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A  Introduction

Drylands cover nearly one third of the Earth’s land surface and about sixty countries
have arid or semi-arid regions. In spite of this fact, however, the study of the physical
and ecological processes associated with arid regions were never taken seriously by the
international community before the fifties. In many arid zones these processes often have
detrir .ental effects on productivity, human settlements and communications, The first
worldwide effort to study the problems of arid regions was started in 1951 when UNESCO
launched its major scientific program on arid lands. The program continued for nearly a
decade during which several research reports as well as a newsletter were published. A
few years later a tragic drought hit the southern edge of the Sahara desert. The severity
of the drought led to a famine during the years 1969-1973, as a result of which about a
quarter of a million people lost their lives. The region affected, which is now known as
the Sundano-Sahelian region, lies below the Sabhara drylands desert and runs across the
ent re African continent.

The Sahelian tragedy focused a great international attention on the drylands prob-
lems culminating in the famous UN Conference on Desertification, which took place in
Nairobi, Kenya, in September 1977. The conference was attended by representatives of
nearly 100 countries - thus providing an international forum for discussion of arid-lands
problems. It was estimated at the conference that during the last 50 years about 650,000
square kilometres of once fertile land south of the Sahara was lost to the desert. The
conference recognized the global nature of the desertification problem and suggested a
plan of action to combat lesertification. Millions of dollars have subsequently been spent
on conferences, workshops and projects aimned at combating desertification and adopting
the plan of action suggested by the UN conference. Most of this effort, however, has been
directed towards ecological, socio—economic and management problems of dry environ-
ments - leaving the fundamental physical problems of climatic changes, soil erosion by
wind, sand transport and dunes migration largely untouched. There is an unfortunate
general belief among the majority of those concerned with the desertification problem that
deserts are manmade. In Africa, in particular, the poor Nomads and their animals were
largely blamed for desertification. It is not surprising, therefore, that after nearly two
decades of intensive work by ecologists, social scientists, socio-economists, planners and
politicians no effective solution to the desertification problem has yet materialized. Indeed
until now the southward and eastward expansion of the Sahara Desert is posing one of
the most serious and challenging problems facing the entire international community.

In December 1980 the International Centre for Theoretical Physics, in Italy, initi-
ated a new fundamental approach to the problems of drylands. A Workshop entitled
“The Physics of Desertification' was held and was attended by approximately 80 scientists
of various academic backgrounds including climatologists, geomorphologists, ecologists,
geographers, soil scientists, engineers, physicists and mathematicians — thus providing
the first opportunity ever for a multidisciplinary international group of theoretical and
applied scientists to exchange and coordinate their views, transcending all traditional
professional boundaries. The Workshop recognized that a fundamental understanding of
the problems of drylands can only be achieved through a broadly based interdisciplinary
approach in which the desertification mechanism should be regarded as a combination of
both physical and ecological processes. The interdisciplinary research projects must be
guided by physical and mathematical modelling. In particular, the Workshop identified

three areas of research in which our basic knowledge is insufficient. These are:

— Theoretical and experimental studies to determine accurately the appropriate me-
teorological and soil factors responsible for soil erosion and dust preduction;

- comprehensive theoretical, experimental and observational studies to analyse the
movements of sand grains near the surface in order to der’ve an accurate expression
for the rate of sand transport;

~ detailed theoretical, experimental and field studies to understand t' e formation and
movement of various type of sand features.

To my knowledge, the first proper scientific study of sand movement in the Sahara

4 was carried out by Bagnold during the thirties. Bagnold spent several years in the Sahara

desert during which he analysed the modes of sand movement and the formation and
growth of sand dunes. Most of his work is contained in his famous book ‘The Physics
of Blown Sand and Desert Dunes’, which he published in 1941. Referring to the Sahara
desert, he wrote in the introduction of this classic book ‘In places vast accumulations of
sand weighing million of tons move in regular formation over the surface of the coun-
try, growing, retaining their shape, even breeding, in a manner which, by its grotesque
imitation of life, is vaguely disturbing to an imaginative mind’.

