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ABSTRACT

Momentum-conserving lattice gases are simple, discrete, microscopic models of flu-
ids. This review describes their hydrodynamics, with particular attention given to the
derivation of macroscopic constitutive equations from microscopic dynamics. Lattice.
gas models of phase separation receive apecial emphasis. The current understanding
of phase transitions in these momentum-conserving models is reviewed; included in
this discussion is & summary of the dynamical properties of interfaces. Because the
phase-separation models are microscopically time-irreversible, interesting unanswered
questions are raised about their relationship to real fluid mixtures. Simulation of cer-
tain complex-fluid problems, such as muitiphase flow through porous media and the

interaction of phase transitions with hydrodynamics, is illustrated.
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I. Introduction

Macroscopic complexity can mask microscopic simplicity. For example, the awirls
and bursts of a turbulent fluid are just the collective dynamics that emerge from
a large number of molecules interacting with each other via Newton's equation of
motion. Whereas the microscopic dynamics in such a system are straightforward in
principle, the organization of these microscopic motions to produce turbulence, or
even hydrodynamics itself, remains shrouded in mystery.

Much, however, is of course known. Both the kinetic theory of gases and the
Navier-Stokes equations of hydrodynamics date from the nineteenth century, while in
this century considerable progress has been made towards the understanding of the
connections between the microscopic or atomistic description of fluids and macro-
scopic hydrodynamics {Chapman and Cowling, 1970). Nevertheless, some relatively
simple questions concerning the relation between these two levels of description are
only just beginning to be addressed. For example, one may ask precisely how large a
microscopic system of particles must be for it to contain enough degrees of freedom to
be considered, at a larger scale, as & continuously varying macroscopic medium. To
answer such questions, the advent of modern computers has been essential. Among
the many achievernents in the field of molecular-dynamics simulation has been the
explicit demonatration that hydrodynamic flows can be cbtained (albeit at consider-
able computational expense) fromn large molecular systems (Rapaport and Clementi,
1986; Mareschal and Kestermont, 1987}

We now know, however, that the complexity of hydrodynamics not only may be
described by an explicit “averaging” of the N-body problem of molecular dynamics,
but that virtually the same macroscopic hydrodynamic equations may be obtained
from a drastically simplified version of molecular dynamics. Specifically, in 1986,
Frisch, Hasslacher, and Pomeau showed that one may derive the Navier-Stokes equa-
tions from a microdynamics consisting of an artificial set of rules for collision and

propagation of identical particles, each of which are constrained to move on a regular

lattice in discrete time with one of only a small, finite number of possible velocities
(Frisch et al., 1986). This remarkable observation has not only had implications for
statistical mechanics and kinetic theory, but also for the numerical simulation of cer-
tain hydrodynamic flows. This review is therefore dedicated to an explication of the
original work of Frisch et al. and a review of some of the resulting ramifications during
the eight years since its introduction.

Because the model of Frisch et al. is constructed from discrete dynamical variables
(the velocities) that evolve on s diserete lattice in discrete time, it is an example
of a cellular automaton (Farmer et al., 1984; Wolfram, 1986b; Toffoli and Margolus,
1987). The idea of cellular automats, which dates back to work of von Neumaan and
Ulam in the 1940's (von Neumann, 1966), is to find simple rules of spatial interaction
and temporal evolution, from which collective, complex behavior emerges. The early
rnotivations for this work came from biology: the goal, as described in the historical
perspective given by Dyson (Dyson, 1970}, was to provide a theory for how an ar-
tificial life capable of reproducing itself could be constructed. While applications of
cellular automata to biology remain of current interest (see, for example, the book
by Weisbuch (Weisbuch, 1991)), in the last two to three decades much of the inter-
est has shifted to physics and computation. One of the earliest works in this regard
is that of Zuse (Zuse, 1970), who was poasibly the first to perceive the connections
between cellular automata and the simulation of partial-differential equations. Other
examples include studies of time-reversible automata (Margolus, 1984), speculations
on the simulation of quantum-mechanical phenomena (Feynman, 1982), creation of &
*statistical mechanics” of cellular automata (Wolfram, 1983), and explicit considera-
tions of cellular automata as discrete dynamical systems (Vichniac, 1984) and as an
alternative to partial-differential equations (Toffoli, 1984). Indeed, by 1985 there was
» surfeit of speculation and expectation, but in the absence of any widely known, con.
crete example of a cellular-automaton model of a partial-differential equation, many
were left wondering whether such models could indeed be constructed.



In this context the model of Frisch, Hasslacher, and Pomeau (FHP) was introduced.
The model, an extension of earlier work by Hardy, de Passis, and Pomeau (Hardy
et al., 1973; Hardy et al., 1976), consisted of identical particles that hop from site
to site on a regular lattice, obeying simple collision rules that conserve mass and
momentum, FHP showed that, at a spatial scale much larger than a lattice unit, and
a temporal scale much slower than a discrete time step, the mode! asymptotically
simulates the incompressible Navier-Stokes equations.

The FHP model, the first of a wide class of models that soon became known as
lattice-gas automata, led to many interesting ramifications. First, as already men.
tioned, it demonstrated that the full details of real molecular dynamics are not
necessary to create a microscopic model with macroscopic hydrodynamic behavior
{Wolfram, 19862, Kadanoff, 1986; Friach et al., 1987; Kadanoff et al., 1989; Zanetti,
1989). Second, lattice-gas automata were immediately considered as an alternative
means for the numerical simulation of hydrodynamic flows {d'Humidres et al., 1985b;
d'Humiéres and Lallemand, 1986; d’Humiéres and Lallemand, 1987). Third, the
method gave rise to some new ideas for constructing models of certain complex fu-
ide; specifically, fluid mixtures including interfaces, exhibiting phase transitions, and
allowing for muitiphase flows (Rothman and Keller, 1988; Appert and Zaleski, 1990).
Thus lattice-gas automata have not only become “toy models” for the exploration
of the microscopic basis of hydrodynamics, but also tools for the numerical study of
certain problems in fluid mechanics. Both aspects of the subject are covered in this
review,

lo what follows, we fizst provide a broad overview of the field. We introduce
the FHP model, describe in general terms its hydrodynamic limit, and illustrate its
ability to simulate the Navier-Stokes equations. We then introduce lattice-gas models
of multiphase fluids, and briefly describe two examples. Oune is & model of a binary
fluid mixture that exhibits a phase-separation transition. The other oontl.im.just a
single apecies of fluid, but exhibits a liquid-gas transition.
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Following this overview, we then show how one may derive hydredynamic equa-
tions from these microscopic models. We first describe the hydrodynamic limit of the
simplest, single-component, models. We then review the state of theoretical under-
standing of the more compiex. multiphase lattice gates. The hydrodynamic behavior
of the multiphase models 15 in one case precisely the same, and in the other case very
close, to that of the simplest lattice gases. Thus our emphasis on the multiphase
models is concentrated on aspects of their phase transitions—in other words, the for-
mation of interfaces—and on the physics of these interfaces themselves. We describe
a catalog of results, both theoretical and empirical, that show that the IMAaCIOsCOpic
behavior of the multiphase models is qualitatively, if not quantitatively, similar to
that obtained from classical models of phase transitions and interfaces. We argue
that this agreement with classical theory is not only important for applications, but
also for better understanding some of the foundations of statistical mechanics. Stated
bluntly, these models break many classical rules—for example, their microdynamics is
time-irreversible—but apparently without significant deleterious effect. Understand-
ing why this may be remains one of the more important questions to be addressed,

In the remainder of the review we provide a broad overview of the variety of nu-
merical experimentation that has been performed with lattice gases. We describe
problems of both two and three dimensional flow, and of both single and multiple
fluids. While the lattice gas may in principle be used for nearly any problem in hy-
drodynamic simulation, we emphasize that many of the most successful applications
have involved either a complex fluid, & complex geometry, or both. Suck complexity
is perhaps best exemplified by the problem of multiphase Sow through porous media.

Having stated the content of this review, we find it also worthwhile to indicate
some of the subjects we do not cover. One such topic is multispeed models in which
moving particles are no longer restricted to unit speed, thus allowing the definition of
& temperature (Grosfils et al., 1992; Molvig et al., 1992; Qian et al., 1992a). Related
to the internal energy transport in thermal models are models of diffusion or passive-

11
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scalar transport. Diffusion is relatively simple to study with lattice gases, and indeed
has been the subject of considerable attention (Burges and Zaleski, 1987; d'Humiéres
et al., 1988; Chopard and Droz, 1988; McNamara, 1990; Kong and Cohen, 1991); it
is, however, largely neglecied by this review. Likewise, we aiso do not discuss recent
lattice-gas modeis of reaction-diffusion equations (Dab et al., 1990; Dab et al., 1991;
Kapral et al., 199, Lawniczak et al., 1991). Lastly, we have chosen to devote only
minimal attention to the “lattice-Boltzmann method,” an important extension of the
lattice gas which is of bo:h theoretical and practical interest. Whereas we derive
the lattice. Boltzmann equation from the Boolean dynamics of lattice gases in Section
IV., methods for solving this equation are considered only in a brief, introductory,
discussion in Appendix C. Further details of the lattice-Boltzmann method can be

found in Lhe recent review paper by Benzi et al. (Benzi et al., 1992).

12

II. Lattice-gas models of simple fluids

In this paper, the term “lattice gas” refers to a system of particles that move with
a discrete set of velocities from site to site o0 & regular lattice. This kind of lattice
gas is in some ways & generalization of the classical lattice-gas models that have been
employed, for example, in theoretical models of the liquid-gas transition (Stanley,
1971). The major difference between the “new” lattice-gas models and their classical
counterparts is dynamical: momentum is explicitly conserved in the new models,
thereby allowing one to obtain hydrodynamic equations of motion. These momentum-
conserving lattice gases are thus of interest for both hydrodynamics and statistical
mechanics.

In this section, we first provide a brief historical overview of some specific hydro-
dynamic lattice-gas models. We then introduce in some detail the lattice-gas model
of Frisch et al. (Frisch et al., 1986), and follow that discussion with some examples of

lattice gas simulations.

A. Historical overview

From the viewpoint of hydrodynamics, the essential innovation due to momentum-
conserving lattice gases is the simultanecus discretization of space, time, velocity,
and density. Discretization of space and time is in modern times relatively mundane,
being an everyday occurence in the numerical solution of partial-differential equations
by, for example, the method of finite differences. Diacretization of velocities, however,
is a relatively unusual idea. It seems to have first been considered for hydrodynamic
fiows by Broadwell, who constructed a discrete-velocity, continuous-time, continuous-
space, and continous-density model to find exact solutions to & Boltzmann equation
describing shock waves (Broadwell, 1964). Further ramifications of this approach are
described in the monograph by Gatignol (Gatignol, 1975).

The first discrete-velocity model in statistical mechanics appears to have been pro-

13



posed by Kadanoff and Swift (Kadanoff and Swift, 1968). In an attempt to demon-
strate the theoretical possibility of the divergence of transport coeficients near the
critical point, they crealed a version of a classical Ining model in which positive spins
acted as particles with momentum in, say, one of 4 directions on a square lattice,
while negative spins acted as holes. Particles were then allowed to collide with other
particles, or exchange their positions with holes, but only if energy (based on nearest-
neighbor [sing interactions) and momentum were exactly conserved. The model,
purely apalytic in the {orm of a master equation, was discrete in space, velocity, and
density, but not in time. One of the new results was that, despite its simplicity, the
dynamics led to hydrodynamics via the existence of sound waves.

A fully discrete model of hydrodynamics was first introduced in the 1970's by
Hardy, de Pazzis, and Pomeau (Hardy et al., 1973; Hardy et al., 1976). Their model
consisted of identical particles moving from site to site on a square lattice in discrete
time, conserving particle number and momentum upon collision. Their objective was
not the simulation of hydredynamics in the broad sense, but rather the study of issues
in statistical mechanics such as ergodicity and the divergence of transport coefficients
in two dimensions. Using the simplest possible model of molecular dynamics, their
work is notable not only for the reasons cited, but also for the interesting interplay
provided by the comparisons between theoretical predictions of the model’s transport
properties and the empirical results obtained from numerical simulations of it.

Although the model of Hardy et al. led to a number of interesting results, it has
had only limited applications because its hydrodynamic limit is apisotropic, This is
the direct—and rather unsurprising—consequence of the constraints imposed by the
underlying square lattice. [t waa not realiged until 1986, in the aforementioned work of
FHP (Frisch et al., 1986), that a simple extension of the model to a triangular lattice
would suffice for isotropic hydrodynamics. We thus turn now to an intreduction to
the FHP model.

14

B. The FHP lattice gas

In the following, we first introduce a microdynamical description of the FHP model.
We then provide an outiine of the derivation of the macrodynamical, or hydrodynamic,

bebavior. Full detaiis concerming the hydrodynamic limit are given in Section IV..

1. Microdynamics

The FHP gas is constructed of discrete, identical particles which move from site
to site on a triangular lattice, colliding when they meet, always conserving particle
number and momentum. The dynamics evolves in discrete time steps; a representative
example of the evolution during one time step is illustrated in Figure 1. The initial
configuration is given in Figure la. Each arrow tepresents a particle of unit mass
moving with unit speed (one lattice unit per time step) in one of 6 possible directions
given by the lattice links. No more than one particle may reside at a given site and
move with a given velocity; thus, in this example, 6 bits of information suffice to fully
describe the configuration at any aite.

Each discrete time step of the lattice gas is composed of two steps. In the first, each
particle hops to a neighboring site (Figure 1b) in the diraction given by its velocity.
In the second step (Figure lc), the particles may collide. The precise collision rules
are parameters of the model; all collisions, however, conserve mass and momentum,
Two examples of collisions that resuit in a change in the velocity of particles are
evident by comparing the middle row in Figure 1b and Figure lc. Note that the
two-hody collision could just as easily have been a counter-clockwise rotation instead
of clockwise. Typical implementations perform both with equal probability, either
through the use of random numbers or via a deterministic scheme. Explicit examples
of collisions are given in Figure 2.

The microdynamics in Figure 1 are expressed by the following equation:

ni(x + ¢t + 1) = ngx, t) + Ayfn(x,1)]. {IL.1)

15
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The Boolean variables n = {n,na, ..., ng) indicate the presence (1) or absence (0) of

particles moving from site x to site X + ¢, where the possible velacities are given by
¢, = (cosmi/3,sinmif3), i=12,...,6. (I1.2)

The collision operator A, describes the change in ni(x,t) due to collisions, and takes
on the values £1 and 0. It is the sum of Boclean expressions, one for each possible
collision. For example, the operator for the three-body collision in Figure 2 is given

by
AS‘” = ﬂ.+1n|¢3ni+5(1 - ﬂi)(l - ﬂi+")(l - ﬂ.,‘+4) —
s aaa(l = R )(1 = niga)(1 = niss), (11.3)

where the circular shift t + 3 = 7 such that ¢; = —¢;, j = 1,...,6. The operator for

the two-body collision in Figure 2 is

AEZ) = Gﬂ.+|ﬂ.+4(1 - "l-)(l - ﬂi+z)(1 - ".‘+3)(1 - ﬂi+s) +
(1- a)nipans(l —n)(1 — miga)(1 - nia)(l = nigd) —
Aisa(l = mia (1 = miaa)(1 = nisa)(1 - nigs). (I1.4)
Note that AE” allows for clockwise rotations when the supplementary Boolean vari-

able a(x,t) = 1, and counter-clockwise rotations when a(x,t) = 0. For the simplest

lattice gas, the full collision operator A, is
A=A+ AP, (11.5)

More elaborate collision operators may be formed by including, for example, four-

body collisions, or by allowing for collisions with stationary, or “rest” particles (d"Humidres

and Lallemand, 1987). In the usual formulations, the cnly restrictions on A, are that

it conserve mass,

3 Ain) =0, (1L6)
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and that it conserve momentum,
¥ cisi(n) =0. (IL.7T)
i

Using the first of these relations, one may sum the microdynamical equation (IL.1)

over each direction i to obtain an expression for the conservation of mass,
Tomix+ et +1) = Lmlxt), (11.8)

and, after multiplying the same equation by ¢;, summing again over 1, and using the

second relation, one obtains an expression for the conservation of momentum,
Zc.n,(x+ci,t+1) =3 emx,t). (i1.9)
i [

Equations (I1.8) and (I1.9) describe the evolution of mass and momentum in the
Boolean field, and may be considered as the microscopic tnass-balance and momentum-

balance equations, respectively, of the lattice gas.

