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1. INTRODUCTION

The goal of this survey is 1o review recent developments in the hydro-
dynamic stability theory of spatially developing flows pertaining to
absolute/convective and local/global instability concepts. We wish Lo dem-
onstrate how these notions can be used effectively 1o obtain a qualitative
and quantitative description of the spatio-temporal dynamics of open shear
flows, such as mixing layers. jets. wakes, boundary layers. plane Poiscuille
flow, elc.

In this review, we only consider open flows where fluid particles do not
remain within the physical domain of interest but are advected through
downstream flow boundaries. Thus, for the most part, flows in “boxes™
(Rayleigh-Bénard convection in finite-size cells, Taylor-Couette flow
between concentric rotating cylinders, etc.) are not discussed. Further-
more, the implications of local/global and absolute/convective instability
concepts for geophysical flows are only alluded to briefly.

In many of the flows of interest here, the mean-velocity profile is non-
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474 HUERRY & MONKEWITZ

uniform in the strecamwise direction. and in order to distinguish between
local and glabal instability properties. it is first essential to assume that
streamwise variations of the mean flow are slow over a typical instability
wavelength. The terms “focal™ and “glohal” then refer to the instability
of the local velocity profile and of the entire flow field, respectively. At the
Jocal level of description, it is further necessary to characterize the impuise
response of the system within the parallel-flow approximation at each
streamwise station. If localized disturbances spread upstream and down-
stream :nd contiminate the entire parallel flow, the velocity profile 1s said
to be focally absolutely unstable. 11, by contrast, disturbances are swept
away from the source. the velocity profile is said to be locddly convectively
wnstable. One of the main objectives of recent theoretical efforts has
(hus been 1o establish a relationship between local and global instability
properties. In particular, does the existence of a region of local absolute
instability imply that the entire flow can sustain temporally growing globaf
meades”

[t is appropriate at this point to bricfly recall the classical hydrodynamic-
instubility description of open flows. Since several spatially developing
sheur Nlows are known to be extremely sensitive Lo external noise. many
controlled experiments have been conducted to determine their response
(o different cxcitation frequencies. As a result. it has been customary to
represent the downstream development of vortical structures as u col-
iection of spatially prowing instability waves of various frequencies [see
Ho & Huerre (1984) 1or a review of such analyses applied to mixing layers].
In other words. experimental observations have, in general, been compared
with the results of Tocal spatial stability calculations (with given real {re-
gueney and unknown complex wave number) performed on the measured
titme-averaped mean velocity profile at cach streamwise station. Such an
approuch has been reasonably successfu! in describing the evolution of
vortices in forced experiments. For examples of this type of analysis, the
reader is referred to Crighton & Gaster (1976) and Gaster et al. (1983),
among many other similar studies. A large part of the hydrodynamic-
stability literature, however, has been devoted to temporal theory (with
given real wive number and unknown complex frequency), where it is
implicitly assumed that the flow develops from some given initial state.
The following question may then be asked: Whatis the fundamental rcason
for adopting a spatial theory point of view in many open shear flows? It
is argued here that the notions of local absolute/convective instability
provide a rigorous justification for selecting spatial theory in specific open
flows (homogencous mixing layers, flat-plate wakes, uniform-density jets).
More interestingly. application of these concepts to other open flows (bluff-
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in the strict sense (real frequency) is not appropriate. Wave number and
requency both need to be considered complex, and a global temporal
_nstability may arise whereby the entire nonparallel mean flow admits self-
sustained global modes with well-defined complex frequencies.

Local/global and absolute/convective instability concepts provide the
necessary theoretical framework to classify different open shear flows
according to the qualitative nature of their dynamical behavior. For
instance, shear flows that are locally convectively unstable everywhere
(mixing layers, flat-plate wakes) essentially display extrinsic dynamics. The
spatial evolution of the unsteady flow is in large part determined by the
character (amplitude, frequency content, etc.) of the excitation that can be
tailored 10 meet specific control guals. Such flows are noise amplifiers. By
contrast. shear flows with a pocket of absolute instability of sufficiently
large size (bluff-body wakes, hot or low-density jets) may display intrinsic
dynamics of the same nature as in closed-flow systems. Fluid particles are
still advected downstream, but temporally growing global modes may be
present. These flows behave as oscillators: The evolution of vortices does
not rely on the spatial amplification of external perturbations but rather
on the growth of initial disturbances in time. Furthermore, the distribu-
tion of global modes is synchronized in the streamwise direction. This
class of open flows is particularly well suited 10 a nonlinear dynamical-
systems approach of the kind that has been implemented in closed systems.
The onset of deterministic chaos, if it exists, is likely to be well defined in
these systems: One expects a well-ordered sequence of bifurcations leading
from a limit cycle (the global mode) toa low-dimensional strange attractor.
The sensitivity of convectively unstable flows to external noise, on the
other hand, makes it much more difficult to discriminate between low-
dimensional chaos arising from the flow dynamics and spatially amplified
random noise. Finally. there exists a third class of marginally giobally
stable flows (homogencous jets) where the local velocity profiles are, strictly
speaking, locally convectively unstable in the entire ficid but absolute
instability is incipient at some streamwise station. In such situations, global
modes are often weakly damped in time, and they can be preferentially
destabilized by applying external forcing in the vicinity of the globai-mode
frequency.

The distinction between absolute and convective instabilities appears to
have first been brought out in a general context by Twiss (1951a,b, 1952}
and Landau & Lifshitz (1954, 1959). It should be emphasized that plasma
physicists have made extensive and seminal contributions to the theoretical
foundations underlying these notions, and that they have applied them to

the study of numerous plasma instabilities. For systematic developments
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1961), Briggs (1964), Akhiezer & Polovin (1971), Bers (1975, 1983), and
Lifshitz & Pitacvskii (1981). The complete and lucid review of Bers (1983) is
particularly reccommended for an up-to-date account of recent theoretical
efforts in the description of spatio-temporal plasma instabilities. The topic
of absolute/convective instabitities has found its way into the mainstream
of the plasma-physics literature: Presentations of the main ideas have
appeared in the books by Clemmow & Dougherty (1969), Mikhailovskii
(1974), and Cap (1976), among others.

The impact of such concepts on the study of fluid-mechanical insta-
bilities appears to be of much more recent ongin. A spatio-temporal
description of Tollmien-Schlichting wave packets in boundary layers was
developed early on by Gaster (1968, 1975), and a general formal method-
ology was proposed without explicitly introducing a definite distinction
between the absolute or convective nature of the instability . iechanism.
The technique advocated by Briggs (1964) has been repeatedly imple-
mented by Tam (1971, 1978, 1981) to analyze the receptivity of com-
pressible shear flows to acoustic forcing. In geophysical fluid dynamics,
Thacker (1976) and Merkine (1977) have determined the transition from
absolute 1o convective instability in a two-layer model of the baroclinic
instability. But. it is mostly in the last five years that these issues have
come to the foreground in the description of hydrodynamic instabilities in
spatially evolving shear flows. We wish to report here on these recent
advances. Only a few survey articles have appeared that treat the subject
from a fluid-mechanical point of view. One should mention, however,
the reviews by Bechert (1985), Huerre (1987), and Monkewitz {1989b).
Morkovin {1988) has recently proposed an appealing interpretation of
roads to turbulence in open shear flows that primarily hinges on possible
receptivity mechanisms and on the absolute/convective nature of insta-
bilities in various shear flows.

The present review is organized in the following manner. Sections 2 and
3 are devoted to a formal presentation of local and global instability issues
without being too specific about the particular flow under consideration.
Absolute and convective instabilities are precisely defined for strictly par-
alle] flows in Section 2, together with the mathematical criterion deter-
mining the nature of the instability. In Section 3 we define global instability
and rclate the local instability properties to the presence or absence of self-
sustained global modes in spatially developing flows. In Sections 4, 5. and
6 we discuss how these general ideas have enhanced our.qualitative and
quantitative understanding of the dynamical behavior of specific shear
flows. The approach in these three sections is far more descriptive. In
Section 4 globally stable flows are discussed, whereas Sections 5 and 6
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pertain to marginally globally stable flows and globally unstable flows,
respectively. Instead of being exhaustive, we have chosen in the text to
discuss only a few illustrative examples in each section. However, for the
sake of comprehensiveness, the scope and results of relevant studies have
been summarized (see Appendix) in a series of four tables pertaining to
wall-bounded shear flows, single mixing layers, wakes, and jets. respec-
tively. The final section is devoted to a number of related issucs: experi-
mental diagnostics, implications for flow control, chaotic dynamics in open
flows, and finally pattern propagation fronts.

2. LOCAL INSTABILITY CONCEPTS:
PARALLEL FLOWS

The classical linear stability theory of parallel shear Nows is concerned
with the development in space and time of infinitesimal perturbations
around a given basic flow U{ y. R). In the sequel, v, y. and 7 denote the
streamwise direction, cross-stream direction, and time, respectively, and
U(y: R) is the sole component of the basic flow in the v-direction. The
basic state is parallel, i.e. it is assumed to be independent of v but may vary
with a control parameter R, such as the Reynolds number. Fluctuations are
typically decomposedintoclementary instability waves {1 k) exp {iA v - car)!
of complex wave number & and complex frequency w. The cross-stream
distrtbution ¢ - &k} is then shown in most cases 1o sausfy an ordinary
dilferential equation of the Orr-Sommerfeld type. Enforcement of appro-
priate boundary conditions at, say, v, and 1, then leads to an cigenvaluc
problem whereby eigenfunctions ¢ i &) exist only if & and m are con-
strained to satisfy a dispersion relation of the form

Dik.w: R] = 0. ()

For simple basic flows, this sclation can be caleulated explicitly. For more
realistic velocity profiles, 1t is obtained by numerical integration of the
Orr-Sommerfeld equation. Temporal mades w(k; R} refer to cases where
the complex frequency w is deterniined as a function of real wave number
k. Conversely, spatiol branches k{en: R) are obtained by solving for complex
wave numbers k when ar is given real. In this section we deliberately ignoie
vanations in the cross-streum dircction y and only consider the spatio-
temporal evolution of instability waves in the (v, 7)-planc. This projection
greatly simplifies the presentation of the fundamental concepts without los-
ing any of the essential charactenistics of the instability. Thus, one may asso-
ciate a differential or integro-diflerential operator D[ — i(¢/x). i), R] in
physical space {x, 1} to the dispersion relation (1) in spectral space (k. w),
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such that fluctuations Y(x, ¢) satisfy
a0
D[—i N ;R]:f/(x, n=20. 2)
Y of

The mathematical framework to be outlined next has proven to be
extremely valuable in the study of plasma instabilities. For detailed dis-
cussions within this context, the reader is referred to Sturrock (1961),
Briggs {(1964), Bers (1975, 1983) and Lifshitz & Pitaevskii (1981). One of
us (Huerre 1987) has recently reviewed this subject from the point of view

of fluid-dynamical instabitities.
Following these earlier analyses, one introduces the Green’s function,
i.e. the impulse response G(x, 1) of the flow defined by

]
D[ i;\,:’ 2,; R]G(x, 1) = 8(x)3(1), 3)
AN
with & denoting the Dirac deita function.
The basic flow is then said to be linearly stabfe if

lim (r(x, ) = 0 along all rays x/r = constant, 4

and 1t 1s linearly unstable if

lim G(x, ) = «c along at least one ray x/t = constant. (5
Lt

Among linearly unstable flows, one must further distinguish between
two types of impulse response: The basic fiow is referred 10 as convectively
unstable if

rIir’n G, 6) = 0along the ray x/t = 0. {6)
and it is ahsofurely unstahle if
‘hm G(x.1) = oc along the ray x/r = 0. (N

The above definitions can be illustrated on the linearized Ginzburg-
Landau model. The operator D then takes the form

- 2
D[win,ia;R]W(x,r)ng L0
ax a1

o T @G T 30 gy YRR =0,

(8)

where m, is a real positive constant group velocity, and wy, and w, are
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is added, this simple model is known to arise in many marginal-stability
analyses of fluid-dynamical systems close to onset (Newell & Whitehead
1969, Stewa.tson & Stuart 1971). In such a context, the field ¥{x, 1) is
interpreted as a complex amplitude function characterizing the spatio-
temporal modulations of the marginal wave y(x, )e'** “at R = R_. The
Ginzburg-Landau equation has been extensively studied by Deissier (1985,
1987a.c, 1989) to identify possible transition mechanisms in open-flow
systems (see Section 7). Throughout the present review, we use Equation
(8) and its spectral counterpart as a simple example of instability-wave
evolution. [t 1s argued in the next section that the spatio-temporal dynamics
of global modes is indeed governed. in the WKB approximation, by such
an amplitude equation, but with varying coefficients.