Two basic sand features are immediately recognized in the Sahara desert: sand ripples
with length varying from a few inches to several feet and with length-height ratio about
10; and sand dunes which are much bigger than ripples - the smallest dunes are much
longer than the longest ripples. Dunes occur in the Sahara in a considerable variety of
forms. These forms are usually detcrmined by the strength and direction of wind, the
amount and characteristics of sand available and the physical obstacles in the area. In
the case of a unidirectional steady flow of wind and a limited supply of sand crescent—
shaped dunes (Barchan dunes) are often found. If the undirectional wind is strong encugh
isolated dome-shaped dunes are formed. In areas where the sand is abundant and the
deminant wind shifis slightly in direction, the so~called linear dunes (also known as seif
dunes) are usually found. The crests of these dunes are sharp and their lengths vary from
a few hundred metres to a few hundred kilometres. Linear dunes are the most abundant
in the Sahara and in certain areas they cluster to form large dune fields. If the wind
blows from several directions complex patterns of crescent-shaped dunes are often found
in the Sahara. Such forms are called star dunes; they have a high peak at the centre out
of which three or four long arms extend radically.

Other large desert regions in the world have windblown features similar to the Sahara.
In fact these features are also observed in other parts of our sclar system. The largest
single dune field in the solar system is the one surrounding the north pole of Mars.

In many places in and around the Sahara the movement of sand creates a serious

_ threat to agricultural projects, human settlements and communications. In Sudan, for

example, the country’s most valuable gum-arabic belt is overwhelmed by sand dunes.
Several villages, roads and railways in North Africa are invaded by shifting sand. Near
the banks of the Nile in Egypt and northern Sudan farmers have been fighting a losing
battle against windblown sand (El-Baz, 1977).
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Various methods have been tried to slow down drifting sand. Perhaps the most suc-
cessful, but very expensive method is the one used in Iran and Saudi Arabia, where crude
oil is sprayed over mobile sand. The most popular method in and around the Sahara, how-
ever, is to plant shelter belts (e.g. Eucalyptus or Acacia trees) in the path of advancing
sand dunes. Shelter belts act as physical barriers as well as wind breakers, thus causing
the wind to deposit the sand before the shelter belt. It is essential, however, before em-
barking on expensive sand stabilization projects in a particular area, to understand fully
the physical mechanism of sand dunes formation and movement in that area.

B Soil Transport Rates

Understanding the mechanism of soil transport in dryland areas is one of the most intrigu-
ing problems facing mathematicians, physicists and geologists alike. Perhaps the first and
simplest step is 1o try to understand the free interaction between wind and sand in the
absence of any obstacles.

In his article ‘A Further Journey in the Libyan Desert’, R.A. Bagnold wrote {Bagnold,
1933):

In the western desert of Egypt the free interplay of sand and wind has been
allowed to continue for a vast period of time, and here, if anywhere, it should
be possibie in the future to discover the laws of sand movement and the growth
of dunes.

Most of our current understanding of this free interplay between sand and wind is based
largely on Bagnold’s work, which is summarized in his classical book ‘The Physics of
Blown Sand and Desert Dunes' (Bagnold, 1941). The essential goal of sand physics today
is to follow Bagnold's work and reach a clear understanding of the mechanism responsible
for the formation, development and movement of various types of sand features in deserts
and arid regions. The first step towards this goal was taken by Bagnold - he studied
in detail, hoth in the laboratory and in the field, the motion of individual sand grains
under the action of a uniform wind of various strengths. He identified three modes of

movement of sand particles: saltation, surface creep and suspension. A saltating grain .

(between 0.1 mm and 0.5 mm in diameter) follows a trajectory which rises steeply from
the sand surface and is carried by wind to a height of a few feet. The grain then starts to
lose its height due to gravity until it collides with the surface and sets other particles in
motion. Recent measurements show that on a sandy surface over 90 percent of saltating
grains move below 30 cm. Light particles (less than 0.1 mm in diameter) are carried by
the wind to very high levels and form dust. Heavy particles (over 0.5 mm in diameter)
roll along the surface when acted upon by a strong wind and/or when bombarded by
saltating parlicles. Near .he surface the process of suspension is insignificant and as far
as the deformation of the surface is concerned, one can safely regard saltation and surface
creep as the dominant physical processes in action.

Bagnold conducted a simple analysis using saltation mechanics and derived a simple
formula for the rate of sand transport per unit width per unit time ’

_ dp s )
T-C@E(u), u—\/;, (1
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where C is an empirical coefficient depending on the characteristics of sand particles, D
i a standard sand grain diameter (e.g. 0.25 mm); d is the diameter of sand in guestion;
5 is the shear stress at the sand surface due to wind action, and p is the air density.