2. Macrodynamics

Conservation of mass and momentum at the microscopic ot molecular scale of a fluid
implies the same conservation at 3 macroscopic, or continuum scale. It is at this
scale, and partly from these conservation laws, that the Navier-Stokes equations are
derived (Landau and Lifshits, 1959a; Batchelor, 1967). One expects that much the
same analysis should apply to the lattice gas.

To obtain & bread overview of why this is possible, consider a contiguous, enclosed
set of lattice sites. Note that the change in mass within this set is precisely balanced
by the flux of mass out of it. Consider, then, the evolution of the average quaatity
{ns}, in which the average is taken over sn ensemble of systems prepared with different
initial conditions. We identify ¥;(n;) with the mass and ¥.{n)c; with the mass flux.
Whereas the unaveraged Boolean field is necessasily noisy at the smallest scales, we
may assume that (n;)(x, ) is slowly varying in both space and time. We can thus

17



infer that temporal and spatial scales much larger than one time step and one lattice
unit, but still small encugh such that {n;} varies slowly, may be defined in the limit
of long times and large lattices. Since the same balance between mass change and
mass flux that applies to n, also applies to (n;}, we may conclude, via the divergence

theorem and the usual arguments of continuum mechanics, that
8 Y (mi) = —8a 3 (mi)eia, (IL10)

where the a-component of the 1th velocity vector «; is given by ¢ia, and the Einstein
summation convention is assumed over indices given by Greek letters.

One may reach a similar conclusion for the momentum. The change in the a-
component of momentum in any region of the lattice is itself precisely balanced by
the flux of a-momentum in the f-direction, ¥;{n;)ciacis, out of this region. Thus, by

the same argument, one obtains

O 3 {m)ia = ~08 3 (ni)ciaci. (I1.11)

+

Finally, by defining the mass denaity p = 3,(n;) and the momentum density pu, =
2.i(ni}ca, and substituting into equations (I1.10) and (II.11), we obtain the familiar

continuity equation,
Bp = ~8a(pua), (11.12)

and the macroscopic momentum-balance equation,

B{pue) = ~8sllap, {11.13)

of hydrodynamics, where in the latter we have introduced the momentum flux density
tensor (Landau and Lifshitz, 1859s)

Ilap = 3 {mi)ciacis. (IL.14)

While equation (I1.12) is fully explicit, the writing of momentum conservation as

an explicit equation in terms of p and u requires some work. Not surprisingly, the

18

presence of an underlying lattice makes this derivation of bydrodynamics somewhat
different from the usual fluid case. The seminal contribution of FHP was to notice
that in a low velocity expansion, a second order tensor such as [I.4 is written (Frisch
et al., 1986)

Mas = po(p)bap + Aapm{p)uyus + O(u) (11.15)

where py and A,g.4 must be obtained from equation (II.14) and the expressions for
{ni}, the average populations. In ordinary continuous media the tensor Aagys it readily
found to be isotropic and to preserve Galilean invariance. However, because we work
with an underlying lattice, it is not the case for lattice gases. In fact, Aagys acts
instead as an elasticity tensor, and inherits the symmetry properties of the lattice
just as elasticity tensors share the symmetry properties of a crystal lattice. This
“memory” of the lattice would in fact doom our effort to simulate a fluid, except for
a remarkable property of hexagonal lattices well noticed by Landau and Lifschitz,
who wrote (Landau and Lifshitz, 1959b), “It should be noticed that deformation in
the zy-plane (...) is determined by only two moduli of elasticity, as for an isotropic
body; that is, the elastic properties of a hexagonal crystal are isotropic in the plane
perpendicular to the (hexagonal] axis.” In equations, isotropy implien the general
form

Axsré(0) = A(p)Sapbos + B(0Ybarbas + basds,), (11.18)

where 5,4 is the Kronecker delta and A and B are two independent “clastic” moduli,
which must be determined from the average populations {n,}, as is done in Section
IV.. Once this is done, the momentum conservation equation takes the following
form, from (I1.13), (11.15), and (!I.IB):

Bipua + 205 B(pYuaus = —Bulpo(p) + A(p)u?]. (I.17)

This equation is close, but not quite identical, to the usual Euler equation for com-
pressible low. Moreover, we have not given the expression for the coefficients A and
B, nor for po{p). However, as we detail in Section IV, in the limit of vanishing u, the
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lattice gas hydrodynamica.] equation is equivalent to the usual incompressible Euler
equation.

To obtain the viscous term, and therefore the Navier-Stokes equation of the lattice
gas, ane needs also to consider gradients of the momentum field at second order. The
fourth-rank viscous stress tensor, itself obeying the symmetries of equation (I1.16), is
then introduced 1o relate viscous stress to velocity gradients in the lattice gas. The
two free parameters of this tensor then determine the shear and bulk viscosities {just
as they would give the Lamé parameters in clasticity theory). That the lattice gas
does indeed have a viscosity is conceptually deduced by observing that collisions and
propagation control the rate at which momentum diffuses. The relevant diffusion
coefficient, or kinematic viscosity, may then be calculated via a Boltzmann approxi-
mation; i.e., by ignoring correlations between particles (Hénon, 1987b). Each of these
issues are addressed in detail in Section IV..

Finally, we note that the derivation of hydrodynamics in this section, crude as it
is, reveals one very important point: the precise details of the collision rules (aside
from certain pathological choices to be discussed later) do not affect the form of
the constitutive, hydrodynamic equations. Rather, they determine the values of the

transport coefficients.

C. Simulations

Before introducing models with interfaces, it is useful to illustrate the kind of hydro-
dynamic simulation that is possible with the FHP model.

Figute 3 shows one of the first hydrodynamic flows simulated by the lattice-gas
method {d'Humiéres et al., 1985b). This two dimensional flow past a flat plate is
forced by injecting particles at the left boundary of the lattice and removing particles
at the right boundary, thus creating a pressure gradient. The flow, at a Reynolds
number of approximately 70, creates vortices, known as von Karman sirects, behind

the plate. This flow field qualitatively matches thase that would be obtained from
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quasi-two-dimensional experiments or other methods of numerical simulation.

As we shall discuss later, one interesting aspect of the iattice-gas method is the
ease with which one may simulate flows in complex geometries. An application of
this capability is the study of flows through tnicroscopically disordered porous media.
An example of a simulation of flow through a two-dimensional porous medium is
shown in Figure ¢ (Rothman, 1988). Flows such as these obey a linear force-flux
relation known as Darcy’s law; the simulations allow estimation of the conductivity,
or permeability, coefficient of the bulk flow.

These and other simulational studies are described in more detail in Section IX..
Now, however, we turn to a consideration of how the simple FHP model may be

modified to simulate the dynamics of certain multiphase fluids and interfaces,
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III. Lattice-gas models of phase-separating mix-
tures

As already indicated in the introduction, one of the important generalizations of
the FHP lattice gas has been the introduction of discrete models for the simulation
of hydrodynamic mixtures. The earliest models of mixtures were conceived simply
by adding a second species of particles. In the case of a passive scalar (Chen and
Matthaeus, 1987; Baudet et al., 1989), the only new dynamica of interest is diffusion
of one species into the other. The second species, however, can also be active. Thua,
for example, Burges and Zaleski (Burges and Zaleski, 1987) created a model of a
mixture that was not only diffusive but alse buoyant. A further generalization of
this sort is the introduction of reactive fluids {Clavin et al., 1986; d'Humiéres et al.,
1987; Clavin et al., 1988; Dab et al., 1990; Dab et al,, 1991; Kapral et al., 1991). In
this case collisions involving more than one species need not conserve the number of
particles of each species entering a collision.

In each of the mixture models cited above, the dynamics of collisions and propa-
gation of the (unforced) fluid mixture are independent of the particular species that
a particle may represent; the new behavior comes instead from the redistribution
of species (i.e., mass) aiter performing the FHP collisions described in the previous
section. Thus a second, qualitatively different, mixture model results from creating
a dynamics in which the redistribution of momentum depends on the distribution of
mass (or possibly also momentum) prior to collision. We introduce two such models
below. In the first case, two species interact with each other to create interfaces with
surface tension. In the second, a single species of particles interacts with itself end
also forms interfaces, but rather than separating two species of fluids the interface
separates a dense (liquid) phase from a less dense (vapor) phase.

A. Immiscible lattice gas

The smmiscidle lattice gas (ILG) is a two-species variant of the FHP model (Rothman
and Keller, 1988). At a mechanistic level, the differences from and similarities to the
FHP model are best reaiized from a comparison of the microdynamics of the two
models.

Figure § illustrates the ILG microdynamics. The initial state (Figure 5a) of the
lattice is the same as in Figure 1, but now some of the particles are colored “red,”
while the others are colored “blue.” The bopping step, Figure 5b, is precisely as
before: particles propagate to the neighboring site in the direction of their velacity.
The collision step in Figure 5c, however, is different. Roughly speaking, the ILG
collision rule changes the configuration of particles so that, as much as possible, red
particles are directed towards neighbors containing red particles, and blue particles
are directed towards neighbors containing blue particles. The total mass, the total
momentum, and the number of red (or blue) particles are conserved. Two examples
of this collision rule are seen by comparing the middle row of Figure 5b with that of
Figure 5c.

The ILG microdynamics may be described as follows. Each lattice site may contain
red particles, blue particles, or both, but at most one particle {red or blue) may move
in each of the six directions c,,...,¢s. In the usual implementation, each site may
also have a seventh stationary, or rest, particle moving with velocity ¢, and subject
to the same exclusion rule. The configuration at a site x is thus described by the
Boolean variables r = {r;} and b = {4}, where the roman index i again indicates
the velocity, and r; and b; cannot simultaneously equal I.

At a site x, a color flux q is defined to be the difference between the red momentum
and the blue momentum:

qlr(x), b(x)lsie.-[r.{x)-s.-(xn- (Im.1)
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A vector proportional to the local color gradient (or *field”) is also defined, by
1(x) = Y e Tolri(x + e = bilx + &) (I11.2)
' 1

The ILG collision rule is anti-diffusive: it maximizes the fux of color in the direction of
the local color gradieat. The result of a collision, r — &, b — b, is the configuration
that maximizes

q(r', b} T, (111.3)

such that the number of red particles and the number of blue particles is conserved,
Tr=Yrn  L¥=Lh (I11.4)
1 1 i [
and so is the total momentum:

Yoalr +8) =) cilri + &), (111.5)

I more than one choice for ¢, b’ maximizes ([11.3), then the outcome of the collision
is chosen with equal prabability from among these optimal configurations.
Anajogous to the discrete microdynamical equation (IL.1) for the FHP model, we

have two coupled microdynamical equations for the ILG, one for the red particles,
r(x+c,t+1) =ri(x,t) (111.6)

and another for the the blue particles,

bx + ¢, t + 1) = b(x,t), (I1L.7}
where

ri = CI(r(x, 1), b(x,t), £.) (T11.8)
and

b = CH(r(x,2), b(x,1), f.) {IiL9)

are the post-collision, pre-propagation states. The collision operators C7 and C! as

sume values of either 0 or 1 and are given implicitly by the maximisation of the
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quantity (I11.3). Note that both €7 and C* depend not only on the red and blue
population at site x, but also on f., the discrete color gradient or field angle obtained
from a simplification (described in Section V.C.2.) of equation (IIL.2). Although here
we only discuss ILG models that obtain f, from information at neighboring sites,
ILG models without explicit dependence on neighboring sites have also been pro-
posed (Somers and Rem, 1991; Chen et al, 1991b). These models use colored “holes”
in addition to colored particies to obtain f, using only the local state.

A salient feature of the ILG i its ability to simulate phase separation in a binary
mixture; an example is shown in Figure 6. Here s 256 x 256 lattice is initialized as
a random mixture with aversge density p = 4.9 particles per site, with 50% of the
particles red, and 50% blue. As time progresses, the domains of red and blue grow
larger, eventually resulting in a steady state in which one thick blue stripe is parallel
to an equally thick red stripe. Measurements show that the red rich phase is virtually
(99%) pure red, and likewise for blue.

Later we will discuss simulations of phase separation in greater detail, both from
a phenomenological and theoretical point of view. We note now, however, that the
collision rule defined by equations (II1.1)~{II1.3) can differ from the plain FHP colli-
sions only if there is more than one color present at the site located at x; it is only
in this case that different combinations of r; and b; can create different values of the
color flux ¢ that can contribute differently to the maximization of (II1.3). Thus, after
we establish later that there is indeed surface tension at the interfaces, we shall see
that in addition to being a model of phase separation in a binary fluid, the ILG is
also a model of the hydredynamica of two-phase flow.

B. Liquid-gas model

In our second model of & multiphase fluid, a Hiquid-gas (LG) model, there is only
one species of particle, but two “thermodysamic” phases (Appert and Zaleski, 1990).
One phase—liquid—has & high density of particles, while the other phase—gas—is



relatively rarefied. The two phases result from a rule that exchanges momentum
between sites separated by one or more lattice units, which, as we shal] show later,
modifies the relationship between pressure and density (the “equation of state™) in
such a way as to allow coexistence of the dense and rarefied phases.

Figure 7 illustrates the dynamics. The initial state and the hopping step are pre-
cisely the same as in Figure |. There are, however, now two collision steps. The first
collision step, Figure 7c, is the same as in the FHP model. We write the outcome of
this “classical” collision as

n, =n; + An). (I1L10)
In the second, interacting, collision step (Figure 7d), sites at locations x and x +
rc; (where here we choose r = 2) trade particles moving in directions —¢, and «;,
respectively, if and only if both particles exist prior to the exchange and the exchange
can be performed without violating the exclusion rule. Figure 8 illustrates the rule

in detail. In terms of Boolean variables, we define
1= A xR (X)ni(x + reAl L (x + rey), (IIL.11)

where overbars indicate the Boolean operator “not” and the circular shift i + 3 is
defined as in equations (I{.3) and (II.4). The ability to perform the interaction is
thus given by the Boolean variable «;, and the microdynamical equation describing
the complete sequence of propagation followed by classical and interacting collisions
becomes

m(X + ciy b+ 1) =ni{%,8) + % ~ Yisa- (111.12)

The liquid-gas models that were originally proposed contained more interactions,
requiring both a more complicated analysis and implementation (Appert and Zaleski,
1990; Appert et al., 1991; Appert and Zaleski, 1993). Iu this review, we discuss only
the simpler model of Appert et al. {Appert et al., 1993b), given by equations (I11.11)
and (I11.12). Though the old and new models differ quantitatively (e.g., the values of

the transport coeflicients), the qualitative behavior remains the sane.
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As in the ILG, the salient feature of the liquid-gas model is phase separation,
which will occur for certain choices of the initial density of particles, This behavior
is illustrated in Figure 9. Unlike the ILG, phase separation in the liquid-gas modei
manifests itself not as the segregation of two species of particles into separate regions,
but as the segregation of a single species of particle into regiona of high and low
density. As we shail show, the relative volume of each region depends on the initial
total density of the single species, rather than the relative concentration of two species
as in the ILG.

Lastly, we note that, unlike the ILG, the hydrodynamic behavior of the bulk phases
of the liquid-gas model do not automatically reduce to that of the FHP model. One
must instead perform the same multiscale expansion used to analyze the plain lattice
gas; the results (detailed in Section VI.) are then seen to differ only in terms such as

the viscosity.
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IV. Theory of simple lattice gas automata

In this section we review the theory that leads from the microscopic definition of
simple, single-component lattice gases given below in section IV.A. to the large-scale
hydrodynamic equations. A great simplification is achieved if one uses the Boltz-
mann molecular-chaos assumption, which is equivalent to considering that the par-
ticles entering a collision are not correlated. From this assumption one obiains the
Fermi-Dirac equilibrium distribution for the lattice gas automaton. This equilibrium
distribution allows one to find the hydrodynamical equations. The first result is the
Euler equation for the lattice gas. The Fermi-Dirac equilibrium and the Euler equa-
tion appear at the lowest order of a multiple scale or Chapman-Enskog expansion for
the lattice gas. At second order, this expansion yields the Navier-Stokes equations
and explicit expressions for the viscosity of the model as we show in Section IV.B..
A more general statistical-mechanical approach abandons the molecular-chaos as-
sumption and could yield a more rigorous theory for the lattice gas. However, this
approach is only partially developed at present, and we review it only briefly in Sec-
tion IV.C.. There we show, for example, that the equilibrium atate may be obtained
directly as a solution of a Liouville equation, instead of a Boltzmann equation. The
discussion of more subtle effects of space discretization such as the doubling of the
number of momentum-like invariants is also done in Section IV.C.. The reader inter-
ested only in general ideas about the derivation of the Navier Stokes equations may
skip Section IV.C. and lose little of immediate relevance to the more complex lattice

gas models described in the remainder of the review.