Examples of possible linear impulse responses arising {rom Equation
(8) are displayed in Figure 1 for different ranges of the control parameter
R (see also Chomaz et al. 1987). Disturbances grow exponentially along
all rays contained within the indicatcd wedges. The fiow is stable in Figures
la.d, f, convectively unstable in Figures 1b, g, and absolutely unstable in

fa) 4 b [ fc) '

: o

rer, ° Ro<R<R, ° x B> R, x
{d} t fe) t
0

R<R, ° x R>R.=R, :
o ' (2} t {h) !

o x

[+]
R<R, ¥ R.<R<R; ° * R>R,

Figure | Skeichies of typical impulse responses. Single traveling wave: {a) stable, (§)
convectively unstable, (¢} absolutelv ursitable. Stationary mode: (d) stable, (¢) absolutely
unstable. Counterpropagating traveling waves: (/) stable. {g) convectively unstable, (k)
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Figures lc,e,h. Typically, convectively unstable flows ‘give rise to wave
packets that move away rom the source and uitimately leave the medium
in its undisturbed state. Absolutely unstable flows, by contrast, are gradu-
ally contaminated everywhere by a point-source input.

Three scenarios, among others, can be envisioned as the control pa-
rameter R is varied. These can be visualized by following the sketches of
Figure | along three horizontal levels. In the general case, where no
particular spatial symmetries prevail, the critical value R, marks the tran-
sition from a stable flow (Figure 1a) to a convectively unstable flow (Figure
15). When cubic nonlinear terms are included, the system undergoes, at
this same value R., a Hopf bifurcation to a limit cycle in the form of a
spatially periodic traveling wave. There may also exist a second transition
point R, > R, beyond which the flow becomes absolutely unstable (Figurc
Ic). By contrast, in physical situations such as Rayleigh-Bénard convection
or Taylor-Couette flow, an additional reflection symmetry x — —x is
presen! and R, necessarily coincides with R, (Figures ld.e). In Equation
(8), w, is equal to zero, and wy,. wy are in this case purely imaginary. The
flow then undergoes al R, a stationary bifurcation to a steady state. In
contrast with the general case, such flows are absolutely unstable immedi-
ately beyond the onset of instability. Finally, we note the scenario one may
expect when there is a Hopf bifurcation to an oscillutory spatially periodic
state in systems endowed with reflection symmetry x - — x. Such a situ-
ation has recently heen studied to describe oscillating convection in binary
fluids (Coullct et al. 1985, Cross 1986, 1988, Deissler & Brand 1988). The
instability can then be decomposed into left- and right-moving waves of
respective complex amplitudes , and ¢ g: each family of waves is governed
by a Ginzburg-Landau equation of the form (8) with opposite signs of
the group velocity w,. Above the bifurcation point R, the instability is
necessarily convective (Figure 1g) but there may be a critical value R, > R,
beyond which both wave packets merge 10 give rise to absolute instability
(Figure 1h).

General mathematical cniteria based on the properties of the dispersion
relation D in the complex k- and w-planes have been derived to determine
the nature of the instability. Equation (3) can immediately be solved in
(k. w)-space. The Green’s function is therefore expressed as the double
Fourier integral

G 1 J’j‘ et
X I = N . .
0= onyt Je ), Dtk s Y%K : &2

The contour L in the complex frequency plane is a straight horizontal line
located above all the singularities of the integrand so as to satisfy causality,
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Figure 2 Loci of spatial branches & * () and & (m) as L-contour is displaced Jownward
in the complex w-plane. (a). (b}, and (¢} refer te different stages of the pinching provess,

x
\

namely G(x.r) = O for all x when 1 < 0. The path Fin the complex wave-
number plane is initially taken along the real axis. A sketch of the paths
of integration is shown in Figure 2a. If one assumes for simphaity that
Equation (1) admits a singlc discretc temporal mode w(k), then the Gireen's
function G(x, 1) is formally obtained from a residue calculation in the -
plane at w = w(k). One finds that

i + kv otk
G(x.f)= — - H(!)J. dk, (10)

2n Lt OD

where H{1) is the Heaviside unit-step function. This Fourier integral ove,
all wave numbers k can be evaluated for large time 1 (x/1 fixed) by applying
the method of steepest descent. Details of the calculation very much depend
on the particular form of w(k). It is assumed here that the mode (k) gives
rise to a single stationary point k, for the phase in the integrand such that

do x
hihad == 11
Bk(k‘) !". . ()

LAl
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If the original contour of integration along the real k-axis can be deformed
into a steepest descent path issuing from the saddle point k_, G(x,r) can
be evaluated asympiotically for large time. Following standard arguments,
one obtains

Pr[k +U wath o)

Gx.t) ~ —(2m) '-‘fe"'-‘ﬁD fo o (12)
i [k"m(k")l[dir(k*)!]

The Green's function takes the form of a wave packet in the (x, 1)
planc. Along each ray x/t within the packel. the response is dominated
by a specific complex wave number A, such that its real group velocity
satisfies (11). The temporal growth rate along each ray reduces to ¢ =
Wk} (Xink,,.

in most problems of interest, the temporal growth rate wik), k real,
reaches 4 maximum o, ., = w(k,...} at a real value ks such that

o
'ty

a (Ao = 10, {13)

This same meaximum growth rate ), max 18 Observed within the wave packet
Gx.r) along the specific ray x/1 = dw,/0k(k,,.). and it is straightforward
to show that it corresponds to the maximum attainable value of g along
any ray vi'r. Based on definitions (4) and (5). one therefore arrives at the
following trivial criterion for linear instability:

) iy > O linearly unstable flow,
e < B linearly stable flow. (14)

In order to distinguish between convective and absolute instabiliues, it
is [urther necessury to examine, according to definitions {(6) and (7), the
long-time behavior of the wave number &, observed along the ray x/r = 0
utlaﬁ,\-m/spatial location. This complex &, has. by definition. a zero group
velocity

(j(f)

otk = 0. (15)

and the corresponding wy = wiky) Is commonly called the ahsolute
frequency. The absolute growth rate is then denoted by m,, = mitk,). In
other words, the absolute growth rate w,, characterizes the temporat
evolution of the wave number k, observed at a fixed station in the limit
¢ — oo, By contrast, the maximum growth rate o, ,.,. defined previously is

nhearurd falliviving tha aanbk ~f tho tonee mecloos Toox ol abo. 1L
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determines the unstable/stable nature of the flow, the sign of w,, determines
its absolute/convective nature. One therefore is led to the following

criterion:
wy,; >0 absolutely unstable flow,
wy, <0 convectively unstable flow. (16)

Typically, the absolute frequency e, is an algebraic branch point of the
function k(w) in the complex w-plane or, equivalently, k, is a saddle point
of w(k). It is important to note (Chomaz et al. 1989a) that the growth rate
along any ray admits w,,,, as an upper bound, as mentioned previously.
Thus. one necessarily has

g, < W, mux- (17)

Application of the above criterion to model eguation (8) immediately
leads to expressions lor kg and . For future reference, one notes that
the Ginzburg-Landau equation can then be recast in a form involving wy,,
kg, and wy only:

; 2
%'f — ks g—t - ;wu ‘;xfg +f[wo(R)+ ";‘“kg]w = 0. (18)
The dispersion relation associated with (18) is w—wq = (wu/2) (k —kg)?,
a clear indication of the presence of a second-order algebraic branch point
at w=uw, The lincarzed Ginzburg-Landau equation s indeed
the simplest evolution model giving rise to an absolute or convective
instability.

Asemphasized by Briggs (1964) and Bers (1975), the absolute/convective
instability criterion given by Equations (15) and (16) is not precise enough
as it stands. For the purpose of illustration, we assume that the temporal
mode w(k) exhibits a single second-order algebraic branch point w, with
only two spatial branches k*(w) and k (w). One must then carefully
monitor the toci of k() and & (w) when @ travels along the L contour.
As a preliminary remark, it can be argued that when L is located above
all the singularities of D, none of the spatial branches k" (w) and & ()
can cross the horizontal line F in the complex k-plane (see, for instance,
Figure 2a). When x > 0(x < 0}, the contour Fisclosed in the upper {lower)
half k-plane and diffcrent spatial branches k*(w) and & () contribute to
the response in different regions of physical space. Two radically distinct
situations may then take place.

First, as depicted in Figure 2a, the spatial branches k* and & may be
located, when L is high enough, on opposite sides of F. Then, as L is
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this process, one must correspondingly deform the original contour F. Of
course, the simultancous deformation of L and F must cease when L
touches w(k) and F becomes “pinched” between the branches & * (w) and
k~(w), as sketched in Figure 2¢. Pinching occurs precisely at the poiat &,
where the group velocity dw/dk is zgro. Correspondingly, a cusp appears
at w, in the locus of w(k), a feature that can be used to detect the branch
point, as demonstrated by Kupfer et al. (1987). If the corresponding w, is
located in the upper half w-plane, the instability is absolute. Otherwise, it
isconvective. This method of determining whether an instability is absolute
or convective is common'y called the Briggs (1964) criterion. In the Soviet
literature (see, for instance, Mikhailovskii 1974) it is referred to as the
Fainberg-Kurilko-Shapiro (1961) condition.

Other situations may also arise {Bers 1983, Pierrehumbert 1986, Huerre
1987, 1988) when the Riemann sheets of the branch point m, cc rrespond
to spatial branches [say k}{w) and k7 (@)] located, for high enough L, in
the same half k-plane. When the contour L is lowered, no pinching of F
can occur and the corresponding branch point wq is not the absolute
growth rate. Thus, extreme care must be exercised to locate branch-peint
singularities pertaining to spatial branches £ *(w) and k {w) originating
from distinct halves of the k-plane.

In the above discussion, we have only considered the simplest situation
where w(k) exhibits a saddle point at ;. [t should be observed, however,
that the analytical structure of the dispersion relation needs 1o be studied
in detail on a case-by-case basis in order to reach reliable conclusions
regarding the nature of the instability. For instance, in flows such as mixing
layers (Huerre 1983, Huerre & Monkewitz 1985), the temporal modes w(k)
display a nonanalytic behavior of the form w ~ |t as k approaches zero.
A branch cut must then be introduced on the £, axis to properly interpret
the absolute value arising in the dispersion relation. Another approach,
described in Huerre & Monkewitz (1985) and Huerre (1987), consists in

associating with the real signal y(x, 1) the complex “analytic signal”* ¥(x, 1)
defined by

Yix.n) = [5(-¥)+ ! ]*u’!(-’f. 1. (19)

x

Y(x.n=W¥ix. 0. (20)

The symbol s denotes the convolution of two functions in x. The spectrum
of W(x,1) is, by definition, restricted to positive wave numbers. and the
study of the deformations of the spatial branches can be limited 10 the
half-plane k, > 0 and its corresponding image in the w-planc. In this
manne, |k| can be replaced by k in the dispersion relation. The real signal
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¥(x, ?) is retrieved at the end of the calculations by taking the real part of
W(x, f).

