifurcation provided
that v? > o?), and corresponds to the boundary between the forced and quasiperiodic
regimes. Substituting B = Re' into the amplitude equation we have that the locked regime
(d6/dt = 0) occurs when sin 20 = v/a, hence when |v| < |a|. When this inequalily is not
satisfied, there exists no constant non-zero solution for B and the system bifurcates to the
quasiperiodic regime through a saddle-node bifurcation.

Figure 2.10 shows the three time-forced regimes on the (a, v) plane,
Qe QP

L
- \/o( - QP QP
F

0

=Y

Figure 2.10. The three regimes for a forced Van der Pol oscillator. There is
a stationary bifurcation between the forced (F) and locked (L) regimes, a Hopf
bifurcation between the forced and quasiperiodic (QP) regimes, and a saddle-node

bifurcation between the quasiperiodic and locked regimes. There are codimension-
two points at (e, 0).
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3. Nonlinear Waves in Dispersive Media

In this section we consider the propagation of a quasi-monochromatic wave and study the
dynamics of dispersion and nonlinearity. To wit, the objective is to find an evolution equation
for the slowly varying amplitude and phase of the wave. Using this amplitude equation we

can then study the long wavelength stability of periodic waves, and look for solitary wave-
trains.

We begin with a simple example, namely the array of pendula shown in figure (3.1). Each
pendulum oscillates in the plane perpendicular to the axis of the array and is coupled to its
neighbours by torsion springs.

Figure 3.1. The array of coupled pendula

The equation governing the angle from the vertical, u,(t), of the nth pendulum is,

» L 1s its length and ¢ is the spring torsion constant, We
want to investigate phenomena on a lengthscale A >> a, where q is the distance between
two pendula. In this case we can take the continuous limit of the above equation, and after
rescaling time and space we obtain:

8u . d%y
W:—smu+-§5. (3.1)
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This is the Sine-Gordon equation, which is also found in nonlinear optics, where it models
the propagation of pulses in resonant media, in condensed-matter physics where it describes
charge-density waves in periodic pinning potentials or propagation along Josephson transmis-
sion lines, and in field theory where it was used to describe elementary particles. However,

it is also a long wavelength approximation of our array of pendula and it will be helpful
to keep this example in mind to understand the results of this section and the different
approximation levels.

3.1 Evolution of a wave packet
Consider a wave packet which is peaked around k = ko, and can be written
oc .
u(z,t) = ] F(k) e ®=k2) g (3.2)
-

Linearising (3.1) about u = 0 and substituting for v using (3.2) gives the dispersion relation,

w? =1+ k2.

The group velocity, U(k), is given by
dw k
V=& =o

Notice that

so that the medium is dispersive.

oo 4

o - k

Figure 3.2. The dispersion relation for the wave packet described by equation
(3.2).
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The largest contribution to the integral in equation (3.2) will come from k in the neighbour-
hood of kg and we make the approximation

oe .
u(z, t) & g(w ko) —koz) / F(ko + K)e'®K)-Ka)gg

where " g2
UK = Uk + 2057 (33)
Uos = U(ko),
d*w
wo = = (ko).
This gives us _
u(z, t) = Az, t)e!Wot=koz) o ¢ (3.4)

where the envelope is -
Az, t) = / A(K t)e K=K,
—00
and _
A(K,t) = F(ko + K )t
Now using (3.3) gives )
wi KA
2

Taking the inverse Fourier transform we see that this corresponds to

INA = iU KA+

0A_ _, 04 wyoa o3

ot Oz 2 Ox?
Note that A is slowly varying in space compared to 27 /ko since the wave packet is peaked
around ko. Thus it is clear from (3.5) that A is also slowly varying in time compared to
27 fwo (where wy = w(ky)). Equation (3.5) describes the amplitude of a slowly varying wave.
The first term on the right hand side represents the propagation of amplitude perturbations
at the group velocity, and can be removed if we transform to a reference frame moving at
Up. We then get a Schrédinger equation

0A  9%A
- = =7,
ot dz?
where o = —w( /2 represents dispersion. It is easily seen that £ = 22 /4tat is a similarity

variable and that {|A|?dz is conserved. Thus, a self-similar solution is,

Ao (4iat) /2 f(¢)
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In particular, with an initial condition of the form
A(z,0) x exp(—2z?/z}),

we have
A(z,t) o (22 + diat) "V exp[—z? /(22 + 4iat))],
and we get a well-known result : dispersion causes the amplitude of the wave-packet to

decrease like t~1/2. This is valid for large t and g, since A is assumed to vary slowly in

time and space. Notice that here the approximation is included at the stage of formulating
the amplitude equation.

The next step is to include nonlinear terms in the evolution equation of the amplitude
A. Assuming that these terms are monomials in A and A, we proceed using symmetry
arguments in a similar way as we did for nonlinear oscillators. The Sine-Gordon equation
(3.1) is invariant to translations in both time and space,

t—t+0, z—z+ 8,
and from (3.4) we see that this corresponds to
Ao Ae'Y

where ¢ can vary through all reals. Considering all possible nonlinear terms, we find that
the lowest order term with the right transformation property is |4|>?A. So we can write

0A oA 62 A

- _ il 2

There are two further symmetries: time reversal and space reflection. In the general case
these can be applied separately, but we have taken the particular form of u given by (3.4)
that consists only of waves propagating to the right, and this constrains us to applying both
transformations together (see below for the general case).

Applying the symmetries together implies the invariance of the amplitude equation under
the transformation

t——t, o - A— A,

and applying this to (3.6) gives

6A aA 32A

2 4
However the complex conjugate of (3.6) is
A A  9’A 2 1
"a—t—”an—'f‘ 82+BlAI
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Hence § = -3 , and f is pure imaginary, so we can replace 8 with —:8 in (3.6). If we also
transform to a frame moving with the group velocity, Uy, we obtain
A | 9*4 . 2

This is the nonlinear Schrddinger equation. It shows that the dynamics of the wave-packet
consists of a balance between dispersion, iaA.,, and nonlinearity, —i8]A|%A, that traces
back in this problem to the amplitude dependence of the frequency of each oscillator. These
points are illustrated by the particular solution

A= Qei(ﬂt—q:)

Q= —aq’ - BQ?

which corresponds to shifting wg — wy + » ko = ko + ¢. Thus, nonlinearity and dispersion
act in antagonistic ways if a8 < 0.

We now derive the nonlinear Schrédinger equation from the Sine-Gordon equation using a
multiple-scale expansion. Considering an initial condition which is a slowly modulated wave
In space, we take as a srmall parameter the typical modulation wavenumber compared to the
wavenumber of the carrier wave, thus

a_ﬁaH‘_a_
dr Oz  BX

As discussed above, we expect two characteristic timescales, one corresponding to the prop-
agation of the wave envelope at the group velocity, and the other to the dispersion of the
wave-packet, thus

8 8 8 ,8
= =t e + e —.

ot ot aTh oT,

We need now to scale the oscillation amplitude u(z,t, X, T;,Ty) to be able to handle the
nonlinear term of (3.1) perturbatively. There does not exist a correct scaling versus a wrong
one. If the amplitude is scaled too small, we get to leading orders an amplitude equation
with only linear terms, which is correct ; if it is scaled too large, we get nonlinear terms at
a lower order than dispersion, which is also true is the amplitude is large. One generally
considers that the most interesting situation consists of heving both effects, nonlinearity
and dispersion, at the same order in the amplitude equation; this fixes the scale for the
amplitude, and

u(z,t) = [ A(X, Ty, Tp)e'“ot=%2) | c o] 4 eus (2,8, X, 1, T2) + up(2, 6, X, 10, To) + . ..

At O(€?), the solvability condition is

o4 _ _, 04
aT, ~  'ax



31

which leads us to take A = A(X — U,Ty,T3). Then at O(e*), the solvability condition gives

04 34

—— : 2
oT, = *3%? 18| Al A

with @ = —wy'/2 and § = 1/4w,. Note that af < 0 so that dispersion and nonlinearity

are antagonistic. We have recovered the nonlinear Schrédinger equation (3.7). We could
have taken two slow lengthscales and one slow timescale, and this would have resulted in a

different form of the nonlinear Schrédinger equation which is widely used in nonlinear optics.

To deal with the general case we must consider both left and right-propagating waves, and
begin the expansion with

U = Aei(wot—kox) +Bei(wot+koz) +c.c.

This leads to the two coupled amplitude equations

0A 8A  wf 9*A | 9 : 2
—_— o — e e— — A4 — B A,
ot Vo 8z ' 2 2 O] Bl
oB dB w{d*B . 2 : 2
= [g— — 0 — _ —18|B|° B.
En Ug 52 '3 B2 1y|A|°B — 1 3|B|

Translational invariances in time and space constrain the form of the leading order nonlinear
terms. Space reflection symmetry implies the invariance under the transformation

z— -z, A— B, B— A4,

and shows that the coefficients of the similar nonlinear terms should be the same in both
equation. Time reversal symmetry implies

t——t, A—»B, B— A,

so that the coefficients of the nonlinear terms are pure imaginary. Note that one can check

that the coefficient of the propagative term is real whereas the one of the dispersive term is
pure imaginary.

A shight problem arises if one tries to get these coupled equations with a multiple-scale
expansion. Indeed, one cannot remove both propagative terms by transforming to a fran‘xe
moving at the group velocity. It is straightforward to change the scaling of the amplitude in
order to bring nonlinear terms at the same order as propagative ones, but dispersive terms
are smaller, and one should not in principle keep them. This is obviously a bad choice since
one does not expect dispersion to become negligible because of the presence of counter-
propagating waves. The problem here is that one small adjustable parameter is not enough
to balance all the relevant terms allowed by symmetries. One way out is to look for another
small parameter, here obviously the group velocity, however this restricts our study to the
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case of small carrier wave frequency. Another way is to keep the dispersive terms; but should
we scale amplitude as for the nonlinear Schrédinger equation or in order to bring leading
order nonlinear terms with propagative terms, and then keep higher order nonlinearities
at the order of dispersive terms 7 The two different scalings might be relevant, one when
the counter-propagating wave-packets are far apart, the other when they collide. There is
perhaps no rigorous way to describe that situation with amplitude equations.

The nonlinear Schrédinger equation is the generic evolution equation that governs the com-
plex amplitude of a nonlinear wave in dispersive media. It has been widely used to describe
surface waves and light propagation in optical fibers. It should be modified in the vicinity
of a caustic where the group velocity is stationary and correspondingly dispersive effects are
small. It also occurs that the wave amplitude is coupled to a mean field. This is a general
situation when there exists a neutral mode at zero wave number and we will discuss that
later; as a simple example derive the nonlinear Schrédinger equation for the envelope of
a quasi-monochromatic wave governed by the Korteweg-de Vries equation. Note also that
when a conservative system undergoes a dispersive inctability, such as the Kelvin-Helmholtz
instability, the amplitude of the unstable waves is not governed by the nonlinear Schrédinger
ecnation (see section 4).

3.2 The side-band or Benjamin-Feir instability

We now use the nonlinear Schrédinger equation to study the stability of a quasi-monochromatic
wave. The original motivation was to understand the instability of Stokes waves. When a
wave train of surface gravity waves is generated with a paddle oscillating at constant fre-
quency, one observes that if the fluid layer is deep enough compared to the wavelength, the
quasi-monochromatic wave is unstable and breaks into a series of pulses.

!
h

////////////////7_7_///////f

Figure 3.3. A deep layer of water, forced by an oscillating paddle, exhibits the
side-band instability. Benjamin-Feir (1967), Lake et al. (1977), Melville (1982).
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Return to the nonlinear Schrédinger equation (3.7),

JA . 8%A

——— = — — 7 2
ey te— 1B|A|°A

and consider the particular solution
A(} = Qeiﬂt, 0= _ﬁQ2,

that represents a quasi-monochromatic wave of amplitude @, wavenumber k, and frequency
wo + 2. If we perturb A¢ slightly, so that

A=[Q+ r(x,t)]ei[9t+a(x’t)],

we obtain
or | 20 (o 6roe 5% 06?
o THEUQ+M)+i(Q+7) 5 = —iB(Q+7) +ia 32 T g THAH ) g~ (@+r)5 |-

Lincarising, and separating real and imaginary parts, gives

Or 5%6

5t = e (38
o6 &
i —2pQr + %a“; (3.9)

Taking (;) ox e"~'K2 one finds for the dispersion relation

-7 aQK?

a =0,
—-28Q - §K* -

or

7’ = —[2a8Q*K? + a*K*],

which is always negative for af > 0, but has a positive region for & < 0 as shown in figure
(3.4). Thus if B > 0 then 7 is pure imaginary and the quasi-monochromatic wave (3.4) is

a stable solution.
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Figure 3.4. The dispersion relation for the perturbation to 4,

On the other hand if a8 < 0 then in the long wavelength region, n has both a negative and
a positive root. When 7 is positive, there is an instability, the Benjamin-Feir or side-band
instability. It has the name “side-band” because if one takes a band of frequencies centred
on wo as shown in figure (3.5), the interaction of one side-mode with the second harmonic is
resonant with the other side-mode, causing it to be amplified, i.e. 2wy — (wp — Q) =wo + Q.
As an exercise, write the perturbation to Ag as the sum of two side-band modes and see how
their coupling generates the instability.

1A T

W,—-Q W, +Q

| i

W, 20, ®

Figure 3.5. The mode at w = wo — §1 is resonant with the interaction of the modes
at wo 4+ Q2 and 2w,

Another way to understand this instability is to combine (3.8) and (3.9) and find

%6 L0 04
o7 =208 55—t

Soif af < 0,the phase of the wave obeys an unstable propagation equation (the propagation
velocity is imaginary).

Time reversal and space-reflection symmetries imply,

t— —t,z— —1.6 - -8
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and thus determine the lowest order nonlinear term in the equation for the phase, resulting
in
2 2
00y sr O 209 0050
ot? Bx? Oz* dr Oz?
This is the Boussinesq equation. It has well-known solitary wave solutions consisting of a
localized region with a non zero phase-gradient, thus a localized region with a different local
wavenumber for the wave train. We consider in the next section these localized structures

as solitary waves solutions of the nonlinear Schrodinger equation.

Before, try this exercise. If we were now to set § = A;(z, t)e‘(‘“"_k") +e¢.c., in the Boussinesq
equation, we would find that A, satisfles the nonlinear Schrodinger equation with coefficients
depending on the ones of the nonlinear Schrédinger equation we start from at the beginning
of this section. Derive the mapping between the old and new coeflicients. Is there a fixed
point? If yes, what does this would mean? Find other similar examples using symmetry
arguments to guess the form of the successive equations.

3.3 Solitary waves

Nonlinear wave equations sometimes have solitary wave solutions, which have locally dis-
tributed amplitudes and propagate without changing their profiles, because of the balance
between nonlinearity and dispersion. In this section, we look for solitary wave solutions of
the nonlinear Schrodinger equation.