A. Some typical lattice gas automata
1. Regular Bravais lattices
The term lattice denotes a set of points £ in D-dimensional space ho . In & Bravais

lattice each point has identical surroundings. Mathematically this means that the
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lattice is invariant by a translation that brings any point of £ on any other point. In

equations, we let Ty, be a transiaiion of space by a vector u. Then
Tx_,‘: = .C

for any pair (x,y) of vectors of £. We let {¢;} be the set of vectors joining a point
to its nearest neighbors, in agreement with the notation introduced in Section II.. A
lattice is periodicif it is invariant by a group of translations, i.c. by a eet of translations
{Tw} with

w=muy+- Nl (Iv.13)

where all the n; are variable integers and the u; are arbitrary fixed vectors. It is easily
proved that all Bravais lattices are periodic.

The notion of regular polytope generalizes to higher dimensions the notion of regular
polygon or polyhedron. A more precise definition together with some geometrical
facts is given in Appendix A. The point symmetry group G of a lattice is the group
of congruent transformations (or isometries in French) leaving 2 lattice point fixed
and the lattice globally invariant. It is easily proved that this is also the symmetry
group of a polytope asociated with the lattice. This is the polytope whose vertices
are the vectors c; connecting a site of the lattice to a set of neighbors (see Appendix
A for more details). A regular Bravais lattice is a Bravais lattice in which the latter
polytope is regular. Since we wish to cousider models that yield sufficiently isotropic
large-scale equations, we will restrict all developments to regular Bravais lattices.

There sre only two such lattices in 2D, the square and hexagonal lattices.

2. Models on the hexagonal lattice

a. Six-velocity model The six-velocity mode! was described in Section ILB..
The collision rules given in equations (I1.3) and (11.4) correspond to the original
FHP-1 model. It is useful when discussing this and subsequent models to have in
mind a classification of all configurations by classes of equal momentum and mass.



Then each configuration is characteriged by 3 numbers (n,9;,9;) where the integers

n, g2, 9y label the particle number and momentum. They are defined by

n(s) = Z,"‘
9:(s) = 294(9) (IV.14)
S0 = Zeals)

where g(s) = I, 3,6.a 15 the momentum of configuration s and the factors 2 and 2/1/3

are added to obtain integer values for n, g}, g7,

The possible configurations for a six-velocity lattice gas are shown in Figure 10. It
is immediately seen that the FHP-I model does not perform all possible collisions.
There are for instance 2 members in class (3, 1, 1) which could be transformed into
each other by collision. Including all such collisions leads to a six-velocity collision-
saturated model (d’Humiéres and Lallemand, 1987). We return to the definition of

these models below.

b. Seven-velocity model Although the FHP-I model is very simple, it has cer-
tain unwelcome features. For instance, the triple collision is relatively infrequent
compared to the pair collisions. This is unfortunate, since pair collisions conserve not
only mass and momentum but an additional invariant. As we shall see below this
viciates the derivation of hydrodynamics. Another difficulty is that the compression
viscosity is zero for the FHP-I model (Frisch et al., 1987). A simple improvement is
to add one or several rest particles. In what follows we will restrict curselves to only
one rest particle.

At this point it is useful to introduce the standard notation (d'Humibres and Lalle-
maad, 1987) for multipie speed models. The particle velocities now optionally carry
a double index 3 = (k, 7). The speed index k is 0 for rest particles and 1 for moving
particles. The index j varies from 1 to 6 and indicates the direction of the velocity
vector. Velocities are noted ¢y or ¢; where in the latter case the single index i implies

the two indices. Likewise particle Boolean variables are noted naj or 0y, etc. The cyy
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arc the 6 unit vectors parallel 1o the axes on the hexagonal lattice, and g, = 0.

The possible configurations for 7-bit models are shown in Figure 11. In this figure,
we describe the configurations only up to a rotation or reflection. It is seen that there
are two subgroups of class (3,0,0), which we call (3,0,0)4 and (3,0,0)?, containing 2
or 3 configurations which can be transformed into each other by rotations.

The collision-saturated seven-velocity model(also known as FHP-I11) has the follow-
ing collision rules. Configurations are transformed into any of the other configurations
of the same class (n,g;,9;). However in some cases, such as class (3,0,0), the col-
lision output is chosen to be another member of the same subclass, either (3,0, 0)4
or (3,0,0)2. There are at most p = 3 members of a class or subclass in this scheme.
Thus there are at most 2 outputs to chose from. The choice is achieved with a random
bit as described in Section II.B..

Another model which will be useful in what follows is the random-collision seven-
velocity model A configuration in a class (n,g],g]) is transformed into any con-
figuration in the same class, including the original one. There are at most p = 5
configurations to choose from (Figure 11). The collision rate for state s going into
state o’ is defined to be A(s,s") = 1/p. More than one random bit is now needed. In

practice a random number generator is used to choose from the p configurations.

3. A three dimensional model: the face-centered hypercubic lattice

Three-dimensional lattice-gas automata were first introduced by d’Humiéres et al.
{d’Humiéres et al., 1986). 3D models are constructed on the the face-centered hyper-
cubic (FCHC) lattice, a generalisation to 4D of the face centered cubic lattice. The
latter is already the most symmetric of the 3D lattices (it has dodecahedral symme-
try) but fails to ensure the symmetry of fourth-order tensors such as Mg defined in
Section II.. The FCHC lattice is generated by the set of 24 velocity vectors ¢; of the
form (+1,41,0,0) together with all permutations of the four components. It is alsc
the set of points x = (g, , ¢, d) with iateger coordinates and a + b + ¢ + d even. The
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wyisualisation” of such a lattice is difficult if not impossible. However a good grasp
of the nature of the FCHC lattice may be obtained from an analogy with staggered
Lattices in 2D or 3D. In particular, the face-centered cubic (FCC) lattice is made of
all the points x = [e,b,c) with a + b+ ¢ even. Notice in Figure 12 that the FCC
lattice is ot the entire cubic lattice with all points of integer coordinates (g, b, ¢) but
just half of it. In a similar way the FCHC lattice forms 2 staggered subset of the
hypercubic lattice, just as the FCC lattice is half of the cubic lattice. When projected
onto the 3D hyperplane d - D the velocity vectors in the FCHC lattice fall in the two
seta depicted in Figure 13 12 diagonal vectors lie in the plane d = 0 while the 12
other vectors fall on the Cartesian axes with d = F1. It is interesting to note that
the generating vectors ¢, are also vertices of the four dimensional polytope defined by
the Schlifi symbal {3,4,3}. {See Appendix A for a definition of the Schlifi symbol.)
A projection of the {3,4,3} polytope is shown in Figure 14.

Although the FCHC collisions must be performed in 4D, simulations of 3D flow
may be performed on lattices which are only a few layers wide in the fourth dimension.
Because of the staggered nature of the lattice, the thinnest ponaible slab is two lattice
spacings wide in the fourth dimension. Although such slabs are commonly used, Brito
and Ernst (Brito and Ernst, 1991b) pointed out that excess correlations may appear
in such thin slabs.

Finally, we note that the definition of a collision operator for the FCHC lattice
with 24 velocities requires the specification of the possibly random output for each of
2% possible configurations. Many proposals, some of which are reviewed in Section
IX.A.2., have been made for the definition of such operators and the algorithma to

calculate them on computers.
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B. A derivation of hydrodynamics from the Boltzmann equa-
tion

In this section we derive the Euler equations and the Navier Stokes equations for the

simple lattice gas with a single mass and &t most one rest particle.

1. The microdynamical equation

We consider a single or multiple speed model. The velocities will still be noted ¢;
although i may now denote a multiple index. We denote by b the number of particles
of all velocities. The local configuration will be a Boolean b-vector n(x, t) depending
on space and time. Since the collision rates A(s, ') defined a3 in Section IV.A2b.
are not 0 or 1 we need to define » field of “rate bits,” denoted by a,,, which are equal
to 1 with probability A(s,s"):

(e} = Afs,8').
Rate bits should yield a single output for any input state s and space-time locatien
x,t. This is expressed by

;u..:(x,t) =1 (IV.15)

Then the microdynamical equation may be generalized to read
na(x+ oyt + 1) = i, 1) + T awe(x, )0} — ) [[ s, )M, %, (IV.16)
ae H
where we use again the notation ¥ = 1 — 2. In the above expression the Boolean
product P = [1; n;(x, t}"M;(x, t)¥ is & generalisation of the products given in (I1.3)
and (I1.4). The product P is in fact & delta function that tests the equality of » and

2. The lattice-Boltsmann equation

In Boltsmann’s molecular chaos assumption particles entering a collision are not cor-
related before they collide. For any combination of particles a,b,...,z eatering a



collision one assumes
{Ramy - - -n,) = (n-)(nﬁ) v (ﬂ.). (Wl?)
The rate of collision can then be determined by averaging equation (IV.16). The

resulting laftice- Boltzmann equation has the form:
Nix +e,,t+ 1) = N.-(x,t) + A.‘[N(K,t)] (IVIS)

where N = (N,),=1, is the population b-vector, the elements of which are N, = (ni)

¥

and A is the Boltzmann collision operator defined by
A(NY = 3 (0 - 5:)A(s, ) [[ NP NY. {1v.19)

a b
The above equation is identical to (IV.16) with the Boolean vectors n replaced by
distributions N and the random rate bits a,, replaced by the transitions rates A(s, s').
Equations {[V.18) and (IV.19} are themselves the basis for what is known as the

lattice-Boltzmann method, which is briefly described in Appendix C.

3. Equilibrium distributions

The equilibrium distributiona are solutions N of {IV.18), uniform: in time and space.
They are thus the solutions of

A(N") = 0. (IV 20)

A number of interesting results are known about these solutions under some conditions

on the transition rates, which we explain below.

a. Semi-detailed balance and uniqueness A first condition ia the conservation

of probability, a direct consequence of equation (IV.15):

Y Als,s) =1 forall s (Iv.21)
g
The condition of semi-detatled balance is the symmetric condition
Y Afs,s)=1 forall 4. (Iv.22)
L ]
U

A stronger condition would be detailed balance: A(s,s') = A(s' ). However semi-
detailed balance suffices to obtain all the pesults we present in what follows.

It may be proven Frisch et al., 1987) that if the rates A4 are positive and obey
(IV.21), as befits provamiities. and if the semi-detailed balance condition (IV.22)
holds, then the solutions of (1V 20) are of the form

= m . (Iv.23)
The functions h and q are arbitrary parameters that define the distributions. That
the above factorized Fermi-Dirac measure is indeed a solution of equation (IV.20)
may be shown easiiy (Frisch et al, 1987). It is also the only solution, a fact related
to the H-theorem in the kinetic theory of gases (Hénon, 1987a; Gatignol, 1975). The
parameters A and g are related to the observable properties of the distribution, i.e.
the mass and momentum densities. From Section II., mass and momentum densities

are related to N, by:
p=3 N" (IV.24)

and
pu =3 Niic. (IV.25)

The expressions (IV.23), (IV.24), and (IV.25) define implicitly h(p,u) and q(p,u)
and thus the uniform distribution N,

b. Low-velocity expansion It is useful to represent explicitly the equilibrium

distributions as the following series in powers of the velocity u:
A(p, 1) = hg + Asu? + Out) {IV.26)

q(p,u) = qu + O(u®). (v.an
We used symmetry properties of the lattice to obtain the above expressions. Let the
Fermi-Dirac function f be defined by

fla) = 1-;1-; . (Iv.28)
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Expanding (IV.23) we obtain
= f(ho) + f'(ho)qu - & + hau?) + 5 F"(ho}q (u-e)'+O(w?).  (IV.29)

From (IV.24) and {IV.25) we get the coefficients of this small velocity expansion
(IV.29). The expressions for a single-speed gas (i.e., no rest particles) are calculated
in Frisch et al. (Frisch et al., 1987). The result is

N9 =dll+ gq,u, + G(d)o.,,u,u,] + O, (IV.30)

where 1 — 1 to b, summation on repeated Greek indices is implied, and

D -

Cd) = za1-q

C’
d= pfb, and Q.‘,ﬁ = Gabs — -D-Emg. (IV31)

Two symmetry properties of tensors constructed with generating vectors of the lattice
were used to obtain ([V.30). We define the rth order tensor formed with the lattice

directions:
ES) n =3 Cia -G (IV.32)
It is shown in Appendix A that

be?
EY = -5 fat (1v.33)

where ¢ = ||¢;||. Furthermore all odd-order r-tensors of the form E(") vanish.
For models with a single rest particle ng; and b, = 8—1 moving particles the expres-

sions corresponding to equation (IV.30) are obtained in a similar fashion (d"Humidres
and Lallemand, 1987). We use the double index notation defined above in Section

IV.A.. For moving particles

¢
Ny =d|l c’b,.c"‘“" + Gld) (Qu-.e + g a8 ) u.ug] +0(s')  (IV.34)
for 3 = 1 to b, , and for the rest particle
b 2
Not=d|l~ G(J)anu + O(u?) (Iv.35)
with the notations of (IV.31) and Qyjas = crjatrj — (3/D).a .
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4. Chapman-Enskog expansion

We now expand the solutions starting from slowly varying equilibrium fluctuations.

This Chapmao-Enskog expansion is (Chapman and Cowling, 1970)

No= NO LN G e N (IV.36)
where the 0-order term is the local equilibrium density

NO(x,1) = f[h(p, u) + alp,u) - cil, (IV.37)

and the densities p and u fluctuate in space and time. The space and time scale of
these fluctuations is large, and thus derivatives——or gradients—of the N™ are small.
We introduce the idea of smali gradients and also the connected multiple-time concept

in a heuristic way. We postulate
N® = (V).

Time derivatives are alto small with 8, = O(V). Moreover it will appear useful in
what follows to couple the gradient expansion of cquation (IV.36) with a muitiple

time scale expansion. We let
G=0 +8,+ (Iv.38)

where 8, = O(V), 8, = O(V?), etc.
Insertion of expansions (IV.38) and (IV.38) into the lattice-Boltzmann equation
(IV.18) produces at each order b equations. It is useful to introduce the linearized

Boltzmann coilision operater

84,
1vV.39
ha = Wy ( )

The above derivative is estimated at the sero-velocity equilibium N = N(® ~
(d,d,---,d). In Appendix B it is shown, using semi-detailed balance, that

= =3 (o] - s)ajA(a, )1 (1 ~ ) (IV.40)
Wjlnwg
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where n = ¥, 54 is the number of particles. Furthermore, using invariance under the

symmetry group of the lattice, we show in Appendix B that

aA- 1 ' ’ ) - n—

3N . =-3 (a0 = s )8 — 35)A(s, )1 — @1 (IV.41)
1 =(d) "

Notice that the operator is symmetric.

At order ! the following equation is obtained:
8, N + ciaBu N = 37 ANV, (IV.42)
J

The operator A,, is not in general invertible and a solvability condition needs to be
satisfied in order to ensure the existence of a vector Nt!) obeying (IV.42). As is the
case in multiple-scale expansions in other branches of physica, the solvability condi-
tions are associated with a continuous symmetry of the solutions or a conservation
law, as we show below. From the conservation of mass sad momentum, D + 1 vectors
which are left-null-eigenvectors of A;; are produced. These vectors are 1 = (1,...,1)

and D vectors of the form (¢.4)azs,...p. Indeed, mass conservation implies
T a{N) =0 (IV.43)
for any N. Hence setting N = N*t + ¢X with X an arbitrary b-vector we find
_2 AjX;=0 (IV.44)
i3
and thus 1 is a left-null-eigenvector of A;;. Similarly momentum conservation implies
nga(N) =0 (IV .45)

and hence

T ciahiiX; =0 (IV.46)

for any X. Since A;; is symmetric, we also have the right-pull-cigeavectors.