Although Bagnold's description of the three modes of particles’ motion is now gen-
erally accepted, his estimate of the rate of sand transport (Eq.{1}} is far from being
satisfactory. Several authors have attempted improvements on Bagnold’s work and have
obtained various formulae relating the horizontal mass flux of erodible soil to the observed
and threshold wind speed (for a comprehensive review, see Greeley and Iversen, 1985).
A generalized Bagnold formula which incorporates most of these expressions as special
cases may be written as

¢ = golu —ur)™ u™, n+m=3 (2)

in which u and ur are the observed and threshold wind speeds and n,m and go are
gonstants whose values depend on soil and flow properties. Until now, however, there is
no relation that accurately predicts the rate of sand transport. Thus the whole field of
saltation mechanics and sand transport laws are wide open for further intensive research.

The empirical formula (2) is valid for a single mean value of the wind speed. Field
observations and wind data, however, reveal that soil transport is commonly caused by
a highly variable wind flow. One method of characterizing the variability of the wind is
to assumne a statistical distribution for the wind speed. In particular, Johnson (1978) has
shown that the two—parameter Weibull distribution fits wind data reasonably well.

The probability density function of the Weibull distribution is given by

(D) wmf-(27)

where & and c are the shape and scale parameters. The average wind speed & can easily
be obtained by integrating (3) and the result is

b 1
= du=¢T (l —)
i /0 flu)du=c¢ + . (4)
where T is the gamma-function.
For a statistically distributed wind flow governed by the density function {3) we can

compute the average rate of soil transport over a certain period (Skidmore, 1986; Gillette,
1988; Babiker et al., 1987)

E= (qu) = C‘[‘T ” (u — ur)*u exp - du . (5)
In terms of the dimensionless parameter B = ur/t we can write (5) in the form
ik 00 ok
= (% = u giym—n _ Pt pmtk—1 AL &
= (1) k(c) (@) fR (z—R) z exp[ (c) J.‘]d.‘.r:. (6)

Exact analytic values for the integral in (6) can be derived for the following two speciai
cases



k=ln=1m=2
In this case (6) can easily be evaluated in closed form to give (see Gradshteyn and
Ryzhik, 1965)
E=(@® (BP+4R+8)e "R n

ijk=2n=1lm=2

This case was discussed in some detail by Gillette (1988); who obtained a value for the
integral in terms of the incomplete gamma function. The integral may alse be evaluated
in closed form (see Babiker et al., 1987) to give

E=} (.% ﬁ)s{i{f [ - 6(A)] + Aexp(.-v} (8)

where A* = 1 R2.

For other values of k,n and m (6) has been evaluated numerically (see Babiker et al.,
1987) and the results are summarized in Figs.l and 2. These tesults can be used in the
following two ways:

a) If at a given site the mean wind speed is determined from measurements, the Weibull
parameters k and ¢ may be estimated using regression analysis {Johnson, 1978;
Skidmore, 1986). If at the same time the threshold speed is estimated by using wind
erosion groups or dry sieving (Gillette, 1988), the curves in Figs.l and 2 may then
be used to estimate the average soil loss for different models of particle transport
rates.

b) If the average soil loss is measured at a particular location and the relevant param-
eters are estimated, the curves in Figs.] and 2 may be used to test the accuracy of
different expressions for the horizontal particle transport rate.

In general, the values ohtained show that for a fixed Weibull parameter k and a fixed
threshold speed ur, the average soil transported increases as m increases and n decreases
(for values of n and m satisfying » + m = 3). On the other hand, for fixed values of nv
and m the average soil transported decreases as the Weibull parameter k increases for
any value of the threshold speed ur.

C Formation and Propagation of Sand Dunes

As a result of the processes of saltation and surface creep sand beds start to deform,
first into ripples and then into dunes. Various ripples and dunes are also observed to
move slowly and regularly across the surface of the desert. Theoretical studies on the
deformation of sand beds by wind started with the work of Exner in 1925 using a simple
hydraulic model. Various related models were subsequently developed by several authors
(Kennedy, 1964; Reynolds, 1965; Engelund, 1970; Engelund and Fredsoe, 1971; Reynolds,
1976 and Richards, 1979), using the equations of hydrodynamics and stability analysis.
However, further development in this line of approach has been hampered by the lack of
a precise expression for the rate of sand transport. Among all theoretical models studied,
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Kennedy's potential flow model is the simplest and most widely studied. Its predictions
are also in broad agreement with some experimental and observational data. Below we
shall describe this model and its predictions.