3.3.1 Solitary wave solutions in the Benjamin-Feir unstable reqime

Firstly, we solve the nonlinear Schrodinger equation to get solitary wave solutions in the
Benjamin-Feir unstable case, i.e. af < 0. For simplicity, we select the parameters to be
a = 1 and 8 = —2 with appropriate scalings of space and amplitude. Then the nonlinear
Schrodinger equation 1s

— =i—— + 2{|A|’A, (3.10)
T

We assume the form of the solution is A,(z,t) = R(z)exp(i2t). Substituing this into (3.10),
we get
ov

Ree = 3R

(3.11)

where the potential V(R) 1s

1 1
V(R) = -§QR2 + 5R“.
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Figure 3.6 shows the profile of the potential V(R). Equation (3.11) corresponds to the
equation of motion of a particle in the potential V(R) by considering z as time and R as the
position of the particle. Multiplying by R, and integrating, we have

-;-Rﬁ +V(R)=E, (3.12)

where E is a constant. In the case of E < 0, the solution of (3.12) corresponds to the periodic
motion between R, < R < R; in figure 3.6. Thus, we get periodic solutions with respect
to z as shown in figure 3.7. These solutions are called cnoidal waves. In the case of E = 0,
the solution corresponds to the motion of the particle which starts with R = 0 at ¢ — —00,
reaches R = Ry and returns to R = 0 as £ — co. Therefore, we get a solitary wave solution
whose profile tends to zero as z — +00. There is a simple analytic form for this special
case:

A, = \/ﬁsech(\/f_la:)exp(iﬂt).

Figure 3.6. The potential V(R)

By
H

Figure 3.7. (a) Cnoidal wave (E < 0), (b) Solitary wave (F=0)
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3.5.2 Symmetries and other solitary weve solutions

By symmetry argument, we can derive other solitary waves from one simple solitary wave.
The nonlinear Schrodinger equation has the following symmetry properties,

T — Az,
t — A%,
A— A7TA
Applying this symmetry to the simple solitary wave solution A, = sechz exp(tt), we have
Ay = Viisech(VQz) exp(iQt).
Further, using another symmetry

r — r + vi,
2

A— Aexp(—i%x + i%—)t,

we get a further solitary wave solution,
|1 2
Ag = \/f_lsech[\/ﬁ(:r — vt)]exp: -2-v.r + (2 — %t)] .

One can also consider translational invariance in space, thus replacing = by r — zg, and
rotational invariance in the complex plane that leads to an arbitrary phase factor in A. The
important point to notice is that continuous families of sclutions are associated with the
invariance properties of the evolution equation. We will use this later to study the dynamics
of localized structures.

§.9.8 Solitary wave solutions in the Benjamin-Feir stable regime

Next we consider solitary wave solutions in the Benjamin-Feir stable case, i.e. a8 > 0. For
simplicity, we select the parameters to be a = 1 and 8 = 2.

0A 9?4 12
We assume the form of the solution is A, = R(z)exp(:§% + 6(z)). Substituing it into (3.13),
we get

QR = —2R® + R, — RZ, (3.14)
0=—-2R,0, - 6,,R=—(R%,),, (3.15)
We can eliminate § by integrating (3.15) and substituting into (3.16),
ov
er - —ﬁ’
viRy=1lort_m e B
B=3 ')

where h = R%8, is constant.
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Figure 3.8. The potential V(R)

In the same manner as for the Benjamin-Feir unstable case, we can find the solution by
selecting the maximum value of the potential (figure 3.9),

(12

R? = R: —

cosh? uz’
where R = Ry gives the maximum of V(R), and the parameteis are

Q= -3R2 +ad?,
h? = RA(R? — a?).

This solution is called an “envelope hole soliton”, or a “dark soliton” in optics since it consists
of a region with a smaller oscillation amplitude. Note that the local wavenumber is changed
according to the relation R%68, = constant.

Ry R

(R'Jo- _ q?.)‘ l2

Figure 3.9. A envelope hole soliton or dark soliton
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In particular, when we choose h = ,a = Ry, we have
R? = R} tanh® Ryz.

In the pendula model, this represents a non-oscillating location that separates two regions
that oscillate out of phase.
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4. Cellular Instabilities: A canonical example,
Rayleigh-Bénard convection

situations where dissipation cannot be neglected. These “dissipative instabilities” are de-
scribed by simpler amplitude equations, in particular when they generate stationary patterns,
such as convective rolls for instance. A canonical example of stationary cellular instability
1s Rayleigh-Bénard convection that we will study in this section.

4.1 Rayleigh-Bénard convection

4-1.1 Convection in the Rayleigh- Bénard geometry

example of hydrodynamic instability that displays pattern formation and transition to tur-
bulence. There exist many reviews about thermal convection, for instance, Spiegel (1971,
1972), Palm (1975}, Normand et al. (1977), Busse (1978, 1981); the reader may also look at
the book by Gershuni and Zhukovitskii (1976).

Convection in the Rayleigh-Bénard geometry is achieved by uniformly heating from below
a horizontal layer of fluid (Figure 4.1).For small temperature gradients, the fluid remains
In a stable heat-conducting state, with a linear temperature profile and no fluid motion.
However, if the fluid has a negative thermal expansion coefficient, ~a, the thermal gradient
generates a density stratification with cold heavy fluid above warm light fluid, For sufficiently
large temperature differences, the resulting buoyancy force overcomes dissipative effects duye
to viscosity and heat diffusivity, causing less dense warmer flujd to rise and cooler fluid to

ETTTIRT I AT PoS B e % peome e b s o
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sink. With appropriate boundary conditions, periodic parallel convection rolls result from
the circulation of the fluid.

Figure 4.1. Sketch of a Rayleigh-Bénard experiment

At the onset of convection, any field u(z,y, z,t) representing the state of the system, i. e.
one of the velocity components, the temperature fluctuation from the heat-conduction profile
or the pressure fluctuation from hydrostatic equilibrium, takes the form

u(z,y,z,t) = [AX,Y,T) exp(ikez) + cc] f(z) +---

This represents periodic convection rolls perpendicular to the x-axis with a slowly varying
complex amplitude A(X,Y,T). The modulus of A accounts for the convection amplitude
whereas the phase of A is related to the local wavenumber difference from its critical value,
k.. The vertical structure of the convection mode is described by f(z) and depends on the
boundary conditions at the lower and upper plates (see below).

QOur objective is to find the amplitude equation, 1. e. the evolution equation for A, and to
use it to describe patterns dynamics in the vicinity of convection onset.

4.1.2 The Boussinesq approrimation

The Boussinesq approximation is reasonably valid in usual experimental situations. In this
approximation, the fluid behaves as though it were incompressible, the density varying only
as a consequence of changes in temperature, the density variation about its mean value
is taken into account only in the buoyancy force term; the mechanical dissipation rate is
neglected in the heat equation, and the fluid parameters, viscosity, heat diffusivity and heat
capacity are assumed to be constant. These a priori physical assumptions can be replaced
by a rigorous asymptotic expansion of the conservation equations of mass, momentum and
energy (see the review by Malkus, 1964); the resulting Boussinesq equations are

V-v=0 (4.1)
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o [%V? +(v- V)v] = =Vp+ povrV2v ~ p(T)gi (4.2)
%T +v-VT = kVT, (4.3)

where v is the fluid kinematic viscosity and « is the heat diffusivity; pg is the fluid density
at a reference temperature and T is the temperature difference from that reference. Thus,

AT) > po(1 — aT). (4-4)

Defining 8 as the temperature fluctuation from the heat-conducting profile,

T:To—-%z+9, (4.5)

where AT is the temperature difference across the layer of height d, and using d, d?/« and
AT as scales for length, time and temperature, one get

V-v=0 (4.6)

ov 2 n
= T (V- V)v =~V + PVv + RP: (4.7)
Q€+V-V6=V-i+vzoa (4.8)

ot

where P = v/x is the Prandt] number, and R = gaATd® Juk is the Ra.jfleigh number.
These two dimensionless numbers, together with the boundary conditions, characterize the
convection problem in the Boussinesq approximation. Let us mention that the small or large
Prandtl number or large Rayleigh number limits of equations (4.6, 4.7., 4.8) are usually
considered without any caution in the litterature, although these limits might invalidate the
Boussinesq approximation.

The Prandt! number is the ratio of the timescales of the two diffusive processes involved in
convection, heat diffusion and momentum diffusion. Depending on the microscopic mech-

anisms of transport, the Prandt] number varies on many orders of magnitude in different
convective flows of interest.
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Figure 4.2. Typical values of the Prandtl number

The Rayleigh number is proportional to the temperature difference across the fluid layer,
and relates the strength of the driving mechanism to dissipative processes. It is the control
parameter in a convection experiment.

4-1.3 Boundary Conditions

We need now to specify the boundary conditions. We consider a fluid layer of infinite
horizontal extent or periodic lateral boundary conditions. At the upper and lower boundaries,

the temperature and the heat flux are assumed to be continuous, There exist two simple
limit situations:

- boundaries with high heat conductivity

- insulating boundaries
% =0 (4.10)
8:'8 =" .

Depending on the nature of the boundaries, the boundary condition for velocity can be either
“no-slip” or “stress-free”. If the boundary is a rigid plate, the “no-slip” boundary condition
1s applicable for viscous fluids, i.e.

V'B = 0.

We separate the velocity into horizontal and vertical components, v = v, + wz, where v,
is the honizontal velocity, and w is the 2 component. Since v, must vanish identically at
z = zp, it's horizontal derivatives also must vanish at z = zp. Using V- v = 0, we have

Aw N (4.11)
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If the boundary is an interface with another fluid or a free surface open to the air, boundary
conditions have to account for the continuity of both the normal velocity w and of the
tangential stress in the plane of the interface. Assuming that surface tension effects are
not involved and that the interface remains flat, then we have the following “stress-free”

boundary conditions:

Ova
=0, —lg=0
wlg =0, 3, |8
Again using the incompressibility condition V - v = 0, we get
w|p =0,
dw (4.12)
g =0.
9z2

One example of a “stress-free” experimental boundary condition consists of a convection layer
of oil sandwiched between layers of mercury and gazeous helium (Goldstein and Graham,
1969). The “stress-free” boundary conditions can be wpplied since the viscosity of oil is much
larger than the one of mercury or helium, and the temperature fluctuation should be zero
2t the oil-mercury interface, while the fluctuation heat flux should be zero at the oil-helium
interface.

Finally, let us mention the crucial effect of temperature boundary conditions on the con-
vective regime observed at onset. As buoyancy is the drivir.g mechanism, the length-scale
of the convection pattern is primarily fixed by the charateristic scale for the temperature
disturbances. In the case of boundaries with a high heat-conductivity compared to the one
of the fluid, the temperature disturbances should vanish on the boundaries and the relevant
length-scale is the height of the layer d.

I

OO0 |

Figure 4.3. Convective regime at onset with boundaries of high heat conductivity

For insulating boundaries, the isotherms can penetrate into the boundaries and the temper-
ature can vary on a very large length-scale compared to d. The pattern wavelength goes to
infinity in the insulating limit. i. e. there is only one roll in the fluid container (Figure 4.4).



45

-

Figure 4.4. Convective regime at onset with insulating boundaries

4.2 Linear Stability Analysis

The linear stability of the motionless heat-conducting state can be studied analitycally using
the Boussinesq equations (4.6, 4.7, 4.8) with stress-free (4.12) and perfectly conducting (4.9)
boundary conditions.

We first eliminate the pressure field by applying the operators curl and curl curl to the
momentum equation (4.7) and we get the evolution equations for the vertical vorticity, ¢,
and the vertical velocity, w, by projecting on the vertical axis:

a¢

= + %V x [(v-V)v]= PV : (4.13)

%vi’w ~3-VxVx|[v: Vv]=PVw+ RPV6, (4.14)

where V2 stands for the Laplacian operator in the horizontal plane. Note that, at the linear
stage, the vertical vorticity decouples and obeys a diffusion equation. Thus, the vertical
vorticity modes can be ignored in the linear stability analysis; however, they should be kept
in the study of finite amplitude convection since they are nonlinearly coupled to the linear
convection modes. Neglecting the nonlinear terms in equations (4.14) and (4.8) yields the
coupled linearized system for w and 6.

.gt_v?w = PV*'w + RPVi4,
56 (4.15)
B-t- = w + V29-

From the requirement of spatial periodicity in the horizontal plane, we consider a normal
mode of the disturbances (w, §) under the form

w(z,y, z,t) = W(z) expitk - r + ot],

: (4.16)
8(z,y.z,t) = O(z) expfik - r + ot],
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where r is the position vector in the horizontal plane, and k is the pattern (horizontal)
wavevector. Boundary conditions (4.9, 4.12) together with equations (4.15) require that W
and all its even derivatives vanish for z = O and z = 1. [t follows that

Wiz} = Wy sinnrz withn =0,1,... (4.17)

Using (4.15), (4.16) and (4.17) we obtain the dispersion relation for the growthrate o of the
normal mode k

| Pk?
o’ + g1+ P)o + (qu - qu ) =0, (4.18)

where ¢ = k2 4 272,

A stationary instability occurs when the constant term in o of the dispersion relation vanishes
and becomes negative. Thus, as the Rayleigh number is increased, a mode with n = 1
bifurcates first for R = R (k) with

2 4 12)3
Ro(ky= T tR)° (4.19)
L2
This defines the marginal stability curve on which a mode with n = 1 and horizontal

wavenumber k has a zero growth rate (Figure 4.5).

R4

UNSTABLE
(g>0) R ()
(§=0)

T

STABLE (¢<0)

> k

ke
Figure 4.5. The marginal stability curve R.(k); the dashed curve represents the
growth rate of the unstable modes for R>R..

The critical Rayleigh number R. and the critical vawenumber k. at convection onset corre-
spond to the minimun of the marginal stability curve (4.19),

_ 27x*

Rc PR kc:

w

V2

These critical values depend on the boundary conditions: in particular, as said above, k.
vanishes in the limit of thermally insulating upper and lower boundaries.
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Slightly above criticality we expand the positive solution o, of the dispersion relation (4.18)
and get the growth rate of the unstable modes

P R- R.(k)

a+(R,k)»_~(1r2+k3)1+P O

which is proportional to the distance to critcality. Using

~ (k — k,)? (323,_.
Re(k) = Re + — o) o

we get to leading order in R — R, and k — k.,

P (R-R)
2 2 e/ _ 24 ...
or(k,R) = (" +kZ) TP R alk —k)* + , (4.20)
with )
P 1 /6°R
_ 2 2 c
a=(r°+ k%) I 2Rc(6k2 )C. (4.21)

Note that o (R, k) involves a term proportional to (R—R,) (k~ k.); as the marginal stability
curve is locally a parabola close to its minimum, we have, (k — k,) < (R — R.)'/?, and this
term is of higher order in (4.20). Thus, for R larger than R,, there exists a band of unstable
modes with growth rates determined by equation(4.20} (Figure 4.5).

