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DYNAMICAL PROCESSES
IN SLURRIES AND MUSHES*

David E. Loper

Department of Mathematics and
Geophysical Fluid Dynamics Institute
Florida State University
Tallahassee, FL 32306.

Abstract

Material systems in which solid and liquid phases coexist in phase equilibrium are
categorized by the mechanical configuration of the solid; in a mush the solid forms a rigid
network with liquid occurring in the intercrystalline gaps, while a slurry consists of solid
grains in suspension in a liquid. Due to the constraint of phase equilibrium, such systems
exhibit unusual properties not found in single-phase systems. One striking example is the
possibility of a reversal of the normal density-temperature relation, so that cold, rather than
warm, liquid is buoyant. Furthermore, convection of heat can alter the crystalline structure
of the mush, making the flow problem strongly nonlinear, and leading to novel structures
such as ‘chimneys' in the solid matrix. Chimneys are the cause of imperfections known as
freckles in castings of alloys. These and other properties of two-phase systems are
discussed and the equations governing these systems are briefly reviewed. A minimal set
of Boussinesq-like equations governing a slurry are developed and the boundary conditions
between a mush and the solid free region are presented.

¥ The material in these notes is virtually identical to that appearing in Loper, 1991,
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Introduction

The fundamental division of matter into solid, liquid or gaseous phases may not
apply when the material under consideration has a micro-scale structure. Many types of
‘complex' materials, such as fiber-epoxy composites, do not occur naturally, but must be
are fabricated. However, there are many examples of naturally occurring composites. One
long known to science is the plasma, which is a gas having three distinct elements: ions,
electrons and neutral atoms. Less familiar, but of more relevance to metallurgy and material
science, are the semi-solid (solid-liquid) composites known as slurries and mushes.

A slurry is defined as a liquid continuum having in suspension a large number of
small solid particles which have formed by solidification from the liquid. A mush is formed
when the small-scale crystals of the solid phase form a rigid framework through which the
liquid may percolate. In either case, the large-scale behavior of the material is dominated by
the fact that the liquid and solid phases are in intimate contact throughout a volume.
Slurries may occur in molten metallic systems in rapid motion, while mushes are more
common in slowly moving situations.

If the liquid is not a pure material or does not have an eutectic composition, the solid
and liquid have differing compositions. This difference leads to a number of novel effects
not found in single-phase systems or in semi-solid systems in which the two phases have
the same composition.

In what follows the thermodynamic and fluid-dynamic equations goveming slurries
and mushes will be briefly reviewed, and some of their important and novel physical effects
will be elucidated. For clarity of exposition,-attention will be focused on semi-solid
materials composed of two constituents; more complicated materials typically behave
similarly. This review will not be comprehensive as the literature on these subjects is
voluminous and diverse. A bibliography of the literature on this subject through 1986 may
be found in Loper (1987).

Thermodynamic Equilibrium

Consider a system composed of two constituents. We will refer to the principal
constituent as A and the minor or impurity constituent as B. The equilibrium
thermodynamic state of the system is characterized by three variables: pressure, p,
temperature T and mass fraction of B, &, (In many engineering situations, the variation of
pressure is negligible and may be ignored.) In an equilibrium situation, these three
variables may be externally prescribed. In a nonequilibrium situation, there may be as
many as five independent thermodynamic variables for a two-constituent system (Loper and
Roberts, 1978).

The system may be characterized as semi-solid if the state variables p, T and & lie
below the liquidus and above the solidus or eutectic line in the phase diagram,; that is, within
the hatched region of Figure 1, taken from Roberts and Loper (1987). The liquidus and
solidus lines in the equilibrium phase diagram are obtained by equating the chemical
potentials of each of the two constituent in the two phases (Roberts and Loper, 1987), and

may be expressed alternatively as T (p. &} and Tdp, &) or as §L(p, T) and ﬁs(P, T). The

2/4/94 2 Trieste Notes



former representation conforms best to the curves in Figure 1, while the latter representation
is more useful analytically.
An important variable characterizing the physical state of the system is the mass

fraction of solid, ¢. This is related to the various mass fractions of B by the relation

= ¢&+(1-9) & (1)

This equation is often referred to as the lever rule. With ¢ being directly externally
prescribed and & and &g being indirectly prescribed through p and T, (1) solves for 9.

