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SPATLO-TEMPORAL INSTABILITIES IN CLOSED AND OPEN FLOWS

P. Huerre

Department of Aerospace Engineering
Univerasity of Southern California
Los Angeles, California 90089-0192
U.s.A.

ABSTRACT. A review is given of the general theory describing the
linear evolution of spatio-temporal instability waves in fluid media,
According to the charactar of the impulse response, one can distinguish
between absolutely unstable (closed) flows and couvectively unstable
(open) flows. These notions are then applied to several evolution
models of interest in weakly nonliinear stability theory. It is argued
that absolutely unstable flows, convectively unstable flows and mixed
flows exhibit a very different sensitivity to external perturbations.
Implications of theae concepts to frequency selection mechanisms in
mixed flows and the onset of chaos in couvectively unstable flows are
also discussed, '

1. INTRODUCTION

In hydrodynamics, one often distinguishes betwsen the behavior of

closed systems and open systems without being too specific about the
meaning of these concepts. From a purely kinematic point of view, one
is tempted to say that a flow is closed when fluid particles are
recycled within the physical domain of interest, If all fluid particles
ultimately leave the domain, the flow is said to be open. On such
grounds, Bénard convection within a horizontal fluid layer is a closed
system whereas plane Poiseuille flow, wakes, jets, etc,., are open
systems.

In the present review, closed and open flows will be defined
instead with respect to the character of the hydrodynamic instabilities
which they can support. Thus, the motion of waves is claimed to be
more relevant than the motion of fluid particles. Following Briggs
[1] and Bers [2], a flow will be said to be absclutely unstable (closed)
if its impulse response is unbounded everywhere for largs time
(Figure 2b). If the impulse response decays to zero at all spatial
locations, the flow will be said to ba convectively unstable {open)
(Figure 2c). These notions will be defined and reviswed in detail in
section 2. In other words, from a hydrodynamic stability point of
view, closed and open aystems refer to absolutely unstable and
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convectively unstable flows, respectivelv., In the core of this paper,
we shall use this latter terminology only.

It should be made clear that a given flow can be open with respect
to fluid particle trajectories but closed (absolutely unstable) with
respect to instability waves, For instance, a parallel wake flow with a
sech’y velocity profile is absolutely unstable for large values of the
velocity deficit [1]}, see discussion of section 4.3. Yet, fluid
particles clearlv move out of the physical doaain and no recycling of
particles takes place. Similarly, paralle] axisymmetric hot jets are
absolutely unstable if the core temperature is sufficiently higher than
the ambient temperature (4,5], Here again, fluid particles move
downstream but hydrodynamic instability waves contaminate the entire
medium. Thus, in many cases, one must relv on mathematicaf criteria to
determine whether a given fluw is absolutely unstable or convectively
unstable, These criteria which were first proposed by Briggs (1] in the
context of plasma instabilities are discussed in section 2,

In section 3, the general method is illustrated on three amplitude
evolution models commonly arising in the context of hydrodynamic
instabilities: the Ginzburg-lLandau equation, the Klein-Gordon equation
and the long-wavelength integro-differential equation obtained in
reference (6], The implications of these notions to receptivity issues,
frequency selection mechanisms and chaos in open flows are critically
reviewed in section 4. _

For a recent review of similar topics within the context of shear
flows, the reader is referred to [7],

2. GENERAL FORMALISM

The main concepts will first be developed in the general context of
spatic-temporal waves in one—-dimensional space, The development
broadly follows the review of Bers [2]. let A(x,t) be a scalar
funcrion of space coordinate x and time t, which may

represent for instance the fluctuating velocity or temperature field in
a fluid mediym. More generally, A(x,t) could be a column vector with
an arbitrary number of components. For simplicity, A{x,t) is assumed
here to have a single component only and to satisfy a differential
equation of the form

Di-1.1 25 RIAGLE) = S(x,t), (1)

vhere D is a £inear differential operator arising from a perturbatiom
analysis around some basic state of the medium, The function S(x,t)
specifies the excitation imposed on the system in some region of space
for a given length of time., We assyme that S(x,t) = 0 everywhere when
t < 0. The flow may depend on an external control parameter R, such
as the Reynolds number, Rayleigh mmber, etc...

Fouriar-transform pairs in space x and time t are then introduced,

according to the definition
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_ 1 1(kx~wt)
Afx,t}) = EViaki !FJL Alk,w)e dudk, (2)

In equation (2), the path F in the complex plane of wavenumbers Kk is
initially taken to be the real axis. The contour L in the complex
frequency plane is chosen so that causality is satisfied, namely
A(x,t) = 0 everywhere when t < 0: it is a straight line lying above all
the singularities of the complex w plane. When £t < 0, the L contour
can then be closed by a semicircle above L and the response A(X,t) is
identically zero, A sketch of the paths of integration is included in

Figure 1.
O ki
t<0

} ktw)
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® wr - ’ X<r0
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Figure 1. Paths of integration of the f{nverse Fourier transforms (2}:
(a) complex frequency plane; (b) complex wavenumber plane.

The Fourier transform of equation (l) readily provides a statement of
the problem in the spectral domain:

D[k,w;R)A(k,w) = S(k,w). &)

In the absence of forcing, S{x,t) = S(k,w} = 0, one cbtains the
normal modes of the syatem in the form of a complex dispersion relation

D[k,w;R] = 0 (4)

between wavenumber k and frequency w. When k is taken to be real, the
zeroes of the dispersion relation yield a collection of tempoaal normal
modes with complex eigenvalues w.(k), j = 1,2,3,,.. Conversely, when
w is given real, one obtains spdtial branches k¥ (w),k7(w}, etc. Both
sets play a crucial role in the evaluation of tha Greeﬂ's function as
discussed in the next section.

In the forced problem,one can iomediately solve for A(k,w) in (3)
to arrive at a purely formal expression of the solution in terms of the
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inverse Fourier transform (2):
_ 1 S{k,w i(kx~wt)
Al{x,t) = e L‘JL D—m:'u—;)k—r e dudk, (5

the esgsential problem being the evaluation of the integrals along L
and F!