It may also happen that no branch points w, where dw/dk = 0 can be
found in the finite complex w-plane. This peculiar behavior arises in the
Gértler instability of the asymptotic profile on a concave plate (Park &
Huerre 1988). The criterion (16) is not directly applicable, and one must
resort to a direct numerical evaluation of G(x, 1) to safely conclude that
this flow is indeed convectively unstable. '

The physical significance of the spatial branches A*(w) and & (w)
becomes evident when one considers the response of a system to a mono-
chromatic excitation of frequency w; applied at, say, x = 0 and switched
on at ¢t = (. The field (x, 1) is such that

- a H a - —_ o o f
D[_léi"ét' R]!ﬁ(x, 1) =8(x;Hine ™" {21)

A solution of this problem is readily obtained in Fourier space. As in the
case of G(x, 1), the inverse Fourier transform with respect to w is evaluated
from a residue calculation. If a single discrete temporal mode (k) exists,
¥(x, 1) takes the form of a Fourier integral over all wave numbers, namely

l + . eﬂh’ wik iy
O P R
[w(k) -] P [A.w(k). R)

¢ ot + 1 (J:J.n
ko2
¥ o j Dik.oo R) 122

As t — o, the first term can be obtained asymptotically in exactly the
same manner as before by applying the method of steepest descent. The
second term is calculated by closing the contour Fin the upper (lower)
half k-plane for x > 0 (x < 0). as indicated in Figure 2« Residue con-
tributions arise from the & *(«w) and k (i) of the dispersion relation at
the fixed frequency w;. One arrives at the following estimate:

dl(x_ r) - (2/’{)“2? i (.lll.\ itk o M - ‘
an d’w ‘
[(U(k')_““]ﬂ‘ Ek““)(k*)] (ﬂ.’z(;\‘]f

1

'elft‘(-u,n i) el|l‘( 8 LR

+i-a‘b—-- - - H(\-)ﬂ‘ﬁ Hioxn (23)
Elk*(wr).wf: R] 2% [k (wp.wi R]

3]
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where &, is given along tae ray x/r by Equation (I 1}, and H(x) denotes
the Heaviside unit step function. The response is composed of a switch-
on transicnt of the same qualitative nature as the Green's function (12)
and a “'steady-state” response arising from forcing the low at the frequency
wy. Spatially growing and/or decaying waves are located on either side of
the source at x = 0. It is important to note that the spatial branches & * (ew)
and k (w) have unambiguously been assigned to the domains x >  and
x < 0, respectively. This can only be achicved if one has a priori determined
(see Figure 2) that, for high enough L, they originate from the upper and
lower half k-plane, respectively. If the flow is absolutely unstable, the
transient part of the solution will. by definition. contaminate the “steady-
state” response at all stations x. thereby making the signaling problem
meaningless. 10 the flow is convectively unstable, transicnts move away
from the source and one observes the steady-state signal associated with
the spatial waves. It can be concluded that spatially growing waves al a
real frequency oy are only of interest in convectively unstable flows. This
feature becomes particularly obvious in Section 4. where we discuss ex-
amples of convectively unstable shear flows.

The characteristics of the spatial branches are sketched in Figure 3 in
the case of the linearized Ginzburg-Landau equation. The solid curves
pertain to a value of R in the convectively unstabie range R < R < R,
where k' and & arc well separated (see also Figure 2a). When R exceeds
R, and the flow becomes absolutely unstable. the branches switch, as
iltustrated by the dashed curves. Thus, as R increases through R, the
frequency o, crosses the real w-axis, and the corresponding saddle point
k, leads to sphtting of the branches in its viaimty. Branch switching in
spatial stability calculations can be effectively used as an indication of a
qualitative change in the nature of the instability from convective to
absolute.

{h)

Figure 3 Spatal branches k' and & of the Ginsburg-Landau equation in the convectively
unslable casc ). () spatinl growth rate - &, versus meal frequency o (h) &, versus o
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The concepts introduced in this section may very well appear to be
trivial: A flow that is convectively unstable in one reference frame becomes
absolutely uns:able in another. There is no preferred laboratory {rame
in parallel flows that ar¢ invariant under Galilean transformations. We
therefore wish 1o emphasize that absolute/convective instability properties
become relevant precisely when Galilean nvariance is broken. This is
achieved cither by applying an external perturbation at a fixed downstream
station as described above, or by imposing no-slip conditions at the walls
as in plane Poiseuille flow, or finally by allowing the flow to develop
spatially. In all such cases, a unique laboratory frame is selected and local
instability characteristics are unambiguously defined. In the next section,
we examinc one particular cxample of broken Galilean invariance, namely
spatiafly developing flows.

3. GLOBAL-INSTABILITY CONCEPTS:
SPATIALLY EVOLVING FLOWS

The previous section dealt with absolute/convective instability concepls in
strictly parallel flows, i.c. basic flows that are invariant under continuous
translations in the streamwise x-dircction. Most shear flows of interest.
however, such as mixing layers, jets, wakes, and boundary layers, arc
nonuniform in x. The purpose of the present section is to emphasize the
deep relationship that exists between, on the one hand. the local instability
characteristics at each streamwise x-station and, on the other hand, the
global instability propertics over many wavelengths of the instability.

The spatial development of the basic flow is typically characterized by
an evolution length scale L defined as

1 1d0

~ 24
L 0dx (%)

where 0(x) is. say, the local monientum or vorticity thickness. The main
parameter of interest is then the ratio

£~—E« 1, ’ {25)

where 4 is a typical instability wavelength. If the streamwise coordinate x
is nondimensionalized with respect to 4, the basic flow changes overa slow
space scale X = £x and takes the form U[ y; 8(X)}, where 0(X) is in effect
a local control parameter. One of the crucial hypotheses here is that ¢
is small. A breakdown of this assumption would preclude any ppssil?ic
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general framework previously outlined, fluctuations y(x, 1) now satisfy a
linear partial differential operator of the form

38 a1 '
L[—;a,;a,a(n,aﬁx,...,g]w*0. (26)

The local dispersion relation is recovered by freezing X, so that
DIk, w; X, R} = Lk, ,8(X),0,...; R). v3)

Absolute/convective instability concepts are readily applicable to (27). In
particular, if the dispersion relation admits a single mode of the form
wlk; X; R), one defines a local absolute frequency wo(X;R) and its cor-
responding wave number ky(X; R), given by

&
af(ko; XR)=0, wo(X; R) = w(ky, X: R). (28)

Similarly, one introduces a local complex frequency w,.,(X: R), a local
maximum growth rate w;m.,{(X;R), and corresponding wave number
Kpmax(X; R), such that

%‘—E' (K X R} = 0, 040is{ X} R) = 0(kpais X, R). 29

The Ginzburg-Landau evolution model can then be generalized by
allowing k, and w, appearing in (18) to depend on X. As is justified later,
we choose to keep the leading-order terms in a Taylor expansion of k, and
wq around a point X, in the complex X-plane such that dw,/dX = 0. Thus,
one assumes that

wolX; R) = wy(R) + f‘-’%’* (X=X)2, (30)

where k, Koy, and wyyy are given complex constants with wgy,,; < 0, and
w, {R) i1s a monotonically increasing function of R.

Spatially developing flows may then be divided into four broad classes
according to the nature of the local instability at each streamwise station.
Typical configurations have been illustrated in Figures 4a--d. In the first
cl.ass (Figure 4a), the flow is Jocally stable uniformly along the streamwise
dlrcc_:tion and W, ;e < 0, wo, < 0 for all X, When a region of local con-
vective instability is present (Figure 4b) where w; m., > 0, o, < 0. the flow
s said to be locally convectively unstable. Such systems behave as amplifiers
of external disturbances. They are globally stable in the sense that no self-
sustained resonant states may arise. The term “globally stable™ is used
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Figure d  Classes of spatially developing Nows according 10 the nature of the local instability
{a) uniformly stable; (b} conveclively unstahle; {r) almost absolutely unstable: (4) pocket of
absolute instability.

here with a meaning that is different from classical hydrodynamic stability
theory. We do not imply that the flow is stable to ail finite-amplitude
perturbations. mercly that it is stable with respect to global infinitesimal
fluctuations in the entire flow licld. Specific examples are discussed in
Section 4. In the third class of Nows, the maximum absolute growth rate
over all X, @, ma. is still negative but very small (Figure 4¢). As men-
tioned in Scction 5. these afmost absofutely unstable flonvs may admit
weakly damped globul modes that are preferentially amplified by forcing
the flow in the ncighborhood of the global frequency. They are rarginally
globally stable. Finally, in the fourth class of flows (Figure 4d). the curve
wo AX; R) has crossed the X-axis and focal absolute instahility prevails in
a finite region along the stream. It is argued later in this section that
such systems may exhibit sclf-cxcited global modes at specifiic complex
frequencics wy: They are globally unstable. Examples of locally absolutely
unstable flows are presented in Section 6. 1t should be emphasized that
some shear flows may change [rom one class to another as the control
parameter R is varied. whereas others remain within Lthe sime cliss.

3.1 Signaling Problem in Locally Convectively
Unstable Flows

Most linear stability analyses of spatially developing flows have been
restricted to tocally convectively unstable situations of the kind illustrated

T

o
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in Figure 4h. For instance, the WKB approximation has been applied to
circular jets by Crighton & Gaster (1976) and to mixing layers by Gaster
et al. (1985). There is an extensive literature on the subject, and one only
needs to recall here the salient features of this type of analysis. The starting
point is the governing linear partial differential equation (26). Itis assurmned
that, at x = X = 0, the flow is excited at a given real frequency oy, and a
time-periodic response is sought in the form

4’(-\.1 !. !Y) = qf), (r‘ X)(’ Jr-n,l‘ (32)

where the + and — superscnpts pertain to the domains x > 0 and x < 0 on
either side of the source. Since the flow is slowly evolving on the stream-
wise scale X = ox. it is legitimate to seek leading-order approximations

G Xy~ A (Hexn[ jf\ (X: t"l)f“] 33

where the spatial branches & * and & satisfy the local dispersion relation
DIk (X o XoR[ = 0. (34)

We note that the downstream and upstream branches A and & are
unambiguously identified by following, for each X, the contour-defor-
mation arguments outlined in Section 2 (see Figure 2). Application of a
standard multiple-scale formalism to the governing equation (26) then
leads at (2(+) Lo the 'inear evolution equations for the complex amplitudes
A and A4

((r)

[A (X mf)] +pt(X)A* =0, (3%)
where p' (X') are computed by imposing suitable orthogonality conditions.