Note that the equilibrium relations & (p, T) and &{p, T) imply that the thermodynamic state

of one phase is insensitive to the amount of the second phase that is present.
The differential form of the liquidus relation may be expressed as

AL dg = &dp - (L/T)dT, 2)

where ﬁL = (6L — &) /98, yy being the relative chemical potential of the liquid phase, &§is
the change of specific volume upon melting at constant composition and L is the latent heat
of solidification. If dé = 0, (2) is referred to as the Clausius-Clapeyron relation, and

describes the variation of the melting point with pressure. For a dilute ideal solution, 4, is

independent of & . Typically ﬁL > 0 so that the the addition of an impurity lowers the

s

melting point of a material.
A useful practical approximation of the solidus is to assume that

&s = A &L, 3

where the coefficient A is constant and satisfies0 < A < 1. For simplicity of exposition in

the following discussion, attention will be limited to the case A = 0 or equivalently & =0,
so that none of constituent B is incorporated into the solid phase. This approximation
removes the knotty problems of history dependence and diffusion of material in the solid
phase (Hills and Roberts, 1988a).

Equations of State

The differential form of the chemical potential of a single phase material composed
of two constitents is

dy = (1/p)dp - sdT + 1d¢, )
where s is the specific entropy, p is the density and 4 is the difference in the chemical

potentials of the two constituents. This is a generalization of the Gibbs-Duhem relation for
a pure substance. The equations of state of the material are the three relations p, T, 5,
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s(p, T, &), and g(p, T, £). The equations of state for a two-phase material are superficially
similar, but as we shall see the coefficients are substantially different.

Equation of State for Density
The equation of state for density of the system is

_¢ 1-¢

1
PP AL (S)

where by the lever rule p; is a function of p, T and &s while pp is a function of p, T and &
The differential form of the latter function is

dpy = py(fdp - adT - p 5d&}), 6)

where & is the coefficient of thermal expansion, § is the isothermal compressibility and Jis
the change of specific volume with composition. These coefficients are each functions of
the three independent thermodynamic variables, but are commonly assumed to be constant

in practice. The coefficient § must be positive else the material is compressively unstable.
For normal materials, a > 0; "hot fluid rises". If the tmpurity B is less dense than A, then
0> 0.

In thermodynamic equilibrium the differentials dp, dT and d¢|. appearing on the
right hand side of (6) are not independent, but are related by (2). If we use (2) to eliminate
d&p from (6) the result is

56 Ld
dp = py| - 22 \ap - |- =2 Jar |
. p{( #L)p( m) ] @

This equation describes the variation of density of the liquid phase of a liquid-solid material
when the two phases are in thermodynamic equilibrium. Note that it is possible that

5&!31_ > 8 and/or L&Tﬁ[_ >a. In the former case, the usual pressure-density relation is
reversed. However, since the liquid is only one part of a composite system, this does not
imply compressional instability, as it would for a one-phase system. If the latter condition
holds, the usual temperature-density relation is reversed; now "cold fluid rises"! If the
material is a slurry having solid in suspension, this reversal of thermal expansion coefficient
has no direct dynamic effect. However, for a mush having the solid rigidly connected to a
boundary, this reversal has a strong dynamical effect. For example, this effect leads to the
formation of chimneys and freckles in castin gs (Copley, et al., 1970).

With & = 0, the differential form of (5) may be expressed as (Loper and Roberts,
1978)

dp = p(B’dp - o’ dT - 8"4g), )
where
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. l1-¢ . p6L 1-¢
B = ﬁ+paz(m;)1 a = o+ T(ﬁ) %), (10)

and

. o
6 = 5+-§. (11)

Note that (8) bears a superficial resemblance to (6), but the starred coefficients may be
significantly different from their normal (unstarred) values. In (9) - (11) the first terms on
the right-hand sides are the normal coefficients and the second terms are the contributions
due to the change of phase. The detailed forms of these coefficients are unimportant; the
point is that the density of a mixture of two phases behaves fundamentally different than
either phase in isolation, and the modified coefficients can become large if the composition

of the material is nearly pure constituent A (i.e., if & — 0).