2.1, Spatio-temporal evolution: The Green's function or Impulse response

Let G{x,t) be the response to a unit impulse S(x)S(t), i.e.r the Green's
function of the operator D. We recall that the response of a linear
system to an arbitrary forcing input S(x,t) can be determined by
convolution of G with S over space and time, From equation (1), the
Green's function G(x,t) satisfies

D (-1 .32;, i ;t-, RIGOG,E) = §(x)6(t) (6)

Equivalently, one obtains in the spectral domain (see (3)):
Dlk,w:RIG(,w) = 1 (N

At this stage, one may follow one's personal taste to choose the order
of the inverse Fourier transforms in (5). We shall first perform the
integration in w-space

1 e—iut
6ot = 5 | sty % ®)
L »

When t < 0, the contour L is closed from above and no residues
contribute to G(k,t) so that G(k,t) = 0. When t > 0, the contour L is
closed by a semi-circle at infinity in the lower half w-plane bounded
by L (see Figure la). We shall assume, for eimplicity, that the only
singularities in the integrand are poles arising from the zeroces of the
dispersion relation D(k,wsR]. Since k is given on the real axis F in
the complex k-plane, these poles are located at the temporal (K real,
w complex) eigenmodes wj kW,  =1,2,3,... Thus the normsl modes of
the unforced problem naturally arise in the calculation of G to give
the residue contributions

—iuj (k)t

R a
G,t) = -1 § ﬁnlamk,uj(ﬂ;nl ’ @

Inversion of the Fourier transform with respect to k then leads to the
wave packet integrals
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i[kx—uj(k)t]

oo

Gix,t) = - ng J_,, (anfam)[k.wj(k);ﬂl dk ‘o

Each integral can be evaluated for large time, x/t fixed, by
applying the method of steepest descent {8,9]. Details very much
depend on the nature of w;(k) (see specific applications in section 1).
To pursue the formal development, it is assumed that each branch
wj(kjk) gives rise to a single stationary poiat k; satisfying

dw. x
* = — 8
'IEL (kj) t (11

The surface I defined by ¢ (k 'ki) = Re(i(x/t - w;:}} exhibits in
(kr'ki'w space a saddle point at kr = k‘-’r, k, = "-'i. The original
contour F can be deformed into a lteepeai duéenl: ial:h issuing from
each saddle point k*, provided no hills of the surface I are crossed
at infinity, Uainngtnndard argunents one obtains

] i[kj'!""’j(k'j')t}
Sot) o = @0 e | T AT
i 13 b i
(12)

The Green's function takes the form of a train of wavepackets in the
(x,t}-plane., For a given packet, the flow selects, along each ray

x/t = const,, a particular wavenumber given by (11). The temporal
amplification rate of along the ray reduces to ¢ = Im{w.; (k¥

- k}(dnﬁ/ak) }} and mdy in general be positive or negativé, “Different
situatidns are now examined,

2.2. A criterion for convective or absolute instability

Consider, for s moment, a dispersion relation with a single normal mode
w(k). Definitions and results can readily be extended to systems with
multiple modes. According to the charscter of the impulse response
G(x,t}), one may First distinguish between stable and unstable flows.

A flow is defined as stabfe if

lim G(x,t) = 0, along all rays x/t = const. amn

[ ]

In other words,the temporal growth rate w, (k) = Imao{k} of the normal
mode is negative for all real wavenumbers, amd the response of the
system tskes the form of a decaying wavepacket, as sketched in Figure 2a.
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Pigure 2. Sketch of impulse responses: (a) stable flow; (b) absolutely
unstable flow; (c) convectively unstable flow.

A flow is unstable if there exists rays x/t = const., atong which

lim G(x,t) = = - (14)

o]

In such a situation, the temporal growth rate w, (k) is positive in some
range of real wavenumbers, and the impul se excitation gives rise to an
unstable wavepacket confined within a wedge bounded by the two rays of
zero smplification rate (see Figures 2b,c). Digturbances Brow
exponentially in the wedge as given by equation (12). Let kux denote
the wavenumber of maximum temporal growth rate such that

(Gw;/dK) {Kyex) = 0. As seen from (11), kpgy travels along the

particular ray x/t = (dmr/dk) ('lg.u). The peak of the wavepacket, which
grows at the maximumw allowable rate mi(km)' therefore moves in that same
direction.

But, within the unstable flow category, one must further
distinguish between absolute instability and conwvective instability, a3
illustrated in Figures 2b and 2c.

i e,dm unstable flow is said to be absolutely unstable if for all
Lxed x,

1im G(x,t) = = » (13)

o

An unstable flow is said to be convectively unstable if, for atl
fixed x,

lim G{x,t) =0 . (16)

| g
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The nature of the instability, is determined by the Long-time behavior
of the wavenumber ko, staying at a f<xed spatial location along *he ray
X/t = 0, i.e. the wavenumber of zero group velocity (dw/dk) (ky) = 0,
Note that, in general, the corresponding complex frecuency we = w(ko)
will be an algebraic branch point of the function k(w). In absoluctely
unstable flows (Figure 2b) the edges of the wavepacket travel in
opposite directions and the ray X/t = 0 remains in the unstable wedge.
Thus, k, must have a positive growth rate w, {(ky) > 0. Conversely, in
convectively unstable flows (Figure 2¢) the1edges of the packet travel
in the same direction, leaving the ray x/t = 0 outside the wedge soc that
wi(ko) < 0. Following Pierrehumbert [10], the quantity w_(k,) can be
cdlled the absolute growth rate: w,(ky) denotes the tempofal growth rate
of the wavenumber k, ataying at a fixed x location, whereas w, ( ),
defined previously, is the temporal growth rate following the peak of
the wavepacket, We are led to conciude from the above argument that an

. unstable flow is convectively unstable when {ts absolute growth rate is

A A A o G pmonnr g s .

negative: the branch-~point singularities of k{w) lie in the lower half
w-plane. When the absclute growth rate is positive, the branch points
of k{w) lie in the upper half w-plane and the flow is abesolutely
unstable,

This criterion, however, is not explicit enough as it stands, and
one needs to carefully monitor the positions of the zerces w, (k) and
k% (w) of D(k,w) located in the w—plane and k-plane, respecti&ely. To

tisfy causality, the contour L in the w-plane (Figure la) can alumys
be placed high enough so that the zeroes w,.(k) lie below L when k is
real on the inictial contour F of Figure 1bd Conversely (2], when w is
on L, none of the zeroes ki (w), k}(m). etc... of D(k,w) in the k-plane
can then cross the origina{ contour F, If they did, I itself would
intersect one of the curves wj(k) in the w-plane, which leads to a
contradiction, Thus, ptovides L is hiﬁh enough, the original F contour
neatly separates the spatial branches (w) and k3 (w) located in the
upper and lower half k-planes., When x > 0 {x<0),” the contour F is
closed in the upper (lower) half k-plane and the residues of the spatial
branches ki (w) (k] (w)) contribute. Assume as in the rest of our
discussion™ that a single second-order branch point Woy 3 is associated
with each mode mj(k). Two radically distinct situations may then take
place,

First, the two Riemann sheets of the brauch point wg,; may
correspond to spatlial baanches k}ﬂn) and k3 (w) Located, L £8 high
enough, on opposite sides of F, ije., 4n upper and Lower half
k-planes respectively. Then, as L is displaced downward, the curves
k}&u) and k3(w) move towards each other in the k-plane (Figure 3a,b).
In this process, one must correspondingly deform the original contour
F 80 as to retain the same number of spatial branches for x > 0 and
x < 0, while at the same time lowering the curve of zeroes mj(k) in the
w-plane, Of course, the simultaneous deformation of L and F must stop
whenr L touches uwy (k) and F becomes "pinched" between the branches
k} (w) and kj(w) "12], as sketched in Pigure 3c. This is precisely the
point (koj,mej) identified previously, whers the group velocity dw/dk
is zero. "When pinching tskes place with wy still located in the upper
w—plane, the instability is absolute. Otherwise, it is couvective.