5. First order conservation laws

4. Mass conservation Multiplying (IV.42) by 1 we get the first solvability con-
dition:

3 TN + 8, caN® = g, (1V 47)
1 i

Using the definitions of mass and momentum and the distributions defined by (IV.23),
(TV.24) and (IV.37) order by order, we obtain casily

LN = (IV.48)

A =, (IV.49)
and from (IV.25),

ZN% = pu (IV.50)

SN = o (IV.51)

From equations (IV.47), (IV 48), and (TV.50) we obtain the mass-conservation equa-

tion

&, p + div (pu) = 0. (IV.52)

b. Euler equation Multiplying (IV.42) by the eigenvectors c;, we obtain the
momentum sol ability condition already indicated in Section ILB.2.:

O 3 calV” + 853" Nfeiucin = 0. (IV.53)
At this order the momentum flux is expressed as
Mg = 2 N.‘o)c.-.c.-,.
Expanding equation (IV.53) and using equation (IV.30) we get the momentum-
conservation equation
Be, pus + Balo(p)puaus] = —8,[p(p, ud)] (IV.54)
k]

T



where we have used the following identity derived in Appendix A for hexagonal and
FCHC lattices:

B = Y- cacotucn = prptygyfasbu + busban +Sunbas)-  (IV.55)
The relation above expresses the isotropy of E(¥). The parameter g(p) and the pres-
sure p(p,u?) are generaily expressed in terms of the coefficients in the low velocity
expansion (IV.30). if we restrict ourselves to at most one rest particle they may be

expressed as

D

b1-2d
g{p) = Drabi-d (IV.56)
d 3
Yoo g 1+ 2o S
ple.w’) = cip—rg(p)7 (1+ 3 24)“ (TV.57)

where ¢ = Bc® is the square of the sound speed. Equation (IV.57) is a kind of
equation of state which we discuss in more detail in the next section.

The above conservation laws have been derived in the context of the Boltzmann
molecular chaos assumption (IV.17). It is interesting to note however that they may
be derived from the general standpoint of equilibrium statistics as done for single-
speed gases (Frisch et al, 1987). Indeed the Fermi-Dirac assumption which was
obtained from the Boltzmanz equation may also be obtained from & quite general

setting of statistical mechanics, using Gibbs distributions (Zanetti, 1989).

6. Incompressible limit

The momentum-conservation equation does not involve viscosity. It represents invis-
cid flow for the lattice gas and is similar to the Euler equation for gas flow with two
differences: the g{p) factor and the dependence of the pressure on the speed. These
differences disappear however in the incompressible limit. The depeadence of pres-
sure on density in equation (IV.57) is a simplified equation of state. It also appears in
the artificial compressibility model of Chorin {Chorin, 1967). Indeed, Chorin’s finite
difference algorithm for the numerical solution of the Navier Stokes equations closely

resembles equations (IV.54) and {TV.57).
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To see how compressibility becomes irrelevant at low fluid speeds we now assume
that u is small with respect to the sound speed. Define the Mach number

e=uje, (TV.58)

where u is typical speed scale. Temam (Temam, 1969) has shown how the incom-
pressible limit is approached in Chorin's actificial compressibility model. A discussion
of the limit of small Mack number in real fluids may also be found in Tritton (Tritton,
1988). In the lattice gas context, we define a new time ¢’ = et and a new pressure

7 = ufe. We expand velocity and density as

u(x,t) = evi(x,t}+ eva(x, ) + O(e)
p(x,t) = po +&pu(x,t) + O(') -

(1V.59)

where at first order the density po is a constant. Inserting equation (IV.59) into
(IV.54) we obtain at order € the following incompressible flow equations in terms of

the fields v, and the pressure p’ = c3py:
divv; =0 (IV.60)
and
1
Bevi + g(po)v1 - Vvi = ——;—-Vp’. (IV.61)
Q

Equation (IV.61) is the lattice gas equivalent of the Euler equation for incompressible
flow. For a given density py such that g(po) does not vanish, define

u' = g{po)v and p" = g(p)p'. (IV.62)
Then
B’ +u'- Vo' = —;l.;Vp" (IV.63)
and
divu’' =0. (IV.64)
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The above are the usual, Galilean.invariant, Euler equations. It is interesting to
remark that the limit ¢ << 1 is not relevant when the Reynolds number is small

(Tritton, 1988) (section 5.8). Incompressibility is then obtained when
¢ <« Re (IV.65)

when the Reynolds number Re = uL/v, L is a length scale, and v is the shear
viscosity. This remark may be of some interest in the lattice-gas context since one
often finds the lattice gas to be an interesting model at jow Reynoids numbers. When
the limit of low Mach number is obtained by letting u vanish leaving v fixed there is
no difficulty and equation (IV .65) is satisfied. However letting v increase at constant

u might create problems.
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7. Navier-Stokes equation and viscous terms

Most of the derivation that follows was done by Hénon (Hénon, 1987b) for models
with & single particle speed. The extension to models with rest particles was done by
d’Humires and Lallemand (d'Humidres and Lallemand, 1987).

a. Inversion of first-order equation Viscosity appears at the second order of
the Chapman-Enskog equation. But before we write conservations equations at sec-
ond order, we need to invert {IV.42) for N®). To perform this inversion we need to
be more specific about the operator A;; defined in (IV.39). When there is one rest

particie we find from the symmetry of the operator that

A=( don (’\"')) (IV.66)
(M) (4)

The coeficients Ay, and A,, are simply a new notation for the coefficients A;; given
by equation (IV.41). The coefficients A,; involve moving particles only, Ay, involves
the single rest particle and the A; describe the “coupling” between the single rest

particle and moving particies. These coefficients obey two sets of constraints:

¢ Angle dependence. The matrix A;; must be invariant under the action of the
symmetry group §. In particular, the element A,; may depend only on the
angle (¢;,c;). All coefficients Ay; must be equal.

» Conaservation laws. Mass conservation expressed in equation (IV.44) implies
that
E A"f + 1\“ = 0 (W‘67)
Fi

Aot 4 bmdyy = 0. (Iv.68)
From momentum conservation as expressed in equation (IV.46),

); Aje; =0, (IV.69)

4
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We first insert equation {IV.30) into the left-hand-side of equation (IV.42). Using
the equilibrium distribution {IV.34) and (IV.35), the first order mass-conservation
law (TV.52) and the Euler equation (IV.54) itself, we find for moving particles

(00 + N = (= Quat + 5y=bes) Bala) (IV.70)
srel b bbm
and for rest particles

AND = —-lgdiv(pu). (IV.71)

From the first-order equat on ([V.42), the above equations (IV.70) and (IV.71) and
the definition (IV.66) of the linearized operator,

I

b,
z A.,N,E:) + AuN‘g:)

=1

(c—,%Qme + B;_...é“s) Os(ptia)

Sy {1)
A NS — b NG (TV.T2)

=1

- %div(pu)

We save a lot of effort if we first determine the general form of N¢*) from symmetry.
Since the left-hand-side of (IV.72) depends on the symmetric part of Sa(pua), NG}

must have the form

N = ap( e + £8ap (1V.73)

where t&:}, is a general tensor of second order, invariant by all lattice isometries that
leave ¢, invariant and symmetric in the Greek indices, and :S;’ is similarly a vector
invariant by all lattice isometries that leave ¢; invariant. Also NEY = Kos0s(pua)
where K.p is a general symmetric second order tensor invariant by all lattice isome-
tries. In Appendix A we show that such a tensor must be of the form Kas = Yias

where Y is an arbitrary constant. We also show in Appendex A that for all regular

Bravais lattices

2 = YQias — Xbus (IV.74)
and
0 = Tew (Iv.75)
“

with arbitrary coefficients ¥, X, T. Using also the mass and momentum normalisa-

~ tions (TV.49) and (IV.51), we obtain X = ¥ and T = 0. We then obtain

w)

N

(¥ QiaaBs(pus) ~ Xbas] Ba(#ua) (IV.76)
b X 5008 (P0a) (IV.77)

where the coefficients ¢ and X depend on the operator A. Inserting these two equa-
tions into (IV.72) and using (IV.67) we find

[

It

1
X P A
o Qslalpue) = ¥ 2 AiQaslilpe) (IV.78)

Thus the b.-vector Qias is o eigenvector of A and

Ae 2y (IV.79)

Cbm

is the corresponding eigenvalue.

b. Second order equation Substituting the general Chapman-Enskog expansion
(IV.36) into (IV.18) we obtain at second order
[N + ca ¢+ 1) - MO, 8) + NO(x+ it 1) = B
)t
=T AN + 10 ;ﬁgﬁ;”} Ny

where the notation |- ]*) means that we collect all terms of order 2 in the expres-

](3)
(IV.80)

sion in brackets. A solvability condition for momentum is obtained by multiplying
equation (IV.80) by the momentum eigenvector:
z [N + et 4 1) - NOx, t) + Nf(x +cipt + 1) - N}”(x,t)]"’ i = 0.
' : (IV.81)
After some manipulation, using the first order momentum balance (IV.53) and the
momentum normalisation condition (IV.51) one obtains

By, ptie + %a., Lot + b + %a, Y ciacia(Bh, + B )N
%anjl) = 0. (Iv.82)



From the expansion of the streaming operator (IV.70) snd the first order in the
Chapman-Enskog expansion, equation (IV.42), we obtain

1 1 D 1
D X S S L

+ 85 cacaN =0. (IV.83)

Then, using the existence of a null eigenvector for momentum expressed in (IV.46)
and the fourth order tensor expression (IV.55) again, and inserting the low velocity

expansion (IV.34} and (IV.35) of N‘,n’ in the above equation, we obtain

ag,Pu, = aﬂ {Vl {aﬂ(P‘ua) + au(puﬂ)]} + aﬂ [U;di’d’(ﬂ“)] (Wa4)
where
bt d
““ T "Bib+ 2)"’ T AD+2) (e
by oo bl Bt S @ (IV.86)

D" " D(D+2) " DD+2) D
A similar calculation may be performed starting from the mass solvability condition.
Multiplying (IV.80) by 1 yieids

Byp=0. (IV.87)
Adding (IV.84) to the Euler equation (IV.54) and using the mutiple time scale ex-
pansion (IV.38) we get the full Navier Stokes equations

Bipuia + Oslg(p)puasa]l = —Bulp(p, u’)] + 85 {v1[O8{pua) + Balpus)l} + Ba [vadiv(pu)]
(IV.38)

and from the first and second order of mass conservation, equations (IV.52) and

(IV.87), we obtain the continuity equation
Sp + div (pu) = 0. (IV.59)

Equations (IV.88) and (IV.89) are one of the main results of lattice gas theory. They
are close to the Galilean invariant compressible equations for fluid flow (Landau and
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Lifshits, 1959a; Tritton, 1988). In the low Mach number limit we can perform the
same changes of vatiable as in Section I[V.B.8. and obtain the incompressible Navier-
Stokes equations. The form of these equations is universal. [t does not depend on
the collision operator. except through the parameters y and X. These equations hold

for all the lattice geometries whose symmetry properties imply isotropy of 4th order
tensors.

8. Viscosity

a. Expression of the viscosity coeficients From equation (IV.79) and (IV.85)

a a
"ETXNDTY XD+ (IV-90)

From equation (IV.78), A may be expressed as

TiQLs
As 2228, vl
Zij QiashiiQ on (v.e1)
After some calculations detailed in Appendix B, one obtains
D
A buc!(D - 1) (IV.92)

" DE.. Als, )12 "N (Y1y — Vog)Yoa
where You = T, 90,4, Yos = :3/Qiup, snd n = T4 4. Several transformations of
equation (IV.91) may be found in Hénon (Hénon, 1987b). In particular it may be
shown (Hénon, 1987b) that the shear viscoaity v is always positive. More elaborate
expressions of the viscosity also allow to attempt minimisation of v, a useful endeavor
when the objective is to reach high Reynolds numbers.

The values of the shear viscosity for several classical models are summarized in
Table 1.

b. Comparison of viscous equations with simulations We have described
the issue of the general comparison of the viscous equations (IV.88) and (IV.89) with
simalations of the lattice gas in Soction ILC.. Here we only discuss simulations aimed
at the measurement of viscosity. One possible method is the Poiseuille viscometer

47

3 —

e e e T
ry -

I



FHP-1 FHP-III Random T-velocity
e 6d Td Td
¢ 12 VT V3IVT
2 L - b waaTEian -
in{d =03) 0.685 0.0988 0.236
nid =0.3) 1.2l 0.0750 0.191
wid=107) 428 0.0988 0.236

Table 1. Viscosity values for the simple models described in Section IV.A2.

experiment of McNamara, Kadanoff, and Zanetti described in Section [X.A.1.b.. The
measured viscosities agree within a few percent with the predicted ones. However
the difference is outside of the error bars. In fact viscosity diverges logarithmically
with length in 2 dimensions, a fact that precludes any agreement with the Boltsmann

values. We shall discuss this divergence further in Section IV.C.

Another type of measutement may be performed using decaying shear waves (d'Humiéres

and Lallemand, 1987). Because the shear waves eventually decay to below noise lev-
els, such experiments cannot be sustained indefinitely and are in our opinion less
accurate than Poiseuille viscometers. However they have the advantage that forcing

is not required.

C. Statistical description beyond the Boltzmann approxi-

mation
We now review the statistical description of a general lattice gas. The statistical
description has several levels. At the level of the Liouville equation we look for an

invariant or equilibrium measure that would generalize the Fermi-Dirac distribution.

The description of that measure will be made following the ideas of Hardy, de Pazsis
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and Pomeau (Hardy et al., 1973), Zanetti {Zanetti, 1989) and Bernardin (Bernardin,
1992).

1. Liouville equation

As in Section IV.A.1., let £ be the lattice, considered either infinite in space or of very
large volume. A configuration over the entire set L is a function n{x) of lattice position
x. We shall write functions n(-), m(-), etc., to distinguish them from their value at x.
For instance n(-,t) is the configuration of the model at time ¢. It is of some interest
to study in detail the evolution of n(:,t) as given by the microdynamical equation
(IV.16). It is equivalent to the composition of two operators: a streaming operator
S and a collision operator €. Streaming is simply the propagation of particles. The
distribution n(-) yields m(.) = Sn(-) if
mi(x + &) = ni(x). (Iv.43)

The collision operator is defined by m(-) = Cn(:) and

mix) = () + Sl = s T[S0 (1v.54)

[ k)

Obviously the collision operator C is a random operator. Let A(X — Y) be the
transition rate corresponding to the random operator £ = CS. The explicit expression
of these trapsition rates is cumbersome and does not play a réle in the discussion
that follows. The time dependent function P(-,t) gives the probability P(n(-},t) of
observing configuration m(-) at time ¢. The function P(.,t) is called the state of the
lattice in the classical terminology of statistical physics (Kadanoff and Swift, 1968)
and should not be confused with a configuration n(-). The state obeys a Liouville or
Chapman.Kolmogorov equation (Frisch et al., 1987; Zanetti, 1989):

Plac,+ 1] = T2 Am() = BP0 (1v 95)
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2. Equilibrium states

The invariant measures, or steady distributions, are fixed points P of the evolution
(IV.95). It is not known in general what the invariant measures are (Hardy et al,,
1973; Bernardin, 1992) When the quantities Ji{m(-)] left invariant by the micrody-
namics are known and the microscopic motion is reversible a standard conjecture of
statistical mechanics (Laadau and Lifshits, 1986} is that the relevant fixed points,
called equilibrium states, are the Gibbs distributions

p _ o2 (= Timdin()}
- ,

(IV.96)

where the partition function
z=Y% exp{z —p.—.Ii[m(-)]} (IvV.97)
m(.) i
and the u, are chemical potentials associated with the Ji.
In standard models such as FHP, D + 1 invariant densities have been built into the

system; i.e.,

Joln(-)] = 3 n[n(x)], and J,[n(.)]= Y 9a(n(x)) where 1<a<D
sEL €L
) (IV.98)
where the particle number n and the momentum g are defined by

n{n) = Zn.-, and g(n)= En..-c.-. (IV.99)

A remarkable fact shared by al} lattice-gas automata with semi-detailed balance is that
they possess a factorized invariant measure. When the only invariant densities are
™ass and momentum, we find the same Fermi-Dirac distribution as in Section IV.B.
Indeed, by substituting the invarisnts of equation (IV.98) in the Gibbs distribution
(IV.96), we find
PO = 1 IT#0+ 0 ™1~ fh+ qef0  (v.100)
XEL ix] ’

where f is defined a4 in equation (IV.28) above.
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3. Spurious invariants

We shall call spurious invariants those invariants J, which appear in the probabilistic
Liouville dynamics (1V.95) but were not bujit intentionally into the mode]. It has long
been known, for instance, that the model of Hardy, de Pazzis and Pomeau (Hardy
et al., 1973) conserved the total momentum on each lattice line, creating infinitely
many spurious invariants. The FHP mode] has 3 staggered time-dependent invariants
of the form (Zanetti, 1989)

Jpee = 3 (-1M(-1)®rXg(x). ot (IV.101)

for k = 1 to 3 where cf is the unit vector orthogonal to ¢, and b, is the reciprocal
vector by = 2/+/3c{. That these expressions are in fact invasiant may be verified by
inspection. Notice that the local expression &(x) - ci is invariant by the local collision
operator. The global expression in (IV.101) is also invariant by the streaming operator
8, a3 easily seen by inspection. Thus the spurious invariants J, are invariant by the
composition of streaming and collision.