The WKRB sotution (33) is seen o capture the global response of the
flow over streamwise distances of the order of L. the evolution length scale
of the basic state. This method allows a comprehensive treatment of the
receptivity of a given flow to various input frequencies. In particular. one
may determine the specific forcing frequency w, that will achieve the
maximum amplitude gain over the total streamwise extent of the flow.
Results of this formulation are illustrated in Figure 5. Within the unstable
frequency band. one obtains amplified waves in the region x > 0 and a
decaying tail upstream of the source (x < 0). '

3.2 Globul Modes in Spatially Developing Flows

In the prcuous analysis, we examined the responsc to a perturbation of
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Figure 5 Sketch of response to time-harmonic forcing i spabiaily developing flows.

well support self-excited global modes in the absence of external forcing.
In the present context. a global-mode solution is defined as

pix, 6 X) = Plx; Xye " (36)

In contrast with the signaling problem, the complex frequency «; is an
unknown quantity. Its value is to be determined by solving the governing
equation (26) for @(x; X). subject (o suitable homogeneous boundary
conditions. For the class of doubly infinite systems under consideration
here (see Figure 4), it is required that disturbances decay at x = + c0. On
a semiinfinite domain 0 < x < o, one could impose. for instance, the
condition that § be zcro at x = 0, . In any case, the complex frequency
w, is now an eigenvalue and @(x; X) its associated streamwise eigen-
function. The obvious criterion for global stahility or instahility is

wg,; <0 globally stable flow,

wg, >0 globally unstable flow. (37)

Several global modes are in general possible, and in order to ensure
stability, one naturally must require that wg, be negative for all eigen-
values. The limiting case wg, = 0 marks in general a bifurcation point to
a global mode for the entire flow. An example of a global-mode solution
is shown in Figure 6 for the Ginzburg-Landau model (18) with varying
coefficients (30)(31) on a doubly infinite domain. The smooth shape of ¢
should be compared with the discontinuous solution of the response prob-
lem sketched in Figure 5. More importantly, note that at the location
where the local absolute growth rate g, reaches a maximum, the global
mode amplitude is still very small compared with its maximum. This
situation does not seem to be exceptional and se:ves to dispel the notion
that the region of local absolute instability, and in particular the reglon

where wy, is largest, coincides with the region in which the “action™ is
mbcarmsad fi o whara alahal madec reach maximum ambolitude). Hence, a
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v

@y lmax

Figure 6  Global mode in spatially developing fiows according to the Ginzburg-Landau
model with the underlying absolute growth rate w, {x).

picture of a rather subtle, self-excited, low-amplitude “wavemaker™ in the
region of local absolute instabilily emerges, which acts as a source for the
downstream instability wave(s). These latter waves develop downstream
in a fashion very similar to ordinary spatial modes and reach 2 maximum
amplitude approximately where they become neutral on a locally parallel
basis.

It is natural to inquire whether the existence and the characteristics of
gtobal modecs are at all related to the local instability propertics of a given
flow, as sketched in Figure 4. The possibility of a self-excited resonance
due to the presence of a region of local absolute instability was first
explored by Pierrehumbert (1984) for a zonally varying two-layer model
of the baroclinic instability. The configuration was essentially the same as
in Figure 44 1t was demonstrated that the stowly varying baroclinic flow
in a doubly infinite domain could support global modes growing at the
maximum absolute growth rate wy,| ... over the entire streamwise ¢xtent
of the fiow (~ 0 < x < + ). Koch {1985) considered instead the semi-
infinite spatially developing mean flow in the wake of hlufl bodies {sce
Section 6} and showed that a region of local absolute instability existed
immediately behind the cylinder in the von Karmin vortex-street regime.
The connection between local and global propertics has been cxplored
further by Chomaz ct al. (1987, 1988) for the Ginzburg-Landau model on
a semiinfinitc domain 0 < x < a0 with boundary conditions §(0) =
¢(e0) = 0. A stabilizing cubic nonlincarity was added to maodel (1}
and the local absolute frequency was assumed to vary lincarly . .
Wl A) = (0} +wo X, i, < 0. All other coefficients of the cquations were
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kept constant. The following scenario emerged as w, (0) was gradually
increased. In the range of uniform local stability, the system exhibited
global stability. As a region of local convective instability appeared near
the origin X = 0, numerical simulations revealed a regime of global tran-
sient instability (Davis 1976) in the sense that disturbances grew in a finite
region of the (x, r)-plane but the system remained globally stable for large
time with no self-sustained resonances. With further increases in w; {0), a
zone of local absolute instability occurred near X = 0. If that pocket was
sufficiently small, the global transicnt instability persisted. Beyond a critical
size, however, the system became globally unstable and a Hopf bifurcation
to a self-sustained global mode ook place. Thus, in the context of the
simple model, it was concluded that the existence of a region of local
absolule instability was a neccssary but not sufficient cogdition for the
existence of an amplified global mode. Similar conclusions were reached
in numerical simulations of the Ginzburg-Landau model on a doubly
infinite domain (Chomaz et al. 1989b), with parabolic variations of the
local absolute frequency as in Equation (30). In Section 6 it is seen (hat
the above scenario is entirely consistent with hydrodynamic-stability
analyses and experimental observations in wakes and jets.

A fundamental question arises in the study of global-mode properties:
What is the frequency-selection criterion for wg? More specifically, s it
possible within the slowly varying WK B approximation to obtain i lead-
ing-order estimate of the globul-mode frequency from local stability
characteristics alone? As atluded o carlier, Pierrehumbert (1984) has sug-
gested that in doubly infinite systems of the kind sketched in Figure 4, oy
is given by wy, | ma,. Namely the real part of wg at the streamwise location
of maximum absolute growth rate wa,lme.. 0 semiinfinite systems
(0 < X < x ywith asingle pocket of whselule instabtlity close Lo the origin,
Koch (1985) proposes yet another selection principle: The global-mode
frequency should, in his view. lock to the local absolute Irequency
wy (X)) = (X)) at the streamwise station X, separating the absolute and
convectively unstable regions. The authors of this review doubt that any
of the above criteria could be rigorously justified from a theoretical point
of view. It seems to us that in doubly infinile systems with local instabihity
properties such as those deseribed quabtatively in Figure 4 (1.¢. a local
absolute growth-rate curve with i1 single maximum), a more appropriate
sclection criterion is as follows: To leading order in the WK B pariamcter
¢, the most unstabic global-mode frequency is given by the local absolute
frequency m, = my (X)) at the pont X in the complex X-planc such that

duyy,
= R}
T X) =0, (38)

o
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The point X, 1s the saddle point of the function we(X) in the complex X-
planc that Lies closest to the real X-axis, as <ketched in Figure 7. This result
has been derived by Huerre et al. (1988) and Chomaz et al. (19893) for a
class of lincar partial differential equations of the Ginzburg-Landau type
{18) with arbitrary variations for w(X) and &,(X). One of the essential
assumptions ol the study is that the function o ,(X) exhibits a saddle point
X, in the complex X-plane. Furthermore, under these conditions. it is
possible to show that the following inequalities hold:

Wy, < (”lr.(‘y\) < U"ll,;}m.n- (39)

where @, is the growth rate of any global mode, and w,,|,... is the
maximum absolute growth rate over the real axis -2 < X < +o0. As 4
consequence of (39), we recover the fuct thut the existence of an amplified
global mode with «;, > 0 necessarily implics a finite region of absotute
instability  inother words, wy, ..., > 0. The frequency-selection criterion
{(38) hud in fact been imphcitly derived by Bar-Sever & Merkine (1988) in
the specilic context of weakly diverging large-scale geophysical flows. A
related “mode-conversion™ formulation has been developed by Fuchs
et al (1981) to describe the evolution of instability waves in a weakly
inhomogencous plasma.
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Going back to the original dispersion relation w(k: X: R). the frequency-
selection critei ion takes the following symmetric form:

Ow ' S
ki XoR) =0, G XLR) = 0.
ﬂk( wXaR) =0 (’X(A‘ AR =0

w, = ok, X, R). (40}

Itis interesting to sec that the wave number & and streamwise coordinate
X play the same role in (40). Both have to be considered complex, and the
global-mode lrequency o is determined by the singularitics of the local
dispersion relation.

Ifa saddle point X, of wr,(X) exists in the complex X-planc. it is possible
to develop a gencral formulaton of global-mode characteristics lrom
the hincarized two-dimensional vorticity equation. Both the x- and y-
coordinates are then eigenfunclion directions, as discussed in Monkewitz
ctal. (1989b). and the theory is applicable to arbitrary spatially developing
flows. Following the spirit of this review, we choose instead to outline the
matn features of the analysis. starting from the linear partial differential
equation {26). The contours of constant s, {X) arc assumed to be as in
Figure 7. with a single maximum o, {,,.. of w,, on the real Y-axis. and
global modes of the form (36) are sought with boundary conditions
¢(+ o ) = 0. The unknown complex frequency «ax, is expanded as

M, ~ W o+ (41

where o518 given by (3X), and e, is an unknown correction term. The
methodology is similur to the onc¢ used by Pokrovskii & Khalatnikov
(1961) 1n the study of particle refiection across a potential barricr. Several
domains in the complex X-planc need to be considered separately. in the
outer regions + and — (see Figure 7). the distribution of perturbations is
expressed as n the signaling problem. namely

.oy
d X))~ A’(X}cxp[; J k '(X;m,)dX]. {42)
T J,

The branches &' and & are selected inthe + and — regions. respectively,
s0 as to satisfy the boundary conditions at + . From the enforcement
of orthogonality conditions at higher order, one is led to the evolution
equations, '

+

. .
i‘w[k‘(X:w‘)I‘M +lw4+p (XA =0, {43)
ok “d

X
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In the turning-point region of size O(c"'?) around X, (see Figure 7), an
inner variable X = (X-- X,)/¢""? is introduc.d and the solution is given by

$(x; X) ~ p(e)A(R)e=-, (44)

where the gauge functicn u{e) and the amplitude function A(X) are
unknown. The evolution equation for A(X) is determined, as before, by a
suitable orthogonality condition applied at higher order. One finds

1 &4 dA

1
ia).u ‘ﬁ} — fwgkoy X‘I—Y + liwz—éw* i(w“ké”'{'woxx)t?z]j =0,

(45)

where the coeffictents wy,, koy, and wyyy arise from the Taylor expansion
of the dispersion relation w(k; X) and of the absolute frequency wq(1)
around &, and X,. The constant dw is a genuinely nonlocal effect that need
not concern us here. Provided one makes the substitution —iw, — /8T,
the governing equation (45)in the inner region is seen to be of the linearized
Ginzburg-Landau type (18). This is an a posteriori justification for choos-
ing this model in the first place: It anses in a rational approximation
scheme of global-mode characteristics in arbitrary spatially developing
flows with local instability properties as skeiched in Figure 7. The cor-
rection term w, is determined by matching inner and outer solutions. A
smoeoth “conversion” from the k* to the ¥  branch occurs in the inner
region provided that the global-mode frequency is restricted to take the
discrete values

i ‘ |

(DG, ~ (), +£[6w— 2u}“kuj.+(w0”w“)"'2(n+ 2)] {(46)
where 7 s an integer. With the exception of the constant 5w, the complex
frequencies wy;, are solely expressed in terms of the local instability charac-
tenstics in the vicinity of the saddle point X,.

Thc estimate (46) also holds when the y-siructure is included (Monkewitz
et al. 1989b). The eigenfunction distribution in y is then merely slaved to
the slow variable X. Several caveats are in order, however. Formula (46)
is only the result of a linearized analysis. It excludes nonlinear effects,
which are likely to become important far away from bifurcation points.
Furthermore, at large values of n the double turning point X, is replaced
by two first-order turning points X,, and X,,, and formula (46) becomes
useless. The globa! eigenvalues w, are then determined by integral prop-
crties of the local dispersion relation over streamwise distance X,

Itis convenient to think of Figure 7 as a level-contour plot of the surface
wa {X,. X)), where the value of w,, measures the “altitude,” or level, of a

- e
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given point X. Since wq,(X,) € Wo;|m, the point of maximum absolute
growth rate on the real axis X is always on a “hill” of the saddle point X,.
We may thzn propose the following general scenario as a global control
parameter R is increased. When g, |m,, 15 negative, the flow is locally
convectively unstable everywhere on the X,-axis and the saddle point X, is
necessarily at a level wy{X.) < 0. According to the frequency-selection
criterion, the flow is therefore globally stable. When g, becomes posi-
tive, a pocket of absolute instability appears on the X -axis but the saddle
point X, may still be at a negative level, so that the flow remains globally
stable. Finally, when the pocket of absolute instability reaches a critical
finite size, the saddle point is raised 1o a level wy {X,) > 0 and a bifurcation
to a scif-sustained global mode takes place. If B(7} denotes the complex
ampittude of the global mode. the evolution equation near the global
bifurcation point Rg is of the classical Landau form, namely

dB
at =c(R—Rg)B—c,iB|'B+fi. (47
where ¢ (R~ R ) is the linear temporal growth rate, and ¢, > 0 for a
supercritical bifurcation. The complex constant £ is a forcing term added

for later reference.