R S o T S < AT
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Figure 3. Locus of spatial branches k7" (w) as L contour is dis-
placed downward in complex w-plane. (aj,(b). and (¢) describe
differeat stages of pinching process.
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As emphasized in a recent paper by Pierrehumbert [11], it may also
happgn that the two Rieggnn sheetsigf the branch point Wo 3 pertain to
spatial branches, say ki (w) and ky (w) Located, for high enough L, in
the same half k-plane. When the contour L is lowered, no pinching of
the F contour can therefore vccur. The corresponding branch point (Woy .k,j) is
not associated with an absolute growth rate., Presumably, the contour Fcan-
not be deformed continuously to go through the saddle point along apath of
steepest descent and the mode wy4 does not appear in the response (12).
An example of this type of behavior is given in section 3.2.

Thus a flow is convectively (absolutely) unstable when the branch
points of k(w), which pertain to spatial branches k*(w) and k~(w) ori-
ginating from disdtinct halves of the k-plane, are located in the lower
(upper) half w~plane.

2.3. Spatial waves: the signalling problem in convectively unstable
media.

Let us now consider the response of the flow to a simple monochro—
macic input of frequency wg located at x=0 and switched on at t=0. The
inicial state is assumed to be identically zero aso that

D [~is, i,}-; RIACX,t) = §(x)H(t)e Mo£t (in
which, in the spectral domain, yields
Ack,w) = L . (18)
D[k,w;R] (w - mf)
The evaluation of the inverse Fourier transforam in w
: -ilwt
A(k,t) = % I & dw (19)
D[k,w;R] {w - wg)

L

leads us, when t > 0, to distinguish several contributions to the re-
sponse arising from the poles of the integrand in {(19). The transient
signal, due to switch-on, is associated with the zeroes of the dispar-
sion relation D[k,w;R], whereas the gteady-state response is related to
the simple pole at w = wg. A straightforward residue calculation gives

wg (kye™ Wyl e

Ack,t) = 2} + .
3 [w; (k) - w2] (3D/3w) (koo  )R1 - D[k,ugiR]

(20)

and the Pourier transform of (20) with respect to k reads

R il I S e - T T L e g VL R a s s e . e e e e - -
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4o 1lkx-wjlk)t]

w, (ke
3 I ! dk
- [m; k) - m§] (3D/3w) [lc,wj (k);R]

A(x,t) =

Al~

21

dk .

. e—iwft J"' eikx

2 oo DlkuwgiR]

As t + ® , the first term's asymptotics can be obtained via the method
of steepest descent, in exactly the same mannet as in section 2.1. The
second term 1s calculated by closing the contour F in the upper (lower)
half k-plane for x > 0 (x < 0). Residue contributions arise from the
zeroes ki(wf) and kj(wg) of the dispersion relation at a fixed real fre-
quency wg. These are precisely the spatial branches encountered in many
calculatfons. One arrives at the final result:

AG,D ~ ()10 @2
) w, (ke ~0g (g™
- 2 " ” 2 -« *y 2 2 L l’
5 [}k - wf] (3D/30) [kJ.w, (ki) iRI[d w,)/dk?) (k)]
ei[ki(mf)x-wftl ei[kj(mf)x-wftl
+if " H(x) - if A=),
i (3D/3K) (K] (wg) 0giR) 1 (aD/3K) [k (wg) sugiR]

where the wavenumbers k; are given, along the ray x/t, by equation (l1)
and H denotes the Heaviside unit step function. The solution is composed
of a switch-on transient of the same qualitative form as the Green's
function (12) and a "steady-state" response arising from forcing the
flow at the frequency wg. The latter part takes the form of &

growing and/or decaying waves located on either side of the scurce. The
spatial branches kj(wg) and kj(wg) have unambiguously been assigned to
the domains x > 0 and X < 0, respectively. This stems from the fact that
they originate, for high enough L, from the upper and lower half k-plane
respectively, as discussed in section 2.2.

If the flow i{s absolutely unstable, the transient contribution will
progressively overvhelm the "steady-state” response at all spatial lo-
cations, thereby making the signalling problem meaningless. In a sense,
spatially-growing waves are pathologically unstable to any kind of per-
turbations. However, 1if the flow is couvectively unstable, transieots
will gradually move away from the source, leaving a genuinely observable
steady-state signal. Spatially-growing waves are only relevant in con-
vectively unstable physical systems.

T e Ak L o A bt A T i



SPATIO-TEMPORAL INSTABILITIES IN CLOSED AND OPEN FLOWS 151

3. APPLICATION TO AMPLITUDE EVOLUTION MODELS

In the following, the general concepts introduced in the previous sec—
tions are applied to three specific amplitude evolution models which
commonly arise Iin the study of hydrodynamic instabilities.

3.1 The linearized Ginzburg-Landau equation

Perturbation analysis of fluid dynamical systems close to marginal sta-
bility at a finite wavenumber often lead to the Ginzburg-Landau

&

« -UA2c,) )

(b)

Figure 4. Temporal mode of the Ginzburg-Landau equatfon: (a) Temporal
growth rate w4y versus real wavenusmber K;(b) wy versus real wavenumber k.
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equation, In the particular context of Rayleigh-Bénard convection,
this model bears the name of Newell-Whitehead [12] and Segel (13]. Io
plane Poiseuille flow, it has been studied and derived by Stewartson
& Stuart [14]., If A(x,t) denotes the complex amplitude function of a
wavepacket,the linear operator D takes the particular form

3A 3A 32
3-t-q-ug-‘-(--—um (L +ic,) 557= 0, 23

where U, u and c, are given real parameters. The parameter | measures
the "degree of supercriticality”, i.e., how deep inside the unstable
domain the system is, The constant C4 is calculated once and for all
in a given flow situation, and U is a velocity which, when nohzero,
breaks the reflectional symmetry X + -xX. The dispersion relation gives
rise to a single temporal mode (Figures 4a,b)

wik) = ip + Uk + (¢, - iyk?, (24)

of group velocity

dw _ -
?E g+ 2(cd ik. (25)