Linear analysis gives the critical Rayleigh number R, for instability onset and determines
the modulus k. of the critical wavevector k of the unstable modes. The direction of k is
arbitrary; this orientational degenaracy is obviously related to the isotropy in the horizontal
plane. There is also a translational degeneracy which is related to the translational invariance
of the layer of infinite horizontal extent. These degeneracies do not result from the linear
approximation but from the symmetries of the Rayleigh-Bénard geometry; thus, they will
subsist in the nonlinear analysis. On the other hand, there is a pattern degeneracy that
results from the linear approximation; indeed, any superposition of norma} modes

w(r,z} = ZCP exp(ik; - r), (4.22)

P

with |k,| = k. and where the ¢,’s are constant coefficients, is a solution of the linear problem
with a zero growth rate at criticality. In order to represent a real field w, we must impose
the conditions, c_, = ¢, and k_, = —k,, but the number of non zero ¢p’s, i. e. the shape
of the pattern, and their modulus, i. e. the amplitude of the convection velocity, remain
undeterminate. Three basic examples of cellular pattern described by (4.22), that involve
respectively one, two and three wavevectors, are sketched in Figure 4.6.
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Figure 4.6. Rolls, squares and hexagons

Nonlinear interactions between the modes with different wave vectors generally select one
pattern at instability onset and determine the amplitude above criticality. However, it
happens sometimes that no stationary pattern exists even immediately above a stationary
instability onset; the nonlinear regime is then time-periodic or chaotic.

A..other problem results from the existence of a continuous band of unstable modes above
criticality as described by equation (4.20). Linear analysis only determines the one with the
highest growth rate, but the wavenumber selected by nonlinear interactions may correspond
to a different one. The interaction of two {or several) modes within the unstable band gives
mee to a spatial modulation of the periodic pattern on a large length-scale compared to
the pattern wavelength. The inverse of this length-scale is of order {(k — k.), thus within a
multiple-scale expansion procedure, it corresponds to a “slow scale” X such that

X =(R~- R\, (4.23)

Let us recall, that close to the instability onset, the slow time scale T that corresponds to
the vanishing growth rate of the unstable mode (4.20) is

T = (R - R.)t. (4.24)

4.3 Nonlinear saturation of the critical modes

4.9.4 Nonlinear saturation of a roll pattern: the Landau equation

We first show how nonlinear terms saturate the amplitude of the convection velocity of a
roll pattern above R.. We use g stream function, ¥(z, z,t), and write the velocity field

V= (-0:4.00,9).
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Equations (4.6, 4.7, 4.8) become

3 —a 2.8 4 o8
é-t—V ¥+ J(¢, Vy) = PV + RP_@:!:’ (4.25)
a6 oy 2
— )= — 4+ V'8 .
o+ J(0,0) = £+ V7, (4.26)
where J 1s the Jacobian,
_9fdg 0f9g

Itf9)= 0z 8z 0z0zr

Assuming stress-free perfectly conducting boundary conditions at z = 0,1, the marginal
mode that describes rolls perpendicular to the z-axis for R = R, reads

Y(zr,z) = [Aexp (tk.x) + ce] sinaz,
tk (4.27)

z,z) = kc,‘,—:;‘; [A exp(tkc.r) — c.c.] sinwz.

The problem is to determine how the convection amplitude, [A], saturates above criticality
be.ause of nonlinear interactions. This has been shown by Gorkov (1957) and Malkus and
Veronis (1958) with a Poincaré-Lindstedt expansion. We will use a multiple-scale expansion,
which is only slightly different, in order to keep the time-dependence of A. We don’t consider
in this section a possible modulation of A on a slow length-scale (see section 4.3.3).

We expand ¢ and ¢
v=) n 6=) ",
n=1 n=1

where ¢ 1s a small parameter related to the distance to criticality by

R=R.+) €"R..
n=1

The Boussinesq equations are symmetric under a mid-plane reflection, 2 — —z, coupled
with a temperature inversion, § — —#8, which corresponds to y» — —% and # — —#§; thus to
leading order, Ry =0, and

R— R.~ ¢*R,.

Using the result of the linear theory for the growth rate of the unstable mode, we obtain for
the convection mode time scale

31 = EzaT.

To leading order in €, equations (4.25, 4.26) give the linear problem, and the solutions for
¥, and ) are given by the linear modes (4.27). To the next order we get,

"1[)2:0»
2

6, = - ———n
27 Top(k?+72)

sin 27z,
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that describes how the temperature advection nonlinear term deforms the vertical temper-
ature profile. The solvability condition at the next order gives the evolution equation for
A

dA
ar A - BlAI A, (4.28)
with p R_R
HE (TR g ( Y- C)’
o (4.29)
Ty

Note that, since R — R. is of order €, all the terms of the amplitude equation (4.28) are of
order one. However. we can easily write this equation using original unscaled variables for
time, amplitude and distance to criticality, R — R.; we can check on the unscaled form that
all terms are of order (R — R.)¥2,

As previously shown for nonlinear oscillators, the form of the amplitude equation is here also
determined by symmetry constraints. Translational invariance in the horizontal plane implies
that, if (yo(z, z), f(z, z}) represents a roll solution, (v(z + To,2),00(T + z¢,2)) is another
solution; this amounts to shift the rolls in the horizontal plane, or to change the origin of the
z-axis. From equation ( 4.27) this transformation corresponds to a rotation in the complex
plane for A, and the amplitude equation should be invariant under the transformation

A — Aexpi¢, for any real ¢.

As shown for nonlinear oscillators, the only allowed nonlinear term up to third order in
amplitude is thus [A[zA, and the amplitude equation reads

dA 5
a7 = HA = BIAl4,
where 3 is a priori a complex number.

However, there is here an additional symmetry, space-reflection: z — —z, From equation
(4.27) this transformation corresponds to

A-4

for the complex amplitude. Taking the complex conjugate of the amplitude equation, ap-
plying the reflection transformation and comparing to the original amplitude equation, gives
B = B, thus 8 real. The form of the amplitude equation (4.28) is determined by symmetry
constraints. The perturbative calculation starting from the Boussinesq equations is only
useful to get the sign of # and shows that the bifurcation is supercritical. This can be also
shown using variational methods (Sorokin, 1953), and for a large variety of boundary con-
ditions, the motionless state is globally stable below R. in the Boussinesq approximation.
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Above HK.. the convection velocity amplitude increases continuously from zero and scales as
{R—~ R.)'? It is the order parameter of the transition, the corresponding broken symmetry
being translational invariance in space. Note finally that equation (4.28) can be writen in a
variational form

dA _ 9V
dT ~ 84’

where

— — 1 —_
V(A A) = —pdd + -2-5A2A2,

is the “Landau free-energy™ in the vicinity of the transition.

4.9.5 Pattern selection

We now consider the problem of pattern selection via nonlinear interactions. As said above,
in the slightly supercritical range, any superposition (4.22) of marginal modes has the same
growth rate. Let us consider two examples, squares and hexagons.

For squares, we have
W(z,y,t) = €([A) exp (tkez) + ce] + [Az exp (ik.y) + c.c]) sinwz + --- , (4.30)

where A,(T) and A4,(T) are the complex amplitudes of the two sets of perpendicular rolls.
Using symmetry considerations, the amplitude equations read

dA
27 = A= [BlA + 4140 4,
dT
(4.31)
22 ity — [YlAr + B1Asf] Ao
IT 2 1 2
It is an easy exercise to show that for g > 0, stationary squares (j4;] = 43|} are stable when

iyl < B, i.e when the cross-coupling nonlinear term is small enough so that the two sets of
rolls weakly interact; when their interaction is too strong, more precisely when, v > 3, one of
the two sets of rolls nonlinearly damps out the other, and rolls are the stable nonlinear state.
This is the situation for Boussinesq convection with stress-free perfectly heat-conducting
boundary conditions. On the contrary, with insulating boundaries, squares are observed.

For hexagons. we have

3
wiz,y,t)=¢ Z [Ap exp (tk, - r) +c.c] sinmz +- .-, (4.32)

p=1
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with |k,| = k; and k; + ky + k3 = 0, and where the Ap(T)’s are the complex amplitudes of
the three sets of rolls. Using symmetry considerations, the amplitude equations read

dA,

97 = uA — [B|.41|2 + 8(|Am|® + |A,,|2)] Ay, cyclic permutations of (I, m,n).  (4.33)

Note that a term proportional to 4,, A, in the evolution equation for A4, respects the trans-
lational and reflection (r — —xr) symmetries, but is forbidden here because of the additional
Boussinesq symmetry {(z — —z, § — —6). A possible exercise at this stage is to determine
the stability domains of rolls, squares and hexagons as a fonction of the real coupling con-
stants 3.+, 6 and u. Show also that the square-hexagons transition is “first order” and relate
that to a symmetry argument.

The general problem of pattern selection is much more difficult to solve and has been studied
by Schliiter et al. (1965) for the case of rigid perfectly conducting boundary conditions. They
have found that rolls are the only stable stationary pattcan just above the onset of convection.
Using a similar analysis, Riahi (1983) has found stationary squares in the case of thermally

ins .lating rigid boundaries.

4.8-6 Slowly varying amplitude of a roll pattern: the Ginzburg-Landau equation

We now consider the problem of the existence of a band of unstable modes above R.. For
simplicity we assume stress-free perfectly heat conducting boundaries, so that the pattern
consists of parallel rolls. To take into account the modes around k., we consider a wave
packet

w(z,2) = [A(X,Y,T) exp (ikcz) + c.c] sinwz + - -, (4.34)

where A(X, Y, T) represents the slowly varying envelope of the roll pattern. We first consider
modulations only along the z-axis, thus 4 = 4(X,T). We have

AX,T) = f/-i(K, Y)exp (£T + KX ) 62 — X(p, K)dKdZ, (4.35)
where

S, K)=pg~aR?+.... (4.36)

1s the dispersion relation {4.20) in terms of scaled (order one) variables, i. e. K = (k—k.)/e.
The Fourier-Laplace transform of the dispersion relation (4.36) gives the linear part of the
evolution equation for the ampliude A(X, T)

a2
ar — M T GxE
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Taking into account the leading order nonlinear term, we get

0A %A 2
— = — — BlA|A. 4.37
5T pA + amy3 BlA| ( )

We now consider modulations also along the rolls axis, thus A = A(X,Y,T). We have

and the generalisation of the dispersion relation (4.20) that respects rotational invariance in

the horizontal plane, is

P (R”Rc)

_ ng-—k?‘z-}----
1+P Rc 60( c)

a(k,R) = (" + k)

with 4k2£2 = o. We have
(k2 — k2! = (‘chék: +(6k,)% + (5ky)2) .
Thus, the relevant scalings are
bk, = eK,, 6k, =€¢/’K,.

Slower y-modulations do not affect the amplitude equation to leading order, whereas modes
corresponding to modulations on shorter scales are too strongly damped to be marginal. In
terms of scaled variables. the dispersion relation reads

E:u—a[K,-i———-

Taking its Fourier-Laplace transform and adding the leading order nonlinear term, gives

0A 4 g KB 5*
aT ~ M +“(ﬁ'2kc ay?

2
) A - BiAPA. (4.38)

In terms of unscaled variables, all the terms of (4.38) are of order €*. This equation has been
obtained by Newell and Whitehead (1969) and Segel (1969), using a multiple-scale expansion
both in space and time. Note that partial derivatives in X and Y are not involved similarly
because the roll pattern breaks the rotational invariance in the horizontal plane.

We can write the amplitude equation (4.38) in variational form,

04 _ oL (4.39)
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where

o i & A
60X 2k. 9Y?

1s analogous to a “Ginzburg-Landau” free-energy.

2
L[A] = / [wm;? + §|A[" +a } dXdy, (4.40)

In the following lectures we will study pattern dynamics governed by this “Ginzburg-Landau”
equation, also named in the context of convection, the NewelI-Whitehea.d—Segel equation. In
the case of stress-free boundary conditions, this equation is incorrect because it does not
take into account the nonlinear interaction with vertical vorticity modes. We will discuss
this effect later. With different coeflicients than the ones derived above, the Ginzburg-Landau
equation is correct to leading order for the description of slowly modulated roll-patterns in
convection with rigid thermally conducting boundaries. More generally, it describes slowlv
modulated one-dimensional patterns that occur via a stationary bifurcation in a dissipative
system, invariant under translations, rotations and space reflections in the horizontal plane,
when no other marginal mode than the roll-mode at wavenumber- k. is involved.
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5. Amplitude Equations in Dissipative Sys-
tems

We consider a dissipative system governed by a nonlinear partial differential equation

.
aai = L,(V)-U 4+ N(V,U), (5.1)
where U(r, t) represents a set of scalar or pseudo-scalar fields. The system is driven externally
by a control parameter # constant in space and time (except in section 5.3 where we consider
parametric instabilities). Its basic state is thus homogeneous in space and constant in time,
and -orresponds to {7 = 0, say. L,(V) is a linear operator which involves spatial-derivatives,
and N(V,U) represents nonlinear terms. We assume that equation (5.1) is invariant under
continuous translations in space and time (except in section 5.3 where it is invariant under
continuous translations in space and discrete translations in time}. We also assume in some
cases, space-reflection symmetry or invariance under galilean transformations.

For a critical value of 1, the basic state, U = 0, loses its stability. The linear stability analysis
consists of solving the eigenvalue problem

L(V)-U=qgl. (5.2)

The basic state is stable when all the eigenvalues 7 have a negative real part. The instability
onset, or the bifurcation of U = 0, is characterized by one or several eigenvalues with a
zero real part. The corresponding eigenfunctions, U;x(r,t), are the critical modes, and
characterize the temporal or spatial pattern that sets in at the instability onset, and breaks
spontaneously some of the invariances listed above. [n the vicinity of the instability onset,
the amplitudes 4, of the critical modes vary on a time-scale much slower than the one of the
other modes, and thus contain all the information about the asymptotic time-dependence
of /. More precisely, the non-critical (damped) modes don’t vanish only because they are
forced by the critical (slightly unstable) modes through nonlinear interactions; thus, they
follow adiabatically critical modes; adiabatic elimination of fast modes leads to amplitude
equations. We observed in the previous lectures that symmetry constraints determine their
form. We give now a catalogue of the most frequent situations.
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5.1 Stationary instability

In the previous lecture we studied the example of Rayleigh- Bénard convection. A stationary

instability corresponds to a marginal mode with a real growth-rate. We shall discuss the case
when the critical wave number, k., is non-zero; situations where the critical wave number is
vanishingly small will be considered in section 5.5.

5.1.1 One-dimensional pattern

Let us first consider the situation where the nonlinear terms select a one-dimensional “roll-

pattern”. In the vicility of the instability onset, r ~ r , the growth-rate is a real function of
k with a maximum around k. (Figure 5.1)

1 620' 2
ar:r—rc+-2-('5'k—2)c(k"kc) + - (5:3)
s (k) 4
—
k. k

Figure 5.1. Growth-rate versus wave number for a stationary instability at k = k.

We take the distance to criticality, r — r¢, of order €2 (¢ < 1), accordingly the instability
growth-rate is of order €?; this is the time-scale for the slow critical modes. Correspondingly,
there is a large spatial scale generated by modes interaction in the unstable wavenumber
band; as o(k) is locally a parabola, k — k., < O(e), and the large spatial scale corresponds to
k — k. = eK. Thus, the scaled dispersion relation is

SKy=p-—aK?+ ., (5.4)
where L =0o/e? y=(r—r.)/e¢,a= —-% %%:—)c, and K, are all of order one.