Equation of State for Eniropy
The differential form of the equation of state for entropy of the liquid phase is

44 Cp -
dSL = —Edp+TdT+Sd§L, (12)

where C is the specific heat at constant pressure and < is the heat of reaction. Ifs> 0 heat
must be added to maintain a constant temperature as &L is increased (this is an endothermic

process). If an isolated parcel of liquid experiences a change of pressure (due, say, to
vertical motion in a hydrostatic environment) at constant composition and entropy, the
temperature changes according to the dry adiabat:

E —_

dT) _afl
56 ) pcp‘ (13)

With & =0, the differential form of the equation of state for entropy of a semi-solid
material is

* *

[#4 Cp Sk
ds = —-Edp'l-TdT-i-S dé, (14)
where
. L*1-¢ . - L
Cp =Ch+—|— * = _—
P p T(#LCL) and s S+T§L- (15), (16)

As with the equation of state for density, the coefficients of the equation of state for entropy
of a two phase material are fundamentally different than those of a single-phase material,

and they can become large as & — 0.

If an isolated parcel of the two-phase material experiences a change of pressure at
constant composition and entropy, the temperature changes according to the wet adiabat:
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L]

dT) _arT
58

dp Cy (17

This gradient is fundamentally different than the dry adiabat, no matter how small the
fraction of the second phase. (This change of adiabatic gradients is familiar in atmospheric
dynamics.)

Equation of State for Chemical Potential
The differential form of the chemical potential difference of a single phase material
composed of two constituents is

dit = 8dp - 5dT + gdé, (18)

where [ is the change of chemical-potential difference with composition. The chemical
potental difference of a two-phase material is

dit = 8'dp—s'dT + i de, (19)
where remarkably (Hills and Roberts, 1988b)

H =0 (20)

This means that the chemical potential of the material, and of each phase in thermodynamic
equilibrium, is a linear function of the composition. It follows that the functions 1/pand s

are linear fanctions of £ and f is independent of & Further B'/p, a*/p and C; are linear

functions of &, while 8"and s are independent of &.
Conservation Equations

A powerful way to treat a material with a microstructure is to assume that it is a
single continuum with macroscopic properties which parameterize the microstructure. In
this section, the macroscopic governing equations of slurries and mushes are presented, and
the Boussinesq approximate forms are outlined. In the Boussinesq approximation, the
density is treated as a constant everywhere except in the buoyancy term. In a slurry having
the solid particles in suspension, attention is focused on the barycentric velocity, defined by
(22), while in a mush having the solid in the form of a rigid matrix, attention is focused on
the velocity of the liquid phase.

Conservation of Total Mass
Conservation of total mass is governed by

opfor + V-(pu) = 0, 21)

where pis given by (5) and the barycentric velocity u is defined by
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pu = gpsus+ (1 - $)prug, (22)

with ug and ug being the velocities of the material in the solid and liquid phases. A word of
caution is in order at this point. It may happen that the velocity of the liquid phase has
small-scale structure as it percolates through the solid phase; this structure is not modeled
by (22).

In the Boussinesq approximation of a slurry, this conservation equation is reduced
to

Vau =0. (23)

In the Boussinesq approximation of a mush, the solid phase is commonly
constrained to move in rigid-body motion (although compaction of the solid phase is
important in some geophysical settin gs; see McKenzie, 1984). In this case the barycentric
velocity may be expressed as

u=ug+(l-gyw, (24)
where w = u, — ug. Now conservation of total mass requires that
Vil -¢)w] =0. (25)

Conservation of Impurity
Conservation of mass of constituent B is governed by

pDEDL = _ Vi, (26)

where D/Dt = 9/0t + u-V is the time derivative following the barycentric motion and i is the
flux of constituent B relative to the mass center.