When u < 0, the system is stable, When y > 0, it is unstable, the
maximum growth rate mi(ﬁ‘ ) = u occurring at = 0. The branch
point of k(w) is obtain gy solving for (dw/dk) (ky) = 0, which
immediately yields

{a) (b)

Figure 5. Spatial branches of the Ginzburg-Landau equation: (a) Spatial
growth rate (-kj) versus real frequency w; (bz’ ky versus real frqueacyws.
The velocity U fs such thac U > 2{u(l + cd’)] .
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U ) u?
kg = = ! owe = 1u - - (26a,b)
2cd-1 Acd 1
The temporal mode may then be rewritten in the convenient form
w(k) - wo = (e, = 1) (k = ko) % 27y

thereby clearly displaying the fact that the singularity is an
algebraic branch point of order two. For a given value of w, there
exists two spatial branches {Figure S5a,b) given by

K" 7w =k, ¢ (‘;_’d;_“’%)" (28)

As the complex frequency w = w, + ilwj; varies along the straight line
contour L, at the height Wirs the spatial branches are restricted to
the hyperbola

2 -  _ - =
A +cy)k, ko.i) (k. cdki) w (29)

iL 0,1 *

as sketched in Figure 6a,b, As w. becomes sufficiently large, the two
spatial branches k¥*{w} and k= (w) telong to distiact halves of the k-
plane, and {ko,w¢) is a genuine singular point for the determination of
absolute or convective instability (see section 2,2),

The absolute growth rate is equal to the imaginary part of (26b),

ki
k*tw)

__—-’??—_-
ko
K{w)

{a) (b)

Figure 6. Locus of spatial branches as Wo,q1 18 decreaged: (a) and (b)

describe different stages of pinching process for the Ginzburg-Landau
equation.
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namely

-— ] - Uz -
wl(ko} = u.ln.i =u ﬁm}j (30)

when [U] < 2021+ cz)xlz' the absolute growth rate is positive and
the system is absolutely unstable. When U} > 2u'/2(1 + c;)‘lz. it is
negative and the aystem is convectively unstable.

The Green's function G(x,t) is given by (i0) with w(k) specified
by (27), so that

) +o  ifkx-(c =i) (k-kg)2t]
Gix,t) = f;e"“"t ] e d dk . (31)

This integral can be evaluated exactly by a straightforward change of
variable to give the closed fora solution

Gl t) = ()= /2 (1 + 1c)"1/? explL(kox-wot)

X
“F T e ¢ (32)

d

The method of steepest descent would yield in this cass the exact

result (32) by application of equation (12), The response to an

impulse takes the form of a wavepacket which displays all of the main
characteristics of the general case as discussed in section 2.l. The
peak grows at the maximum growth rate Y along the ray x/t = U, The edges
of the wavepacket, where the growth rate is equal to zero, move at the
velocitles Ut 2(l+ci)‘lu‘i. At a fixed X location, the asymptotic tempo-
ral growth rate is, as t + o, Wt » the absolute growth rate at k = k,-
An alternmate expression for (32) is

- - - 2
G(x,t) = 5 (rt)™® (1+icy explut - - (33)

The reader may apply to this result all the definitions and concepts in-
troduced in section 2, to recover the mainconclusions regarding the ata-
bility or instability of the system. The parameter y 1s sean to control
the peak growth rate while the parameter U controls the absolute growth
rate. Different responses are flustrated in Figure 7.

In the convectively unstable case, the solution of the signalling
problem satisfies (22), the spatially-evolving waves issuing from the
monochromatic source having characteristics displayed on Figures 5a,b.

O S
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ReG ImG

> —_ x ""J = X
(a)
- x = —x

(b)

Figure 7. Green's function of the Ginzburg-Landau equation: (a) abso-
lutely unstable case; (b) convectively unstable case.

3.2. The linear Klein-Gordon equation

The cubic nonlinear Klein—Gordon equation commonly arises in inviscid
marginal stability analysis such as the baroclinic instability of a
quasi-geostrophic two-layer model on the B plane [15], the Kelvin-
Helmoltz instability of two layers of immiscible fluids {16], or the
buckiing of thin shells {17]. When linearized, the model takes the form

e B e - - e it s i e e e e e e AL = < e
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PEE I L S
(at +Uax} A~ axz - ‘JA 0., (3“)

and the dispersion relation in Fourier space reduces to

Dlk,w] = -(w - )2 +kt-u=20. {35)
There are two temporal modes (figures 8a,b)
o R0 = UK £ R =W (36)

of group velocity

d“t.z

= = U * k! - ' (an

When u < 0, the system is neutrally stable, fn the sense that w,(k) and
mz(k) are purely real. When U > 0, the Elow is unstable to wavenumbers

in the range [k| < uh. The value of U determines, as before, the char-

acter of the instablility.
In the range |U| < L, the two spatial branches are given by

KW = - i _ o, —1——[mz + u(l - U’)]" . (38)
1-U2 1-U2

and the branch points of k(w) are located on the imaginary axis at

- si[u( - UDTY 5 K, = U/ - U] (39)

Wy

As in the previous example, one may check that, for wyy, sufficiently
large, the spatial branches are rastricted to the upper and lower half
k-plane respectively. Pigching first takes place at w,=ifu(l - U]
and k, = ~iU[w/Q1 - U?)]4, as wyy is gradually decreased (figures 9a,b,
c). The absolute growth rate is positive and it must be concluded that

the instability is absolute.
For parameter values such that {U| > 1, the spatial branches can be

more conveniently written as

K, - B-}UT : FLYW - - 0%, (40)

and the branch points at
w, = £[uU?- DY, k, = W/ - n)* (3

- e T s e
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are confined to the real w-axis. At large values of wj;, the spatial
branches are located in the same half k-plane (upper half k-plane if

U> 1, lower half k-plane if U < -1). As wy; 1s decreased to zero so
that the L contour touches the branch points on the real w-axis, the
spatial roots "collide" without pinching the F contour (see Figures l0a,
b,c). The branch points at w, = £fu(U? - 1))¥ therefore do not contri-
bute to an absolute growth rate which, at any rate, would be zero. The
instability is convective.

The Green's function can be calculated exactly [18,16], by invert-
ing G(k,w) = 1/D(k,w),with D(k,w) given by (35), For definitiveness, it
is assumed that |U| < I, but the same final result holds when Ul > 1.
Instead of performing the w- integration first (see section 2.1) we
choose here, as an illustration, to first evaluate

Wi
p*

(b)

Figure 8. Temporal modes of the Klein-Gordon equation: (a) Temporal
growcth rate wy versus real wavenumber k; (b) w, versus real wavenumberk.
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Wi y t<0 k,
L it>0
it -rn” I R
—-\
— e

¢ -i(u1-u”?