These invariants may be given the following meaning: the momentum projected
on directions perpendicular to a lattice line, i.e. 8(x) - cf, may be spiit between even
numbered and odd numbered lines. The odd-line momentum is exchanged with the
even-line momentum at each time step.

Following the accidental discovery of the staggered invariants (IV.101) several stud-
ies were made to find an exhaustive list of invariants. Systematic numerical searches
for linear invariants have been performed (d'Humieres et al., 1989; d’Humieres et al.,
1090; Zanetti, 1991). Staggered invariants were found in multiple-velocity square-
lattice models (Brito and Ernst, 1991a) and in the FCHC mode] (Brito et al., 1991).
Invariants may kave period higher than 2: counting period 3 invariaats, 11 invariants
were found in the 4-bit model of Qian et al. {Qian et al, 1992a). The decomposition
into streaming and collision operator used above is the source of efficient algorithma
for invariant search (d'Humidres, pers. comm. ).
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4. Euler equations and Boltzmann approximation

In 2 mannet similar to the derivation from the Boltzmann equation in Section IV.B.,
a Chapman-Enskog expansion of the densities N; = (n;) may be performed. The
first-order equations are obtained directly by substitution of the expansion given by
equation {IV.36) in the mass and momentum conservation equations. When the spu-
rious invariants are all of chemical potential 0 or somehow destroyed? the zeroth order
distribution is the Fermi-Dirac distribution of equation (IV.37) and Euler equations
identical to those of Section IV.B. are obtained. Thus the Euler equations are reaily
independant of the Boltzmann approximation.

A description of hydrodynamics that includes staggered invariants was given by
Zapetti (Zanetti, 1989). The standard hydrodynamic description, however, excludes
staggered invariants. The consensus among practioners is that this exclusion does
not affect is relevance. Staggered invariants are not created by hydrodynamic modes.
If they initially have zero density they will remain there, except when small scale
excitations are present in the system such as strong shock waves or special boundaries

(Cornubert, 1991).

5. Estimations of viscosity beyond the Boltzmann approximation

In classical kinetic theory, viscosity may be related to fluctuations of the velocity by
so-called Green-Kubo relations. For & simple fluid the shear viscosity takes the form
(Hansen, 1976)

y= ;ﬁ; [ oot (IV.102)

where d is the inverse temperature, m the molecular mass, p the mass density, o™{t)
the zy component of the microscopic momentum flux tensor related to a given particle
at time ¢. The symbol (-}, meaas that fluctuations are taken in equilibrium.

Such a relation was obtained by Rivet (Rivet, 1987) in the lattice-gas context.

INo known model is s0 far free of spurious invarisnte.

52

This formalism may be a starting point for the computations of exact expressions for
the viscosity. Another issue of interest is the behavior of long-time correlations of
the form Ci;(x,1) = {n,(0,0)n,{x,1)), and in particular the appearance of long-time
tails of the form C(x(t),1) ~ t=*, where x{t) is the trajectory of a particle. The
study of transport coefficients and of these correlations has motivated a lot of work
in lattice gases since the earliest times (Kadanoff and Swift, 1968; Hardy et al., 1973;
Hardy et al,, 1976; Kadanoff et al., 1989; Frenkel and Ernst, 1989; Frenkel, 1990;
Ernst and Dufty, 1890; Van der Hoef and Frenkel, 1990; Naitoh et al., 1990; Noullez
and Boon, 1991; Van der Hoef and Frenkel, 1991; Van der Hoef and Frenkel, 1991;
Naitoh and Ernst, 1991; Naitoh et al., 1891; Brito and Ernst, 1991b; Ernst, 1991). We
cannot review this topic here. However we note that there is a remaining quantitative
disagreement between the kinds of mode-coupling theories used and the very precise
numerical experiments performed in the study of long-time tails.

Methods for the construction of systematic corrections to the Boltzmann values of
the viscosity have been proposed. A ring kinetic theory expresses time correfation
functions in terms of ring-collision integrals (Kirkpatrick and Eranst, 1991). The re-
sults for long time reduce to those found from the phenomenological mode-coupling
theory. Other diagrammatic expansions also give autocorrelation functions {Taylor
and Boghosian, 1992). They are found to improve the prediction of transport coeffi-

cients for some simple one dimensional models.



V. On three levels: introduction to phase sepa-
rating systems

Phase separation occurs when the mixed state of a mixture is unstable, so that its com-
ponents spontancousiy segregate into bulk phases composed primarily of one species
or the other (Gunton et al., 1983). If the instability results from a finite, localized
perturbation of concentration in the mixture, it is known as nucleation. If instead
the perturbation is infinitesimal in amplitude, not localized, and of sufficiently long
wavelength, the instability is known as spinodal decomposition.

In the remainder of thiy review we concentrate on the statistical mechanics and
hydrodynamics of the lattice-gas models of phase separation introduced in Section
III. To set the stage for what follows, we first briefly review certain aspects of
phase separation, and classify them according to the spatial scale at which they act:
INACTOBCOPIC, IMESOSCOpPIc, OF Microscopic.

At a macroscopic scale and within contiguous domains, phase separation may be
described by the partial.differential equations of continuum mechanics. An additional
complexity, however, is brought to the problem by the presence of interfaces separating
each phase from the other. Continuum mechanics considers these interfaces to be
vanishingly thin, and constructs jump conditions to connect solutions of the partial-
differential equations across the interfaces. These jump conditions are the postulated
basis for many applications of the fuid dynamics of multiphase systems.

At a smaller scale interfaces have a finite thickness. This thickness, however, is
assumed to be much larger than the microscopic length scale of the system. Thus the
fluid bebavior may still be described by continuum equations. A simple example of
such an approach is the Ginzburg-Landau model for phase transitions or the Cahn.
Hilliard equation for phase separation in a binary mixture (Gunton et al., 1983). Such
a level of description is intermediary between continuum mechanics and microscopic
modelling aad may appropriately be deemed mesoscopic.
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At a yet smaller scale the behavior of the system is that of & collection of discrete
particles. At this level of desgription we find the two lattice-gas models of phase
separation introduced in section III.. Although describing the microscopic dynamics
of these models is one of the main objectives of this review, it is nevertheless useful
to discuss the connection of these models to the two other levels of description de-
scribed above. The merit of the connection to the Mmacroscopic, continuum-mechanics
approach is obvious. Continuum mechanics is widely verified experimentally and may
be seen as the expressior of the fundamental conservation laws and symmetries of
classical physics. On the other hand the usefulneas of the connection to the meso-
scopic level is more subtle. At this mesoscopic scale, we can most clearly describe
our discrete models as analogous to bifurcating dynamical systems. Just as in such
systems, our discrete particle models may fall into either the potential or non-potential
category. In the potential category we find those systems that derive from a thermo-
dynamic potential and obey classical thermodynamic rules for phase transitions. In
the non.potential category we find systems that may not obey some of these rules. The
applicability of such concepts for partial-differential equations is well demonstrated
by the theory of instabilities in extended systems out of equilibrium (Manneville,
1950).

In what follows we discuss the three levels of description, beginning with the largest |
scale and ending with the smallest.

A. Macroscopic description: hydrodynamics with jump con- 4
ditions )

e E

In this section we recall how thin interfaces are classically described in the continuum
mechanics of two-phase flow (Drew, 1983). For simplicity we consider a mixture of
two phases, noted 1 and 2, ‘with densities g, and p,. We will assume for the moment
that no change of phasc is permitted. The vector n is the normal to the interface. *

oy TS T



Then we expect the Navier-Stokes equation,

a%+%aw=-?dﬁ+&&, (v.1)
to be valid in the bulk of each phase, where the viscous stress tensor is

Sas = 7(Batg + Gpus) + (divu baa, (v.2)

where for simplicity we have taken the bulk and shear viscosities in each phase to
be equal. The mass conservation or continuity equation (I1.12) is also obeyed in
each phase. On the interfaces between the two fluids a number of fields obey jump
conditions. We write [X] = X; — X; to signify the difference between the limit of
quantity X when the interface is approached from side 1 and the corresponding limit

when the interface is approached from side 2. The jump conditions are then:

1. Fluid velocities are equal:

[u] = 0. (v.3)
2. interface velocity is equal to the fluid velocity. This means that
u;-n=V, (V.4)
where Vf is the velocity of the interface in the direction of its normal a.

3. Momentum flux across the interface is continuous except for the capillary force

term:
[pBag + Sa)] = nangox. (V.5)

Here o is the capillary or surface tension, and x = 1/ R, + 1/R; is the curvature.

A requirement for consistency (in the sense used in numerical analysis) of a lattice-
gas scheme for the simulation of multiphase flow is that on the large scale it obeys
the above set of equations. Although such consistency may not alwaye be achieved
in lattice-gas models, we emphasise that this consistency may not be necessary (or
indeed desirable) if one’s objective in to gain insight into phase transitions in such

discrete systems.

B. Mesoscopic description: continuum models of phase tran-
sitions '
In this section we discuss phase-separating systems st a mesoscopic scale where in-

terfsces are no longer of negligible width. Nevertheless, we still work with continuum
models, under the assumption that interfaces are much wider than the characteristic
microscopic scale. After first introducing the the classical models of thermodynamics
and statistical physics for phase-transition dynamics, we describe two analog contin-

uum models, one for binary fluids and the other for a liquid-gas transition.

1. Mesoscopic theory for binary mixtures

Our goal in this brief section is to demonstrate, via a linear theory due originally to
Cahn and Hilliard, the crigin of the instability that leads to spinodal decomposition
in real systems (Gunton et al., 1983). As is customary in such formulations, we begin
with & definition of a frec-energy density f(#), where 8(x) is & concentration field that
may vary in both space and time. Considerations of symmetry lead to the following

expression for a double-well potential {Landau and Lifshitz, 1986):
f(8) = —hab? + het?, (v.6)

where h, > 0 and, for T < T., A > 0. The free energy F of the system is then
the integral over space of the sum of f and an additional spatial term chosen to
favor smooth concentration fields. This results in the Ginzburg-Landau free-energy

functional

Fi6)= [ xleliver + f(6)., (v.1)

where §{, is & parameter proporiional to the width of interfaces. A dynamical model
for the evolution of the concentration field is the continuity equation

W) g e o
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coupled with an expression for the current J of concentration,

6F ., Of
Jixy= -3 W()_Mv( V% + =L ) (V.9)

where M > 0 is a mouv.ity Substitution of equation (V.9) into equation (V.8) then
yields the nonlinear ecustion we shall call Model A (Hohenberg and Halperin, 1977):

d8i(x)
3t

= MV? (-c’v'a + gﬁ) (V.10)

To determine the condition under which spinodal decomposition is initiated, we
consider the evolution of smail perturbations é(x) to the average concentration field
#y. Thus we write

f(x) = B + 8(x) (V.11

and linearize equation | V.10) about #4 to obtain

B(x) _ 1o [-gfv’+ (ﬂ) ]5(1)_ (V.12)
L]
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In the initial stages of spinodal decomposition, one expects § to be everywhere amall.
Thus, for sufficiently long wavelengths, the first term in the brackets above can be

neglected, and we obtain the diffusion equation

a‘(") = DV(x), (V.13)

where the diffusion coefficient is given by

D= M(g;‘:) . (V.14)

Since I can be either positive or negative, we sec that the initial stages of spinodal
decomposition (i.¢., the growth of the fluctuations §) may be characterized by “uphill
diffusion,” which is possible everywhere inside the spinodal curve defined by the locus
of points for whick 82f/96* = 0. We return to this point in Section VIILB..

2. A non-potential model

In the context of & microscopically-irreversible lattice-gas model, there is no com-
pelling argument for the existence of a thermodynamical potential. Thus we now
generalize equation (V.9) to illustrate an example of 8 non-potential model. We keep
the symmetries of the problem intact, and still limit ourselves to second order in

gradient. The resulting model, which we call Model A', is
1=V [f(8)+ €V + (Vo)) (V.15)

For an equilibrium interface, J = 0; if this interface is perpendicular to the z-direction
then

+eZ8 v (‘”) - fo (V.16)
where fo is the limiting value of f(#) for § — +oo. For §; = 0 this model derives
from the potential F, and may be integrated once. In this case we obtain a pair of
equations that implicitly define ¢, and 4,, the equilibrium concentrations in phase 1

snd 2, respectively:

L@l -si=0, 50 = 1) (v.17)

However, if 3 # 0 then the above construction fails.

Using the termunology of dissipative dynamical systems (Manneviile, 1990; Pomeau,
1986), we call *potential® those systems like Model A, equation (V.10), which may
be obtained from a thermodynamic potential, while we refer to the others as “non-
potential.* For some functional F of a field ¢, potential models satisfy

% §F
] (V.18)

whereas non-potential models have no such evolution. There is very little numerical
evidence as to which class our phase-separating automats belong. It would however
be & remarkable accident if they fell into the potential class. We note that the
non-poteatial Model A’ (equation (V.15)) is related to a model receatly explored by
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Nozitres apd Quemada (Noziéres and Quemada, 1986) in the context of diffusion of &
collection of blood celly. In this nonequilibrium system, a macroscopically fluctuating
suspension in a liquid, one expects equilibrium thermodynamical constructions to fail.
However a surviving feature of such hydrodynamical systemis is the uniqueness of the

equilibrium interfaces.

3. Maesoscopic model of a liquid-gas transition

Models 4 and A’ do not fully describe binary fluid mixtures since they lack a momen-
tum balance equation. It is, however, relatively easy to write an isothermal model for
a liquid-gas transition that conserves both mass and momentum. This model, which

we call Model B, reads as follows:
Bipua + Japugup = ~BaFaslp] + pSas (v.19)

Here S5.q is the Navier-Stokes viscous stress tensor, P.s[p| is a tensor, yielding
anisotropic constraints inside interfaces as discussed in Section VI.. It is a functional

of p that is given by
Pasle] = [PU(P) +E V0 + Ez(vﬂ)’] Sap — £3 {(Vp)’&,g - agpapp] , (v.20)

whete the £ are arbitrary coefficients. Coefficient {2 has been added to allow a
non-vanishing surface tension for the model, but will not be needed in the following.
The equation of state is given by po(p). In analogy with the free-energy demsity
given by equation (V.6), we may consider a simple equation of state of the form
po(p) = —ha{p — pe) + he(p — p.)* where p. is some critical density. The momentum
equation (V.19) is of course coupled to a mass conservation equation.

Consider a flat equilibrium interface, parallel to the direction z. Let p depend en
z alone. Then

B, [PO(P) +€1’g% +& (g—f) ] =0. (v.21)

The system may be integrated once to yield
, oa\?
= mie) + 85+ 6 () (v.22)

where p* is the equilibrium pressure. In & simgle interface solution we expect g0
as 7 —+ 0. We call p; and p; the densities of the two phases and we look for solutions
such that p(z) — py when z — —co and p{s) — ps when z — +00. When {3 = 0 we

may integrate once to find
7 trole) - pldp = 0. (V.23)
4}

This equation is the analog of the Maxwell construction for Model B. If we define a

“free energy” f(p) = J£ p{#)dp' — p(p)p, then the coexistence condition is
fle) = f(pa) (V.24)
together with the mechanical equilibrium eondition equivalent to equation (V.5):
#;) = plpa) = ™. (V.25)

On the other hand, if §; # 0 then the system cannot be integrated as simply and it

is non-potential. However there is still a single equilibrium solution.

C. Microscopic models

In this section we provide detailed definitions of the two phase-separation models
introduced in Section III.. Then, in Sections V1., VII,, and VIII., we consider the
relation of these microscopic models to the macroscopic and mesoscopic theories de-
scribed above.