4. EXAMPLES OF GLOBALLY STABLE FLOWS

In many cases where a purely convectively unstable open system is
invoived, some form of steady-periodic forcing is present. such as free-
stream disturbances coupling into instability waves at solid trailing edges
or other spatial inhomogeneities. As discussed above, in such systems
the downstream evolution of lincar disturbances in the long-time limit is
described by spatial theory, pioncered by Gaster (1965), Michalke (1965),
Tam (1971), and others. Any spatial development of the basic flow is
thereby handled by locally parallcl theory or. at a higher level. by the
“slowly diverging™ formulation (sce Section 3.1 and. for instance, Crighton
& Gaster 1976). A full discussion of the vast literature on fully convectively
unstable flows is beyond the scopc of this review, and only a fow examples,
which have explicitly been proven 1o be convectively unstable. are compiled
in the summary tables. In an even smaller number of cascs, such as the
laminar flat-plate boundary layer (Gaster 1968, 1975, Gaster & Grant
1975), the rotating disk (Wilkinson & Malik 1985, Mack 1985, Reed &
Saric 1989), and the mixing layer (Balsa 1988, 1989), the transient response
has been investigated and found to correspond to the conveclive type
sketched in Figure 15.

o
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The main point we want to make in this section is that global instabitity
can arise from feedback not only by upstream-propagating vorticity (insta-
bility) waves, but also by irrotational global pressure feedback, governed
in the incompressible inviscid limit by the Poisson equation

, )
V‘rj = (48)

i TS T
VA

where p. u, and v, denote the pressure, the three velocity components, and
the usual Cartesian coordinates, respectively. As discussed by Ho & Huerre
(1984, Scct. 5), Morkovin (1988). and Bucll & Huerre (1988). the poten-
tially most powerful sources in (48) are found on the boundaries of the
flow domain or on solid boundaries within, although “volume sources™
such us “vortex pairing™ events in the mixing layer may also be significant
(Dimotakis & Brown 1976, Laufer & Monkwitz 1980}, It is well known
that pressure feedback from solid surfaces placed into a shear low down-
streum of 1ty ongin often ieads 10 global instability in the form of
“edge-" Ueollur- “cavity-,” and other tones (Rockwell & Naudascher
1979). Not surprisingly, the same cffcct can also be achicved “artifi-
clably™ by clectronic feedbuck, which is addressed in the conclusion.

Marce surprisingly, a giobal instability may also arisc in numerical cal-
culations carried out i finite computational “boxes.™ 1t was first noticed
in a spatial mexing-layer calculation by Lowery & Reynolds (1986) that.
depending on the length of the box. disturbances persisted indefinitely
alter the forcing was turned off. Bucll & Hucrre (1988) fully investigated
this phenomenon and discovered that even without any intentional forcing,
4 transient s generaled at the upstream Goundary of the computational
domam by the mismatch between the assumed initial condition at ¢ = 0
and the boundary condition at ¢ > 0.4 mismatch that can only be avoided
tf the solution is known a priori. Figure 8 shows how the resuiting wave
packet propugaltes to the end of the box. There it creates a sharp pressure
change that is instantaneously felt at the inflow boundary. generates a
sccond wave packet. etc.. until the multiple reflections lead to a sell-
sustained dynamical state, which is noisy for this particular box length.
Such behavior demonstrates that numerical simulations, very much like
laboralory cxperiments, may exhibit undesirable resonances and. generaily
speaking, be plagued by “facility effects.” :

A second point we wish to emphasize is that although the basic flow
may be conveclively unstable, instantancous velocity profiles of the dis-
turbed basic flow can be absolutely unstable with respect to secondary
disturbances. Such a concept can be justified. if the scale of the secondary
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Figure 8 Time traces of velooity ral v = |, 50,85, 115, 140, 160, 180, 200, 220, 249 (from

bottam to top). Fuch trace is scaled with tts masimum amplitude Downstream boundary is
at v = 250 (from Buell & Hucrre 198K)

inflectional profiles above low-speed streaks in a boundary layer (sce also
the models in Huerre 1988).

5. MARGINALLY GLOBALLY STABLE FLOWS

Beforc discussing cxamples of globally unstable flows in the next section,
we first consider systems that are only marginaily globally stable. which
means that the highest global mode is only marginally damped [i.c. that
the global temporal growth rate of the zeroth mode wy,. defined by
Equation (46). is only slightly less than zero]. This situation ofien arises
when a flow is almost absolutely unstable, as shown in Figure 4¢. One
intuitively expects such a syste.n to behave like a slightly damped linear
oscillator: Il excited at or close to the resonance frequency, a small forcing
amplitude of the order of the damptng rate produces a large response of
order unity.

Using the model equation (18), which has been shown in Section 3 to
essentially determine the global behavior, we proceed to establish the
analogy between a marginally globally stable, spatially developing flow,
and asimple. slightly damped oscillator. Foliowing Monkewitz et al. (1987)
and Chomaz ct al. (1989b), we adapt the Ginzburg-Landau model as
follows. First, a forcing term is added to (18) to represent a concentrated
steady-periodic excitation at the station x, with amplitude f and frequency
Wyl

’

oy N (-,zw . Wik, 5 o
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In addition, we usc the expansions (30) and (31) of @, and k, around «,
and k,, respectively, and for the present purpose climinate the slow variable
X according to X = &. Next, we characterize the damping rate of the
global mode by the small parameter u « 1 and set

W, = w,,+uQ, . ’
Woxx = Woxx, +ioxy.
Dy = ha, I
kox = thoy,+ Koy, (56}

where Q... Quy v Qo and Ky, .. denote given constants of order unity. If
we neglect the nonparallel correction dw in (46), this lea!s to the zeroth
global-mode frequency

Weo = W, + (£/2) (worx ) ? +koxaoie J+ ip(C)  + O()]
= Weo, + 1o, &)

To keep matters simple, terms of order s have been neglected, and we
assume for consistency that ¢’ « y « ¢. Finally, the forcing frequency is
chosen close to the “resonance™ frequency wg,,. and its amplitude is taken
1o be of order u:

Wy = (g, + pAQ, S = uF. (52)

Equation (49) can now be solved. using the method of multiple scales.
From (50) and (51) it is clear that modifications of the global mode with
frequency g, (to leading order) will occur on the slow time scaile T = .
The solution is therefore sought in the usual form, with the amplitude
function B(T) multiplying the leading-order solution ¢,:

vix ) ~ E(x)e " BTV \(x) + b, ).

E(x) = cxp[if ku(.r')d.r'j,. (53)
0

Tnserting (53} into (49} yields, to leading order in p,

r e [ ot
Zip,) = 0 +[2 -4 (_r—.\;)-]qb =0,
= [4“"‘3‘90“,}“‘ :

'Uu_, ) ()4)

with the solution

1= exp (- E/4) Heol£).

~
I

¢ =Clx-x), {55)

PO

e e ha ki
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where He, = 1 is the zeroth Hermite polynomial. This is in essence the
mode shape of the highest free eigenmode. Its amptlitude is determined at
the next order in u by

L) = (;'2'-¢l|:':ﬁg- w(1‘..(?:|~{»."'1£' (x)8(x — xp)e AT, (56)

kk.r

Application of a solvability condition and the requirement that the solution
be steady periodic leads to the final result

FH(.T;)E AT

O 4 iAQ Hixy = iCayg (81) '7E '(xpexp( & /4),

(57

B(T) =

which is precisely the response of a slightly damped linear oscillator near
resonance, as anticipated. An example for such a slightly damped global
mode, maintained by low-level forcing, is the preferred mode in a jet,
which is also referred 10 as the jet-column mode. An operational definition
of this mode has been given by Ho & Huerre (1984), for instance, who
characterize it in a negative way as not resulting from a subharmonic
sequence starting at the jet noz2le. As a consequence, the Strouhal number
of the preferred mode is ncarly independent of the jet Reynolds number
or, equivalently, the initial shear-Liyer thickness (Figure 14 of Ho & Huerre
1984) and has a value of St x 025 for the two-dimensional jer and
St = 0.41 for the axisymmetric, low-subsonic, top-hat jet.

Mankewitz et al. {1487} have estimated the constants (50) from CXperi-
mentai data in a two-dimensional jet (sec Monkewitz 19894) in order to
evaluate B(T) {Equation (57)] and the global-mode shape. The latter is
shown in Figure 6 which immediately atlows us to conclude that the global-
mode amplitude in our doubly infinite domain is very small at the location
of the nozzle. which is to the left of where g, = w,,| ... This justifics. a
posteriori, omitting the nozzle and at the same time demonstrates the
insensitivity of Strouhal number to boundary conditions as a natural
ingredient of our model. On a quantitative level, Figure 9 shows a com-
parison between the results from (57) and the conventional approach of
evaluating, with locally parallel or slowly diverging theory (see Scction
3.1), the total gain experienced by the spatial instability wave of frequency
wy between x; and its (linear) saturation. From this example it appears that
our global-mode approach yields a sharper frequency-selection criterion,
more in line with experiments, than the tocally parallel theory. Further-
more, the predicted Strouhal nu.anber St = 0.225 comparcs very favorably
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Frgroc ¥ Noomalized gain i o two-dimensionai et from Fquation (57) ¢ Y and from

locally pasatlel theory - ) (from Monkewits el ai 1987}

6. EXAMPLES OF GLOBALLY UNSTABLE FLOWS

6.1 Wakes

Wake flows have recently served as the pacemaker for rescarch into how
local absolute instability can lead to global linear instability and sub-
sequent self-cxcited nonlinear states. We immediately point out that in
most laboratory or numerical experiments. not specifically designed 1o
identify the small-amplitude stages of gtobal instability, one observes only
the nonlinear results of the global instability. which are limit-cycle oscil-
lations for the examples considered here.

Although Betchov & Criminale (1966), Mattingly & Criminale (1972).
fnnd Nukayu (1976) discovered the cxistence of branch-point singularities.
fl was Koch (1985) and Picrrehumbert (1984) who sparked the current
tnicrest in these concepts as applicd 1o wake and geophysical flows, respec-
tively, and who explicitly suggested global frequency-selection criteria in
terms of local absolute instability (sce Section 3.2). Koch’s criterion is
supported by the numerical simulation of Hannemann & Ocrtel (1989,
their Figure 16). Close agreement is obtained between the saturated von
Kiarmin vortex-shedding frequency and the Koch frequency o (X)), wi'h
®a (X)) = 0. This study appears to contradict our claim that Equation (4 ))
is the correet frequency selection criterion. We conjecture that e, (X) may
change only slightly as X varics from X, to X.. but we have no definite
cvidence that this is the case.

Around the same time, Mathis ¢t al. (1984) and., independently, Stry-
kowski (1986) demonstrated in landmark transient exnerimente that van
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instability {see also Provansal et al. 1987, Sreenivasan et al. 1987, 1989h).
By impulsively raising the Reynolds number from just below to slightly
above the critical value for von Karman vortex shedding. these authors
were able to identify the supercritical Hopf bifurcation to a global mode,
the mode’s temporal exponential growth in the linear regime. and its final
nonlinear saturation in the form of self-sustained oscillations, commonly
referred to as the von Karman vortex street. In addition, they showed
that at near-critical conditions the temporal evolution of the charucteristic
global-mode amplitude is accurately described by a Landau equation (47).
The saturation amplitude obtained from (47) by setting | B|jdt = 0 is
given by

IBl. x (R— R(;.)I . =0,
The experimental results of Strykowski (1986) displayed in Figure 10
clearly show the exponentially growing (in time) linear global maode 1o
which the analysis of Section 3 applics. This concept of a bifurcation to a
global mode has been fully confirmed by Zebib (1987) and Jackson (1987)
with global fincar stability calculutions in which the temporal stability
characteristics (ay; in particular) were determined on the computed non-
parallel basic flows.