(c)

Figure 9. Locus of spatial branches in the k-plane, as w
is decreased: (a), (b) and (c) describe different stages tﬁ' piaching

rocess in the Klein-Gordon equation. The velocity U is such that
TU| <1. Flow is absolutely unstable.
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w; ki
7 t>0 T
e L Sy it
Sl n? g F ‘x<0
(a)
wij ki

(b}

l (c) ]

Figure 10. Same as figure 9, when |U| >1. Flow is convectively unsta-
ble. Note absence of pinching of F contour by spatial branches.
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the integral over all wavenumbers, namely
rl‘“’ ikx

1 e
S0 =37 | TR @I E@T “D

There are two simple poles k = k¥ (w) located on either side of the real
k axis when |U| < 1 (recall the previous discussion). Closing the
contours as indicated in Figure 9a, one obtains the residue contributions

: eik"'(m)x RUNOL
Gl = 3oy B ot H=x) gy | (43)
with
K@ = oz W2 + ul =092, (“4)

and kt (w) given by (38).
There remains to evaluate the inverse transform with respect to W

Gix,t) = m-li;-ﬁry [H(x)I+ + H(=)I'], (45)
where
£ _ m{i[ktSN)x-wt}}

The contour L is chosen to be above the branch cut (Figure 9) linking
the branch points at wo = tifp{l - U’)]‘/z. An elementary exsmination
of the real part of each exponent indicates that the contour should be
closed from above when t? - {xx - Ut)? < 0, Cauchy's theorem then
yields G{x,t) = 0, In the range t? - (x - Ut}? > 0, it is convenient
to introduce the notation U = tanha and the psrameters £ and B such
that ’

x = Ut = Esinhd, t = fcoshd, an
conversely,
£ = [t? - (x =Ut)?)/%, tanh® = (x - Ut)/t. (48)

The integral I+ may then bs written as
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1" = [ exp{it(-ucoshacosh(o+a) + sinh(ota)((wecosha)? + ) i/2]}
JL coshal (wcosha)? + yj172

(49)

A closed form solution can then be obtained by deforming L around the
branch cut. A parametric representation of along the branch cut is

given by

wooshy = 1u'/2coay, -m < § < +n (50)

with

[(wcosha}? + u]'/2 = it/ 2giny (51)

on both sides of the cut (Figure 9). The integral 1t is then
rearranged as

+ i +x 1/2
T == s J_N explu'/*Ecos(y - 1(8 + a)ldy. (52)

The above integral is zero around the contour C sketched in Figure 1.
Evaluation of the contributions along the 4 segments making up C leads
to the final expression

Figure 11. Contour C used to derive (53) from (52).



P. HUERRE

+ 21 " 1f2
7= - E;;ﬁ,;-lo exp(u'/ “Foosvldy . (53)

The integral representation of the modified Bessel function Iy is
recognized [19] so that

+___2_1ri.__ 1/2
I = - ==t Ip(u'/ %8}, (54)
Bearing in mind that I~ = I+, the Green's function pertaining to the

Klein-Gordon equation then reduces to
Gl t) = 5 To ' /2(E? = (x - U PH/2jR(e? - (x - U 2}. (55)

The above result remains valid when [U] > 1.

In the long~time limit, one may use the asymptotic expansion of
I, to arrive at the result one would obtain from a steepest descent
calculation, namely,

V2pe2 _ - 211 /2
Gix,®) ~ gryrrr T T AT K - x - 002).

(56)

{a) (b}

Figure 12. Green's function of the Klein~Gordon equation: (a) absolute-
ly unstable case; (b) convectively unstable casa.
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The peak of the packet experiences the maximum growth rate 1'/? and
travels along the ray x/t = U, The edges move at the respectiva
velocities U t 1. The absolute growth rate is [u{l ~ U2)]'/? when
|Ul < 1 and zero when lul > 1. The impulse response is sketched in
Figure 12,

In the range [UI > 1, spatially-developing waves can be generated
with the stability characteristics sketched in Figures 13a,b. Note
that both waves develop downatream of the source when U > 1, in
agreement with a previous discussion on spatial branches, The steady~
state response is of the form (22) with no terms multiplying H{x) when
U > 1l. To emphasmize this feature, the spatial branches have been
renamed kT and k¥ as in (40),

wad- 0|

LM

(a) (b)

Figure 13. Spatial branches of the Klein-Gordon equation: (a) Spatial
growth rate {-ky) versus real frequency w; (b) ky versus real frequency
w. The velocity U is such that U > .

-(uAut o

3.3. A long wvavelength evolution equation

As a last example, we consider a long wavelength evolution equation
pertinent to the Kelvin-Helmholtz instability in bounded mixing layers
(6]. The model will serve to illustrate the type of technique which
may be applied when the dispersion relation contains |k| terms and is
therefore not analytic. When a general forcing term s(x,t) is present,
the linearized version of the wmodel reads

_: 3 ] = 1 3 3
Dltls;, Ls?]a(x,t)z?x-*(w-bllg;)a
(37)

3 3’
YUt = st

where a(x,t) and a(x,t) are real, and

e e i e R s L,
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€E*h= rf(x - £}h(E)dE (38)

-l

is the spatial convolution of the functions f and h. The dispersion
relation in this case takes the form

D, (k,u] = -sgnk(w - Uk) + ik(u = k¥) =0, (59)

and there exists a single temporal mode characterized by
wa(k) =Uk + i|k|(u - k?). (60)

The system becomes unstable when u > 0, the maximum growth rate
wy(Kpax) = 2(u/3)?/? being reached at kygx = (ulS)k. as shown in Fig-
ures lé4a,b.

To facilitate the interpretation of |k| in the complex plane, it
is convenient to associate with the reaf signal a(x,t), the complex
"analytic signal” A(x,t) (see, for instance, [20]) defined by

[(Six) + i/(me)]) » a(x,t);

Alx,t) (61a.b)
a,

a(x,t) = ReA(x,t).

The symbol Re indicates the real oart of a complex quantity, If
a{k,t) and A{k,t) are the spatial Fourier transforms of afx,t) and
A(x,t) respectively, relations (6la,b) become, in wavenumber space

Alk,t) = 2H(K)a(k,t);
(62a,b)

ak,t) = ;- (Alk,t) + K(=k,t)],

a bar denoting the complex conjugate. Thus, the spectrum of Alx,t)

is nothing but the Testriction of the spectrum of a(x,t) to positive
wavenumbers only, Hence, the anmalytic signal A(x,t) is merely the
extension to arbitrary waveforms of the complex notation vhich, in
linear systems, relates a monochromatic real signal a(x) = coek,x and
its complex equivalent A(x) = alkeX. once A(X,t) is known, the real
signal a(x,t) can be obtained by taking the real part a(x,t}) = ReAlx,t),
as required by (61b). All the calculations can therefore be performed
on A(x,t) which is easily shown to satisfy

3 3 . A, . 2A
D - 1-5-;, 1 3t JAlx,t) = i e + U e ) (63)

3 a’A
in -aé + oy = S(x,t).