We first consider modulations of the pattern only along the z-axis, and write

U(z,t) = € [A(X,T) exp(ikex) + c.c.] U, + - - -, (5.5)
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where [.ch exp(zk.r) is the critical mode. As shown in previous lectures, the linear evolution
equation for A4 is the Fourier-Laplace transform of (5.4), and the leading order nonlinear
term compatible with translational invariance in space is |A[?A. Moreover, its coefficient Jél
i1s real if the system is invariant under spase-reflection symmetry, z — —z. Thus, to leading
order, 4 obeys the Ginzburg-Landau equation

JA %A
5&,— = .UA + QE'X—2 - B|.4I2A (56)

The nonlinear term saturates the instability growth if 8 > 0, and the bifurcation js super-
critical. In terms of the original scaled variables, the critical mode amplitude scales like ¢
1. e like (r — r.)'/?. The slow spatial scale can be understood as a coherence length and
diverges at criticality like (r — r.) 12,

If 3 < 0, higher order nonlinear terms should be taken into account, and a simple model for
a subcritical bifurcation is

A %A
57 = ,u.-a-maﬁ — BlA*A — y|A[* A, (5.7)

with 5 > 0. However, in terms of scaled variables, § should be small in order to get the two
noniinear terms at the same order; thus (5.7) is asymptotically correct only in the vicinity
of a tricritical point.

Like the Ginzburg-Landau equation. {5.7) can be put in variational form

JA &L
3 = —Ej (5.8)
where )
04 —_
L[4] = [a« — - V(A,A)J dX,
/ ax (5.9)

— 3 ~
K — 2 4 5
VA = WA - 21t - Tjap,

L[A] is a Lyapunov functional: indeed. multiplying (5.7) by 04/8T, and adding to the
complex conjugate expression. vields

%C[A] = —2/)%

Thus L[A] is a decreasing function, bounded from below for the constant A’s that are the
maxima of V(A. ). For a supercritical bifurcation (8 > 0, fifth order term neglected),
the uniform state 4 = 0 is globally stable for 4 < 0, whereas perfectly periodic patterns

corresponding to A = | /;/3 exp(1é). with constant ¢, are globally stable for u > 0. The
degenaracy in o is obviously related to translational invariance in space, but a more subbtle

2
dX < 0. (5.10)
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effect that involves the phase might happen when the system is not invariant under reflection

symmetry. r — —r.

When the system is not invariant under reflection symmetry, z — —z, the coefficient 3 is in
general a complex number. Writing A(X,T) = R(X, T)expi$(X,T), equation (5.6) yields

OR (a¢)2 R R
—=lp-e(z=) | R+a=—= — 4R
aT aX X2
(5.11)
2
p2% _,0R D9 0% _BR

8T ~ “6X 8X 8X?

Consequently. 2 homogeneous roll-pattern of amplitude Ry has its phase that linearly in-
creases in time

Po = —BRT.

Thus, from (5.5), one observes that this “stationary” ins.ability gives rise to a travelling
pattern

Ug(z,t) = ¢ [Rgexp tkexr — 526iRgt) + cc] fjkc 4.

due to the externally broken reflection symmetry. We will study a similar effect whea the
reflection symmetry is spontaneously broken; a secondary instability then generates a drifting
nartern from a stationary one (see lecture 7).

Note that the absence of a term proportional to dA/8X in (5.6) is not related to reflection
symmetry. Indeed, a term of the form :94/8X is compatible with the 2 — —z symmetry,

and is present as soon as one expands U in (5.5) at k # k.. This corresponds to the change
of variable

A = B exp(1¢X)

that gives
e ) 5. OB o'B 2
ﬁ—(#—aq )B+~1¢10-’3X+a-5(-2-—5|3$ B, (5-10)

thus showing that the growth-rate of the mode k = k. + eq is #— ag? i e. in scaled terms,

r—r. —alk — k)%, in agreement with the dispersion relation. The absence of a term in
t0A/OX in (5.6) is thus only related to the fact that the first unstable mode k. is the one
with the maximum growth-rate o(k).

A simple model. that mimics the formation of a one-dimensional pattern 1s the Swift-
Hohenberg equation for a field u(z,y,t)

Ou

=~ = [r—re = (ke + A u— (5.13)
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Consider a one-dimensional field in space, u(z,t), and using a multiple-scale expansion
technique, derive the Ginzburg-Landau equation in the vicinity of the instability onset,
r = re >~ pe*. Try the same exercise with the model

Ou
Ot
which is not invariant under the z — —z reflection symmetry, and show that B is complex.

Find the nature of the bifurcation as a function of a, and derive (5.7) in the vicinity of the
tricritical point.

= [r—rc—(k62+A)2}u—au2——ug—z, (5.14)

Finally, let us consider a situation where the spatial phase is quenched. This occurs in the
convection problem for instance, if one takes stress-free boundary conditions also at the
lateral boundaries. z = § and r = 2nrn/k., where n is an integei. Then, the phase of the

pattern 1s fixed,
Ulr.t) = eR(X,T) sin(kez) Ug, +---, (5.15)

and its amplitude is governed by a real Ginzburg-Landau equation

OR &R
o7 =uR+ amg ~ BR3. (5.16)

The broken symmetry at the instability onset is not translational invariance, which is here
externally broken because of the lateral boundary conditions, but the R — —R syminetry of
Boussinesq convection.

3.1.2 Two-dimensional modulations of a one-dimensional cellular pattern

We now consider the dvnamics of two-dimensional modulations of a one-dimensional roll-
pattern, parallel to the r-axis. In isotropic systems, the growth-rate depends on k? and is
maximum for k? = £.*: thus, for k| ~ k,

ak)=r—r.— &KX~ k2P +. .. (5.17)

and as shown in Lecture 4, the amplitude equation reads

| :
% =ud+a (5‘% - 2% 5?}%) A - 3144, (5.18)
or 1n variational form 54 "
7= (5.19)
whith . ) )
ClA] = / [—u‘.ﬂz + gmi* +a ((-3% - 2—;;- 5‘?—5) A J dXxdy. (5.20)
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For anisotropic systems. the growth-rate is maximum for k| = k. with k along a prefered
axis. r say. Thus
olky=r—rc—alk: —k)? + o'k, +---. (5.21)

and
SK)=p-~aKx?+a'Kylt- .-, (5.21)

so the Ginzburg-Landau equation takes the form

dA &4 A
A+ al L oS L g4 5.23
aT ~ HAt gy gy — A4, (6:23)

3.1.8 Two-dimensional patterns

We have already considered two-dimensional patterns in the previous lecture. Let us take the
example of hexagons or more precisely of patterns with three basi. wave-vectors, ki, kj, ka,
such that k, = k. and k; + k; + k3 = 0,

3
Ulz,y,t)=¢ Z [Ap exp (ik, 1) +cc] Uge + -, (5.24)
p=1

withouw the U' — —U invariance. Using symmetry considerations, the amplitude equations

read
dA,;

dT
Note that this equation is asymptotically valid only if the U — —U symmetry is slightly
broken, so that the quadratic and cubic nonlinearities are obtained at the same order. The
quadratic nonlinearities correspond to the resonant triad interaction k; + kg + k3 = 0.
Although one can change the phase ¢, of each wave by shifting the origin in the horizontal
plane along k,, the above relation implies

= pAr + pAm An — [BlAI" + 6(|Am | + |4al?)] Al (5.25)

¢1 + ¢2 + ¢3 = ¢ = constant. (5.26)

® determines the shape of the pattern (hexagons, triangles, ...). Using translational and
reflection symmetry. one can restrict ® to the interval [0,7,2]. Note that the leading order
amplitude equations {5.25) select ® = 0.

3.2 Oscillatory instability

We now consider situations where the instability growth-rate has an imaginary part w(k);
thus, the unstable mode has an oscillatory behaviour with a pulsation w(ky) at onset. We
begin with the case ky = 0.
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3.2.4 Oscillatory instability at zero wavenumber

When the real part of the growth-rate is maximum at zero wavenumber, we have

(k) =a(k) +iw(k) (5.27)
with | /o2
a
a(k):r—r6+§(W)ok2+"‘ (528)
(k) =we + O Bl Fw K2+ |
=t ), f e e )
In the vicinity of the instability onset, r — r, = 2
Uiz, t) = e[A(X.T) exp(iwot) + c.c.| Ug + - - (5.29)

where U, exp(iwgt) is the critical mode. As previously observed, the Fourier-Laplace trans-
form of the dispersion relation gives the linear part of the amplitude equation, and trans-
lational invariance in time determines the form of the leading order nonlinear term, |AI2A.
We get

dA JA 9% A )

E)—T'- = ptA — C‘ﬁ 'f' 0’37(—2 —_ Bf.‘ll A, (530)
where ¢ = (Gw/dk), is the group velocity, a, = -1 (a2a/ak?)0 1s related to the diffusion of
space-dependent perturbations (a, > 0), a; = —1 (3%'/81:2)0 corresponds to the dispersion,

8, is the nonlinear dissipation, and 5; is related to the nonlinear amplitude-dependence of
the frequency. Note that, like for the nonlinear Schrédinger equation, one needs two slow
time-scales T, and 7, when deriving {5.30) with an asymptotic expansion. Transforming to
the reference frame moving at the group velocity yields

dA

57 = #A+aldd - 3]41°4, (5.31)

Equation (5.31)is a Ginzburg-Landau equation with complex coefficients o and 8. This is a
crucial difference from {5.6) for stationary cellular instabilities. that involves real coefficients.
Indeed. no variational formulation is known for (5.31). Thus, A does not evolve in order
to minimize a functional £][A] as for (5.6), but displays in some parameter range, periodic
or even chaotic hehaviours in space and time. Equation (5.31) has two simple limits, a
“vanational™ one for a and .4 real

da oL d 84
_ = _ — = -9 i
T~ va @ “/‘aT

2

dX <0,

and a conservative limit (the nonlinear Schrodinger equation), for a and 3 pure imaginary,

d4 oL d
3T = —-gj, Ezﬁ[‘i] = 0.
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One method is to investigate {5.31) perturbatively, starting from one of these limit situations

{lecture 8).

5.2.5 Oscillatory instability at finite wavenumber

Hydrodynamic instabilities often lead to time-dependent cellular patterns. The Couette-
Taylor flow between concentric cylinders (DiPrima and Swinney, 1981), thermal convection
in the presence of a salinity gradient or in binary fluid mixtures (Turner, 1973), thermal
convection in a layer of fluid rotating about a vertical axis (Chandrasekhar, 1961), display
a Hopf bifurcation at a finite wavenumber kg # 0. The growth-rate of the marginal modes

read
k) = o(k) + iw(k) (5.32)
with
%0
oky=r—r.+ = ( k2) (k ~ ko) + -
o o (5.33)
w
In the vicinity of the instability onset, r — r. = pe?,
Ulz,t) = e [A(X,T) exp(iwgt — kor) + c.c.] I-J_ko (5.34)

+e[B(X,T) exp(iwot + koz) + c.c] Ug, + - - -,

where 4 and B are the complex amplitudes of the waves propagating to the right and to the
left, and obey the following amplitude equations

aA BA 0 A

— A — L (3 2
oB 6‘B 62 (5.35)
— =B+ c=— +{v|4)* + 8|B|*)B.

oT 6X *ox?

Equations (5.35) are invariant under the transformations

A — Aexp(—1¢), B — Bexp(i¢),
A — Aexp(i6), B — B exp(if),

that reflect translational invariance in space and time, and under the transformation
X—--X, A—-B, B— A,

that traces back to space-reflection symmetry,  — —z. Note that terms of the form :9A4/8X,
1B /08X, satisfy symmetry requirements but are not involved because ¢ is maximum for
k = ko. Let us also remark that the group velocity ¢ should be small in order to get all
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the terms of (5.35) at the same order of an asymptotic expansion (see the discussion about
counter-propagating waves in lecture 3).

Restricting the discussion to spatially homogeneous solutions, it is easy to check that (5.35)
describe either :

- propagating waves (|A| # 0,|B| = 0, or [A] = 0,|B| # 0), which are stable if Yr > Br > 0,
- standing waves (|4| = |B| # 0. which are stable if 3, > Yr-

When 3, < 0 or Jr < —|3,|. the bifurcation is suberitical.

5.3 Parametric instability

Parametric instabilities in spatially extended systems also generate waves. Let us consider
for example the one-dimensional array of coupled pendula, already studied in lecture 3, with
an additional damping and a parametric forcing. In the long-wavelength limit, the governing

equation is
0y du 8u
— 24 ™ Ny = — 5.36
57 + ).at + (1 + fsimw,t) sinu 502 ( )

In the limit of small dissipation (A = 0), the dispersion relation of the unforced array of
pendula is

wik)? =1+ k2. (5.37)

The strongest parametric response being at w,/2, a wavenumber ko is selected by the dis-
persion relation, such that

we

In the vicinity of the instability onset,

Wz.t) = e[ X.T)exp tfwyt - kor) + B(X.T) exp Hwot + kox) + e ]+ - . (5.38)
The symmetry requirements are,

- continuous translational invariance in space, that implies the invariance under the trans-

formation
A — dexpi—ip), B B exp(1¢).

- discrete translational Invariance in time. t —s ¢ + 27 Jw,, that implies

14— -4 B - -B,
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- space-reflection symmetry. r — —z, that implies
X—--X, A—-B, B A.

All the terms of (5.35) respect these requirements, but additional terms are allowed due
to the less restrictive requirement about translational invariance in time (discrete instead of
continuous). To leading order, two additional terms, proportional to the forcing, are allowed,
F4 and FB. We get

) — 04 2A

% =(-A+w)A+ FB ~ c— +aa—, - (3]-‘”2 +')’fB|2)A

oT oX 0X? 5.39
0B _ — 8B o'B 2 2 (5:59)

where A is proportional to the dissipation and v is proportional to the detuning from para-
metric resonance. Equations (5.39) show that the right-going wave is forced by the left-going
wave. and vice-versa. so that only standing waves are parametricaily generated in the vicinity
of the instability onset. In other words, the phase of the parametric response being quenched
by the external forcing in time, the only possibility at onset is a standing wave.

5.4 Neutral modes at zero wavenumber. Systems with Galilean invariance

Symmetry properties or conservation laws often imply the existence of neutral modes at zero
wavenumber. Consider the following model of one-dimensional stationary cellular instability

du  Au Hu O Ju
Bt 922 +r6x“ + a5 "Bz (540)

The growth-rate o(k) for a perturbation of wavenumber k around the u = 0 solution reads
o(k) = —~k%(1 — rk® + k%)

and 1s displayed on Figure 5.2. Forr ~ r. = 2, the nul state undergoes a stationary instability
to a cellular structure of wavenumber k.. The local behaviour of the growth-rate around k.
15 thus similar to the one of the Swift-Hohenberg model (5.15).
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a(k) A

Figure 5.2. Growth-rate versus wave number for the model (5.40)

However, an important difference is that (5.40} can be written in a conservative form

ot Or

du d [ Ou FPu  Pu 1

If u 1s considered as a velocity field along the z-axis, this traces back to the Galilean invariance
of (5.40). 1. e. the invariance under the transformation

I —r -, u—u-+uv.
This implies the existence of marginal modes at zero wavenumber, as shown by the dispersion
relation of figure 5.2. In the vicinity of the instability onset, the amplitude of these slow

modes should be taken into account, since it is generally coupled to the amplitude of the
critical modes at k.. Thus, we write

u(x.t) = e [A(X,T)exp(iz) + c.c. + B(X.T)+.--. (5.41)

and get coupled evolution equations for A and B.

a4 924 1 ” .
6B  9*B a

Note that all the terms in (5.42) and (5.43) cannot be obtained at the same order of an
asymptotic expansion. and one should again use two different time-scales. If u is considered
as a velocity field. B is a large-scale flow that advects the cellular pattern, thus shifting its
phase through the termn i 4B in (5.41):in turn, the amplitude inhomogeneities of the cellular
pattern. generates the large-scale flow B in (5.42). Note that u is a “compressible velocity
field”, but a similar effect occurs with Boussinesq convection rolls when two-dimensional
perturbations are taken into account. The Important point to remember is that the amplitude
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of neutral modes couples to the one of the critical modes, and modify the dynamics described
by the Ginzburg-Landau equation.