The model

Kennedy considered an incompressible inviseid flow with uniferm horizontal mean velocity
{7 over a sand surface consisting of non—cohesive particles (see Fig.3 below).

! e
z=d
U .
- Y
0 Z=0 ~

~ .

;;- 7; (x,y,t

Fig.3

_ We shall use a Cartesian system of coordinates O(Z,#, z) such that OF is parallel to
U/ and 0% is in the vertical direction. The topography of the surface is given by

2= (51 - (©)

The medium is bounded above by a rigid lid at & height d, where || « d. In the regions
7 € 7 < d the flow velocity § satisfies the continuity equation

V-i=0. (10)
For irrotational motion we can express i as
_ i=vé (11)
in which case (10} become.
vié=0. (12)

We shall assume that the presence of the surface topogrephy Z = 7i(Z, 7, t) causes small
perturbations to the basic flow {J. In this case we can express ¢ in the form

d=Uz+¢ (13)
where ¢ is the perturbed part of the potential.
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Substituting (13) in (12) we find that the potential flow is governed by the Laplacian
equation
Vig=0. (14)
Eq.(14} is to be solved subject to the boundary conditions that the component of velocity
normal to the surface at # = d and # = # must be zero. These two boundary conditions
can be written as

_— at i=d (15)

and % o N a3
i ul o 9% o5  df . -
E—at+U6' aa_:r‘i%a_ﬁ at Z=7. (16}
In addition the motion of sediment near the surface 7 = 7 must satisfy the continuity
equation
g2
8t

where (7 is the rate of sediment transport per unit volume. B is the bulk specific weight of
the sediment, Assuming that the sediment is predominantly transported in the direction
of the mean flow I/, we can reduce (17) to the simpler relation

61) G
at 3'
To close the problem we must adopt one of the empirical relations for the rate of sediment

transport § as given in (2). Following Kennedy, 1964, we find it convenient to use the
relations

+V-G=0 at i=3 (17)

B =i =0 at F=7. (18)

G:ﬁ@—ﬁf:ﬁ(&%§=ay (19)

where [, in the threshold speed, 7 is a dimensional coefficient and n is a dimensionless
exponent.

Next we find it convenient in the analysis below to cast equations {14}, (15), {16) and
(18) in dimensionless forms. Taking {/,d and d/U to be units of velocity, distance and
time, respectively, these equations assume the dimensionless forms:

Vg = 0 (20) *
-g—f =0 at z=1 (21)

2 _d7 & d¢ 8n 8¢ On

= — { = 2
F T Sl M S ml P (22)
dn ar
6t+H_ 0 at z=1yn (23)
where H = Y ‘:;.1:) is a dimensionless constant and T is the dimensionless volume
rate of sediment transport
a¢ *
T_{1+3£/(1--Uc)} . {24)
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The non-linear parts of the boundary condition (22) cause considerable complications in
finding solutions to the full system of equations (20)-(24). In the following two subsections
we shall first consider the linearized system and carry out a simple linear stability analysis
to study the growth (or decay) rate of the amplitude of the perturbed potential. Secondly,
we shall study the non-linear evclution of the system using a multiple scale-technique
commonly used in studying non-linear problems in fluid dynamics

Solutions of the linear problems

The linearized form of the equations (20)-(24) is

303t 5 =0 in 0<z<]1 (25)
Boo w e=1 (26)
%=%+% st z=0 @7
%+H;%=U at z=10 (28)
where H, = Ijr;}
In obtaining (28 we used the following series expansion for (24)
T={1+l_nycg§+0(g§)2} : (29)

In his linear stability analysis Kennedy evaluated the horizontal perturbed speed of the

flow, —¢, at r — 6 where § defines the dimensionless distance by which the local sediment
transpo::'t lags behind the local velocity of the bed. We shall see later that, while é plays a
key role in the linear stability theory, it has no effect in the non-linear solutions obtained
in the last patt of this section.