1. Liquid-gas models

a. Minimal model In Section [TLB. we defined a liquid-gas model in two-dimensions
with interactions between sites. The model can be generalised to any dimension eas-
ily. To perform this generalisation we use the following notational trick. We let the
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indices 1 and -t denote opposite pairs of velocities, such that ¢; = —c_;. It is also
useful to define a probabslistic rate of interaction. We define the interaction condition

in terms of Boolean variables

v = @ik x - re R (On (x)ni(x + reJAli(x + rey), (V.26)
where n’ is the distribution of particies after the collision step, and a!(x,x + re;, t)
is a random Boolean varnable controlling the rate of interaction. We shall assume it

corresponds to a uniform interaction rate p = (a{(x, x + re;, t}}. The microdynamical

equation of the lattice gas 15 then
n(x +c,t+ 1} =nl(x,t)+% - 7. (v.2n)

This modification of the basic FHP model is analogous to the addition of an attractive
force betwesn distant particles. This attraction occurs only at a fixed distance r. If
we consider a one-dimensional version of the liquid-gas model, then the corresponding
interaction potential between particles is akin to a square-well potential. In that sense
the liquid-gas model is a discrete analog of the classical molecular-dynamics model of

hard spheres in a square well.

b. Other liquid-gas models To date, most numerical studies with liquid-gas
modeis have been done with more complex versions of the model stated above. In
these models, transverse momentum (parallel to x,x + r¢;) is exchanged between
two sites by redistributing particles in a number of ways. Figure 15 shows a five.
step model (Appert and Zaleski, 1990) in which interactions exchange the position
of particles in full and dotted lines. These interactions imply a form of competition
between interacting pairs. While in the minimal model calculations of +; and nf
could be done in parallel, it must now be decided in which order the pairs must be
investigated. This is a rather annoying complication of the model, which moreover is
not as easily tractable as the minimal model.

Yet another model is the mazimal model in which the largest possible amount of
momentum is exchanged between sites {Appert et al, 1991). This model has the

advantage of displaying a liquid-gas transition in 2D at r. >~ 2.8, a relatively low

value.

2. Immiscible lattice gas

Here we describe the detailed microdynamics of the immiscible lattice gas model,
introduced earlier in Section 111 A.. Analogous to our definition of a state in a single-

component lattice gas, for immiscible lattice gases we define the 14-bit state

3= {T,b} = {fo,f‘h. "er)bOtb‘h“-prL (V.ZB)

where, as described in Section IILA., bits with indices O represent rest particles, and
higher indices refer to the lattice directions c; given by equation (I11.2). Since the red

bit r; and the blue bit 4, cannot both equal one for the same i, we have

n,=r+ b (V.29)

to indicate the presence of cither a red or biue particle moving with velocity c,.

For completeness, we restate the microdynamical equations given in Section IILA.:
(X +e,t+1)=ri(x1), Aix+et+1) =5l(x,1t) (V.30)

These two equations are coupled via a collision operator that depends on the entire

state 5 and also the configurations at neighboring sites. Thus
= C{a(x,t), f.), 8 =Ca(x,t), fu), (V.31

where the collision operator € € {0,1} takes as input the 14-bit state s(x) and the
discrete color-field angle f, and gives as output the state of the ith element of apecies
J € {r, b} after collisions have occurred. f, is obtained from the color distribution at
neighboring sites. The “true” color field f is given by

f(x} = Z':c.-¢.-, (V.32)
=l
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where the relative color density ¢, is

¢ = GZ[":‘(* +€) ~ bi(x + )] (v.33)
=0
= M{s(x+ <)) (V.34)

Here the color-counting look-up table M has been implicitly defined. Since ¢; €
{~7,—6,...,6,T}, there are 158 possible color distributions {¢:)im1,...s, snd therefore
a similarly large number of possible values of {. For efficient construction of colli-
sion tables, however, one may exploit the following observations: 1) many of these
distributions yield the same f, due to lattice symmetries; 2} only the direction, not
the magnitude, of T enters in the maximization of equation (II1.3), and therefore the
outcome of a collision; and 3) small differences in the direction of f are insignificant
for the creation of surface tension. Thus one need only work with a discretized version
of the unit vector {/|f|, which amounts to using & scalar angle code, which is what
we call f.. Typically one allows for 36 values of f., uniformly distributed from 0 to
2x, plus an additional state to allow for the case { = 0 (Rothman and Keller, 1988});
more severe discretizations, however, are possible. The transformation of the color
distribution (@i)i=1,..s to the discrete angle f, is then symbolically represented by the
operator (ot look-up table) T such that

T(¢h---:¢6) = fv (V35)

VI. Macroscopic limit of phase separating automata

In this section we review the macroscopic behavior of lattice-gas sutomata for multi-

phase flow.

A. Navier-Stokes equation and jump conditions for the ILG

As we noted earlier, the hydrodynamic limit of the pure ted or pure blue phase in the
ILG is precisely that of the plain FHP lattice gas. The collision rule for a pure phase
of the ILG is that of the random FHP model with 7 particles. Other than a specific
viscosity resulting from the randem collision rule, the hydrodynamics of a bulk phase
do not differ from what was found for the FHP models of Section IV., and therefore
do not require any new theory.

The velocity of the interfaces in the ILG is equal to the velocity of the fluid from
the law of conservation of color. This creates a problem becausc it is now impossible
to recover the real Galilean invariant equation by the change of variables (IV.62).
Instead, if one wishes to use the ILG to simulate flows st significant Reynolds numbers,
the models must be modified to let g(po) = 1 for some density {Gunstensen and
Rothman, 1991a}.

The continuity of stress on the interface is a consequence of the conservation of
momentum. We here outline the proof of relation (V.5) in 2D. We start by defining
« control volume ABCD around a small piece of interface of arc length £ € R where
R is the radius of curvature. We let a = £/R . Pressure forces act on the inside {m)
and outside (p,) of the interface. Our control volume is thin around the interface so
forces on the sides AB and CD can be neglected, except the capillary forces f. (see
Figure 16). From the definition of surface tension {, = on, where n is & unit vector
normal to the surface of the comtrol volume (Rowlinson and Widom, 1982). In the
absence of velocity these are all the stresses entering the control volume. Thus

2oanaf2 -{p—;:}=0 {V1.36)



For small angles a we recover Laplace’s jaw
n—p=o/R (V1.37)

The argument follows tne same lines in 3D or when viscous stresses are added. It
does not however give us any way to obtain the value of the stress o. Methods for
calculating o will be aiscussed in the following sections.

The absence of a jumrip in velocity cannot be demonstrated from first principles. It
can however be discussed using symmetry arguments in the following way. Consider
a uniform flow, parallel to the horigontal direction = on both sides of & horizontal
interface, with veloaity u, in phase i. Suppose that the flow creates a velocity discon-
tinuity with u; > u; . Juch a discontinuity may be interpreted loosely as meaning
that the interface has vanishing viscosity allowing one phase to tlip on the other.
The symmetry of the red and blue phases indicates that a velacity discontinuity with
4 > uj implies the existence of another solution with velocities u, and u, exchanged.
However the solution for a flow parallel to the interface is probably unique, as is the
case for pressure and color distribution in our experiments and mesoscopic models.
Then we may only have a single solution with u; = u, .

We note however that were we to extend ILG models to fluids with asymmetric
phases the above arguments cease to be valid and a velocity jump is conceivable.
Somers (pers. comm.) has reported difficulties with ILG models with asymmetric
viscosity that may be due to such effects

B. Macroscopic limit for the liquid gas model

We now turn to the macroscopic limit for the liquid-gss model. It turns out to be
much more difficult to discuss than in the case of the ILG. This difficulty arises
because interactions deeply modify the nature of lattice gas automata.

1. Hydrodynamical equaiioul away from interfaces

In order to obtain the fmacroscopic behavior of the liquid-gas model, we need to makea
Boltzmann or factorization assumption, and then continue with a Chapman-Enskog
expansion. Such a procedure cannot be valid near interfaces where the gradient
of density is large and is only useful to describe the liquid-gas model away from

interfaces. It is also a mean-field theory for the phase transition.

a. Boltzmann approximation The Boltzmann equation is obtained from 1)
the molecular chacs assumption (IV.17) that indicates that incoming particles are
independent and 2) the assumption that particles on interacting sites are factorized.

Then the averaging of the liquid-gas microdynamical equation (V.27) is

Ni(x + et + 1) = Ni(x,8) + AN] + I[N = T[N (VL38)
where
DiNT = (1 = NJ(x)INZ (X)L - N (x + re;))N(x + res), (VL39)
and
=N+ A[N]. (V1.40)

b. Equation of state and inviscid hydrodynamics A Chapman-Easkog ex-

pansion in the manner of Section IV.B.4. may performed:
N=NO 4L N® .y N4 (VL41)

In Section IV. the leading term of the expansion was aa equilibrium solution of the
probabilistic dynamics. For the interacting model there is however no equivalent of
the existence and uniqueness results of Section IV., nor is there an H-theorem in
the manner of M. Héaon's thearem (Hénon, 1987a). However we consider instead
of the true probabilistic dynamics the Boliamann evolution (V1.38). The Bolizmann
equation has steady state, spatially homogenoous sclutions of the form N{x,t) = N=,

61

T

g r——
s

g
vy



where IN®@ in given by equation (IV.23). We may also define N as in equations
(IV.34) and (IV.37).

We also need to expand the interaction terms. This yields
rcr) = Colxr) = readsT® + O(T?)

where

Mo(x) = (1 = NOEDNDx)(E - NN (). (V1.42)
The post-collision distributions have the expansion
N = NO 4 ANG 4. (V143)

and the first order equation is obtained by inserting equations (V1.41) and (V1.42)
into equation (V1.38) to yield

NO(x + et + 1) = NO(x, 1) = T A NI (x,8) + reaBalNEY). (VI44)
5

A solvability condition is obtained as usual by multiplying equation (VI.44) by the

mass and momentum eigenvectors. The usual maas conservation equation,
Bp + Balptha) = 0, {V1.45)

is obtained. The momentum equation is

Bu(pta) = —8a11Y (V1.46)

where the momentum flux tensor ix

=3 [N — DA(NOY)| i, (VI47)

This momentum flux tensor may be found directly as for the non-interacting models

by a simple count of the interaction crossing an imaginary hyperplane of the model.
An important qualitative feature is that the intensity of the interaction term is pro-

portional to 7.

From the momentum balance equation (V146) and the momentum flux tensor

(V1.47) the Euler equation
Bipta + Oplgur(P)puatin] = ~Balp(p )] (V1.48)

is obtained. This equation is parunet:iud-by the interaction strength z = ur. The
aon-Galilean factor, sound velocity and pressure may all be expressed as functions of

z.

- 42d%(1 - d)?
200 = ": 1%(1 — 23d(1 - d)(1 - 2d)] (VL50)
pips?) = chp— 2~ + 5o (9(p) ~ ax(p)e(D +2)) 7 (VIS

where the soundspeed is ¢;, = % At r = 0 one recovers the results for a non-
jnteracting gas.

We notice that g,(p) contains corrections coming from the interactions. These are
due to the fact that the rate of interaction depends on the distributions of particles
and boles in the b directions of the lagtice. Depending on the velocity and density
there may be more or less particles and holes available for interaction in a given

direction.

c. Viscous equation The viscous flow in the liquid-gas model has been studied
in both the gas and the liquid phase of the maximal model of Section V.C.1.b.. The
raethod of decaying sine waves has been used {Appert and Zaleski, 1593) as well as
the observation of Poiseuille flows in 2D channels for the gas phase (Pot et al., 1993)
and for the liquid phase (di Pietro et al., 1993).

Results in both the liquid and gus phnel are in agreement. Viscosities may be
found for the maximal model in tables given by Appert and Zaleski (Appert and
Zaleski, 1993). An interesting effect is the growth of the viscosity like the square of
the range r. This aﬁectmy predicted in a qualitative way by analogy with Maxwell's



estimate v ~ AU for the visconity of gases, where ) is the mean free path and U/ the
thermal velocity. Here we may argue that interactions carry momentum over distances
of order r at a speed ' which is also of order r, yielding v =~ r2 |

Another derivation <1 viscosity may be made in the framework of the minimal
model. Expanding tne :uteracting terms st order 2 is straightforward if one notices

the following identity iur the Chapman-Enskog expansion of the interaction terms:

@ + ﬁ Ty Ty
ar

Tix;r)-T..x.r)=r

2§+"'+EF+"' (VISZ)

Here each term in the expansion is of the corresponding order in gradient such that
(rm/al)(onT/orn) = Q{9
Writing the solvability condition at order 2 as in Section IV. we obtain the Navier

Stokes equations

Oupi + Delgu iato; = ~3up + Op (Bs(pua)) + 4 (2520 + €) )]
(VL53)
where
2
Vo= vt pd - d)(1 - 2d) + prid(1 _d)T;':rT) (VL.54)
¢ = G+ %(cfw ~ )+ ::"‘:’;4(1 ~ d)(1 - 2d) + prid(1 — d)% (VL155)
bm 1
“ = DD+ (Dt (VL56)
bn 1 1
b = §X 55+ (VLST)

The dependence of v with r is the most important qualitative feature of this expansion.

We now turn to ancther effect of the interactions on the viscous behaviour of
the model. Measurements of the viscosity made using a Poiseuille viscometer were
performed by di Pietro et al. (di Pietro et al., 1993), The Poiseuille viscometer is
set up just as the analogous device of Kadanoff et al. (Kadanoff et al., 1989). The
measured viscosity is plotted in Figure 17 for various fow speeds and channe! widths.
A variation of viscosity with velocity squared is observed. A similar effect is observed
in non-interacting lattice gases (Diemer et al., 1980) but it is much weaker there.
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Both the r? and the strong u? depeﬁdnnoe of the measured viscosity are drawbacks
of our model. Together with the non-Calilean ¢(p) factor they limit the possibility of
leaving the region of vanishingly small Reynolds numbers and they limit velocities to
small values which slows down the simulations. Further exploration of modifications

to interacting models is necessary to overcome these difficulties.

2. Jump conditions

Mass and momentum conservation imply as in the case of the ILG that the stress
jump condition (V.5) is verified. In particular surface tension exists and leads to
Laplace’s law. This has been verified in numerical experiments that are reviewed in

Section VILA.. [n what follows below we report on velocity jumps and equilibrium

pressures.

a. Velocity jump In presence of a possible phase change conservation of mass
now takes into account the rate at which molecules evaporate or condense on the
interface. lustead of the continuity of normal velocity implied by equation (V.3), we
have the Rankine-Hugoniot condition (Whitham, 1974)

[pu-n] = [o}V1, (VL58)

where V; is the velocity of the interface. In the liquid-gas model this equation holds
as a consequence of the conservation of mass.

The continuity of tangential velocity is on the other hand in strong doubt. Consider
again as in Secticn VIA. the uniform fow parallel to an interface. The symmetry
arguments invoked earlier cannot be used here. We instead try to discuss in a heuristic
way the possible differences beteween the resl-world jump conditions and those likely

 to prevail in the liquid-gas model.

In steady inullel flow the momentum flux I, = 0. In the liquid-gas model we
have not calculated the stress I, on the interface. However when interactions have
& small effect on the distribution, as in the Boltsmann case (Appert, 1993), the non-
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interacting case still holds and Tl = v%"—l. Thus we obtain %’vﬂ = 0. Integrating

accross the interface we obtain the jump condition
(u-t)=0 (VL59)

for all tangent vectors t.

b. Equilibrium pressures and Gibbs-Thomson relations In a real liquid-gas
system in equilibrium, both phases are constrained to have equal chemical potentials
as required by equation (V.24). This results in a macroscopic condition known as the
Gibbs-Thomson relation for curved interfaces (Rocard, 1967). Let fiuid 1 be on the

concave side of the interface and fluid 2 on the convex side. Then

o+ on—"22
2l ]
p" + ox—2L
[ Wl ]

) (VL60)

P (V161)

Note that by subtracting those two equations one obtains Laplace’s law (V1.37).
These relatively little known conditions have a major importance in determining
the rate of nucleation of phase 1 in phase 2. We have not been able so far to deter-
mine their validity from first principles for the liquid-gas model. However numerical
experiments on curved surfaces in equilibrium have been performed in 2D (Appert
and Zaleski, 1993; Pot et al., 1993; Appert et al,, 1993c}. The results in the 3D case
are shown in Figure 18. They result in a slightly different correlation
no= p+ aox—22— {VL62)
-/
P +ox [1+a L ] {V1.63)

il

P2

Subtracting these two equations still yields Laplace’s law.

We believe that this disagreement with the classical thermodynamical relation is
an effect of the “non-potential® character of our model in the sense of Section V.B..
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VII. Interfaces in phase-separating automata

Having given the mactoscopic description of phase-separating automata in the pre-
vious two sections in terms of hydrodynamics snd jump conditions, we now discuss
in detail the jump conditiona themselves. Specifically, in this section we derive ex-
pressions for surface tension for both immiscible lattice-gas and liquid-gas models, we
present empirical measurements of surface tension, and, where applicable, we compare
theory with simulation. In closing this section we look briefly at interface fluctua-
tions, and find, somewhat surprisingly, that interface fluctuations in a non-potential

lattice-gas model are reasonably well described by classical theory.