In a normal single-phase material composed of two constituents, the diffusive flux
is given by Fick's law (e.g., i = —k V&) yielding a simple diffusive equation. However
for a semi-solid material, the material flux i is assumed to be a linear function of the
gradients of the independent thermodynamic variables:

i = kpVp—kr VT — kg VE. 27)

The coefficient kp is a measure of the flux due to relative motion of solid and liquid induced
by particle sedimentation in a slurry or by fluid buoyancy in a mush, the coefficient kT is a
measure of an effective Soret effect, and the coefficient ke 1s the usual Fick coefficient. A
remarkable property of the semi-solid material is that (Hills and Roberts, 1988b)

kg = 0. (28)

A physical explanation of this unusual property is as follows. In a single phase
system, an excess of constituent B can be removed from a parcel of liquid only by diffusion
down the concentration gradient. However, if solid phase having a deficit of B is present,
the excess may be removed by melting some of the solid, diluting the liquid.
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Commonly the pressure gradient is governed by the hydrostatic balance, Vp=-
Pg, and the Soret term is small, so that (26) becomes

pDEDL = V-(kppg). (29)

Physically the term within the divergence operator on the right-hand side of eq. (29)
represents the sedimentation of the solid particles. For the exact form of the coefficient Kps
see Reference 7. This equation applies to a slurry, while for a mush, it is more convenient

to consider & rather than & since the solid phase is immobile. The equation appropriate for
a Boussinesq mush (having & = 0) is (Hills, et al., 1983)

D& D¢
B - Sgar L)+D0V‘[(1‘¢)V5L]’

(30)

where D is the material diffusivity, D¢/Dr = 3/0r + ug-V is the motional derivative following
the solid phase and a subscript 0 denotes a constant value. The first term on the right hand
side of (30) represents the increase (or decrease) of composition of the liquid due to
freezing (or melting) of the solid phase, while the second is the familiar Fickian diffusive
term, complicated by the presence of the solid phase. This diffusive term does occur if
conservation of impurity in the liquid phase alone is considered, but it is absent from the
equation governing the conservation of impurity in the system as a whole. Commonly the
material diffusion term is negligibly small.

Conservation of Momentum
The form of this equation differs for a slurry and a mush, because of the differing
mechanical configurations of the solid phase.

Slurry. We shall assume the system to be in nearly hydrostatic balance, with the
hydrostatic pressure, py, given by

P = =50 [ plp)de. G1)

where z is the upward coordinate, go is the magnitude of g and f{t) is a function of
integration. Normally f{1) is a constant (pg, say), but if we allow for the possibility that the
static slurry is in uniform motion with respect to the frame of reference, f{t) may be a linear
function of time. We shall assume that this motion is small, and variations of density with
pressure are also small, so that (31) may be simplified to

P = Po— 8oPo(2—20)- (32)

Subtracting the hydrostatic balance, the Boussinesq form of the Navier-Stokes
equation is
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poDu/Dr = ~Vp' + p'g + ngV2u, (33)

where 77 is the dynamic viscosity, p’ = p — py is the reduced pressure and p’ = p - py is the
reduced density. Here a subscript O denotes a constant reference value.
The reduced density is given by an integrated version of (8). We may use (31) to

write this as:
P = - po| a5(T-To) + &(6-&). (34)

The motion of the solid relative to the liquid is governed by normal sedimentation theory
(e.g., see Ch. 9 of Happel and Brenner, 1983). However, the solid particles are subject to
melting or freezing if thermodynamic equilibrium is disturbed. This makes the stability
analysis of such systems different from that for a nonreactive assemblage of particles.

Mush. The solid phase is assumed to be rigidly attached to a substrate so that only the
motion of the liquid phase is of concern. The percolation of the liquid phase relative to the
solid is assumed to be governed by Darcy’s law:

oW LV ’ ’ -0 1
A1-9) P -pLE , (35)

where P is the reduced liquid density and ¥ ¢) is the permeability. The hydrostatic relation
is now given by

PH = Po— gOpLO(Z_zO)- (36)
rather than (52), but the difference is slight in the Boussinesq approximation. The reduced
liquid density is given by an integrated version of (7). Using (36), this is:

, Lé
pL = Lo (a- -TT) (-7, o

A major problem in closure of this theory is determination of the permeability
function {¢). The particular form of the function depends on the mechanical configuration
of the solid phase on the microscale. This form can be strongly modified by the fluid flow,
making the problem very nonlinear. A striking example of this nonlinear coupling is seen
in the appearance of chimneys in the model experiment of Copley et al. (1970). This
coupling in fact introduces the problem of history dependence into the formulation as the
permeability depends on the history of the fluid flow. A further complication is the fact that
the structure of the solid changes with time due to phase coarsening (i.e., Ostwald
ripening). A common approximation to the permeability function is the Carmen-Kozeny
relaton:

Y= nil-¢ /e?. (38)
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In metallurgical applications, it a usually a good assumption that the solid phase of a
mush forms a rnigid framework. However, in geological applications, the large spatial and
ume scales allow for significant deformation of the solid phase, which introduces yet
another complication into the theory (McKenzie, 1984).