To study the stability of the linear systern (25)-(28) we shall assume that the surface
and the flow potential have the forms

7 A(t) e{k(r—Ug,t)

(30)
- ¢ B(Z, t) c:’k(:—U,l)
where [, is the speed of the bed, k is the wave number and A is the amplitude to be
determined. Eq.(25) then reduces to

2
¥B _wp_o (31)
Bzt
whose solution can be written as
B(z,t) = C{t) cosh(kz) + D{t)sinh(kz) (32)
8



Applying the boundary condition (26) to (32) gives

_ . _ sinh(k)
B(z,t) = C(t){cosh{kz) — Asinh(kz)}, )= cosh(E) ° (33)
We now apply the boundary condition (27) to get
k) =2 i vasikA="2 ik aq-uy.
dt dt
Thus 1 (4
¢ = E {d_? +ik A1 - Ub)} {Asinh(kz) — cosh(kz)} e™(=-Ust) | (34)

The differential equation for the amplitude A(2) can now be obtained by applying the last
boundary condition (28). The result is

dA .
— = (P+iQ)4 (35)
where
p=F f cos(ké) / (1 + f—: -2 -Ij—‘sin(kﬁ)) (36)
Q = & [—U, + -’;—,3-(1 -U)+ iz—e(w, - I)Sin(ké)] / (1 + i’—: - 2%9511(1:5)) i

(37)

Since the oscillatory time dependence of n has already been prescribed by Eq.(30), we
can set § = 0 to get the following equation for I/,

U= [-f—;?(l =)+ %(20’5 - l)sin(ké)] / (1 + % - 2% sin(kﬁ)) . (38)

The solution of (35) then takes the form

Alt) = Ap ™ . (39)'r

As expected {rom the linear stability theory Eq.(39) shows that a small disturbance at
an initially flat sand surface can canse the amplitude to grow (P > 0) or decay (P < 0).
The maximum growth is reached for § = g—: (L =1,3,5...), giving the value A, for the

maximum amplitude. These values of § correspond to neutral stability. For a detailed
analysis of the various bed forms predicted by the linear theory the reader is referred to
the review articles by Kernedy (1964) and Eltayeb et.al. (1985).

Solution of the non-linear system

A solution of the non-linear set of equations (20)-(24) can be derived using the method
of multiple scales commonly used in studying non-linear systems. The details of the
derivation is very cumbersome and is therefore not reproduced here. The reader in referred
to the paper by Eltayeb and Hassan (1981) for these details.

]

The small expansion parameter required for the multiple scale technique is defined
here as

€=h/d (40)
where % is the dimensional amplitude of the surface undulations and d is the height of
the layer.

We now express 5 and ¢ in powers of € as follows:
n o= X Y & (i B+ B (41)
i=n n=0
o0 o . -
6= 23 € (¢n E"+ 0 ET) . (42)
jmn A=)

The coeflicients 5,; are functions of X,Y,r and ¢,; are functions of X,Y,z,r. The
variables X, Y and 7 are defined by

X =€(z-Ut), Y =€y, r=¢€*y;
(43)
E =expik{z - Uyt)
and the group velocity U, is defined by
g
U, = % LY {44)

Eltayeb et al. (1985) have shown that the scaling (43) is the only system that provides
non-trivial and well-posed set of equations.

Substituting expressions (41) and (42} into equations (20)-(24) and equating to zere
the coefficients €' E*(I,r = 0,1,2,3,...) we obtain a hierarchy of systemns of equa-
tions which can be solved seriatim. To close the leading order system we need to
consider seven equations resulting from the systems (I,r) = (0,1),(0,2),(1,1},(1,2),
(2,2),(0,3),(1,3). .

The seven equations can be reduced to three coupled second order partial differential
equations for ¢, 50z and 1, which in turn reduce to two equations upon applying the
physical boundary conditions

qm,%?-;l,-aai;,l-—oo as X:4Y? o . (45)
The two equations can be written as
. 8A FA ddar A 1 _
:E+015F+G2AW+%WE+G‘A|A| = 0 (46)
a’%l 8“%1 a 1 _ 4
b il + V7 +¢t, 3% |A] 0 (X))
where
L U,
A= —’:—Hb m (48)

and a; — ag, b and b; are constants which depend on &, U, and U,.
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If we further neglect variations in the ¥ direction (i.e. set —a—- = 0) the two equations

{46) and (47) reduce to oY
. 0A A
blﬁg
wh = -—].
ere 3 (a‘ 5

Eq.(49} is readily recognized as a non-linear Schrddinger equation. In the theory of
water waves this equation has been studied extensively by Hasimoto and Ono (1972).