5.5 Conserved order parameter

Another class of stationary cellular instabilities where additional symmetries modify the
form of the evolution equation for the amplitude of the critical modes, is when the amplitude
obeys a conservation law. This situation is similar to a phase transition with a conserved
order parameter, spinodal decomposition for instance (Langer, 1975). Let us consider again
the example of Rayleigh-Bénard convection, but this time with upper and lower perfectly
insulating boundaries. The Boussinesq equations are

av 2 -

= +(v:V)v = -Vr + PV?v + RP62 (5.45)
= =0, (5.47)
v =0, (5.48)

at the boundaries, = = 0 and z = 1. We consider rigid boundaries in order to avoid the

coupling with a neutral mean flow at instability onset. We first consider a solution of
equations (5.44 - 5.48),
UO = [VO(ru t)aao(rat)a 770([', t)] ’

and note that

Usg = EVo.Bo + @(t),?fo + RPE—)(t)z] .

is also a solution if
g0 —0
5 = -

In other words, DU = (0,1, RPz) is an eigenmode with a zero eigenvalue. Thus, there is a
neutral mode at zero wavenumber, that traces back to the existence of the above continuous

family of solutions. To investigate the stability of the static state, U = 0, we consider
U=0X,YT)DU+ .- (5.49)

where @( X, Y, T} is slowly varying in space and time. When R is small, the space-dependent
buoyancy in equation (5.45) is small and generates a small velocity field; thus, the coupling
with velocity in equation (5.46) is weak, and © is damped because of thermal diffusion. The
growth-rate 1s negative and the static state is stable in the long wavelength limit (see Figure
5.3). However, when R increases above a critical value R, the effective diffusivity in the
equation for © changes sign due to the coupling with the velocity field that enhances the
temperature perturbation ©; we get a stationary instability at zero wavenumber (see Figure
5.3).
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Figure 5.3. Dispersion relation for fixed-flux convection

The evolution equation for O(X,Y.T) can be obtaned with a multiple-scale expansion
(Chapman, 1978). We want to point out here that it should have the form of a conser-
vation equation. Indeed. using the boundary conditions, the vertical average of (5.46) reads

(_%/U bdz + V4 - [/0 (6 - z)v), - Vhﬁ]J = 0. (5.50)

In the vicinity of the instability onset, R — R, = 2R r, the evolution equation for O is at
leading order

g% =~rVi0 - kVi0 + 1V, . [(V4©)*v,0]. (5.51)
The absence of terms that involve explicitely @ is related to the freedom of constant shift in
temperature, that we have with the Boussinesq equations with insulating boundary condi-
tions. The even number of space-derivatives is due to z and y-reflection symmetries in the
horizontal plane. The absence of quadratic non-linearities traces back to the Boussinesq sym-
metry. We will find a lot of similar examples of stationary instability at zero wavenumber,

when studying phase instabilities of cellular patterns (lecture 6).

3.6 Conservative systems and dispersive instabilities

Another additional symmetry that affects the form of the amplitude equation is the time
reversal symmetry of conservative systems. A well-known example is that of two inviscid
fluids layers of different densities, possibly moving at different velocities, in which Kelvin-
Helmholtz or Rayleigh-Taylor instabilities can occur.

We restrict our attention to the Kelvin-Helmholtz instability. A layer of density p’ moves at
velocity U’ above a layer of density p, (p > p'), moving at velocity U. The stability analysis
1s governed by the following dispersion relation {Chandrasekhar, 1961)
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T 1%

- Tt ot !
Y e AR WA S —k (5.52)
p+p

k p+p kpt+p (p+p

N p(U = U+

!

where k is the wavenumber and T is the surface tension. Instability occurs when the term
in the square brackets is negative, a result of the shear being large enough. The first term in
the square brackets shows that the gravitational restoring force stabilizes low wavenumbers,
whereas the last term shows that surface tension stabilizes high wavenumbers. The net
effect is that in the presence of both a density step and surface tension, there is a critical
velocity difference {AU?), for the onset of instability, at which a critical wavenumber k.
becomes unstable first; at slightly higher values of AU? there is a narrow band of unstable
wavenumbers.

LYV
UNSTABLE

Au L___ STABLE
+ > k

Figure 5.4. Marginal stability curve for the Kelvin-Helmholtz instability

This looks very similar to Rayleigh-Bénard convection, although the growth-rate for the
Kelvin-Helmholtz has an imaginary part that corresponds to the frequency of the unstable
waves, but the main difference is related to the conservative nature of the present problem.
At the onset of the Kelvin-Helmholtz instability, four pure imaginary eigenvalues collide
by pair and give rise to four complex eigenvalues, (£n, £7), whereas for an instability in
a dissipative system, a real eigenvalue, or pairs of complex-conjugate eigenvalues cross the
imaginary axis. The former situation is a dispersive instability, and is related to time-reversal
symmetry; indeed. this implies that, if n is an eigenvalue, then —7 is another eigenvalue.
As the original problem involves real quantities, +7 are alio cigenvalues, and a conservative
system involves either. pure imaginary eigenvalues (stable range), or complex eigenvalues
(£7,£7) (unstable range).

In the unstable range. the amplitude equation is also modified by the additional time-reversal
symmetry constraint. Let us consider for instance the following conservative model of Swift-
Hohenberg type.

%u 8 \? Ju
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When g >~ 0. the system is unstable about k., = 1 and the linear growth-rate around k. is
2

Nt~ u— alk — k)2

Using the scalings

7 ad 0
3z~ 3 " VFax
0 a
5{ - \/!'_I‘a_fv
show that the amplitude equation is
8% 4 o
5 = pA + a— — 3|A?A.
gz ~HA T g — Al
This is a nonlinear Klein-Gordon equation.
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6. Secondary Instabilities of Cellular Flows:
Eckhaus and zig-zag instabilities

6.1 Broken-symmetries and neutral modes

We have so far considered the onset of cellular structures as a control parameter is changed.
We now consider the instability of such structures which occurs as the parameter is changed
further. We call this a secondary instability of the system. In many cases, a secondary
instability arises from a neutral mode associated with a symmetry of the governing equations
broken by the primary instability.

For example, consider convection in container of infinite extent in the horizontal plane, or
with periodic boundary conditions. The onset of convection breaks translational symmetry
in the direction perpendicular to the rolls, the r-axis, say. However, one can imagine pushing
the rolls along the r-axis without any expenditure of energy, since this only amounts to a
shift of the z-axis origin. This translation is a neutral mode. In other words, one roll-solution
breaks translational invariance, but the ensemble of all the possible roll-solutions should be
invariant according to the Curie principle. Thus, as we noticed earlier, the phase of the
periodic structure above the instability onset is arbitrary. Changing the phase amounts to
move along the orbit of all the possible roll-solutions. This “motion” does not require any
energy and is a neutral mode of the periodic structure, 1. e. has a zero growth-rate.

Let us illustrate this concept with Swift-Hohenberg-type models. We first consider

2

d
au:{#—(l-i--é—;z-)?}u—f (6.1)

ot
Suppose there exists a periodic solution up{r) to the full nonlinear equation (6.1), that is,
L cUg = UO3,
2 bl

where L = | — (1 + ;3‘-?;5 )2J . Taking derivatives yields

L. (E}') = 3ug e (6.2)




Now. we write
u=1g(r)+ e v{r, i)

1 order to investigate the linear stability of ug, and we get from equation {6.1)

a‘
a—::L-u_3u02v+0(e‘~’)

Comparison of equation (6.2) with equation (6.3) shows that

_ duo

V= —
dr
1s an eigenmode with a zero eigenvalue. A perturbation v proportional to this eigenmode
corresponds to a trauslation u,(z + €). This can be shown differently by looking for a solution
in the form

u(z,t) = ug [r + o(1)) (6.3)

where ug is our steady-state solution, and ¢(t) is a time dependent phase. Substituting this
to equation (6.1) yields

, d¢
HUEE

where ug is the derivative of ug with respect to its argument. We get

=L-ug—u03

dg
= =0, (6.4)

which confirms that the translational perturbation is a neutral mode of equation (6.1).

Translational invariance is of course not the only possible broken-symmetry at the onset of
a pattern-forming instability. Consider for instance the model (5.40) of lecture 5

du Oy dtu Py Ju
gu _0u  Gu Fu  du 5
o~ 822 T T T UG (6.5)

which is Galilean invariant ;. e. invariant under the transformation
I'—=r—c., u—su+c

We consider a periodic solution ug(x) of equation (6.5) and look for a perturbation in the
form

u = upfz + ¢(t)] - ¥(t). (6.6)
We get from (6.4}
I
ﬂ‘zua—g-rf——r,buf)=0,

dt dt
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LEilWD,
do
- =
dvy _
= =
Two neutral modes are now involved, and trace back to the broken translational and Galilean
invariances. The form of the coupling between ¢ and ¥ can be understood as follows: if one
pushes the pattern uq(z) at a constant velocity ¢ along the r-axis, one observes a spatial
phase ¢ that increases linearly in time.

u’!
(6.7)

6.2 Phase-dynamics

We could have imposed perturbations of the form (6.3) but with the phase ¢ slowly varying
both in time and space, ¢(X,T}. where X = ex and T = €"t are slow variables (for a
diffusive behaviour for instance, 7 = 2). More generally, a lon; wavelength perturbation of
the perfectly periodic pattern ug(z) can be writen in the form

u(z.t) =up{z + (X, T) +u (X, T), (6.8)

where J
Up

dr

represents perturbations along the orbit of the symmetry group corresponding to transla-
tional invariance, i.e. phase perturbations, and u, consists of perturbations transverse to
the group orbit, i.e. amplitude perturbations. A constant phase perturbation is neutral, and
correspondingly weakly damped in the long wavelength limit, whereas amplitude perturba-
tions decay on a faster timescale when the perfectly periodic pattern is stable. Adiabatic
elimination of the amplitude modes leads to an evolution equation for the phase, that can
be derived assuming that an expansion in powers of the gradients of the phase is valid,

d¢ 0*¢ ]

Ug [.’I + ¢’(X1T)] — Uy = ¢(‘XvT)

d¢

— =}'{ (6.9)

oT 89X aXx?1

The linear part of this equation is the Fourier-Laplace transform of the dispersion relation
for the growth-rate of the phase modes. The growth-rate is z=ro at zero wavenumber due to
translational invariance. If it is negative in the long wavenumber limit, the phase perturba-
tion is damped: however. due to the coupling with amplitude modes, the growth-rate may
be positve in the long wavelength limit, thus describing a phase instability of the perfectly
periodic pattern.

In the case of model (6.5), long wavelength perturbations should be considered in the form

w(z,t) = up [x + $(X, T)] — $(X.T) + u (X, T). (6.10)
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This leads to phase equations of the form

0o _ .. p[de &0
or ~ " T |dx gxz
) (6.11)
Oy do 0%
ar =9 \|ox ax7

Thus phase-dynamics is second order in time, and propagative modes may result from the
coupling between the phases associated to broken translational and Galilean invariances.

Before we pursue phase dynamics further, 1t is worth pointing out that it is only useful for
secondary instabilities with wavenumbers much smaller than those of the primary instability.
In other words. we can only investigate variations of the underlying pattern which are much
larger in scale than the basic pattern wavelength. Furthermore, we had earlier said that
amplitude and phase ought to vary together, but here we have considered phase variations
in isolation. This turns out to be reasonable when the secondary instability 1s well separated
from the onset of the primary instability. In this case, the amplitude follows adiabatically
the phase-gradients. so no additional equation for the amplitude is needed. However, in the
vicinity of the primary instability, coefficients in the phase equation diverge, and we must
use the full amplitude equation instead.

Other symmetries besides translation and Gallilean invariance can be found in the basic
equations, but all symmetries do not, in general, lead to slowly-varying local dynamics, and so
are not amenable to the method of phase-dynamics. For example, rotational and dilatational
invariances, regardless how small the rate of transformation. both result in arbitrarily large
effects at sites sufficiently distant from the center. and do not lead, in general, to additional

phase modes.

6.3 Eckhaus Instability

6.5.1 Compression mode of a one-dimensional pattern

We considered stationary cellular instability earlier. and derived the amplitude equation,
that reads in the supereritical case with appropriate amplitude and r scales,

d4 8% 4
ﬁ = uA + 'a—X,—2 — ,AFA. (612)

Equation (6.12) has stationary solutions
Ay = Qexp(1gX) where Q® =4 - 42, (6.13)
that represent all the possible roll-solutions which correspond to the unstable band of modes

above the instability onset.
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stable
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Figure 6.1. Cellular Instability: Cellular patterns exist only for parameters within
the parabola.

We investigate the stability of these stationary patterns by perturbing their amplitude and
phase. thus writing
A=[Q+r(X,T) exp[gX + ¢(X,T)] (6.14)

in _guation (6.12). Expanding and separating real and imaginary parts yields

or &r 3¢ 1° 3
o7 =)+ 2L -0+ o+ 22| —1@+)
0¢ or d¢ 8¢

Q+rl5r =25x |¢ [ ax} ARFre

If we linearize in 7 and ¢. and use Q? = y — ¢°. we obtain

Jr 9 *r J¢
> Iy (6.15)
8T ~ "Qax ' ax:?

We consider modes proportional to exp(nt+ith X ) and get from equation (6.15) the dispersion
relation

n+2Q* + K* 2Q¢K

2%k g+ K770 (6.16)

which Las solutions

pK)=—(Q*+R?) £ /Q*+4K?%g

Thus. for small A'. we have two different branches:

- the “amplitude modes™. n_(k) = —2Q?% + O(K?)}, that are damped,



i
|

- the “phase modes™. y (K) = —R?(1 - 2¢2/Q?%) + O(A™), that are marginal. The phase
modes

a2 4
no(h) = - (Eﬁl_—:}é%_) K- Qr_-q—ﬁhﬂi + O(K*®) (6.17)

lead to an instability when

#~3g%\
Dy = <0
I (#—92}

so when ¢* < y < 3¢%: this is the Eckhaus instability. We can thus nest this secondary
instability curve in the earlier stability diagram.

rt: ?)q" A IA' /*._._/c\z

5lh.b[¢ rous

As B Eck‘lduﬁ

instabili }'7

> 9
Figure 6.2. Eckhaus instability diagram. The pattern generating primary instabil-

ity occurs inside the outer parabola. but the resulting pattern is stable only within
the inner parabola.

6.3.2 Nonlinear phase equation for the Eckhaus instability

We now derive the phase equation of the Eckhaus instability in order to describe pattern-
dyvnamics through the evolution of its slowly varying phase. As said above, this is possible
in the long wavelength limit because we have two types of perturbations with different

timescales (see Figure 6.3): adiabatic elimination of the amplitude modes leads to an evolu-
tion equation for the phase.
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Figure 6.3. Amplitude and phase perturbations have different timescales in the
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long wavelength limit.