Monkewitz {1988a) then firmly tied the local stability properties to the
observed global bchavior by showing that the sequence of transitions in

R>R,. (58)

49 - {a}
R
ib i
43 ) i . 3
] I Figure 11 The onset o vonn Karan vor-
0 ! 2 t tex shedding alter o siep inerease of the
Revnolds number (from Strykowshr 1986,
(b) Strykowski & Sreenivisan 1959, wath per-
mussient), (o) mean veloony (Jow-pass fil-
X tered below 30 T (0) fluctuating velovity
u
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the cylinder wake, as the Reynolds number is raised, does indeed follow
the sequence in the model problem of Chomaz et al. (1987, 1988; see also
1989a): first, the transition from stahility to convective instability, then
from convective to local absolute instability, and finally the bifurcation to
a sell-sustained global mode only after a sufficiently large portion of
the flow has become absolutely unstable. We emphasize again that the
intermediate transition to local absolute instability is not observable in an
experiment, since the concept is based on “fictitious™ locally parallel ve-
tocity profiles. For the local stability calculations, a two-parameter family
of symmetric wake profiles was used with variable wake depth and variable
thickness of the mixing layers on both sides of the wake. Matching these
analytical profiles to experimental mean velocity profiles, Monkewitz
(1988a) found transition 1o convective instability at a Reynolds number
R'™ bascd on cylinder diameter D and freestream velocity U, of approxi-
mately R ~ 5; the appearance of the first local absolute instability occurs
at R = 25, long before the onset of von Karmin vortex shedding at the
experimentally determined R = 45-47, when a substantial portion of the
near wake is absolutely unstable,

In the case of a wake, one may think that absolute instability is closely
related 1o the existence of reverse mean flow 1o “carry information
upstream.” That such an intuitive concept can be thoroughly misleading
is demonstrated by the “floating wake™ (Triantafyllov & Dimas 1989) of
a circular cylinder immersed half-way into a uniformly flowing stream, as
depicted in Figure 11a. As shown in Figure 11h, these authors demon-

fa) FREE SURFACE

:—..,J.__I__J_H._,,..I___.I._ R BT
¢ 1 2 3 [

Figure {1 The stability of the floating wake (from Triantafyllou & Dimas 1989, with
permission). {«} schematic of the mean Row. (h) absolute growth rate versus Froude number.
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i i - ‘ourtles
Figure 12 Streambines of 4 numenical wake experiment withoul body at R HI0 (co v
ol:G. Triantafstloud. (@) mean-Now stecamlimes, (A} instantancous streambines

strated that at low Froude number F= U, (gD/2) '’ 1l?c wukg IS c(-)n-
vectively unstable despite the reverse mean flow, wilu:rc-fis in the Im‘1.|l rf |T
oo their branch TE corresponds to the usual von Kirman mode of a Tully
i linder. o
|mgrfrlsl::<:dci);1cr hand. the idea that an explanation for von Kfmnun vorlrclni
shedding can be found in the details of the flow ﬁcpar:‘ltm‘n from lLI
cylinder surface has reccived o severe blow by an ingenious I'IUI:IIC.TILd
experiment of G. S. Triantalyllou (privale commumculmn?. FFrom : go(r;?-‘
putation of the flow around a ¢ylinder that had .rc;n:hcd ;1‘\lc;|dy-pu_m I\L
state. he took the mean velocity protile immediately hchl_nd lh.c cylinder
and used 1t as an inflow condition for a sccond compuytlmn_WI|_hnul th
cylinder. The result was that the Now field (churgclcnycd. Iur- H.]-\mr.“}r'
by the mcan and instantancous s!rcnmlin.cs of Fllgurc 12) wis Yn:ju‘.l _y
indistinguishable from the original ssmulation. Thls'lcnds stromg cre L m\c
to the almost universal practice of simply disregarding the body in wake-
stability analyses.

THE EFFECT OF BASE BIFED AND DINSITY VARIATIONS ON VON KARMAN
VORTEX SHFDIING  The connection between local absolute instubility and
global self-excitation becomes cven more convincing when one luqks al
the effect of additional parameters. such as base hlc_cd .;1n}l nnnumform
density. For the present purposes the very si.mplcsl mwf.cld and |na.).m-
pressible, two-dimensional wake/jct with uniform velocity _unq clcnxn):J
bounded by two vortex sheets, provides an excelient qun.lllallyc roa

map” of these effects. For this simple basic flow the follmfvmg dlspcrsu;ln
relation 1s obtained in clementary fashion for both the sinuous unq the
varicose made, and for variable velocity ratio A as well as density ratio S
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\ + 1 wminuous mode, s = = 1t varicose mode,

\ - (( wake ot o (r, }‘-"‘i(("’w..x..- ot + (;: }- S = pv.uknjct/‘p e (59)

Shiee we are only anterested in the branch Points ), that scale with the
wake jet width, we need not be concerned here with the unbounded growth
rates as A+ s To determine the boundaries between convective and
absolute instability in (5. A) parameter space, one can take advantage of
Equation (39 invariance under the transforma’ion

- -
S o8 A AL Vo (60)

which s however, lost for a finile miving-layer thickness. This leads Lo
the hughly symmetric pattern observed in Figure 13, which suggests that
reverse flow (e, JA] > 1) promotes absolute insluhilily as expected
whereas collow in the case of the Jet or buse bleed in the wake has thc;
opposite effect. Furthermore., it follows that in the wake it is always the
Mittous ar von Karmian mode that becomes absolutely unstable first,
W hgrcu\ i the jet it is the varicose or symimcetric mode. Lastly, density
varatiens are seen o have the opposite effect in the wake and the jet.
While lowering the wake density (inwir. for instance, by heating) suppresses
absolute instability, it promotes it in the jet. All these three conclusion.;;
have been verifind experimentally and are illustrated in the following,

gy " Th_ﬁﬁﬁ_‘*ﬂ:
i 3
5 = a ]
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Fiynre 13 Regions of absolute instability in the {5 AFplane for the sinuous mode thori-

?un!;ll hittching) and the varicose made (vertical hatching) in an inviscid, incompressible
KU wake buunded by voetor choste tfeom Voo 6 8o 4 o
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The first example illustrates the effect of base bleed on the globul wake
stability. Wood (1964) already had demonstrated that a sufficiently large
base bleed leads.to the suppression of von Karman vortex shedding behind
a blunt airfoil trailing edge, as well as to a substantial drag reduction. His
critical blecd coefficient was found by Monkewitz & Nguyen (1987) to be
in good agreement with stability calculations showing thui the wake is
cverywhere convectively unstable for A > - 0.84. By placing strips of
perforated plates (Castro 1971) and screens with different open-ared ratios
normal to a uniform stream (Inoue 1985), the same eflect was demon-
strated. The flow-visualization results of Inoue, obtained at the high Rey-
nolds number of R = 3000, arc reproduced in Figure 14. 11 is obvious that
between an open-area ratio A of 0.37 and 0.39 an abrupt transition tukes
place from von Karmin vortex shedding, which is almost indistinguishable
from the case 2 = 0, to no von Kirmin vortex shedding This is cnticely
consistent with the concept of global instability, where the nonlincar satu-
ration amplitude of the observed oscillations increases abruptly according
to (58) when the control parameter 2 increases beyond a critical valuc,
We also note here that the distinguishing feature between Figures 144 and
14¢ 15 the near-wake insiahility, for which we reserve the term von Karmén
vortex shedding. As seen in Figure 14c, a convective, sinuous fur-wake
instubility, which may be mistaken for a von Karman vortex street, appears
in general farther downstream from the “body.” However. it is maintained
by cxternal forcing (freestrecam disturbances, for instance) and hence
depends on its level, and it is not “fed” by a self-excited “wuavemaker™ in
the near wake.

Experimentally, other measures, such as the heating of the wake (with
atr as working fluid). have been found to be cffective in suppressing von
Karman vortex shedding (see Table 3). Again, it is possible to relate the
cffectiveness of heating to changes in local stability propertics. as shown
yualitatively by Figure 13. More detailed stability calculations for an ideal
gas and finite Reynolds number have been carricd out by Monkewit
(1988c)and Yu & Monkewitz (198%): they use the family of velocity profiles
of Monkewitz & Nguyen (1987) and similar temperature profiles, which is
legitimate for a Prandtl number of unity. The resulting boundaries of
absolute instability in the (S, R)-plune are shown in Figure 15 lor two
values of the velocity ratio A, as well as for constant and temperature-
dependent viscosity. The first conclusion is that the suppression of absolute
instability by heating is mainly due to density variations. i.c. to the modi-
fication of inertial forces, and not to the modification of viscous forces via
the temperature dependence of the viscosity, More preciscly, the chinge
of wake density subtly affects the interaction between the two shear layers,
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Figure 15 Absolute-mnstabality boundarics of a heated-cylinder wake in the (5., Rj-planc
for conslant { - — ) and lemperature-dependent ¢ -- <) viscosity, and for velocity ratios of A =
~1(OYand A= =125(A) (from Yu & Monkewitz 1988). [J: boundary of glubal insta-
bility {from Berger & Schumm 1988, with permission). A: absolutely unstable domain. ¢
convectively unstable domain.

to the well-known Strouhal scaling of the von Karman shedding based on
jet width.

Recent experimental data of Herger & Schumm (1988) have also been
included in Figure 15. For this purpose, the relationship between the usual
Reynolds number R' and the pertinent local profile Reynolds number
R. based here on the wake half-width and the average beiween the wake
center-line velocity U, and U, . has been estimated according to Monkewit?
(1988a). As usual, this stcp introduces the largest uncertainiy into such
comparisons. Nevertheless, it appears that again the measured houndary
of global instability lies well inside the region of local absolute instabtlity,
as suggested by Chomaz et al. (1987, 1988).