A. Surface tension in immiscible lattice gases
1. Boltzmann approximation

To obtain an estimate of surface tension in the ILG, we first need to express equations
(V.30) snd (V.31) in terms of the evolution of a probability field (Adler et al., 1994).
In a manner analogous to that used in Section IV. for simple lattice gases, we define
the average quantitics
Ri={r), Bi={b} (VILY)
and also
N.=(n) =R+ B (VIL2)

which are, respectively, the probability of observing r; = 1, =1, and ng = 1
We then neglect correlations, as in the Boltsmaan approximation of Section IV..
While necessary to simplify theoretical calculations, the neglect of correlations is
a potentially serious deficiency because the presence of interfaces may significantly
increase correlations. Nevertbeless such an approximation allows us to make progress,
and serves as & useful reference for better approximations that may follow. Thus,



specifically, for the evoiution of the red particles we write
Rix-ci-li= ¥ ridls, o, fIP(ix, 0QUax,t),  (VIL3)
' fu
and for evolution of the niue particles we have
B(x - .t -i)= Y BA(s, o, L)P(8x,8Q( £ x, 8). (VIL4)
1,40
Here the sums are taken - ver all possible states s that may enter a collision, all possibie
states s’ that may result from a collision, and all possible discrete field angles f,. The
factor A(s, s, f.) represents the probability of obtaining state s’ when state s enters
a collision at a site with a nexghborhood configuration indexed by f.. The probability

that state s actually enters the collision at time ¢ at the site located at position x is

given by .
Pls;x,t) = [] RFBY(1 - Njyvmi-b, (VIL5)
1=0
The probability that the discrete field angle is f, ia

0. x) = ﬁwmmo, (VIL6)

{(#i )T (o idbu)=fe (‘31
where the relative color density ¢; was defined in equation (V.33). Here the sum
is taken over all possible combinations of ($;)ix1,...s that correspond to f,, and the
product is taken over the probabilities W(¢;) of observing the relative color density
¢ at the ith neighbor. Specificaly, W(4;) is given by the sum of the probabilities of
all states that yield the color density ¢;:

Wi(di;x) = E P(s;x + ;). (VILT)
a:r{a)mi;

2. Surface tension

To calculate the surface tension, we note that in the vicinity of an interface the pres-
sure is locally anisotropic, since the preasure in the direction parallel to the interface
is reduced by the tension on the interface itself. For the case of a flat interface per-
pendicular to the z-axis, the surface tension o is given by the integral over z of the

(5

difference between the component Py of pressure normal to the interface and the

component Pr transverse to the interface (Rowlinson and Widom, 1982):
o= [ _[Pu(a) - Pr(s)ds. (VIL8)

In mechanical equilibrium one has Py{s) = P, the (isotropic) pressure far from the

interface. Equation (V11.B) gives the surface tension as a function of the pressure. As

.defined in Section IV, the pressure tensor, or momentum-flux density tensor, is

8
Mag = 3 Giacia;; (VIL9)
=0

Py and Pr are therefore equivalent to II,, and I1,., respectively, where the z-axis is
taken parallel to the interface. Prediction of the surface tension is thus a problem of
predicting the distribution of the populations N; near an interface.

Below we review a recent theoretical calculation of surface tension and then sum-
marize & comparison of these theoretical results with measurements obtained from

simulations (Adler et al., 1994).

a. Theoretical calculation Because the evaluation of equation (VIL.8) may de-
pend on the orientation of the interface, it has been studied both for the case in which
the interface is parallel to a lattice direction (say, cs), and for the case in which the
perpendicular to the interface is parallel to a lattice direction. We refer to the former
case as the “0-degree interface,” while calling the latter the “30-degree interface.” An
example of each is shown in Figure 19. Here we summarise the calculation for the
0-degree interface only; details of the calculation for the 30-degree interface are given
by Adler et al. (Adler et al., 1994).

As shown in Figure 19a, the center of the (-degree interface is taken to be between
sad parallel to two (horisontal) lattice lines. The upper line is labeled y; and the
lower line is labeled y_,. We assume an average of 7d particles per site far from the
interface; in equilibrium, therefore, we must have particles arriving at interface sites
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with probability d, independent of time. This fixes the boundary conditions

Ny, t)=d, i=4,5Vvt (VIL10)
at all sites in layer y; and

Ni(y-1,t) =d, 1= 1,28 (VIL.11)

at all sites in layer y_,;. Here the direction index i haa the same sense at that defined
in equation {I1.2). These boundary conditions require that the populations N; be
symmetric across the center of interface after rotation through 180 degrees. Thus for

the moving particles
Ny, t) = Njaly-1,t),  +=1,...,6, (VIL12)

where, as before, the circular shift 1 +3 = ; such that ¢; = —¢;, 7 = 1,...,6, while
for the rest particles

No(yi, t) = No(y_1,t). {VIL13)
Thus in this two-layer case, the dynamics of the interface can be completely deter-
mined by solving only for the populations in layer y;,. Within this layer, requirements
of symmetry and mechanical stability further reduce the remaining five populations
to only two independent populations. Specifically, mechanical stability requires that
the pressure be divergence-free, and therefore that Py = P = 3d. This gives, by
virtue of the boundary condition (VII.10),

M=N=N=N=4d (VIL14)

In addition, since there is no current parallel to the interface {or, equivalently, by

symmetry with respect to the perpendicular to the interface), we have
Ny = Ns. (VIL.15)

Thus the two free population variables are the rest-particle population, N, and one

of the laterally moving populations, say Ny. These populations evolve according to
Ny t+1)= N(n,t),  §=0,3,6, (VIL16)
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where the post-collision state is denoted by

Ni(x,t)= T niA(s, o, f)P(5:x,1)QUf6 % 8), (VIL17)

.08 0.
in which we have also used n! =7, + ¥,
The evolution of color, or concentration & = Ri/N, must also be specified. In

addition to the symmetry given by equations (VII.12) and (VIL.13), we also have

By, t) =1 =bialyst)  1=1....6 (VIL18)

and

Bolys,t) =1 — Bo{y-1,t). (VIL.19)

Additional symmetries and stationarity of the interface aliow the seven concentration
variables in layer y; to be reduced to three independent variables. First, we note that

symmetry with respect to the perpendicular to the interface gives
03 = 95, 91 = G,, 94 = 95. (VII20)

Together with the concentration 6 for the rest-particle population, the first of these

three pairs evolve according to
8y, t + 1) = 8(y, 1), 1=19,3,6 (VIL21)

whete we have used & = R!/N!. The evolution of the second pair of concentrations is

determined by particles that cross the interface; using equation (VIL.18), we obtain
Byt +1)=1-8un.t), +=12 (VIL22)

Since the stationarity of the interface requires that no net concentration crosses it, in

steady state we must have
1
fin) =8(n) =5, (VIL23)

and therefore, by equation (VIL.22),

. (VIL24)

| -

him) = b(n) =
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It remains only to specify the red concentration coming in from afar. Sincein equilib-
tium the concentration that lcaves the interface must be equal to the concentration

that enters it, we set
iyt - D =8,0n,t),  i=4,5 (VIL25)

Thus two of the three iree concentration variables may be taken to be 8, and &,
which enter via equauon (VI1.21), while the third may be taken to be 8, which
enters equation (VII1.25) above.

To complete the specification of the problem we need an expression for Q(f.), the
probability of the discrete field angle f,. From equation (VIL6), one sees that all
that is required is required is knowledge of W(¢), fori =1,...,6. These quantities
may each be obtained {rom the symmetries and boundary conditions of the problem.
Noting that W(4o) is the probability distribution for relative color density for the

interface site in layer y;, one finds
W(ds) = W(ds)} = W(do) (VIL.26)
for the neighboring sites in layer y;, and
W(ds) = W(ds) = W(-¢o) (VIL27T)

for the neighboring sites across the interface in layery_,. For the sites on the boundary

(i-e., layer y3), one has, assuming that the chosen site in layer % i'—“ position x;,,
Ni(x; +¢;,¢) = d, i=0,...,86, J=12 (VIL.28)
for the populations, sand
Oi(x1 + c;,t) = 0j4a(x,t), i=0,...,6, j=1,2 (VIL.29)

for the concentrations. W(¢;)} and W(¢,) may then be calculated directly from
equations (VIL5) and (VILT).
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The dynamics of the interface are thus fully specified by equation (VIL.16) for the
two free populations Ny and Ns, equations (VI1.21) and {VIL.25) for the three free
concentrations 8y, 3, and 6, aad equations (VII.26), (VIL.27), {VIL.28), and (VIL.29)
for the determination of the color field angle. Adler et al. {Adler et al., 1994) solved
this system by numerically determining the steady-state post-collision populations
N?. The surface tension is then obtained from equations (VIL.8) and (VI1.9), which
yields

e=v3 i(cﬁ — )Ny, (VII.30)
where ¢;; and ¢ are the components o?f:.- perpendicular and parallel to the interface,

respectively.

b. Comparison with simulation Figure 20 compares results from the Boltz-
mann approximation for both the 0-degree and 30-degree interfaces with results from
three different empirical measurements from simulations (Adler et al., 1994). We
comment first on the theoretical predictions, and then on each of the empirical mea-
surements.

Peshaps the most interesting feature of the theoretical calculation is the phase
transition at d = d. =~ 0.25. Below 4, surface tension vanishes, while above d. the
surface tension rises to a peak at about d = 0.6 and then falls to zero at d = 1.0,
(Surface tension vanishes at d = 1.0 because each N; muat equal one.) One sees also
that the 30-degree interface has a surface tension which is usually greater than that
of the 0-degree interface, with a maximum deviation of about 20%.

The first of the three empirical measurements consists of the simulation of a red
bubble of radius R in a blue box with periodic boundary conditions, of size greater
than or equal to 4R. The pressure P, inside the bubble is compared to the pressure
Feu outside the bubble. One expecta adherence to Laplace’s formula:

o
X — = =, VILa1
Fin — Pou R (VIL31)
Figure 21 shows this pressure difference as & function of 1/R for the case d = 0.7,
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The best-fitting straight line passing through the origin is also shown. The fit to
the straight line is good; thus the slope of this line gives the empirical estimate of
2. Similar measurements, the results of which are shown in Figure 20, were made at
other values of d, ranging from d =0.5t0 d = 0.9.

While the bubble tests should, in theory, provide a measure of the average surface
tension, integrated over all angles, one may also make measurements of the surface
tension on interfaces that are, on average, fiat, by numerical integration of equation
(VILS). Figure 20 shows two such measurements, one set for a zero-degree interface,
and the other for a 30-degree interface. These “integral tests” display approximately
the same maggitude of anisotropy that was determined from the Boltzmano approx-
imation, with the 30-degree interface usually yielding the greater surface tension, as
predicted. Moreover, within the margin of error of the measurements, the integral
tests approximately bracket the results of the bubble tests, as one expects.

Although the theoretical predictions and empirical measurements are always in
qualitative agreement, quantitative agreement is lacking, The poor quantitative ac-
cord could be due to several reasons. First, the Boltzmann estimate was obtained by
neglecting correlations. However, correlations are likely to be strong near an interface,
and thus contribute significantly to the surface tension. Second, because the integral
tests were made on fluctuating, rather than purely flat, interfaces (see Section VILC.),
the results of these tests are necessarily approximate. Third, the Boltzmann approx-
imation reviewed here considered only the thinnest interfaces possible. Calculations
with thicker interfaces for d > 0.7 show that differences are negligible, but significant
increases to the surface tension are possible with thicker interfaces, particularly as d
approaches d, (Adler et al., 1994). Moreover, when one layer of sites is added on each
side of the interface, d. decreases from 0.25 to 0.22.

B. Interfaces in liquid-gas n_uédels

The analysis of surface tension in liquid-ges models also uses the Boltzmann approxi-
mation. It thus bears some similarity with the analysis reported above. This analysis
has only been carried out for the FCHC lattice gas with liquid-gas interactions. It is
at present quite sketchy, as only a single value of the interaction range r and of the
interface angle with the lattice has been investigated. However, we expect on theo-
retical grounds that there is a limit where r becomes large and the interfaces become
wide where the Boltzmann approximation yields a precise estimate for surface tension
and density profiles. Thus, because interfaces in the liquid-gas model are relatively
wide compared to those in the ILG, this calculation brings something new compared
to the previous one. Specifically, it predicts the density profile inside the interface
with good accuracy.

In what follows we briefly review the existing work. We follow closely Appert et
al. (Appert et al., 1993¢).

To simplify the calculations we consider the FCHC lattice projected in 3D. All
populations N; depend only on z. The normal pressure is defined by Py = II,; while
the tangential pressure is related to the other diagonal compozents, i.e., Pr = I, =
I,,. We will find the following notation useful. We let T'(x;,x3) be the amount of
momentum exchanged by an interaction between sites x; and x3. From equation
(V1.39) this is

T(xi,Xa) = (1 ~ Ni(xa)|NLxa}[1 — N (xa)] Ni(xa)- (VIL32)
In the above definition i is defined implicitly as the index of the velocity direction
¢; parallel to x3 — x; and 4 is the rate of interaction. The populations N} are the
after-collision populaticns as in Section VI.. We consider an imaginary surface £
located at & = z; between two layers of sites (Figure 22). Points on these layers have
abacissa (2o — 1/2) or (20 + 1/3). Then

Mg = ;0'-0-“ {N.-(x +¢/2) - :}:r[x- (k+ %)c.-,x +(r—k- %)c;]} (VI1.33)
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where x = {Zo,y,2) 13 an arbitrary point on L. This expression is obtained by
noticing that as for the usual lattice gas, particle propagation contributes ciacis to
the momentum transfer. while an interaction contributes —2¢;,cs. The factor of 2
disappears as interactions are counted twice in the sum.

From this expression a necessary condition for equilibrium can be written
Py(z}= Py(z +1). {VI1.34)

This equation is the equivalent of equation {V.21} for our model. To solve it we make
the additional assumption that the populations are close to Fermi-Dirac equilibrium.
This assumption is perhaps best verified in the imitr - 00 , p - 0 and z = r
constant. Indeed as we approach this limit the equation of state remains unchanged
while the interaction range increases.

Expression (VI1.34) can be developed after some simplifications coming from the
FCHC lattice are noticed, The principal simplification is that all particles crossing a
surface T at r (we drop the subscript in o from now on) originate either from the

line at £ — 1/2 or the line at z + 1/2. Then

Pu(z) = 6ld(e - 3) +d(z + 3)

- 12prz-:ld(::—%—k)[l—d(z—%-—k)]d(z+r—-;--—k)[l—d(:+r—%-—k)]

k=0

(VIL35)

A solution to equations (VI.34) and (VIL.35) has been found numerically by a
relaxation method (Appert et al., 1993c). Solutions are found for large boxes (128
layers wide) and moderately wide interfaces (r = 8 and 4 = 1). The result is shown
in Figure 23.

A unigque solution is found by the relaxation procedure. This is not a numerical
proof of the existence of a unique stable solution of equation (V1.38) but comes
close to it since our relaxation procedure resembles the actual timestepping of the
Boltsmann equation (sec Appert et al. (Appert et al., 1993¢) for details). One result

TABLE 2

o dlic‘ Pu"
prediction 0.033 0.523 0.148
measurements 0,031 0.525 0.143 +£0.003

*Equilibrium gas deasity for the 3D FCHC liquid-gas model (r=8).
YEquilibrium liquid density
*Equilibrium prersure

of the calculation is the equilibrium pressure p,, and the equilibrium liquid and gas
deasities given in Table 2. There is a qualitatively good agreement for the density
profile and the equilibirium quantities but the result is still outside the error bars of
the measurements. The possible reason for that discrepancy is discussed below.

The resulting density profile allows one to compute, using the same Fermi-Dirac
approximation and equation (VIL.33), the other independent component Pr . From
that component a value of surface tension may be calculated,

Comparison with numerical simulations is in progress. Surface tension has been
estimated using Laplace’s law from measurements of equilibrium pressures across
curved interfaces. This measured surface tension yields o = 1.19 for r = 8 . The
theoretical surface tension is ¢ = 1.82. Agreement here is much worse thaa for the
equilibrium densities and pressure. However the model may have a strong anisotropy,
a1 was observed numerically for the maximal model of Appert and Zaleski (Appert
and Zaleski, 1903). To be more specific, our theory gives the surface tension for a
(-degree angle only while the theoretical calculation for a 45-degree angle is missing.
It is likely that there is & lacge difference between the surface tensions for various
angles. The estimate from Laplace's law is expected to interpolate between these
vatious values. This would be one explanstion of the large error we have at this
stage. Another possible source of error is the sssurnption of factorisation or lack of
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correlation between sites. It has already been observed in other liquid-gas models
that correlations tend to appear as the interaction distance r becomes large but &
stays fixed to I (Appert and Zaleski, 1993). It is possible that the FCHC model with
r = 8§ has similar correlations.