+

e~
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(a) (b)

Figure 14. Temporal mode of the long wavelength equarion (57): (a) Tem-
poral growth rate wy versus real wavenumber k; (b} w, versus real wave-
number Kk

The function S(x,t) is the analytic signal corresponding to s(x,t), as
defined in the pair (6la,b), The new diapersion relation

D(k,w) = - (w = Uk) + 1k(u - k%) =0, (64)

is analytic in k. It has been obtained from (59) by simply choosing
agnk = +1., The inverse of D(k,w) defines the operator acting on the
analytic signal A(x,t) in (63). Since the spectrum of A is identically
zero for k < 0, the general formalism developed in section 2 holds,
provided the contour F is initially taken to be the posilive real axis
instead of the entire real line, The study of the trajectories of the
poles in the integrand can be hesinicted o the half-plane k. > O and
its corresponding image in the w-plane, We note that (63) is the
linearized form of the Korteweg-deVries equation with complex
coefficients, The temporal mode is given by

wik) = Uk + ik(u - k), (65)

vhich can be compared with (60). The branch point of k(w), obtained
by solving for (dw/dk) (ks) = 0, is located at

ke = ({u - 1) /3172, we = 21k}, (66)

with kor > 0. At each value of w, there are in general 3 apatial
branches, only two of which are located in the half-plane k., > 0, The
branch po:.nt (66) involves genuine pinching of the F contour by
branches k¥ (w) and k™ (w) originating from distinct sectors k. > 0

and ki < 0 as L is lowered., The shsolute growth rate wy§ becomes rero
when ~|U| = u/3. The system is therefore absclutely (convectively)

unstable when [U} < w/3 (|U| > w3d),

i e e —
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The Green's function g = ReG is calculated by solving for

Sy LB _ i
D [- 1355 lﬁ]G— {6{x) +1-';)5(t). (67)
equivalently,
Gk,w) = 2H(K) /D {k,w). (68)

A straighforward residue evaluation in the complex w-plane leads to the
wavepacket integral

1l kx-w(k) ¢t}
L dk
(3073 (K,w(k)]

i +x
Gix,t) = - = [ (69)
0

which should he compared with the general formuls (10), We note that
the k-integral is limited to the range 0 < k < 4w, The application of
the method of steepest descent involves a stationary point k* such that
(dw/dk) (k*) = x/t, as well as a boundary point k = 0. Since in the
particular exemple considered here w.(0} = 0, the saddle point
contribution at k* will dominate the response inside the wavepacket,
Racher than pursuing this argument, we choose to derive an exact
representation of G(x,t} when the dispersion relation D(k,w) is given
by (64). The wavepacket integral them reduces to

G(ix,t) = -,‘;- r- explikix - Ut} + k(n - k?)t] dk . (70)
0

Upon making the change of variable k = 1/(3t)'/?, G(x,t) can be recast
as

Glx,t) = ,,-(‘3_,317'!' r exp(-t?/3 + (3t)~Y/*(ut
]

(71)
+ i(x - ot)ltlar,

which invelves the integral representation of the function H1(2) {191].
The real Green's function takes the following final expressiom:
4

g, = (36" Re(int ( EEXIEGR, (2)

The asymptotic expansion of HL(Z) as |2] + = leads to the same results
as the method of steepest descent, namely

bt et
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g

(q) (b)

Figure 15. CGreen's function of the long wavelength equation (57): (a)
absolutely unstable case; (b) convectively unstable case.

1 i
g(x:t) v W Re [ [ut'l- i(l-Ut)lTn

(73)

. 2 lut+i(x -ye)]2/2
epl § @O T H

when |(x-Ut)/t| < w3,

\\Zﬁ;—" \{‘;\‘r’

Figure 16. Spatial branches of the long wavelength equation (57): (a)
apatial growth rate (~kj) versus real frequency w; (b) k, versus real
frequency w. The velocity U is such that U > u/3,
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and

g(x,t) ~ Re[ m“;}x_uﬂ ], whea |(x-Uty/t| > w3 . (74

The edges of the wavepacket move at the respective velocities U * u/3,
and the critical values U = *u/3 signal the transition from absolute to
convective instability. Typical responses are shown in Figure 15.

The characteristics of spatially-evolving waves are sketched in
Figure 16, when |U| > u/3.

4. APPLICATION TO HYDRODYNAMIC INSTABILITIES

In the sequel, we shall emphasize the physical implications of the pre-
vious mathematical development. Recall that two classes of unstable
flows have been distinguished.

4.l. Convectively unstable flows

In convectively unstable systems, any initial disturbince is advected by
the flow as it {s amplified and the medium is ultimately left undisturb-
ed. In this instance, solutions of thadispersion relation with real
and k complex are physically relevant. Thay describe the spatial evolu-
tion of a perfodic excitation applied at a fixed spatial location. As a
rule, convectively unstable flows are extremely semsitive to external
forcing. Receptivity issues thersfore play a crucial role in determining
the fate of infinitesimal disturbances. At the same time, intrusive mea-
surements leave the flow relatively

Absolutely Unstable Flows Corwectively Unstable Flows

RW-B‘{_KIG Convection Jots (20 or 301
PP, Iy,
00000 I | =8sS"
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T‘>T2 X
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Absolutely Unstable Flows Corvectively Unstable Flows
Temporal shear Layer Spatial shear Layer
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Figure 17. Tentative classification of common fluid flows into abso-
lutely unstable flows and convectively unstable flows (ses also (e’Zn -
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unaffected, provided no feedback loops or hydrndynamic resonances are
willingly introduced (see later discussion). Examples of convectively
unstable parallel flows are numerous in classical hydrodynamic stability
theory, but few detailed calculations of the pertinent complex
dispersion relations have been conducted. An incomplete, partially
subjective, list is given in Figure 17. According to Huerre &
Monkewitz (4], the family of parallel shear layer profiles U(y) =