A simple plane wave solution can easily be derived for the case in which the amplitude
A depends on 7 only. This leads to the Stokes wave train solution

A=Age”,  p=f AL (50)

It can be shown that (see for example Hasimoto and Ouno, 1972) the solution {50) is
unstable only if

af>0. (51)

Eq.(49) is also known to have the following solitary wave type solutions in the region
a >0
A(X,r}) = B(X)eP a8 >0

B(X) = (%p)msech [(f;)m X]

The solution (52) shows that, in the region of unstable wave train, ripples {or small dunes)

of Stokes train type can eventually degenerate into a single dome-shaped solitary dune
1/2

with amplitude B{X) and width (-—%—i . Such solitary dunes are well known in certain

where

(52)

dryland regions where the sand is formed in small quantities.

D Suspension Transport of Soil Particles

For light sand-sized particles the dominant mode of transport is that of suspension. In
this section we shall study a diffusion model appropriate for the transport of particles
in suspension. The model is widely used in studying problems of wind ercsion and at-
mospheric pollu'ion (see, e.g. Pasquill, 1962; Gillette and Goodwin, 1974; Hassan and
Eltayeb, 1991, 1993; Eltayeb and Hassan, 1992). The model may also be used in studying
vertical transpoct of bl-wing snow (see, e.g. Takeuchi, 1980; Schmidt, 1982).

The diffusion equation

Conasider a Cartesian system of coordinates O(z,y, z) in which Oz is vertically upwards
and Oz is horizontal. The concentration of sand particles which simultanecusly diffuse
and settle under wind action and gravitational force is governed by the diffusion equation
(cf. Pasquill, 1952)

e

a-q-V-(c\.r)=V-(D-Vc)-—Wva (53)
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where c(x,¥, 7,t) ia the concentration of sand, v(z,y, z} the velocity of the wind, w(z,y,z)
is the settling velocity and D(z,y, z) is the spatial diffusion tensor.
We shall assume a steady state in which:

{i) the wind is unidirectional and varies with height only, i.e.

v = [U(2),0,0]; (54)

{ii) the sedimentation velocity is a function of particle radius only and directed down-
wards, i.e.

W= (U‘D, "W) ) (55)
(iii) the diffusion tensor D;; = 0 if ¢ # §, and

Du=D, Dp=D, Duy=b,; (56)

A

{iv) the concentration and the diffusion tensor are homogeneous in the y direction.
The application of the conditions {i)-(iv) to Eq.(52) yields

fc 8 Y 0 dc bc
Be_0(p Be), 8 (p )yl 57
Vo~ 5= (D’ 2z) t s (D' Bz)+ 3z (57)

In most practical cases the transport of soil in the dit *ction of the wind {as determined
by the expression [/ 0¢/8z) dominates over turbulent diffusion in the same direction [i.e.
the term 8( D, 8¢/8z)/Hz). This allows a further simplification to (87). Thus

dc d de e
U$=E(D‘E)+Wé_z' (58)

Formulation and solution of the diffusion model

We consider a source of dust of infinite length situated on the ground surface along
the horizontal line, 0 € z < 00, z = z (zp being the roughness height). Particles of
uniform size and weight are released from the source under the action of a unidirectional
wind flow, U/{z)%. The particles are subsequently transported downwind and are allowed
to diffuse and settle ur.der the action of gravity.

The steady-state distribution of the dust particles is governed by the diffusion equation
(58).

Assuming for tractability the customary forms for wind speed and eddy diffusivity

U{z)y=pm™, D,= Az, (59}
where 3,m and ) are positive constants, we can write Ec (58) in the form

g Fc  (1+2) Gc

Oe _gc (1+2) 60
ax ~dzzt z 8z° (60)
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where A(m 412 W
- Am = L2 =
X 7" Z=z , ¥ ernk (61)
We next solve Eq.(60) subject to the boundary conditiona
0,Z2) = 0,
e(X,00) = 0, (62)
X, Z) = ¢(X),

where Zy = z;'“n and g(X) is a prescribed analytic function.