Conservation of Energy

The temperature of a parcel of fluid can change due to the normal processes of
thermal diffusion and adiabatic compression, represented by the first and second terms on
the right hand side, and also by the release or absorption of latent heat of fusion as solid
phase melts or freezes, represented by the last term:

DT

Dg¢
pCp]—D? = kVZT+ al pu-g +pL—D-;~ .

(39)

The specific heat Cp and thermal conductivity k are volume-averaged combinations of those
of the solid and liquid. For simplicity, we have assumed the two to be equal. For the case
of unequal conductivities, see Worster {1986). In writing (39) we have assumed that the
thermodynamic pressure is essentially the hydrostatic pressure, and have neglected all
regenerative heating terms; for their form, see Hills et al. (1983).

The adiabatic compression term is negligibly small in most metallurgical
applications, but it may be important in geophysical applications. The normal process of
thermal diffusion is non-local in that it requires macroscopic spatial gradients of
temperature. [n contrast the process of change of phase is local and very rapid since in the
continuum approximation the solid and liquid phases are in intimate contact on the micro-
scale. Consequently, local phase change may dominate thermal diffusion. Note also that
the relative motion of liquid and solid acts to transport heat in the direction of the liquid
phase in a process similar to a heat pipe.

A Simple Model of a Mush

The equations developed in the previous sections will now be combined and further
simplified into a mintmum set of Boussinesq equations governing the dynamics of a mush.
In this simplification, wherever possible the thermodynamic coefficients will be assumed
constant. However, it should be pointed out that the approximation of ¢ constant should be
avoided, since this variable can assume any value between 0 and 1 without disturbing the
thermodynamic equilibrium.

An important equation in this development is the integral form of the liquidus
relation (2). Using the hydrostatic balance (36), this is

P08 L
LT ém_(f)o(z"zo)_(ﬁ)o(ﬁ To) (40)

The equation of conservation of impurity in the liquid phase (30) may be expressed
as
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sSL

D
(1- ¢)[ +w-V§LI = CL—E +D 0V-[(1—~¢]V§L]. (41)

Eliminating & from (41) using (40) yields

DT TﬁLéL) 1 D¢
o TWVT = *( L J,i=9 Dr
Tgp - VI-V¢
._( L O(uS+W)-Z +D 0[V77'— (1——¢—)' . (42)

In writing (42) we have assumed that deviations of & from its reference value are small.
The Boussinesq version of the energy equation (39) is

D.T alg ¢
B+ =97 = w97 () s (- () 2 @)

where x = k/pCp is the thermal diffusivity.
Solving (42) and (43) for the time derivatives of T and ¢, we obtain

(1- ¢+A0)E§I = (1=9)(1 + AgJw-VT +[Agxy— D ({1-9)|V?T

Dt
T - —~
—._P OVT.V¢_ ('ac‘_pg)o[(AO'l'Bo— ¢Bo)us'z + (1 "—¢)(A0+B())W'Z] (44)
and
(l—¢>+A0 (T") 1-g)[pw-VT + (x5~ D o) V7]
G
+ T}OD 0VT'V¢+( ) 1 BU USZ+(I ¢ Bo)W' ] (45)
where
CpT &Ly, Cop, 8
=~ wma B=-2F 46), (47)

If pressure effects are small, as is the case for metallurgical applications, the terms
proportional to g in (44) and (45) may be neglected. Similarely the terms involving material
diffusion may normally be neglected compared with those involving thermal diffusion. If
the coordinate frame is fixed to the solid phase, ug = 0 and Dy/Dr = d/dt. Equations (44)
and (45) are two of the minimal set of equations of our Boussinesq theory. The first of
these is a predictive equation for the temperature, complete with diffusive term, although the
effective diffusivity is less than that of a single-phase material. The second is a predictive

2/4/94 11 Trieste Notes



equation for the mass fraction of solid. This contains no Laplacian term for this variable.
Hence discontinuities of ¢ are allowed by the theory. This is in accord with the fact that

thermodynamic equilibrium is insensitive to the relative amounts of the phases present.
We may substitute (37) and (38) into the momentum equation (35) to obtain

2
N w . Lo -

————+ Vp —ppla——| (T-Tylgz = 0.