1 + Rtanhy (0: streamwise velocity, y: cross-stream direction, R:
velocity ratio) is convectively unstable to fwo-dimensional
disturbances whenever R > 1,315, Indeed, spatial stability theory
(21,22] provides a consistent description of most insatability waves in
mixing layers generated downstream of a splitter plate, The three-
dimensionalf wavepacket calculations of Balsa [23] further support the
fact that such mixing layers are coavectively unstable., A recent
survey of experimental and theoretical results pertinent to shear layers
has been made by Ho & Huerre {24], Although no general results are
presently available, there are very strong indications from the
pioneering work of Gaster [25-28] that Tollmien-Schlichting waves in
flat plate boundary layers are induced by a convective instability. It
may b& conjectured that plane Poiseuyille flow is of a similar character.
The dispersion relation associated with the Orr-Sommerfeld equation
{29} is extremely rich in structure, which largely explains why no
definite statement can be made regarding these viscous instabilities.
Similarly, cold circular jets at low Mach numbers are probably
convectively unstable and spatial instability theory [30] does
represent the linear evolution of vortical disturbances in such a
circular geometry. Note further that many of the above flows are far
from being parallel. It is therefore implicitly assumed that the WKB
formation can be applied successfully, the locally parallel basic flow
being convectively unstable at all streamwise stations, Such an
assumption does not necessarily take into account the effects of
global pressure fluctuations, as opposed to local vontical
fluctuations. For instance in shear layers, feedback loops between
preferred downstream stations and the trailing-edge could make a
locally convectively unstable medium to be globally absolutely
unstable. .

4,2. Abaolutely unstable flows

In absolutely unstable systems, any infinitesimal disturbance
contaminates the entire medium. As a result, intrusive measurements
greatly affect the flow. Indeed, great care must be exercised in
labeoratory experiments, and non-intrusive techniques, such as Laser
Doppler anemometry are often preferred, Spatial stability cheory is
irrelevant in absolutely unstable flows: any spatially-evolving wave
is, in the course of time, overwhelmed by linear, temporally-growing
fluctuations. Thus, in contrast with the previous class of
instabilities, absolutely unstable flows tend to be less sensitive to
infinitesimal external fluctuations. The behavior of the flow is
{ntrinsic rather that extrinsic. Here again, one must rely on
physical intuition to give fluid dynsamical examples since no detailed
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theoretical investigations of the dispersion relations have been
undertaken in the complex plane. It is probably very safe to say that
a horizontal fluid layer heated from below (see reference (31l for a
review) does give rise to absolute instabilities. The centrifugal
Gbrtler instability taking place in boundary layers along concave walls
does not obvicusly fall in one claas or another. Although a recent
study by Hall [32] has shed considerable light on the spatial
instability problem, the convective nature of the instability has not
been established. The present author's personal prejudice would tend
tc guess that it is absolutely unstable, Before tackling this
configuration, however, one would need to extend the formalism of
section 2 to highly non-psrallel flows for which no separation of
variables is possible,

Finally, it is interesting to note that temporally evolving mixing
layers can be obtained experimentally by tilting a tank filled with a
stably stratified fluid {33], These flows are such that R > 1.315 for
the family of profiles U(y) = 1 + Rtanhy; consequently, the medium
is absolutely unstable (4} in contrast with shear layers generated
downstream of a splitter plate, It is found that the temporal theory
of Michalke {34] does oredict the main features of the linear
development of the Kelvin-Helmholts vortices induced by the shear.

4.3. "Mixed flows" and Frequency Selection Mechanisms

There are also flow geometries which may give rise to a convective
inscability in one region of the flow and an absolute inetability in
another region. To our knowledge, this possibility has first been
explored by Pierrehunmbert {10] and Koch {35]. In such "wixed" flows,
one typically assumes that the locally psrallel basic flow changes
only slowly in the streamwise x direction and that the WKB formalism
is applicable. At each streamwvise x station, the instability
characteristics are, therefore, to lsading-order, given by parallel
flow theory. Ome can then easily envision physical situations in which
a convection velocity, say the U parameter introeduced in the models of
section 3}, changes slowly with x. If, at a particular station X, U
reaches the critical value U, where the branch point w, crosses the
real w-axis, the flow will change from being locally convectively
unstable to locally absolutely unstable, or vice~versa. If, more
generally, several crossings take place as x is varied, the flow can
be divided into several regions where the local absolute growth rate
wei{x) is positive or negative. In the border regions where woi(xt)
vanishes, the slowly—wvarying analysis breaks down, and transitiom
layers of Airy type have to be introduced, as in classical WKB theory,
The particular case of an absolutely unstable domain saparating
two convectively unstable regions (hereafter referred to as CQU-NI-C)
was studied by Plerrelmbert [10] for a zonally-varying two-layer model
of the baroclinic instabilicy, Earlier analytical work by Thacker [18]
and Merkine [36] had established that the same two-layer model in the
parsllel approximation underwent a transition from absolute to
convective instability above a critical value of the ratio batween the
average speed of the mean flow and the shear. Pierrehumbert [10]

e L L



172 ?. HUERRE

demonstrated, by a combination of analytical and numerical means, that
the slowly-varying baroclinic flow could support modes locally confined
along the stream and growing at the maximum absofute growth rate

Woi max OVer the entire domain —» < x < =, Thus Pierrehumbert's work
suggests a frequency selection critenion, whereby, in a mixed flow o
situation of the type CU-AU-CU, the dominant frequency 45 equal to

wor max. namely the real parnt associated with the maximum absolule
growth nate wei mayx OVer the entine flow.

But, in a study of two-dimensional wvakes behind bluff bodies,
Koch [35] proposes yet another frequency selection mechanism.
According to his analysis, the developing wake is a mixed flow of the
type solid body-AJ=CU, a characteristic that one might have inferred
from the earlier investigation of the mchzy wake by Mattingly &
Criminale [3]. The dominant §requency should, in Koch's secenario, Lock
Lo wor(xe) = wolxy), i.e., Lo the real § ency pertaining to the
thansition point x, separating the AU and QU regions, Needless to say,
wo (Xy) and Wor may are in general distinct and do nc: lead to the same
predictions, A comparison between stability calculations and wake
experiments reveals nonetheless that Koch's criterion predicts the
shedding frequency of the Karman vortex street relatively well. This
appears to imply that intense self-sustained oscillstions occur in the
AU region between the body and the transition point x,. This
hudrodgnamic nesonance phenomenor is somewhat akin to the resonances
which are produced when a shear layer issuing from a streamlined or
blunt body interacts with a second body placed at a finite distance
downstream [37]), Note, however, that hydrodynamic resonances do not
rely on the presence of a second body; the necessary streamwise length
scale is generated instead by the flow itself in the form of the
distance X,. A recent analysis by Nguyen [38] further confirms Koch's
results: for a two-parameter family of wake velocity profiles which
closely fits experimentally-messured mean flows, it is found that the
varicose mode is in general QU, The sinucus mode, however, leads to a
pocket of AU within the near wake and it is responsible for the onset
of self-sustained oscillations,

To close this discussion of frequency selection mechanisms in
mixed flows, it is worth mentioning the interesting conjecture of
Monkewitz & Sohn [5). In the view of these authors, ons should
distinguish between two possible configurations and change the
frequency selection criterion accordingly. If the flow is of the type
solid body-AU-CU, one should follow Koch's proposition wo(xg). If it
ia of the type solid body-CU-AU-CU, one should adopt Pierrelumbert’s
selection principle Wor max. Wakes with initially thick shear layets
fall within the first category [38] whereas initially very thin shear
layers lead to a wake of the second category. Predictions of shedding
frequency for these two families of wakes appear to follow experimental
trends provided ona adopts Monkewitz & Sohn's recommendation regarding
the choice of selection criteriom.