For a better understanding, let us consider again the linear equations (6.15). For spatially
homogeneous perturbations, as already observed, the amplitude perturbation decays expo-

nentially whereas the phase perturbation ¢ is neutral. For perturbations slowly varying in
space. r 1s non-zero only because it is forced by phase-gradients; thus, the amplitude follows
adiabatically the phase-gradients, and the dominant balance in the evolution equation for r

in (6.15) is
d¢
20?2 ~ -9 _—

Substituting this into the phase equation of (6.15) we obtain

o6 _ ., _ 2 0 _ . &
ar ~ - ot)axe = Digxs

We see that the Eckhaus instability shows up as a negative diffusivity in the phase equation;
the small-scale flow generated by the primary instability, acts as a negative diffusivity for
large scale perturbations, when the primarv pattern wavenumber is far enough the critical

one.

The higher order linear terms of the phase equation can be obtained from higher order
balances in (6.13). or in a simpler way from the Fourier-Laplace transform of the small K
expansion of the dispersion relation {(6.17},

9o d%o ¢

ar = Pigxz T "ax

where x = 2¢*/Q°®. In the vicinity of the Eckhaus instability onset, Dy ~ 0, then & ~ 13;,

We next derive the leading order nonlinear term of the phase equation. Let us first see from
symmetry arguments what form the nonlinear term might have. Translational invariance,
* — r + z4. implies that the phase equation should be invariant under ¢ — ¢ + ¢o. This
precludes any terms explicitely depending on ¢ such as ¢? or ¢¢ . Reflection invariance
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(r — —z) implies © — — o, eliminating terms such as ¢ x ¢ x. The lowest order term possible
15 therefore o yoyy. The weakly nonlinear phase equation would then be (if the coeficient

of this nonlinear term does not vanish)

do 5% oo ¢ 0%*¢

ar ~ Piaxe " "axi 5% axt (6.18)

Factoring the diffusive term, (D +9¢x )ox x, we see that the nonlinearity acts as an effective
space-dependent diffusivity: however, we will see that it cannot compensate the negative
diffusivity in the unstable regime, and does not saturate the Eckhaus instability which is
thus a subcritical one whatever the sign of g. To find the coefficient g one can proceed
formally with a multiple scale expansion from the nonlinear equations for r and ¢. There
is however a much simpler procedure: we first notice that ¢ = pX is a paticular solution of
(6.18). that simply represents a homogeneous roli-solution of wavenumber k. + e(g + p); its
linear stability is thus governed by the dispersion relation

n=—Dy{g+p)R* + O(K?).
We can also compute n by linearisation of (6.18) near ¢ = pX: we get
n = - [Dy(q) + gp] K* + O(R™).

Identifying the two expressions to leading order in p, we obtain

_ 0Dy

We see that. at the Eckhaus instability onset (D) = 0), all the cefficients of the higher order
terms of the phase equation (6.18) diverge as yu — 0, showing that, as already mentionned,
the phase approximation becomes invalid, because near the primary cellular instability the
amplitude mode also becomes neutral and thus cannot be eliminated. The full amplitude
equation (6.12) should be used to capture the correct behaviour. However, one expects that
for long wavelength perturbations of rolls, the form of the phase equation (6.18) remains
valid along the Eckhaus instability curve. even for rather large values of r — r, out of the
range of validity of the amplitude equation.

Let us now analyse the behaviour of the phase equation (6.18) in the vicinity of the Eckhaus
instability onset. If we look at the linear dispersion relation for a mode exp (nT + 1KX) we
find (see Figure 6.4) that when D) < 0 there is 2 band of unstable modes for 0 < K < K..
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Figure 6.4. Dispersion relation for the phase equation.

We will focus on the neutral mode at K = K, since it is the first to go unstable ir an
experiment with periodic boundary conditions (the first unstable mode is such that K, =
2n/L, where L is the size of the periodic domain). The finite geometry thus delays the
instability until D = —|D,| when the mode K, becomes neutral. The pattern is then
unstable to the compression mode of wavenumber K,; let us now study the finite amplitude
pehaviour of this mode.

We obtain this amplitude equation as usual, by inserting a mode
¢ = a(T)exp (tA.X)+ ce.

The resulting equation for a(T) is

da

- = -{Dy - DOAR?a+ Q%QZI\'E[GIQG.

We see that there is no stabilization from the nonlinear term (since its coefficient is positive).

This is shown on the bifurcation diagram (Figure 6.5).

4 1ol

S G —

° ~{y~ Dy)

Figure 6.5. Bifurcation diagram of Eckhaus instability
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Thus linearly stable rolls (D > D.) can be nonlinearly unstable to finite amplitude pertur-
bations. a localized compression or dilatation of the pattern for instance. We will evaluate
the critical size of the perturbation that generate the finite amplitude Eckhaus instability;
this is analogous to a nucleation energy in first order phase transitions.

We look first for stationary solutions of the phase equation (6. 18). Setting 8¢ /8T = 0, we

obtain by integrating (6.18)
2,

v g 9
- — % 4 6.19
where ¥ is the phase gradient,
_ O¢
v= ax’

1. e. the variation of the local wavenumber, and A is a constznt of integration related to the
wavenumber at infinity. We can recast the problem as the motion of a particle of mass % in
a potential /() such that

AT

OX% — dy (6.20)
, Dy, g,
Uly) = de - Syt - L0,

The potential " can be simplified by eliminating the quadratic term with ¢ = ¢ + Dy/g to

obtain )
. D . -
Uly)-Uy = ()\ + —E) Y- Ews,
29

where Uy is a constant. This potential is indicated in Figure 6.6. The solutions are graphically
obvious but it should be recalled that these correspond to the X dependance of steady
solutions. Nothing has been said as yet about their stability. We have two stationary
solutions homogeneous in space (points A and B in Figure 6.6), and oscillatory solutions
around B that represent patterns with a periodically modulated wavenumber. One solution
of particular interest is the limiting solitary wave solution. where one imagines the particle
travelling from the local maximum to the left and taking an infinite time to return. This
motion is shown in Figure 6.7 and we see that it corresponds to a localized compression of
the rolls.
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Figure 6.6. Potential well of stationary solutions of the phase equation.

- e Ecgt;qus
T

Figure 6.7. Solitary compression wave in the roll pattern.

We now try to find a Lyapunov functional in order to study the stability of the above

stationary solutions. To wit we multiply equation (6.18) by 8¢/3T and integrate over a
wavelength in X . Integrating by parts we obtain

LGy e-

Thus,

d . _ d [“[Dyae\* %6\ g [0\ Lo\’
7’ =7 {tr(‘af) (5) *8(3%) | #=-] (57) ex <o

Flo(X,T)] is decreasing during the phase dynamics but is not a proper Lyapunov functional
because it is not bounded from below. Moreover, we should take into account an additional

constraint imposed by the conservation form of the phase equation (6.18) or of the equation
for the phase gradient y

Disx 5xar ~ "axarane X | axar

2 3 2 2 o2
26 8¢ 3¢ a¢“%(a¢) a¢]dx_

o x

O P
o7 = axz | P " axe

(6.21)
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This imposes the constraint

d
5 [¥dX =0 (6.22)

on the evolution. i. e. the conservation of the mean wavenumber. Therefore, the form of the
phase equation shows that a pattern cannot evolve by continuously changing its wavelength.

When Fl¢(X,T)] has a local minimum, we can study the dynamics by minimising this
functional where the above constraint enters with its Lagrange multiplier A,

L D s 2
}“A=/ [—,,—”zb% (aﬂ) +§u‘)3—/\¢} dX.
, |2

oxX
fA:/L E(g’fi)z—U(w) X, (6.23)
. |2 \ax

and. to minimize Fy, we should maximize /. This means that the local maximum of U in
Figure 6.6 is metastable whereas the local minimum is unstable. Indeed, points A and B in
Figure 6.6 correspond to the same points on the Eckhaus stability diagram (Figure 6.2). Note
that the oscillatory solutions about B are unstable. The solitary wave solution represents
the “critical nucleus”, i. e. the critical localized perturbstion to the linearly stable pattern
representcd by A. that generates the finite amplitude Eckhaus instability. The corresponding

1 I

Thus.

value of F) minus its evaluation for the homogeneous stable pattern, represents the “energy
barrier” of a pattern changing process from the homogeneous pattern A; this barrier vanishes
at the linear Eckhaus instability onset. These points will be further covered next by studying
the amplitude equation (6.12) directly.

6.3.3 Localized solutions of the one-dimensional Ginzburg-Landau equation

We now investigate in more detail the the amplitude equation (6.12). We first rescale the
time scale so that (6.12) can be written as

0% 4

Ap=+4
r=xt e

— |44, (6.24)

where the plus or minus sign corresponds to the sign of 4. As already mentionned in lecture
9, (6.24) is a variational problem, i. e.

2

d L1oa
ﬁﬁ[.‘l] = —2/0 '(‘9? dX S 01
. ) (6.25)
0A 1
E‘*l:/ — F |47+ Z|A® dX.
A= [ax AP+ 514
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The Lvapunov functional £ is a decreasing function and has a minimum value for the homo-
geneous solution (Ay = 0) that maximizes U(A) = £4% — 1 A*. For u < 0, the stationary
solutions of (6.24) are

A = Qexp (1gX), with Q% =1 — ¢2, (6.26)

and the Lyapunov functional (6.25) may be rewritten as

L
L= Ilg)dX,
/0 (q)

where )

(g) = -3¢’ - 1)

We check that the periodic pattern with the critical wavenumber k., i. e. ¢ = 0, correponds
to the absolute minimum of /(¢}. The inflection points of I(q) correspond to I"(g) = —2(3¢* —
1) = 0, which is the Eckhaus instability limit ¢& = 1/3. In solid state physics {(g) is the free
energy density and {"(¢) < 0 corresponds to negauve compressibility. Thus, the Eckhaus
instability corresponds to a negative compressibility of the periodic pattern (Figure 6.8).

Eard

Figure 6.8. Plots of u(gq) and I(q)

We now investigate the wavenumber changing process. Substituting A = Re'?® into the
amplitude equation (6.24) and equating real and imaginary parts we get

’R 9% \*
R g gl —R(—'p) ,

oT gxX* ax / (6.27)
d¢ _ ,OR 0¢ 99
Ror =*axax " "ax?
For stationary solutions the second equation gives
29 _ (6.28)

ax
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where h is a constant. This conservation of “angular momentum” arises from the rotational
invariance of the amplitude equation. The constraint (6.28) is the reason why the pattern-
wavenumber changing process cannot occur by homogeneously modifying the wavenumber
at constant amplitude.

Substituting (6.28) into (6.27), we get for stationary solutions

0*R

3% = ~R+ R* + R?/R®,
which is of the form 52 5y
1 _1"7 - _E? (6.29)
V(R) = §R2 - ZR4 + 5pE

thus corresponding again to the motjon of a particle in the potential V(R) (Figure 6.9 a).
Bounded solutions exist for h? < 4/27; the two extrema Ry of V correspond to homogeneous
stationary solutions. such that

h* = R4(1 - R%).

Their stability can be determined using the Lyapunov functional (6.25); R, is the stable
sclution corresponding to the point A in Figures 6.2 and 6.6, and R_ is the unstable one
corresponding to B.

— R

Figure 6.9. Potential well VIR) for stationary solutions of the amplitude equation
(6 24) and corresponding phase-space

describes a localized compression (or dilatation) of the pattern, already found within the
phase equation approach. The constraint (6.28) shows that the amplitude R decreases in
these regions. When the localized compression (or dilatation) of the pattern is too large,
the amplitude vanishes and this allows the anihilation {or creation) of pair of rolls; this
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wavenumber changing mechanism involves length-scales comparable to the wavelength of
the primary pattern. and is out of the range of validity of the amplitude equation (6.12) or
of the phase equation (6.18). However, we were able to obtain the qualitative behaviour of
the Eckhaus instability from these long-wavelength approximations.

6.4 The zig-zag instability

6.4.4 Torston mode of a one-dimensional pattern

Like the Eckhaus instability, the zig-zag instability, shown in Figure 6.10 is associated with
the broken translational invariance which a stationary roll-solution exhibits. In this case
however the perturbation to the rolls is a transverse one, and can be writen in the long
wavelength limit,

wz,y.t) =uofz + &Y, 1) +ur (X, Y, T). {6.30)

4

Figure 6.10. The form of the zig-zag instability: unperturbed rolls (dashed lines)
and zig-zag mode (solid lines).

To investigate the dynamics of this torsion mode in the framework of the amplitude equation,

94 o 1 &\ 2

we should use

obtained in lecture 5.
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— X

Figure 6.11. The effect of rotation of the roll planform

Figure(6.11 shows that rotation of the rolls leads to a decrease in the wavelength of the
pattern, and hence an increase in the wavenumber. The zig-zag mode locally corresponds
to a rotation of the pattern. so we can deduce that it will result in a local increase of the
wavenurnber. Referring to F igure 6.8, we see that for ¢ < 0 an increase in ¢ corresponds
to a decease in l{qg). the Lvapunov functional, so in this region the pattern is unstable to
zig-zar perturbations. However, for ¢ > 0, l(q} increases as ¢ increases, demonstrating that
the pattern is stable to local rotations. The zig-zag instability thus occurs for k < k. in the
framework of (6.31). Indeed, if we look for a perturbation varying slowly in y,

A=1Q+r(¥,T)] exp ifgX + oY, T),

we get to leading order

d¢ ¢ _ 9
ﬁ_"_DLE}Ti where D_L'—E

6.4.5 Nonlinear phase equation for the zig-zag instability

Using symmetry considerations, translational invariance, that implies the invariance under
¢ — @+ ¢, r-reflection synunetry, that implies the invariance under the transformation
XA — —-X,0 — —0. and y-reflection symmetry, that implies the invariance under the trans-
formation ¥ — —}". we obtain to leading nonlinear order, the phase equation

do 8o o o \* 829
9o _p 90 8 gy 99 6.32
o7 =~ Pigvr rye v (ay) oY 2 (6-32)

Note the scaling ¢ ~ O(1), contrary to the Eckhaus instability where ¢ should be small.
Rearranging (6.32) results in

9o s\ %6 o'
—:[Dﬁg(*) JW‘“W'
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Now, D, < 0 for instability; if the instability is to be saturated, the effective diffusivity
must be positive, and hence g must be positive. Let us compute g, using a similar method
as for the Eckhaus instability: first, note that ¢ = pY is a particular solution of (6.32) that
corresponds to a tilted roll pattern. Writing, ¢ = pY + ¢, and linearising in ¢, results in

o2 )
_ ney'e g
_BT =(DL +gp )ayz Ka}hl'

However, the tilted roll-solution is simply another roll pattern with a new wavenumber, ¢’
where ¢' = ¢ + p?/2k.. So we can also write

’é 24

—_— = DJ_(q )3}/'2 - Kay'4,

and matching the two previous equations gives

18D, 1
Y= %. 8¢ " uT

Hence ¢ > 0, and the zig-zag instability is supercritical in the framework of the amplitude
equatton {6.31).