OTHFR MEASURES AFFECTING VON KARMAN VORTEX SHEPDING  Inanimnova-
tive experiment Strykowski (1986) noticed that von Karman vortex shed-
ding behind a cylinder could be cffectively suppressed by inserting a much
smaller “control cylinder™ into the flow, immediately outside the wake
shear layer. Photographic cvidence of this phenomenan at approximately
twice the critical Reynolds number both with and without the controi
cylinder is presentied in Figure 16. The effect has been reproduced in a
numerical experiment by Strykowski & Srecnivasan (19%9). but the relation

Figure 14 Flow past a screen at R = 3000 (from Inoue 1985, reprinted with permission of
ALAA). (a) opep-arca ratio & = 0 (Nat phate), (B) 4 = 03T (e} 4 ~ 0 W )i - 0SS
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Figre 16 Hydvogen-bubble visualization of (g} vortex shedding behind a cylinderat R = 90

and {/f AR USSR ) I
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ul“llw‘\upprc.\\inn mechanism Lo absolute and convective instability of th
modificd wake has not yet been established. We can only %[;cculaylo Ilrc
lhc. asymmeltry ol the base flow, resulting from the inscrlion.nflhe o d:
cyhinderomay lead to a significant change of local stability pro rl?:mm
A‘nolhcr method of suppressing the von Karman vortex s'lrcglch- 'S&
d‘fv"‘c,‘l by Berger (1964, 1967) and Berger & Schumm (IQQS} It ““ ._Cn
.nl us.cllluling an oblong cylinder at low amplitude and “hi h". fr W""'?‘S
in lhl!'i case slightly less than twice the natural von K:'lrrri'm frzqucm'y‘
Running the experiment above, but very close to, the critical R*CIUCHB’.
number, these authors were able to show that the forcing arr‘lplilu(yigo' .
be used as a control parameter, much in the same way that Reyn ::I:in
number. base-bleed coeflicient. or density ratio can be used. Fi rfm(‘ I‘;
demonstrates the effect by switching the forcing off at ¢ ‘whi-ch It:: Is
an exponential growth and subseauent saturatinn of |Il:n wan l(d-t--:::)
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Figure 17 Suppression of vortes shedding Belimd i oblong eviinder by InehAreguenes
forcing during 1 < 1 and 1> roal B - NU(R, = 80) {rom Berger & Schumny 198K willy
permIssion’}

suppression of natural vortex shedding. No explanation for this ¢llect s
known. and again we can only speculiate that 1t may be related 10 the
weakening of the vortex strect by the higher [requency “Lransition waves”
as observed by Bloor & Gerrard (1966} in the cylinder wuke around
R™ 2 1000,

6.2 Low-Density Jeis
Returning to Figure i3, we reiterate that.as opposed 1o the wake. the lew
density ol the jet promotes absolule instability. This has been veritied in
detatl by the stability caleulations of Monkewitz & Sohn (1986, 1988}
for the axisymmetric jet and by Yu & Monkewilz (1988) for the two-
dimensional. incrtia-dominated jet. 10 was also shown that homogencous
incompressible jets are cverywhere convectively unstable. In the axisym-
metric case. the low-density jet starts to develop a region of local absolute
instability below a density ratio S = pfp . of 0.72, where p, i the jet exit
density. This first transition to absolute instability is found for sero Mach
number and axisymmectric disturbances ona profile ncar the noszle, which
has a vorticity thickness 8, of 8.4% of the jet diameter. Furthermorg, the
frequency of local modes with vero group velocity scales as a Strouhal
number based on the jet diameter. with values between 0.25 und 0.5. In
the two-dimensional jet, the cor-esponding density ratio at which absolute
instability first occurs is S, = 0.90,

Theee findines sugaested the possibility of self-sustained global oscil-
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vated the experiments with an axisymmetric helium-nitrogen jet by Kyle
(1988) (see also Srcenivasan et al. 1989a, Kyle & Sreenivasan 1989), with
a round, heated air jet by Monkewitz et al. (1988a, 1989a), and with a
two-dimensional hot jet by Yu & Monkewitz (1988). Concentrating on
the axisymmetric case, both.groups indeed observed strong, self-excited
oscillations at density ratios below approximately S x 0.6 in the He/N, jet
and § =0.72 in the hot-air jet. The experiments indicate that the main
requirements for a clean self-excited response are a laminar initial jet shear
layer (i.e. a comparatively low Reynolds number) and a very quiet facility.
Al higher Reynolds and Mach numbers, low-density jets have been found
to revert back to the familiar behavior of homogeneous turbulent Jets for
reasons that are not yet compiletely understood. To illustrate the limit-
cycle oscillator nature of the low-ReynoIds—number. low-density jet, we
show in Figure 18a a typical near-field pressure spectrum of the hot jet.
There is little doubt that with its main spectral peak some 30 dB above
the buckground, this spectrum is qualitatively different from (hat of the
homogencous jet in the same figure. To be positive, however, about the
nature of the oscillations— limit-cycle or not ---the presence of the {super-
critical) Hopf bifurcation to a global mode must be verified by measuring,
for instance. the saturation amplitude (58) as a function of the control
parameter. This is shown in Figure 184, with the density ratio § playing
the role of control parameter. The fact that two modes have been identified
Is not surprising in light of Section 3's analysis, and this feature does not
concern as further,

An interesting aspect of self-excited oscitlations in low-density jets is
that they have a spectacular effect on the jet spreading. with half-angles
occasionally in excess of 45", This “by-product” of self-excitation is clearly
outside the scope of the theoretical stability considerations of Section
3. and it was only discovered during the course of the experiments

to the notion that only the density profile is responsible for the self-excited
behavior. as long as buoyancy does not become tmportant close to the
nozzle. ‘

Going one step further, Monkewitz et al. (1989¢) have found that the
large jet spreading under seif. -excited conditions js highly nonaxisymmetric.
They hypothesized that this phenomenon is caused by the Widnail insta-
bility of the primary vortex rings and the subsequent radial expulsion of
“'side jeis” by vortex induction. These “'side jets™ are observed Lo number
between two and six and to roughly coincide with (x, r}-planes that are
more or less equally spaced in the azimuthal direction. They are strikingly
visualized in Figure 20, which shows two Jet cross sections that were
produced hy placing a laser-sheet perpendicular to the jet axis at v/ = 1
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Figure 18 (a) Near-field pressure spectrum in a round air jc;;l (t(;‘f)ér, J';im(: ol
fonk 1w =pJp, =047 4an = Tk
i al. 19 . —- ., hotjerwith § = p.J/p, i : S
S s :ld I HS:'ICI('”J head. (b} Amplitude of the dominani near-field prc“ur(.‘ t“-:“” |t “.:|
(S:“(;i;zguanorz:alircd by-lhc jet dynamic hcad, versus § (from Monkewats et o
al = TMH,
19%94). . Fquation (58) fitted to the diuta.

and then taking a high-speed mnvi_c of the light scaltelzccd f::»:l:g;nlt}k:

articles introduced into the jet. Figure 20a captures '|p‘|:' e o
primary vortex ring, providing a scale for the su'dc jets, while 'Ib,q o
shows the side jets between the passage of .pnmar'y vorlc:(mr)nrrlbg.cncm"
property of the low-density jet lcads us to bcheye thdtd(:l ‘Clcvcr v
level self-excited oscillations, whether natural o_rmd.ucc 'iﬁ e oo to
lation of 1he flow, may be put to good use, as 1n many case: .

be associated with optimum mixing.

6.3 Capillary Jets | e
The last flow to be specifically discussed in this “zoology h-ﬂlr-ﬁllﬁ(l::gg
unstable systems is the capillary liquid jet. It serves to shll)_u l'i;lr(;ql1|l e
the form of the lincar global instability is known. its nonlincar res
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. . jet at x/P = 3, § =044, and R = 7500.
Fiqure v (.:Al Side view of helium ot (with § = 04 and R = HOG} by laser-induced T e ootons of 3 smoke-seeded hot jet a1 /D
Nuorescengy (from Srecnivasan of al. 19893y (4 Spark-Schliery :
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be quite unexpected. Leib & Goldstein (1986a,b; sce also Lin & Lian 1989,
Monkewitz et al. 1988b) have demonstrated that on an inviscid basis the
Rayleigh instability, which leads to the breakup into drops, becomes
absolute when the Webe: number W exceeds 0.32 (i.e. when capillary
forces become comparable to inertia forces). The Weber number is defined
as W = o/(pU?), where ¢ is the Jiquid surface tension, p the jet density.
U the uniform jet velocity, and r the jet radius. To investigate the practical
effects of absolute instability, Monkewitz et al. (1988b) have carried out
experiments covering a range of Weber numbers from 0.06 to about 0.5,
with associated Reynolds numbers (based on r, and U, at the orifice)
between approximately 500 and 140.

Tor each condition the breakup distance was determined between the
orifice plate and the location where individual drops for ied. It was
observed that beyond an initial Weber number W, of about 0.3, the
breakup distance decreased dramatically and became zero around
W, = 0.5 (with Ry & 180). Visually, at this critical Weber number the jet
goes abruptly from breaking up downstream of the orifice to dripping,
without an appreciable change in mean flow rate. The tentative explanation
for this behavior is that once the region of absolute instability adjacent to
the orifice becomes sufficiently long. a global mode starts growing in time.
The resulting finite-amplitude oscillations close to the nozzic presumably
then lead to the wetting of the orifice plate and to the formation of large
drops. Hence, it may be that the dripping of a faucet is in a broad sense
related to von Karman vortex shedding.

7. FURTHER CONSIDERATIONS

7.1 Experimental Diagnostics

A topic of some importance is how to recognize global instability in the
laboratory or in a numerical simulation, as the information used in Section
3 for its definition is not generally available. We again emphasize that in
this context only the global properties are meaningful, since local absolute
instability. which is the property of a fictitious parallel mean flow, cannot
in general be directly observed in a spatially developing system. The type
of experiments that are suitable for the identification of self-excited global
modes can immediately be divided into two classes. The first contains all
the “"casy™ experiments, which address the stcady-periodis behavior of the
system and in general yield only supporting evidence for the existence «
sclf-excitation. The second class naturally contains the “hard™ expen

ments, which are concerned with the transient behavior of the system as
well and yield conclusive proof of self-excitation. A characteristic in
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common is the requirement of extremely low uncontrolled external noise
50 as not to obscure the bifurcation to global modes.

Typical experiments of the first kind are given approximately in ascend-
ing order of the strength of the evidence that they can provide. At the very
bottom we probably have to place single-point spectral data. Despite the
rather convincing look of Figurc 18a, for instance, it is always pos-
sible that a clean spatial instability, especially in a laminar shear flow,
can produce an equally peaky spectrum. Next, experiments with steady-
periodic forcing should be considered. They can be designed to detect
frequency “lock-in” phenomena. which point to a nonlinear oscillator
behavior, by sweeping the forcing frequency past a suspected global-mode
frequeney or its rational multiples (see. for instance, Srcenivasan et al,
1989b). Another design involves the measurement of the systcm response
as a function of forcing amplitudc at the suspected global-mode frequency.
In the casc of a purcly convectively unstable system, onc expects for
small cnough forcing a lincar ;elationship between forcing uand responsce
amplitude (i.e. the behavior of an “amplifier’”), whercas for a self-excited
system sufficiently far from critcal the saturation amplitude of the limit
cycle is insensitive 10 low-level lorcing. This is easily verified with the
forced Landau cquation (47). which yields Bl {f) = |Bl.{fi=10)
+ B2 B = 0)] when fi « |BILLf = 0). Around critical conditions,
however, the dependence of | 8|, on forcing becomes more pronounced.
A typical cxample of such an experiment is shown in Figurc 21. Finally,
the measurement of the saturation amplitude as a function ol a control
parameicr, as in Figure 185, gencrally constitutes strong cvidence for the
presence of a supercritical Hopt bilurcation. In the case of a subentical
bifurcation the situiition becomes far more complicated, however, but we
are not aware of any such example.
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The second class of “hard” experiments is typified by the transient
cxperiment of Mathis ¢t al. (1984). Strykowski (1986), and others. It
involves following a global instabilily in time from its inception. through
its small-amplitude lincar stage, to saturation. The information oblained
in this way ot any given point can then be used to evaluate all the complex
coefticients of the Landau cquation and to positively identify a bifurcation.
We may add here that, in order to avoid any misinterpretation. it should
be verificd that the same Landau equation is satisfied at every point in
space.