Au analytic solution of the diffusion Eq.(60) with the boundary conditions (62) can
be derived using the method.of Laplace transform.

Taking the Laplace transform of (60) in X and using the first boundary condition in
(62} we find that the transformed concentration function, &(p, z), satisfies the differential
equation

(1+2v) 8 _
Tz ez R0 (63)

where &p, Z) = [®e(X,2)e P® dX. The solution of (63) which satisfies the second
condition in {62) has the form
&p, 2) = A(P)Z™ K.(p'*2) , (64)

where K, is the modified Bessel function of the second type, and A(p) is a constant which
can easily be determined using the third boundary condition in (62).
At Z == Z5 we have

A(p)Ze K, (p"?, Zo)
Gip, Zo) (65)

E(p! zﬂ)

where G(p, Zo) is the Laplace transform of ¢(X, Z,). Eqs.(64) and (65) then give

0.2) = (Z) stz SAETEL .
(%) 606200 (6. 2) - (66)
In order to invert (66) to obtain ¢(X, Z) we first consider the case
glX)=1.
Here
&(p.20) = (67)
and the inverse of H(p, Z} is given by
ez = (2) 42 [7 ezaz) T gy, (68)

i3

"in which (v 2)Y.(yZo) = J(yZ0)Y.(y2)]
.7y = Iy Z)YalyZo) ~ J(¥Ze)Y.(y
Wewilo) = = T+ VG

Here J,.(z) and Y, (z) are the usual Bessel functions. It follows from (66)~(69) that

“X.2) = (%)y{(%)” + %fQ(Z,y:Zu) il

which satisfies all the conditions (62).

Next we derive an expression ¢(X, Z) for the concentration of dust particles when
g{X) is a differentiable general function.

Here we use the result (68} and the convolution theorem to find that

(X, Z) = (-?2) jx gt H(X —t, 2)dt (71)

(69)

dy} ; (70)

so that
x,2)= (2){(2) a0+ 2 [ x [omzn S [0 a ) 72

where the accent denotes differentiation with respect to the argument ¢.

The analytic expressions for the concentration of dust ¢{ X, Z) obtained here are valid
for all values of the {scaled) roughness height Z,.

When Z; — 0 the asymptotic forms of Bessel functions J,(z), ¥,(z) (see Abramowitz
and Stegum, 1965) can be used to show that (70) and (72) reduce to

W v 1
c(x,Z)z(%) w Zo— 0 (73)
and =22 [4(X=1)
(X, 2) = r(u) o[ g((ti;-t)v“ dh Zo—=0. (74)

where I' is the Gamma function.
If the concentration is allowed to vary in the vertical direction only (Gillette and
Goodwin, 1974) the results (73) can be further simplified by taking the limit X — oo.

We thus find 20\ T(1,0) g
(00, 2) = ( u) () "(?o) ‘ (75)

Obviously Eq.(75) can also be deduced from (73) by setting the wind speed equal to zero
(i.e. # =0) in which case the parameter

23 _ bz =0
aX " iz T
[t should be noted that, since the factor W)- i8 less than one, the two~dimensiona’

. result (73) gives lower values for the concentration of soil particles than those predicted

by the one-dimensional result (75).

The analytic expression (72) has been evaluated numerically to illustrate the behaviour
of the concentration ¢(X, Z) as a function of X and Z for various values of the roughness
height Z;. The results are summarized in Figs.4 and 5.
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Fig.1 The average horizontal flux E plotted against R, where R is equal to the threshold
speed/average wind speed for a fixed value of the Weibull parameter k and various values
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parameter k.

re

¥

Ty



vaasl-Q

Z-150
z,
0.5
0.4+ 200 - T
0.3 e B —T%e20 .
x2 . - e
0.2 e =30
Vs .
e
0.1 , / '
0.0 T T T t
0 ) 2 3 4 5

X

Fig.4 The concentration (X, Z) as a function of X when Z — 0 takes the values 0. 0,

1.0, 2.0 and 3.0 and Z/
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Zy = 1.5. Here v = @ = 1.0 and the source strength is given by:
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Fig.5 The concentration c{X,Z) as 2 function of X when Z — 0 takes the valics 0. 0,

1.0, 2.0 and 3.0 and Z/Z, = 2.0.
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