We now use the phase equation (6.32) to study the pattern generat.d by the zig-zag insta-

bility in the supercritical regime. [f we let ¢ o« exp (nT + tKY') and linearise about ¢ = 0,
we obtain ‘

n=-D1K? - kK1,

This dispersion relation is similar to the one of the Eckhaus instability (see Figure 6.4;
it might be thought that the mode with the maximum growth-rate, k,qz, corresponds to
the characteristic length-scale of the zig-zag instability in the supercritical regime, but a
nonlinear analysis will show that this is not so.

The stationary solutions of {6.32) satisfy

Oy

_ T Y 93

A= Do~ nat 4 Iy,
where 8
zﬁ:g};!

is the phase gradient, and ) is a constant of integration related to the wavenumber at infinity.
This can be writen

O du
or: — dy (6.33)
U(y) = Ap — Dty Ly,
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showing again that the determination of the stationary solutions amounts to find the trajec-
tories of a particle of mass » in the potential well U(y). We look for a Lyapunov functional
in order to determine their stability ; multiplying (6.32) by 8¢/8T and integrating by part

gives .
L ,
Ly / 2\ 4y <o
dT o \OT
Lieow? D (6.34)
K oy L 2 g 4
= e =¥+ = dY.
F /ﬂ [23}. + by +12¢}
Thus, (Y, T)] decreases; however, the governing equation for ¥ has a conservative form
v B g 5 0%
3T = 372 [D_Ll./) + -3-1,[: - Kc?)”} (6.35)
which implies the constraint
d L
—-— dY = .
dT/o (4 0 (6.36)

on the phase dynamics. Thus, A appears like a Lagrange multiplier, and we have to minimize
L 2
Kk Oy )
Fi= - =-U dY.
= [ e -vw)

If we start from rolls perpendicular to the z-axis, i.e. ¥ = 0. in the unstable regime, D, < 0,
we can take A = 0 and the potential U(%) is symmetric {Figure 6.12).

1‘U

Figure 6.12. The potential (1) for D < 0and A =0

The fastest growing mode is the one with wavenumber k,,,, and generates a wavy pattern as
the one displayed in Figure 6.10. This pattern corresponds to an oscillatory solution about
¥ = 0 in the potential well of Figure 6.12; thus it is unstable. The stable pattern which
satisfies the constraint (6.36) corresponds to the limiting solitary-wave solution that connects
the two opposite values v = im , i.e. two sets of rolls with different orientations,
symmetric with respect to the y-axis (see Figure 6.13). Note that this solution cannot be
observed if we assume periodic boundary conditions in Y; the dynamics lead to a two-kink
pattern in that case,
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N

Figure 6.13. The solitary wave solution selected by the system to preserve the
mean value of w

Thus, in the nonlinear regime, the zig-zag instability generates the largest possible domains
with parallel rolls, compatible with the mean wavenumber conservation and the constraints
related to boundary conditions. Although the Eckhaus and the zig-zag instabilities have
stmilar dispersion relations, their nonlinear dynamics are different: the linearly unstable
perturbations cascade to short scales in the Eckhaus instability, whereas larger and larger
dornains are created during the nonlinear evolution of the zig-zag instability.
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7. Drift Instabilities of Cellular Patterns

7.1 Introduction

Another type of secondary instability that occurs in many systems is the “drift instability”.
After a first bifurcation to a stationary cellular structure, ug(z), further increase in the
bifurcation parameter generates a secondary bifurcation to a traveling pattern of the form
up(z =+ ct). The motion of the pattern in one of the preferential directions, +z, breaks
the space reflection symmetry. As we observed in lecture 5 (model (5.14)), a stationary
bifurcation may generate a traveling pattern at onset when the system is not invariant
under reflection symmetry z — —z. Here. we consider systems which are invariant under
reflection symmetry and give rise to a symmetric primary pattern; the reflection symmetry
1s spontaneously broken at finite amplitude when the static pattern undergoes the secondary
drift bifurcation.

Drift instabilities of cellular patterns have been widely observed in various experimental sit-
uations. Couette flow between two horizontal coaxial cylinders with a paftially filled gap
(Mutabazi et al.. 1988), displays transitions from stationary to traveling rolls : as clearly
noticed, the traveling rolls are tilted and the direction of the propagation is determined
by this asymmetry. The traveling-roll state is either homogeneous in space, or there exist
domains of inclined rolls with opposite tilt and thus opposite propagation direction. Sim-
ilar results have heen found recently in a film draining experiment (Rabaud et al., 1990).
Drift instabilities have been also observed in directional crystal growth experiments. Above
the onset of the Mullins-Sekerka instability of liquid crystals, "solitary modes” propagat-
ing along the interface have been observed (Simon et al., 1988). These "solitary modes”
consist of domains of stretched asymmetric cells that connect two regions with symmetric
cells. Similarly, domains of tilted lamelae moving tranversally along the growth front have
been observed during directional solidification of eutectics (Faivre et al., 1989), and the re-
lationship of the tilt direction to the one of propagation has been also emphasized. Finally,
a drift instabilitv was observed recently for a standing surface wave excited parametrically
in a horizontal layer of fluid contained in a thin annulus, submitted to vertical vibrations
(Douady et al., 1989). It was observed that, as the driving amplitude is increased, the stand-
Ing wave pattern either begins to move at a constant speed in one direction, or undergoes
an oscillatory instability that corresponds to a compression mode of the periodic structure
(i. e. a wavenumber moduiation in space and time).



On the theoretical side. it is interesting to note that a secondary bifurcation that transforms
a stationary structure into a traveling one has been predicted by Malomed and Tribelsky
(1984) before the experimental results quoted above. They used a Galerkin approximation for
model equations of the Kuramoto-Sivashinsky type, and pointed out that the drift instability
arises in that case from the coupling between the spatial phase of the basic structure with
the second harmonic generation. Recently this bifurcation was understood in a more general
way from symmetry considerations {Coullet et al., 1989). Finally, a drift instabilty has
been observed by numerical integration of the Kuramoto-Sivashinsky equation (Thual and
Bellevaux, 1988).

We first propose a model that describes the drift instability of a stationary cellular pattern.
We then show that a drift instability of a standing wave, as the one observed in the Faraday
experiment, can be understood as a secondary bifurcation described by the evolution equa-
tions for the amplitudes of the right and left propagating waves (equations 5.39). In all cases,
we will show that the basic mechanism consists of the coupling between the spatial phase
6 of the primary pattern, with the order parameter V associated with the space-reflection
broken-symmetry, and we will give the general governing equations for the drift bifurcation.
The notations should be considered indenpendently in each section except in section (7.3)
and (7.4).

T.2 A drift instability of stationary patterns

In their Galerkin approximation of a model equation, Malomed and Tribélsky found that
the drift instability occurs when the second harmonic of the basic pattern is not linearly
damped strongly enough. We thus consider a situation where two modes k and 2k interact
resonantly,

u(z.t) = [4(X,T) exp (thz) + c.c]ug + [B(X, T) exp (Zikz) + c.cluge + - (7.1)

From symmetry argument (translational invariance in space), the evolution equations for A
and B read, to third order.

A -

04 _ ud ~ AB - a|APA - B|B*A

a%r (7.2)

o =vB + A’ —4|A’B - §|B|’B.

57 vB + v|4] |B|
The quadratic coupling terms describe the resonant interaction between the modes k and 2k.
Their coefficients can be taken equal to ¢ = 1 by appropriate scaling of the amplitudes; the
coefficient of AB can be taken equal to —1, making the transformation u — —u, if necessary.

Positive values of a, 3, v and 6 ensure global stability. The bifurcation diagram of equations



(7.2) have been studied by several authors in the context of resonant wave interaction (see for
instance, Proctor and Jones (1988) and references therein). We thus refer to these papers for
the mathematical aspects and discuss equations (7.2) in the restricted context of the “drift
bifurcation”.

Writing
A = Rexp (1¢), B = S exp (19), L=2¢-8,

we get from (7.2)
OR

57 = (4= aR? = B5*)R ~ RS cos T (7.3a)
a8 2 2 2 w

7 =(v—vR" - 85°)S+eR*cos T (7.3b)

S = (25 - s%) sin T (7.3¢)

% = Ssin T (7.3d)

In the context of our study we must take v < ( (the second harmonic is linearly damped)
and increase the bifurcation parameter #- When y becomes positive, the null state bifurcates
to an orbit of stable stationary patterns related to each other by space translation:

R =R, #0. S =5 #0, E=3%3=0, and ¢ arbitrary.

A cellular pattern drifting with a constant velocity, corresponds to :

IR as oxr O¢

3T = 0, 5F = 0, BT — constant # 0.

This implies 25 — ER:’/S = 0, and thus ¢ = 1. So the coefficients of the quadratic terms
must have opposite signs in order to observe the drift instability. Note that this means
that the second harmonic does not enhance the stationary instability near onset ; indeed,
for 4 ~ 0 and v < 0. B follows adiabatically 4 (B o« A?), and the quadratic terms of
equation (7.2} contributes to saturate the primary instabilitv. The stationary pattern is
destabilized when 25, + R3/Sy vanishes as 4 1s increased. This happens if the condition
1+ v(2y 4+ 8) > 0 is satisfied, which corresponds to the condition that the second harmonic
1s not strongly damped (Jv] not too large). The system of equations (7.3 a, b, c) then
undergoes a supercritical pitchfork bifurcation. The two bifurcated stationary states are
such that R}, = 25}, © = 4%, # 0. Above the instability onset, ¢ increases linearly in
time according to equation (7. 3 d). As noted earlier, this state represents traveling waves .

The bifurcation from the stationary pattern to the traveling one has the following charac-
teristics: Its order parameter, T = 24 — 8, undergoes a pitchfork bifurcation that breaks
the basic pattern reflection symmetry. The coupling with the basic pattern spatial phase ¢
induces the drift motion according to equation (7.3 d), and the direction of propagation is
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determined by the sign of ©. Thus the mechanism described by Malomed and Tribelsky for
their model equations appears to be a general one. We expect that this k - 2k interaction
mechanism is relevant for most of the experiments quoted above.

7.3 The drift instability of a parametrically excited standing wave

Let us now consider the drift instability of a standing surface wave, generated by parametric
excitation in a horizontal layer of fluid contained in a thin annulus, submitted to vertical
vibrations (Douady et al., 1989). It was observed that, as the driving amplitude is increased,
the standing wave pattern. either begins to move at a constant speed in one direction, or
undergoes an oscillatory instability that corresponds to a wavenumber modulation in space
and time. We first consider the drift bifurcation and discuss the oscillatory instability next.

Close to the onset of instability, we write the surface deformation in the form
{(z.t) = A(X,T) exp t{wt — kz} + B(X,T) exp i(wt + kz) + c.c. + -+ -, (7.4)

where A and B are the slowly varying amplitudes of the right and left waves at frequency
w = w,/2, where w, is the external driving frequency. The equations for 4 and B are at
leading order (see lecture 3),

2
A b e 2h _(atiA+uB+adl L (Bl +4|BP)A
oT = 9X 0X? (7.5)
9B 0B | N '
— —c=—=(-A+iv)B+pd+a + (BIB)® + v|Al")B,

0x?
where A is the dissipation (A > 0), v corresponds to the detuning between the surface wave
frequency wy and w. /2. u is proportional to the external forcing amplitude. The imaginary
parts of # and + describe the nonlinear frequency variation of the wave as a function of the
amplitude, whereas the real parts correspond to nonlinear dissipation. a; corresponds to
dispersion.

When p > 0, a standing wave regime is observed. To analyze its stability we write,
A=exp{S+ R)expi(O+ &) and B =exp (S — R) exp i{(© — &),

and get from equations (7.3) for spatially homogeneous waves :

N

3T = —A+cosh 2R [ucos 20 + (B + 7+ ) exp 25] (7.6a)

5;_? = v + cosh 2R [—usin20 + (B, + v,)exp 25] (7.60)
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%;i = sinh 2R [~p c0s 20 + (B, — +,) exp 25] (7.6¢)
a¢ | .
3T = sinh 2R [1sin20 + (3; — v )exp 25]. (7.6d)

© and ¢ are respectively the temporal and spatial phases of the pattern. Note that the
equation for ® decouples, because of the translation invariance of the system in space. The
standing-wave solutions correspond to (Sg, 0y, R = 0). Their stability with respect to spa-
tially homogeneous perturbations is simple to investigate from equations (7.6). We assume
Br + v < 0 and the detuning small enough (|v| < Al3r/Bil). Then, perturbations in S and
O are damped. Perturbations in R and ¢ obey the equations,

g—; =214+ 28,exp25] R+ - (7.7a)
IR

— =2 2 X 2 7'76
3 2[-A+23,exp2S) R + (7.76)

When the standing wave pattern amplitude exp(Sy) is small, R is damped and the standing
wave pattern is stable. As the driving amplitude is increased, So increases and R becomes
unstable for exp (25,) = A/28,, provided that 3, > 0. A non zero value of R breaks the
I — ~I symmetry (see equation (7.4) and the expressions of 4 and B versus S,R,0,%).
Thus R is the order parameter of the "drift bifurcation” for this standing wave problem.
The coupling with the spatial phase ¢ generates the drift (7.7 a). The structure of the "dnft
bifurcation” is thus similar to that described previously for stationary a pattern. However,
higher order terms in equations (7.7) show that the "drift bifurcation” is subecritical in this
case. One can easily check this by noting that the drifting solution of equations (7.6),
-g% = %% = -g% =0, g—; # 0, exists for exp (255) < A/28,, i.e. only before the onset of the
drift bifurcation. But additional terms of the form |Al*A, [B|*B, can stabilize the drifting

solution, and even make the drift bifurcation supercritical.

7.4 The drift bifurcation

We observed in the above examples that the drift bifurcation consists of a secondary insta-
bility of the basic pattern that spontaneously breaks its reflection symmetry z — —z. The
eigenvalue A of the corresponding eigenmode u, () vanistes 1t the bifurcation. However, we
have a persistent zero eigenvalue associated with translational symimetry; the drift instability
results from the coupling between the reflection symmetry-breaking amplitude mode, and
the phase mode associated with translational invariance. In the vicinity of this instability
onset, we write

ulz.t) = uolz + &(X. )] + V(X,T) uplz) + - (7.8)

-
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and look for coupled equations for ¢ and V. The form of these equations is given by symmetry
arguments, translational invariance in space (¢ — ¢ + &), and space reflection symmetry
(£ — -z, — -9, 1" — —V). We get to leading orders in the gradient expansion

8¢

3T — v, (7.9a)
AV 56 OV 0 oV 3¢ 8¢
—_— = AV -3 —— o+ h—— V 1% h T
3T e T T Vax 9V ax thax e t (7.96)

Higher-order terms in equation (7.9 a) can always be removed via a nonlinear transformation
(Fauve et al. 1987). (The coefficient in equation (7.9 a) has been scaled in V). If the
coefficients, a, b are positive. the V' = 0 solution first bifurcates when A vanishes and
becomes positive. The homoseneous drifting pattern, V5 = £/, ¢g = VoT, bifurcates
supercritically; however its stability to inhomogeneous disturbances of the form exp (nT +
1K X}, is governed by the dispersion relation,

N’ + (24 —iKgVp + bE®)n — iK fVy + aK? = O(K?), (7.10)

that shows that the term fV9¢/3X destabilizes the homogeneous pattern independently of
the sign of f. This may appear somewhat surprising, because at the drift instability onset,
one bifurcates from the linearly stable static pattern to the linearly unstable static pattern
whithout appearence of stable drifting patterns; this behaviour traces back to the existence
of subcritical localized traveling solutions of equation (7.9), that describe localized drifting
regions with tilted cells, widely observed in most experiments. Thus, even when the the drift
bifurcation is supercritical if one only considers homogeneous patterns (as in section 7.2 for
instance), the coupling term fV8¢/8X makes it generically subcritical when no restriction
1s 1mposed.