7.2 Implications for Flow Control

The concept of global instability is Tikely to be frintful in the context of
flow “modification™ and “control.”” Here we reserve the term “controt™
for closed-loop feedback control. while any other “fiddling™ with the
Mow is referred to as flow “modification.” The study of local stubility
properties in particular. absolute istability  thereby represents a
simple and quck. albeit not foolprool. means of evaluating the global
characteristics

When considering control and fliow modification, we must distinguish
hetween two diametrically opposed objectives, which call for very different
strategies. The first (und possibly more common) is the suppression. (o the
greatest extent possible, of all oscillations. The second. equally important
objective is the stimulation of a global instability for the purpose of optimal
mixing. for instance. This latter task can in gencral be accomplished very
efficiently by a simple. single sensor single actuator feedback control, as
demonstirated experimentatly in the homogencous round jet by Wehrmann
(19571 and Resenthel {1988}

By contrast, the suppression of global instabalities by single sensor
single actuator feedback control in the wake of an oblong cylinder was
discoverced by Berger (1964, 1967) 1o be difficult and only possible very
close to the natural critical Reynolds nuniber. Both of these situations
have been analvzed by Monkewitz (1989a), using the generic Ginzburg-
Landau model of Sections 2. 3. and 5. The analysis qualitatively reproduces
all the experimental findings and in addition yields the following simple
explanation for the success and failure of single sensor single actuator
fcedback control: To induce global instability, only a single, and tn most
applications unspecificd, global mode has to be destabilized. To suppress
global instability. on the other hand. all global modes must be attenuated.
It is ¢lear that in the latter situation, one sensor is in general not sufficient
to handle multiple global modes. which often have very closely spaced
frequencies [O{x) apart in the formulation of Section 3, Equation (46}].
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in most ~ascs destabilize another. therchy defeating 11s purpose.
Conversely. we speculate that tn all examples in which such o simple
feedback control works {sce, for cxample, Flowes-Williams 1989), there
was only a single. self~excited global mode to control, with all others
strongly damped. Except under these speetal circumstances, - theretore
appears that the most promising strategy 1o suppress global instability
is to medify the flow sysiem so as 1o eliminate all regions ol absalule
instability.

7.3 Relevance to Chaotic Dynamicys

The classification scheme outlined in the introduction and in Section 3 s
particularly pertinent to the study of deterministic chaos e open Hows,
We recall that in globally unstable flows, & Hopl bifurcation takes place
whereby the entire spatial domaun is in a ltmit-cycle state at a natural
frequency ;. Close to the bilurcation paint, the temporal behavior is
fully specified by the Landau equation (47). All refevant properties of the
unsteady flow ficld can be characterized by a time senies al a single point
in space. 4s 15 used for closed flows in small-aspect-ratio geometnes (Ray-
leigh-Bénard convection, Taylor-Couctte flow). Furthermore the linite-
amplitude periodic state reached by globally unstable flows provides a
henchmark with which other possible states (Lori, strange atlractors) can
be compared as i control parameter is varied. For instance, if time-
harmonic forcing is applied. locked-in regions (Arnold tongues) can be
mapped and universal transitions can be identified for particular values of
the ratio between the excitation frequency and the natural irequency. Such
a program has been carnied out cxperimentally by Olinger & Sreemivasan
(1988) for tne wake behind an oscillating cylinder and by Sreenivasan ¢l
al. (1989a) for a periodically excited helium jet. Numerical simulations of
a forced blufl-body wakc performed by Karniadakis & Triantafyllou
(1989) also reveal the presence of locked-in regions as well as low-dimen-
sional chaotic attractors. In other situations. additional natural frequencics
can be introduced by the modes of vibration of the cylinder. The coupling
between hydrodynamic and clastic modes may abso lead to low-dimen-
sional chaos, as shown by Srccnivasan (1985) and Van Atta & Gharib
(1987). We conclude that globally unstable flows arc readity amenable o
a low-dimensional dynamical-systcms approach of the kind used for smali-
aspect-ratio closed hydrodynamical systems. Complicated spatio-temporal
patterns are also passible, as shown by Van Atta et al. (1988).

The dynamical regimes of globally stable flows that arc nonctheless
locally convectively unstable cannot be as casily characterized. Extreme
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cycle states even when the flow is forced monochromatically. As a result,
when the flow is pushed into what appears to bea low-dimensional *“chaot-
ic” state, it is often impossible to discriminate between intrinsic chaos and
amplification of external random noise (Huerre 1987). To explore other
possible approaches, Deissler (1985, 1987a) chose to investigate numerical
solutions of the Ginzburg-Landau model with a stabilizing cubic nonlinear
term. Under broadband-forcing conditions, the external noise was found
1o be selectively amplified and spatially growing waves were generated
downstream of the source at the frequency of the maximum spatial ampli-
fication rate. Farther downstream, however, the nonlincar wave train
became modulationally unstable to sidebands. This secondary instability
triggered a breakup of the primary finite-amplitude wave into a turbulent
state. Random fluctuations in the spatial location of the breakup point
were shown to be responsible for intermittency. Since, in the absence of
external fluctuations, no spatio-temporal oscillations could be detected,
Deissler appropriately coined the term noise-sustained structures 10
describe this phenomenon. Similar dynamics has been identified by Brand
& Deissler (1989) in the Kuramoto-Sivashinsky equation. A distinctly
different spatio-temporal behavior arises in Ginzburg-Landau models dis-
playing a subcritical bifurcation (destabilizing cubic nonlinearity). As
demonstrated by Deissler (1987c), the spatially growing waves generated
by random noise produce turbulent spots and slugs that are qualitatively
similar to those observed in channel fiow and pipe flow. The reader is
referred to Deissler (1989) for a survey of recent work in this area.

Few convectively unstable flows have been studied experimentally from
a nonlinear dynamical-systems point of view. Experiments on thin airfoil
wakes (Aref et al. 1987, Williams-Stuber & Gharib 1989) reveal a wealth
of possible flow patterns when several incommensurate frequencies are
introduced externally. Bonetti (1988) and Bonetti & Boon (1989) have
recently identified low-dimensional chaotic attractors in excited jets with
fully developed pipe flow at the nozzle exit plane. The transition to chaos
was in this case related to the breakdown of the helical structure generated
immediately downstream of the nozzle.

It remains to be established whether the usual statistical measures of
chaos, such as Lyapunov exponents, remain applicable in convectively
unstable flows. As noticed by Deissler & Kaneko (1987), Lyapunov
exponents generated at a fixed spatial location are always negative, a fact
presumably related to the negative absolute growth rates prevailing in
convectively unstable flows. Deissler & Kancko propose insiead to intro-
duce a velocity-dependent Lyapunov exponent calculated in a frame of
reference moving at a constant speed. A convectively unstable flow is then
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determined to be chaotic when the maximum value of the Lyapunov
exponent over alt frame speeds is positive.

7.4 Relation to Global Instability in Closed Flows

This review has been centered around spatially developing open flows of
infinite streamwise extent. A related question may then be asked: How do
local/global and absolute/convective instability concepls carry over 1o
flows in finite geomctrics that, in their basic state, arc spatially homo-
geneous? In the last five years. important advances have been made in
our understanding of traveling-wave states in closed flows, the primary
objective being the description ol spatio-temporal complexily in convecting
binary fluid mixtures. The most successful model appears to be that pro-
posed by Cross (1986, 19%8) for finite systems exhibiting an instabihily
to an oscillating spatially peniodic state with x — - X symmelry. Cross
considers two coupled Ginsburg-Landau  equations with constant
coefficients governing the amplitudes  and ¢y of left- and right-moving
waves (sec also Coullet ct al. 1985). As a control parameter R is varied,
the linearized system undergoces successive transitions from stable to ¢con-
vectively unstable o absolutely unstable. as sketched in Yigures 1f g.h.
Numerical simulations reveal that in convectively unstable situittions (Fig-
ure lg). the finite-size nonlinear system admits “confined traveling-wure
states” that are restricted (o one side of the spatial donuin, namely right-
moving wavces on the right side or left-moving waves on the left side. In
contrast with open infinite systems, global modcs can therefore cxist in
finite geometries even though the medium is convectively unstable every-
where. In a subrange of control parameters, more complicated “bhnking
states™ are also possible. which consist of left- and right-moving triveling
waves periodically alternating between cither side of the cell As the basic
statc becomes absolutely unstiable cverywhere {Figure i thereisa distingt
transition o a full-cell nonlincar saturated state composcd of counter-
propagating traveling waves. Thus, the occurrence of absotulc instability
in this class of closed flows signals the onset of a global mede occupying
the full length of the system. Bt is striking that the detailed sequence of
nonlincar states predicted by Cross (1988) has been confirmed by many
careful experimental studics of binary fluid convection. In particular, con-
fined traveling-wave states have been observed and documented by Hein-
rich et al. (1987) and Moscs ct al. (1987), blinking states by Fincberg et al.
(1988) and Kolodncr & Surko (1988), and full-cell saturated nonlincar
traveling-wave states by Walden et al. (1985) and Moscs & Steinberg
(1986). Recent experimental progress has been extensively discussed by
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Kolodner et al. {1989y and Steinberg et al. £ 1989). Not all global or confined
states can be cxplained in terms of the Tocal nature of the instability in
open Nows and closed flows: Recent experiments by Bensimon ct al. (1989)
in binury Mnd convection in an annulus do show the existence of stable
conlined stites that cannot be related to tocal instability properties.

7.5  Puaticrn Propagation Fronts

The theorcticad considerations outlined m this review bear a close relition-
ship with the determination of the front propagation velocity of a pattern
into an unstable hasic state. When a locahsed perturbation is initiated
in a spatidly uniform unstable state, a linear wave packet develops. as
sketched in Fagure L In the nonlincar regime. a patfern is then generated
that spreads out into the unstable state. The front separating the nonlinear
pattern from the unstable basic state propagales at a well-defined velocity
1,2 and a particular complex wave number Ay is selected by the dynamics
immediately behind the front. Dec & Langer (1983). Ben-Jacob et al.
(1985). and Shraiman & Bensimon (1985) hive proposced a selection prin-
ciple for I') and A, that is bused on lincar marginal-stability arguments.
Mare specilically, the velocity ¥, and the wave number &, are such that,
tn o reference frame moving with the front. perturbations are neutrally
stable. From Figare 1, it is then immediately obvious that the fronts
coincide  with the specific rays v =1, where the growth rate
a =k ) G A, dentically rero, Thus. in the notation of this review,
the Dee-Tanger eriterion for ¥, and Ay can be stated as

Y ‘
MR (61)
a=wmlhy 1k, =0 (62)

For instance. application of this criterion 1o the linearized Ginzburg-
Landau cquation (&) yields the front velocities

1.2
m%m—ﬁq_ (63)

Py = & |f~"u|[
1y,

These values correspond to the stopes of the rays delineating the extent of

the wave packet in Figure 1. They have recently been derived by Niklas et

al. (1989). The predictions of the Dee-Langer criterion have been verified
Avnerimentally fAhlare & Cannell 1987 :|nd numcrim“v ([_UECICC ct ﬂl

LOCAL AND GLOBAL INSTABH ITIES 523

1984, 1985) for the propagation front separating a pattern of Tavlor
vortices from the ambicnt unstable Couctte flow. Excellent agrecment has
been obtained by Fineberg & Steinberg (1987) in the cise of 4 convection
roll pattern invading the conduction state in Ravieigh-Bénard cells. In
both cases, the particular version of the Ginzburg- Landau cquation associ-
ated with a stationary bifurcation was chosen to predict the tfront velogity.
More recent theoreticat work by Ben-Jacob et al (1985) and Vian Saartos
(1988, 1989) indicates that the lincar marginal-stability criterion only hiolds
in systems undergoing a supercritical bfurcation with a continuous tran-
sition to a finite-amplitude stutc. When the bifurcation is suberiical, pat-
tern propagation mto the unstable state follows a nonlincar margmal-
stabtlity criterion,
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APPENDIX: SUMMARY OF RESULTS FOR
DIFFERENT TYPES OF FLOW

Glossary of acronyms and parameters
LS: lincar stability analysis
LE: laboratory experiment
NE: numerical experiment
CI: convective instability
Al absolute instability
GLI: global instabiiity
A: velocity ratio
S: density ratio
R: Reynolds number
M: Mach number

F: Froude number
W Wahar niimhar
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