(1-9)*% w( TuL)O( ) (48)
If ¢ << 1, this Darcy equation may be supplemented with the normal viscous term:
2

NP W . Lé ~
- —T]OV2[(1—¢)W]+VP —PLoj &= —= T—-Tg gz = 0. ’
(1-4)"% A (48)

Equations (25), (44), (45) and (48) or (48)’ form a set of four equations for the four
unknowns p’, T, w and ¢. This set involves a Laplacian of the thermodynamic variable T,
a Laplacian of the dynamic variable w [two of w if (48)’ is used], and a gradient of ¢.

Boundary Conditions

Commonly the mushy zone is bounded by one of three regions (a) a solid-free fluid
composed of the melt, (b) a solid composed of the equivalent sub-eutectic solid phase, or
(c) a rigid boundary composed of a different material. We shall consider the appropriate
equations for each of these boundaries.

An adjacent solid-free region
The Boussinesq equations governing the solid-free region adjacent to the mush are

Vau = 0, (49)
Du \%4 ~ Mo,
Dr T pg go[ %(T-To) + Prody(&L- SLo)fz + EL;V u, (50)
D& )
DT _ v2r_ 5% -
Dy - oY TN (52)

Note that these equations involve the variables p”, T, u and &, which are different than the

principal unknowns in the mush, and effectively contain one Laplacian each of T and & and
two of u.
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Since the full set of equations in the mush has one Laplacian of 7 and two of w plus
a gradient of ¢ while that in the solid-free region has one Laplacian of each of T and & and
two of u, we need to specify two vector conditions and five scalar conditions at the
interface dividing the mush and solid-free region; one for each Laplacian, one for the
gradient of ¢ and one extra for the unknown position of the interface. These conditions are
continuity of velocity, stress, temperature, heat flux, fluid composition, and compositional
flux, plus an additional condition on. Since the governing equations lack spatial derivative
of the mass fraction of solid, ¢, no condition can be directly placed on this variable. In fact,
we must allow for a jump in the value of ¢ at the interface, making the flux conditions non-
continuous. Worster (1986) argued for an extra condition that the normal gradient of the
liquidus condition in the solid-free region is zero, but that requirement was an artifact of his
similarity solution; it is not a general requirement. Fowler (1985) in considering this
problem chose to use liquid composition rather than temperature as the primary
thermodynamic variable in the mush. This formulation yields derivatives of ¢, which
appear to require an additional boundary condition, Fowler (1985) chose the condition that
¢ — 0 as the mush liquid interface is approached. This additional condition is not required
in the present formulation.

Neglecting changes of volume upon change of phase, continuity of velocity is
simply

{((1-¢}w) = 0, (53)

where the symbol (x) denotes the jump in quantity x across the interface; this is one of the

vector conditions. At the low speeds typical of porous flow, the normal stress condition
reduces to continuity of pressure:

(p) =0. (54)
This is one component of the second vector condition; the additional condition of continuity

of tangential stress is not displayed explicitly here, see p. 150 of Batchelor (1970).
Continuity of temperature requires that

(=0 (55)

while continuity of heat flux must account for the possibility of freezing at the interface:
oT
(K55) = pevakde) (56)

where vn is the normal component of the velocity of advance of the interface with respect to
the solid due to freezing or melting:

-~

vp = (v—ug)-n. 57)

Here fi is a unit vector, locally normal to the interface, and v is the velocity of the interface.
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The liquid composition must be continuous across the interface. This, combined
with the continuity of T and the fact that the fluid within the mush is at the liquidus, yields
the equivalent condition that the liquidus condition is satisfied on the solid-free side of the
interface:

=10 .
(38)

where a subscript f denotes evaluation on the solid-free side of the interface. Continuity of
flux of impurity at the interface is satisfied if:

J
D <(1—¢)%> = &Lvnl9)- (59)

Note that the diffusivity within the liquid phase is constant across the interface. Using (40)
and the Boussinesq approximation, this condition may be expressed as

ii(.ﬁ’h_f%;).@_(i) arl _
on i Oan Tuy Oan f

PLo8\ 9z (L \oT 1 1

LA A e SRV , (60)
Pn ( 2y )Oan (T#L)Oan ,éu} n(DO AOKO)]m

where a subscript m denotes evaluation on the mush side of the interface. Note that
Worster's supplementary condition is that the left hand side of (60) is zero.

The full set of boundary conditions between the mush and the liquid region consists
of the six conditions (53) — (56), (58) and (60), plus continuity of tangential stress.

An adjacent sub-eutectic region
Assuming the solid to be incompressible, the energy equation within it is simply
DT

E— = K'OVZT. (61)

Apart from the dynamic conditions, we need to specify three scalar conditions at the
interface: one for each Laplacian of temperature in (44) and (61) and one to determine the
location of the interface. These three conditions are all thermal: the temperature within the
solid is the eutectic value,

(T)s = Te®), (62)

where [ s denotes conditions on the solid side of the interface and a subscript E denotes an
eutectic value, the temperature is continuous,
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(T) =0, (63)

and the heat flux balances the solidification at the interface,
oT oT
I A (64)

Condition (62) is valid for all & provided & = 0. If this is not the case alternative conditions
apply; see Hills et al. (1983).

The only dynamic condition that is usually applied is that the normal component of
the velocity be continuous across the interface:

[(Wln'fi = 0. (65)

Since there is no Laplacian of velocity in the Darcy equation, no condition may be
prescribed on the tangential velocity. Also, since the solid is rigid, we can specify no
condition on the stress at the interface.

The freezing of the liquid remaining in the mush to form the solid involves
solidification of both pure solvent and pure solute, in that proportion which ensures
continuity of flux of solute at the boundary. Consequently, this condition serves only to
determine the average composition of the solid phase.

d
§Ll ‘ 6
m

D
és =& ¥;;9[1“¢]mlﬁ

In writing (66) we have used the fact that &_ = & in the mush adjacent to the solid.
In summary, at a sub-eutectic boundary we have 4 conditions: (62) - (65).

An adjacent rigid boundary

In experiments and in metallurgical applications, it is common for the mush to be
bounded at least in part by a rigid boundary of known position. The rigid crystalline matrix
1s invariably attached to this boundary, which necessarily must move with velocity ug.

The most general thermal condition specified at the rigid interface is continuity of
temperature and heat flux

aT
Ty = 0 and ("a_n> =0. (67), (68)

These conditions require solution of the heat equation within the rigid boundary.
Commonly (67) and (68) are replaced by

aiT + a0T/dn = a3, (69)

where g are specified functions, obviating the need to solve for the temperature within the
solid. Continuity of flux of impurity requires that
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The condition of no normal flow, (65), again applies.

Final Remarks

The preceding sections have presented the equations governing a semi-solid
material, under the assumptons that thermodynamic equilibrium prevails locally and that the
microscale properties of the material may be parameterized within a continuum theory, and
have discussed some of their novel properties. The study of this subject is still very much
in its infancy, with the governing equations not yet well established and the novel physical
effects not yet well understood.

The lack of progress in this area is not due to a lack of potential applications. In
addition to the solidification of metallic alloys, the study of semi-solid systems has potential
applications in several areas of geophysics including the solidification of the core, dynamics
of magma chambers and dynamics of temperate glaciers (Huppert, 1986; Fowler, 1987).

The lack of progress is due in large part to the physical complexity of these semi-
solid systems, which is reflected in the intricacy of the mathematical models and the
relatively large number of physical parameters. One serious impediment to progress in this
area is a lack of experiments to quantify the coefficients of the theories and to verify and
itlustrate the physical phenomena. Although there are several groups currently performing
experiments (Kerr et al., 1990; Tait and Jaupart, 1989; Chen and Chen, 1991; Tait, et al.,
1992), much still remains 10 be done.
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