Another experimental observation can be understood in the framework of equations (7.9):
1t is the stationary pattern wavenumber selection often observed as the control parameter 1s
increased. In most of the above quoted experiments, it is observed that a pattern wavenum-
ber modification occurs by nucleation of a transient drifting domain that generates a phase
gradient, say K, and leads to a new periodic pattern of wavenumber k + . Indeed, V' = 0,
¢ = Kz, is a particular solution of equations (7.9), for which the damping rate of pertur-
bations in V' is A + fA. Consequently the drift of this new pattern is inhibited if fK <0,
for [K'| > A/f. The new periodic pattern thus remains stationary because of wavenumber
modification. Within the framework of the model of section 7.2, this stabilization mecha-
nism is associated to the increase of the second harmonic damping rate when the pattern
wavenumber is increased.



7.5 Oscillatory phase modulation of periodic patterns

As said above, an oscillatory phase modulation of periodic patterns is observed as a sec-
ondary instability of parametrically generated surface waves (Douady et al., 1989). After
this instability onset, the position of the wavecrests is modulated in space and time by a
standing wave. This oscillatory instability is observed close to the “drift bifurcation” in the
experimental parameter space. The numerical integration of equations (7.5) has shown that
this oscillatory instability corresponds to a standing wave modulation of the basic pattern
spatial and temporal phases, in agreement with the experimental observations.

We show that the coupling that generates the "drift bifurcation” is also a. possible mechanism
to describe phase modulation of periodic patterns, if the order parameter 1" is destabilized
at a finite wavenumber. We consider equations (7.9), that govern the space dependent per-
turbations of the basic periodic pattern, with A >~ —Xo, Ay > 0. Thus, the standing pattern
is stable with respect to homogeneous perturbations. The growth rate of a perturbation of
the form exp (nT + 1A' X), is governed by the dispersion relation,

7’ + 7 (=X +bK?) + aRK? = o( K2\, (7.11)
A -~ "1
- ™7
- -
S5 V2 . > K
_xo Re”’

Figure 7.1. Perturbation growthrate as a function of the wavenumber of the
oscillatory instability (a > 0. b < 0).

Stability at short wavelength requires higher order terms (fourth order gradients). For a > ¢
and b < 0 an oscillatory instabilty occurs first. The corresponding growthrate is displayed on
figure 7.1; it shows that the oscillatory instability results from the interaction of the neutral
mode, because of the translation invariance in space, with the slightly damped, reflection
symmetry-breaking mode associated with the " drift bifurcation” before its onset value. An
instability leading to a stationary modulation of the basic pattern wavelength can occur for
a<0andb>0.
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We have thus shown that a variety of recent experimental observations of periodic pattern
secondary instabilities, can be understood in a simple framework : the coupling of the
neutral mode associated with translational invariance in space, with a reflection symmetry-
breaking bifurcation. Note that a similar singularity, with two zero eigenvalues at a secondary
instability onset, occurs for the oscillatory instability of convection rolls and leads to traveling
waves that propagate along their axis, although the underlying physical reasons are different
(Fauve et al., 1987). Let us finally mention that the secondary instabilities described here fit

in a general classification, proposed recently on the basis of symmetry arguments (Coullet
and looss, 1989}, but the present approach gives simple physical mechanisms that do generate
these secondary instabilities.
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8. Nonlinear Localized Structures

8.1 Different types of nonlinear localized structures

Nonlinear interactions usually transfer energy to higher harmonics, thus making steeper a
wave-front. Nonlinear effects can be balanced by dissipation; this is usually the case for
shock waves. Let us consider a simple example, the Burgers equation
a a a*
2 p2L = V—-—-g. (8.1)
ot Ox Oz
We look for a traveling solution of the form p = p(z — ct), that connects two constant values
of p, p; and p; for z — +oo. (8.1) becomes

—cp' + ppf - Up".

Integrating once yields

1
—cp + -2-p2 — vp' = constant,

and consequently
c= P12
—
Thus, although the shape of p(z — ct) depends on the dissipation v, this does not affect the
shock velocity that depends only on the jump in p-

In conservative systems nonlinear effects may be balanced by dispersion: this is the basic
mechanism that gives rise to solitary waves. We have already considered soliton-solutjons of
the nonlinear Schrédinger equation, and note that they can travel at any velocity because of
Galilean invariance. This is not of course the case for all solitary waves; consider for instance
the Sine-Gordon equation

FPu Py
W = -8?5 — s u, (82)

which has kink type solitons of the form

(8.3)

u(z,t) = +4 tan ™! [expz——-—ﬂ;cf]

v1-¢2
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Unlike the solutions of the nonlinear Schrédinger equation, there is a speed limit 1 for the
solutions (8. 3). However, there is a more important characteristic, associated with the

discrete symmetry
u - u + 2nnw,

of the Sine-Gordon equation; the soliton solution (8.3) can be considered as a localized
structure, connecting in space two states u = 0 and u = 27, related by this discrete
symmetry transformation (Figure 9.1). This is called a topological soliton.

V|
A PR\

Figure 8.1. A kink soliton of the Sine-Gordon equation

Similar type of localized structures, from the symmetry point of view, exist in phase tran-
sitions or in patterns generated by instabilities; they are called topological defects. As we
already mentionned, the amplitudes of unstable modes are analogous to order parameters
in phase transition theory; indeed, a non zero amplitude is associated with the broken-
symmetry at the instability onset. Thus, in the supercritical regime, it is natural to call
defect, a region in space where the amplitude vanishes. A defect is said topologically stable,
when a slight perturbation of the amplitude in space or time does not affect its characteristic
shape (for instance only slightly translates it in space). We will only illustrate this concept
with very simple examples (for a review, see Mermin 1979).

Let us consider the Ginzburg-Landau equation (5.16) for a real one-space-dimensional am-
plitude R(X,T)

dR &R 3
The broken symmetry at the instability onset (u = 0) is the R » —R symmetry. Cor-
respondingly, there exist two homogeneous solutions, Ry = /i, that are related by this

symmetry transformation. The space-dependent solution,

R(X) = tanh (\/gx)

connects these two solutions (Figure 8.2); it is a topological defect.
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pR JE

E

Figure 8.2. A topological defect for the real one-space-dimensional Ginzburg-
Landau equation

This solution also exists for the complex Ginzburg-Landau equation,

g‘% =puA+AA- AP A (8.5)
However, it is not a topological defect since one can easily remove it with phase perturbations.
On the contrary, for a two-space-dimensional field, A(X,Y,T), there exists topologically
stable point defects. Indeed, the complex amplitude A(X,Y,T) vanishes if its real and
imaginary parts vanish; at a given instant, Re A(X,Y,T) =0 and Im A(X,Y,T) = 0 define
one-dimensional curves in the X —Y plane, that generically intersect at a point (Figure 8.3).
If one slightly perturbs A(X,Y,T), these curves move slightly and so does the defect, but it
remains unchanged. Similarly, for a three-space-dimensional field, A(X Y, Z,T), topological
defects of the complex Ginzburg-Landau equation are lines.

YA \

\
1 ReA=0

‘\ImA'-‘-O
> X

Figure 8.3. The location of a topological defect for a two-space-dimensional
Ginzburg-Landau equation
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If equation (8.5) is modified to

%A =pAd+ AA+ AP A— A" 4, (8.6)
the bifurcation becomes subcritical. The interesting new feature is bistability; indeed, it is
clear from the bifurcation diagram displayed in Figure 8.4 that two stable states coexist for
# negative. Obviously, these two solutions are not related by a symmetry transformation,
but we can also consider an interface that separates in space these two stable states, or a
droplet that consists of a region in one state surrounded by the other one. In a system with
a Lyapunov functional, i.e. a free-energy, the interface moves such that the lowest energy
state increases in size. Contrary to the situation with shock waves, the interface velocity
does not depend only on the energy difference between the two homogeneous solutions, but
also on the shape of the interface. With non-variational systerns, interesting new phenomena
occur (see section 8.3).

|A14 |ALA

e [ —_—
N
/% —fm

Figure 8.4. Bistability and localized structure in the vicinity of a subcritical
bifurcation

= X

8.2 Kink-dynamics

We consider equation (8.4) in the supercritical regime (4 > 0); chosing appropriate time,
space and amplitude scales, we get

OR 9 0*R
%—QR(I—R)ﬁ-g)—{—Z. (8.7)
This equation admits a kink type solution or defect,

R =tanh X.

Consider a solution consisting of several kinks (Figure 8.4). Such a solution is unstable
because the neutral translation mode, R/0X, has a node; the only stable solution is the
one with a single kink. What is the time evolution of such unstable structures? An interesting
approach is to consider many topological defects, far one from the other, as a “gas” of such
kinks and write an evolution equation for their density.
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Figure 8.5. The two-kink solution (8.8)

We first derive an equation describing the interacticn of two kinks that are far apart. Let
us seek a solution in the form

R(X,T) = R, [Xy(T)] Rz [X2(T)], (8.8)

where

RJ‘ [X.(T)] = tanh [X - X;‘(T)] (8.9)

and j is 1 or 2. Substituting (8.8) in (8.7) we obtain the equation
—X,R\R; — Xa R R, = 2R, Ry(1 - R3R2) + RVR, + 2R\R, + R\RY, (8.10)

where a dot denotes time derivative and primes denote differentiation with respect to X; or
X;. By direct differentiation one can verify that

R, =1-R?
R! = —2R(1 - R?).

At X = X(T) we have R; =0, R, = £1 and R; ~ +1. Substituting X = X; in (8.10) we
derive the equations of motion for the kinks

X, ~2 [I—Rg(Xl)] ~2exp(-2|X; —-X;|)

. \ (8.11)
X2 = ~2 [(1 - R}(X;)] = —2exp (-2} X; — X, |),

which show that each kink feels the effect of the exponentially decreasing tail of the other
at large separations. We can generalize this to consider the interaction of many kinks in the
nearest neighbour approximation:

Xi~2 exp (=2 | Xiy1 — Xi|) —2exp (-2 | X — Xi, |)- (8.12)

Define
pi =exp (-2 | Xipy — X |). (8.13)
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Then —1/logp; is the “kink density”. Taking the logarithm of (8.12) and differentiating with
respect to time, we have

pi = =2AXip1 - Xi)pi, (8.14)
and on using (8.11) and (8.12),
pi = ~4pit1 — 2p; + Pi-1)pi. (8.15)

Finally, passing to the continuum limit, we have the equation for a “rarefied kink gas”

dp &Fp
52: = —SPB—X—'*" (816)

together due to mutual attraction. [Let us consider a train of kinks, equispaced with a
distance a apart, Then, X!Pl - X,-(u) = a, where the superscript zero denotes the initial

state. Setting, X; = X‘.(O) + ui, and looking for normal modes, u,  exp (5T — tKna), we
have

n = 16" sin*(Ka/2),
which shows that the mode with the largest growth rate is at Kq = 7 l.e. an optical mode
at twice the wavelength of the kink-array.

The important Point to note here, is that we can describe a system at different approximation
levels corresponding to equations (8.7), (8.11) and (8.16). Depending on the problem, one can
consider localized structures as “particles” and use (8.11), or use a continuous description.

8.3 Localized structures in the vicinity of a subcritical bifurcation

Consider the following simple model equation describing a subcritical bifurcation:

JA J*A
9T “HAt sS4 BIAR Aty |Ap A (8.17)

If the coefficients of this equation are real, the steady state is ziven by the solution which
minimizes the Lyapunov functional

L= - [ | Az 2 V(] A )] dx
/0 (8.18)

VIAD=ul AP +55 a1 +22 4

Since we are considering a subcritical bifurcation, 8, > 0 and Y- < 0. The three possible
situations are shown in Figure 8.6. The two states have the same energy and thus can coexist
only if u = pup: up corresponds to the Maxwel] Plateau of first order phase transitions.
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Figure 8.6. The Lyapunov functional (8.18) for y &~ up

Now consider the situation with a and g8 complex so that there is no longer a Lyapunov
functional for the problem. In this situation stable localized structures are possible (Thual
and Fauve, 1989). The stabilization can be explained by the following rough argument.
Substituting

A = R(X,T)exp [i6(X,T))

in equation (8.17) and equating real and imaginary parts we have

AR d’R a0 \? R AR 06 3%
aT ~axz t|p e (555) ]R+ﬂfR trR - a (2axax +Rax2)

a6 dR 86 826 &R 96 \? 3. s
Rar =ar (2ax X +R6X2) taigxr ~ak (a_)'(‘) tAR iR

(8.19)

If the imaginary part of the coefficients are zero, (8.19) is solved by 98/8X = 0, and we have
a variational problem for R. In the presence of a non-zero imaginary part, the amplitude
and phase equations couple so that there is a nonzero 00/0X. This changes the effective
value of u in the coefficient of R in (8.19); we define

26 \*
Peff = #— ax /) -
The effect of the phase gradient is to decrease Hess 1N the outer region, thus stabilisating

the zero-solution, whereas the bifurcated solution is stabiliseted in the core of the localized
structure.

These localized structures can be obtained perturbatively in the variational and conservative
limits; in the conservative limit, let us write (8.17) as

0A A
aT ~ 'ax2
P(A)= pA +a izié+B AP A+~ |A|*A
r3X2 r r .

+2 | A® A+eP(A)
(8.20)
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For € = 0 this is simply the nonlinear Schrodinger equation and admits the one-parameter
family of solutions
A, = A sech(AX)exp (—iA2T). (8.21)

The existence of such a one-parameter family is due to the scale invariance of the nonlinear
Schrédinger equation.

If € is given a small but nonzero value, we look for slowly varying solitons of the form

A(X, T) = A(T) sech[A(T) X Jexp [-iO(T],. (8.22)
The temporal evolution of a soliton under the action of a perturbation P(A) is a well-known
problem of soliton theory and can be solved with the inverse scattering method (see for

instance Lamb, 1980). The temporal evolution of A(T) can be found in a simpler way here:
multiplying equation (8.20) by A and integrating on space leads to the evolution equation

d
ET/|A]2dX=e (B AP 4B | A 47, A —a, | A, 1] dX. (8.22)

Substituting ( 8.21) in (8.22), we get to leading order, an evolution equation for A,

1dA 4 128
—— e =(28, — a,)AY + =24 AS 8.23

For a, < 28,, equation (8.23) has two non-zero solutions Ay for p, < p < 0, with g, =
5(—ar +28,)%/96+,. Only the larger is stable, and gives the size of the selected pulse.

The above mechanism is a rather general one: the dissipative terms of equation (8.17)

stabilize one of the soliton solutions among the continuous family (8.21) and select its size
by breaking the scale-invariance associated with the corresponding conservative problem.
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