The reader is further referred to Monkewitz & Sohn {51} for an
interesting application of absolute and convective instability concepts
to the control of hot jets. Viscous liquid jets have also been examined
in this light by Leib & Goldstein [39].
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4.4. Absolute instabiliries, convective instzbilities and chaos

As emphasized hy Deissler {40,41] and Peissler & Kaneko (42, the
distinction between absolute apd convective instabilities plays a
crucial role in the search for chaos in transitional flows. Absolutely
unstable flows such as Rayleigh~Rénard convection or Taylor-Couette
flow can give rise, under carefully controlled conditions, to chaotic
motion on a low dimensional attractor (see, for instance, Rergé, Pomeau,
vidalt [43]), The motion in phase space can usually be reconstructed
from a time series at a single point in physical space. Quantitative
statistical measures of disorder such as the Lyapunov exponents, fractal
dimengion and Kolmogoroff entropy can be calculated for each attractor,
independently of initial conditions within each basin of attraction.

As one would expect in an absolutely unstable flow, low levels of
external noise do not alter significantly statistically-averaged
quantities on the attractor, In other words, chaos in absolutely
unstable flows is (ntrinsically driven by temporally~developing
instabilities at each spatial location. As a result, search for chaos
in absclutely unstable flows has been reasconably successful, hoth
experimentally and numerically.

Such is not the case in convectively unstable media, i.e.,
boundary layers, shear layers, jets, pipe flow, etc... Here,
disturbances at a fixed spatial location eventually die out so that
Lyapunov exponents in the laboratory frame are always negative [42].
There is, of course, plenty of experimental evidence to support that
turbulence does occur in these flows sufficiently far downstream but
one has not been successful in relating it to chaos produced by a
deterministic mechanism (except for the Navier-Stokes equations!).

To explore possible alternative strategies, Deissler [40,41] has
conducted numerical studies of the Cinzburg-Landsu equation, namely,

3A A aZA 25 o
Tt U= uA-(l+icd)-é-,i-+(1+icn)|A|A 0. (75)

In its linearized version around A = 0, (75) is identical to (23), the
model studied in section 3.l. The real coefficient C, takes diatinct
values for different flows, as does Cy. When U = 0, the basic state
A = Q is absolutely unstable and pumerical simulations indicate that,
for certain values of the parameters C, and Cc_, the trajectories are
confined to a low-dimensional chaotic Sttract8r [44,45,46].

Recall from sectign 3.1, that the motion is comnvectively unstable
when U > 2{u(l + c&)]l 2. 1In this case, a single-frequency forcing
applied at x = (Q gives rise to a gpatially-developing wave in the
region X > 0, As shown by Deisaler, the characteriatics of the spatial
wave are well predicted by the linear model (see Figures 5a,b)
sufficiently close to the source. Further downstresm, the wavetrsin
reaches a finite-amplitude saturated state described by monochromatic
nonlinear solutions of (75) at the forcing frequency. More importantly,
when the single frecuency excitation is replaced by broadband random
fluctuations, the external noise is 4eleclively amplifisd by the system
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Figure 18. Plot of ReA(x,t) as a function of X for a given t. The

function A(X,t) satisfies the Ginzburg-Landau equation (75). A micro-
scopic noise is added at x=0. Reproduced from Deissler [41].

and spatially growing waves are generated at the frequency with the
maximum growth rate (see Figure 18), In other words, the initislly
broad spectrum at X = 0 shrinks to a narrow spectrum around the most
amplified frequency, in the linear region immediately downstream of the
source, Further downstream, however, in the finite-smplitude region,
the nonlinear wavetrain becomes modulationally unstable to sidebands
within the narrow spectrum {47]. This secondary instability brings
about a break-up of the primary wave which graduslly results in the
generation of a broad band spectrum far downstream, As emphasized by
Deissler, irregularities in the spatial wave produce random changes in
the location of the break-up pointas, this mechanism being responsible
for {ntewmiliency,

Again, it should be stressed that the fully—developed "turbulent
flow" far downstresm (Figure 18) is triggered by the external noise fed
into the system at x = 0., In the absence of external fluctuations. no
spatial structures can be detected, hence the name nolse-sustained
stuictuned proposed by Deissler. This is in sharp contrast with
intrinsic chaos present in absolutely unstable flows, which does not
rely for its existence on the presence of external ncise,

It remains to answer the following question: If "turbulent flow"
in the convectively unstable Ginzburg-Landau equation is induced by
external noise, can it legitimately by regarded as deterministic
intninsie chaos? In other words, do the usual statistical measures of
chaos (dimension, Lyapunov exponents, ...) far downstream become
independent of the external noise applied at X = (7 Until now, no
satisfactory answer appears to have been given to this question.

But there are other problems, As noted by Deiasler & Kaneko [42),
the usual definition of Lyapunov exponents at a f{{xed spatial location
alwvays gives a negative number, a fact presumably related to the
negative absolute growth rates prevailing in convectively unstable
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flows, To arrive at a meaningful measure of chaos in such flows, one
must introduce a velocity-dependent largest Lyapunov exponent A (v},
obtained by extending the usual definition to a region {x, + vt,

X, + vt} in a frame of reference moving at the velocity v, Deissler &
Kaneko [42] then propose to call a convectively unstable flow chaotic
if the maximum value A of A(v) over all values of v converges to a
positive value, In the case of the Ginzburg-Landau equation, a maximum
positive value is obtained when v = U! For further technical details,
the reader is referred to Deiasler & Kaneko's paper. As previously
noted, it is not clear in our view that A, is independent of external
noise. Recent experimental research (see, for instance, [24] for a
review of mixing lavers) has indicated that some convectively unstable
flows remain remarkably sensitive to external noise at large
downstream distances, even in terms of averaged quantities, Receptivity
issues and measures of chaos might have to be examined as a whole if
one is to make further progress in the description of disorder in
convectively unstable media.
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