At this point it is interesting to notice that the origin of surface tension ia the liquid-
gas model is different than that in the ILG. In the ILC the pressure tensor comes only
from propagation. [t is anisotropic because populations are themselves anisotropic
inside the interface. On the other hand in the liquid-gas model we find surface
tension with isotropic populations estimated from the Fermi-Dirac equilibrium. It is
the nonlocal interaction terms that contribute o the pressure tensor and bring the

necessary anisotropy.

C. Interface fluctuations

As emphasized in Section [V, the Boolean nature of lattice gases creates statistical
fBuctuations that, in reversible models, may be understood a3 the fluctuations of
Gibbs states (Zanetti, 1989). Such a classical description is not possible, however,
in our irreversible phase-separating sutomata. Thus it is of interest to ask how the
fuctuations of interfaces in these models compares to the fluctuations predicted by
classical theory. Below, after first reviewing the classical viewpoint, we summarize a
recent empirical measurement of interface fuctuations in the ILG (Adler et al., 1994).
A related study of lattice-gas interfaces (in which the interfaces are contructed by
the explicit definition of a flexible boundary) has been performed by Burgess et al.
(Burgess et al., 1989).

Classical interface fluctuations may be understood in terms of luctuations of surface
energy (Ma, 1985). For a one-dimensional interface in & two-dimensional space, the
energy, H, of the interface is proportional to its length L. If the interface has length
Lo when it is flat, and its fluctuations are sufficiently small such that they may be
decomposed into Fourier modes of amplitude |Ag| much less than the wavelength
2x /g, then the interfacial energy is, to leading order,

H=olmoly+ %Loz Al (VIL36)
T
By the equipartition theorem, one bas
1, sam ]
EcLuq (A = ikT' (VIL3T)

or
kT

[Ag] = Tooq" (VIL38)

Figure 24 compares this prediction with measurements made from simulations of
ILG interface fluctustions. The ILG was initialised with a flat interface of length
Lo = N+/3/2 dividing the red fluid from the blue fluid in & box of height N = 256,
with particle density d = 0.7. ‘The boundary conditions were periodic in the direction



parallel to the interface. while walls were placed above and below the interface. After
allowing the aystem 1000 time steps to relax to equilibrium, the power spectrum
9 N1

1. 50 = 2 h,.{t)exp(—tqn/N) (VIL.39)
was computed {rom :measurements ho(t) of the interface heights at each time step
t, and then averaged ,vrr 10® time steps. Figure 24 shows log(|A¢[*) as a function
of logq, compared to 1ne theoretical curve obtained from equation (VIL38). To
compute the theoreticai curve, we have used o = 0.403, the prediction obtained from
the Boltzmann approximation described in Section VILA.. For an estimate of kT,

we have chosen the equai-time momentum-momentum correlation function
z Z almy = N)llcia(n; — N;)]) = 3d(1 - d)bas, (VIL.40)

or, equivalently, the variance of momentum fluctuations at a site (Kadanoff et al,
1989). Comparing the two curves, one finds that the slope of the empirical curve
is indeed approximately -2 for wavenumbers below a high-wavenumber cutoff, and
that the prefactor (and thus our estimate of kT from the equipartition theorem) is
approximately correct (within about 25%). We conclude, then, that ILG interface
fluctuations are qualitatively in accord with the statistical mechanics of classical in-
terfaces.

How could such an agreement be possible? We believe that the fact that the
fluctuations scale like ¢~? probably only indicates that ILC interfaces are “rough.” in
the sense that their siopes are random and uncorrelated. In other words, Az)isjust
random walk in one dimension, and |A4|* & -2 results from the usual considerations
of diffusive processes. However, the fact that the equipartition theorem works to
obtain a reasonable estimate of kT is relatively remarkable. The Gibbs probabilities
that this result implies may arise from an effective time-reversible behavior that exists
in a kind of subspace of the larger region of phase space that satisfies the conservation
of mass, momentum, and color. Such a behavior could be due to the fact that the

noise arises montly in the bulk phases, which are time-reversible, while the irreversible
noise generated at the interface is bounded by the finite thickness of the interface,
and is thus possibly negligibly small,
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VIII. Phase transitions in phase-separating au-

tomata

In this section we address specific aspects of phase trasitions in phase-separating au-
tomata, and where possible we illustrate comparisons between theoretical predictions
and empirical results from computer simulations of the models. For the case of the
liquid-gas model, we find an excellent agreement between direct measurements of the
pressure-density relation and the theoretical prediction of the equation of state. This
equation of state resemblesa Van der Waals equation and allows prediction of a phase
transition. In the case of the immiscible lattice gas, we can find, albeit qualitatively,
the two-phase region of its phase diagram by determining under which conditions the
diffusivity of the minority phase becomes negative. In closing this section, we address
dynamical sspects of phase transitions in lattice gases by empirical investigations of

scaling properties during phase sepatration.

A. Liquid-gas transition in the liquid-gas medel

The equation of state was obtained for the liquid-gas model in Section VI.B.1.b.. For

a lattice gas at rest it reads
a
pla) = b—"b— ¢~ (1 - a)) (VIIL1)

where d = p/b is the reduced density and z = rp is a control parameter that piays
the role of temperature in a classical phase-transition model. This equation of state
presenta a critical point at 2. = 5.2. The location of this critical point is independent
of dimension and number of particles. It is interesting to point out the analogy beween
this equation and a Van der Waals equation of state. For vanishing d we have

V) 5"5‘1 (Tlf - 8?1-;) . (VIIL2)

Below the critical point, for ¥ < z,, there is a range of values of d for which s < Oand
the homogenous phase of density d is unstable. This range of values of d is called the

ul N . r‘M'f';:
spinodal region for our model. Asiaa real liquid-gas system the model then splits

into two phases, one of high density and another of fow density. The scparation of the
two phases occurs through the spinodal decomposition process described in Section
1LB.. | |

The validity of equation (VI11.1) is verified by direct numerical simulations (Appert
et al., 1993¢). In these simulations the system is initialized with particles placed
at random on the lattice. Two series of measurement are made and the results
are plotted in Figure 25. In the first series, measurements are made immediately
after initialisation and show agreement with equation (VIIL1) for all densities. The
second series of measurements is made after the system has gone through spinodal
decomposition and equilibrated. These measurements show 8 Mazwell plateau for the
pressure in the spinodal region. Outside the spinodal region the separated equilibrium
state may coexist with a homogeneous metastable stable. As seen in Section VILB,,
these states coexist at a unique equilibrium pressure and corresponding equilibrium

liquid and gas densities.



B. Spinodal decomposition in immiscible lattice gases

Classical phase separation occurs when the free energy of mixture, F = U — TS (U is
internal energy, S is entropy), has a minimum for two separated phases. Typical free
energy curves are shown ia Figure 26. Above T, the free energy has a single minimum,
correspending to a periectiy mixed state. In the simplest case of a symmetric binary
fluid, this mixed state cortesponds to a thermodynamic phase in which a single fuid
consists of 50% of the "red” species and 50% of the “blue.” Below T;, however, the
free energy curve develops a double well; the stable state now corresponds to a new
thermodynamic phase in which a “red-rich” fluid coexists with a “blue-rich” fluid.
The two fluids are separated from each other by interfaces, and the relative purity of
each fluid (i.e., the redness of the red phase) increases with decreasing temperature.

Although ILG dynamics do not derive from a thermodynamic potential, the model
exhibits to a surprising extent much the same bebavior of classical binary fluids. For
example, we have already seen in Figure 6 how the ILG may exhibit spontaneous
phase separation from an initial mixed state. Below we show, both theoretically
and empirically, that the existence of the phase separation instability depends on
both the population density d and the relative concentration of the two fluids. This
analysis results in a phase diagram in the plane of density and concentration, in
which the phase boundary demarcates the two-phase, or phase-separated state, from
the one-phase, or mixed state. We argue that this phase boundary is the athermal
ILG's analog of the classical thermodynamic spinodal curve. In the classical view,
summarized in Section V.B.1., the spinodal curve is obtained from the locus of points
in the plane of temperature and concentration for which the free energy density has a
point of inflection. As shown in equation (V.14), this corresponds to a change in sign
of the diffusivity of concentration. Thus our prediction of the ILG phase diagram
amounts to a calculation of the ILG diffusivity as a function of concentration and
density.

Rather than representing the current of concentration in the ILG in terms of the
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variation of & potential £ as in equation (V.9), we instead assume a Fickiaa, or linear,

relation between concentration current and concentration gradient:
J = -D(d,8)dVs. (VIIL3)

Here J = (q), & coarse-grained average of the color flux defined by equation (IIL.1),
and D, the diffusion coefficient, depends on both the particle density and concentra-
tion. In lattice-gas models satisfying microscopic time-reversibility (or, more gener-
ally, semi-detailed balance}, an H-theorem exists to sbow that transport coefficients
are neceasarily positive (Heénon, 1887a). The ILG collision rules, however, are time-
irreversible and do not satisfy semi-detailed balance; thus [ may be either positive
or negative. That D can be negative is readily apparent from the rules expressed
by equations {II.1), (111.2), and (IIL.3): as long as there are two colors present at a
site, the collision rule always chooses to maximize the alignment of the flux q with
the color gradient, or field, f. The question that remains is whether J and V4, the
coarse-grained averages of q and f, are themselves aligned. Thus we seek an estimate

of D, or, more specifically, its sign, as a function of d and #.

1. Chapman-Enskog estimate of the diffusion coefficient

To estimate the diffusion coefficient (Rothman and Zaleski, 1989), we first rewrite
equation (VIL.3) in a way that explicitly notes changes in both space and time, and

moreover allows for explicit consideration of populations at neighboring sites:
Ri{x+cit+1) - R(x,t) = ¥ (v} - r:)Als, s', S)P(s) H(S). {VIIL.4)
o8

Here H(S) is the probability of neighbering configurations § = (3')i=1,..4 given
explicitly by
H(s) = [.[ f[ Rlx + ¢ B (x + ¢4, )1 - Ni(x+ et~ (VIILS)
Jml im0

where r], ¥, and f describe the state of the particle moving with velocity c; at site
X + ¢;. To solve the Boltsmn;m equation (V_:HIA), one assumes that both R, and B;
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may be expanded around & state of local equilibrium, Thus we write
R=RY+RM+..., B=BP+B"+. .., (VIIL6)
where RY™ in of order n. We assume the local equilibrium
R =6d, B"=(1-8)d (VIILT)
At next order in the gradient expansion we have
RV = 10.0.(8d),  RM = —1¢ada(6d), (VIIL8)

where ~ is a constant to be determined. We also define P{°)(s) and &' {9)(S) to be zero-
order expressions obtained by substituting equation (VIILT) into equations (VIL5)
and (VIILS).

Substituting equation (VIILE) into the Boltzmann equation (VIIL4) and equating

terms of first order in gradient, one obtains

Zﬂjc.f.a,RE"’ = ¥ (r - r)Als, o, 8) [BLHOUS) + (B + By)PCs)|  (VIILY)

s
where 5, = [ gg((s)) R(”( )+ BP(.;) (U( )] (VIIL10)
B = ﬁ'?{{f,‘(f_}‘;;'j[R?)("‘*c*)'R?,(x)]*-
5%?;;) [Bx + ) — B(x)], (VIIL11)
= Bs = anfg((f)c B+ )+5£g‘%3§“(x+q). (VIIL12)

The term B, does not include interactions with the neighborhood distribution H(S),
and is thus related to ordinary lattice-gas diffusion (Burges and Zaleski, 1987). By is
specific to the ILG. The terms in brackets in equation (VIIL11) arise from the fact that
# can vary in space, while B, itself results from the tendency of the ILG collisions to

maximizge color flux in the dnechon of hheolor Lastly, B3 just indicates the change
in neighbor configurations duetoa dut«ﬁun of equilibrium at the neighboring sites.
Consideration of the symmetries in equatmu (VIIL.8) shows that terms on the right-
band-side of equation {VI11.12) cancel, and thus By = 0.

Substitution of equations {V111.10) and {VIIL. 11) in equation (VIIL9) then yields

ca = (1A + AD) csa, (VIIL13)

in which /-l?) and AS" are complicated expressions containing contributions from B,
and Bj, respectively (Rothman and Zaleski, 1989). To calculate the evolution of &,
and therefore the diffusivity, one notes that
ER, (x+ci,t+l)= ER.(:: t), (VIIL14)
=0
or, in words, that collisions conserve the number of red particles. Expanding this
equation via substition of equations (VIIL6}, (VIILT), (VIILB), and (VII1.13), and
using the scaling 8, = O(V?), one obtains

860 = DV8, (VIIL15)
where
__i.m
D= T (VIIL16)

Solution of equation (VIIL13) for 7 thus gives the diffusion coefficient D. Note that,
as we have soen in earlier calculations of viscosity and diffusivity, we have once again
s “propagstion” contributicn given by the first term in equation (VIIL.16). The
second term, via v, thus determines the sign of D. Numerical solutions for D{d,#)
are described below.

2. ILG phase diagram: the spinodal curve

Figure 27 shows solutions to D(d, #) = 0 (Rothman and Zaleski, 1989}. The region
of D > 0 corresponds to combinations of d and ¢ for which the mixed atate is stable,



while the region where D < 0 corresponds to instability of the mixed state, and thus
stability of the two-phase. or phase-sepacated, state.

Figure 2T also compares this theoretical estimate of the phase boundary to results
of numerical domain ¢routh experiments (Rothman and Zaleski, 1989). In these ex-
periments, the ILG was izitialized as a homogeneous mixture for various combinations

of d and #, and the two-dimensional power-spectrum,
1
i

S(k,t) = ST {ip, (x,8) — pa(x, 1)) ~ p(20 - 1)} , (VIHAT)

gy
was computed at discrete time intervals. Here p is again the average number of parti-
cles per site, p, and p, are the number of red particles and blue particles, respectively,
at time ¢t at a site with coordinates given by x, k is the discrete wave vector, and n, and
ny are the number of lattice sites in the z and y direction, respectively. To determine
whether the mixed state is stable or unstable, the circular average $(k,) = (S(k, )},
where £ = [k|, was computed, from which the time-varying length-scale,

1
B Ei ks.(kl t)

was obtained. Regions in the d, 8 plane for which R(t) grows with time are the regions

R(t) (VIIL18)

where the mixed state is unstable, and correspond in principle to the regions where
D < 0. Comparison of the empirical curve bounding the region of growing R(t) with
the Boltzmann approximation of the D(d, ) = 0 is seen to be qualitatively, but not
quantitatively, good.

As in the estimates of surface tension described in Section VIL, one factor limiting
the accuracy of quantitative comparison of the theoretical and empirical curves in
Figure 27 is the nature of the Boltsmann appraximation: the correlations that were
neglected may play a significant role in the mechanisms that drive phase separation.
A second limiting factor is the quality of the empirical curve iteelf, which peces-
sarily involves some subjective judgment for the location of the points of marginal
stability. However, independent empirical measurements of D(d,# = 0.5) qualita-
tively confirm the empirical estimates of D(d,#) = 0 obtained from measurements

of R(t) (Rothman and Zdukj: '1"9_.39'). Moreover, the same critical density, d. = 0.2
for 8 = 0.5, was obtained not olnly from the Boltsmana approximation for D, the
domain-growth experiments, wd' I'.I;c numerical measurements of D, but also the the-
aretical surface-tension calculation detailed in Section V»II.Z... We have thus described
four independent means of qumtifﬁng the phase transition from the mixed to the
unmixed state in the ILG. (A fifth method, the direct measurement of surface tension,
could also be cited, but its accuracy near the critical point is suspect.)

We believe that this phase transition is analogous to the spinodal decomposition
described in Section V.B.1.. Specifically, the early stages of spinodal decomposition
in both the real world and the ILG are the result of uphill diffusion. However, one
major difference remains: real spinodal decomposition is driven energetically, while

ILG spinodal decomposition is driven by its time-irreversible microdynamics.

C. Isotropy and self-similarity

The characterisations of phase-separating automata given above in Sections VIILA.
and VIILB. relate only to equilibrium aspects of phbase transitions in these models.
Below, we consider some dynamical aspects. Specifically, we ask whether the phase
separation patterns are self-similar with respect to time, as is known both from exper-
iments and calculations from other, non-hydrodynamic models (Gunton et al., 1983).
We also consider whether these phase separation patterns are isotropic. We summa-
rise calculations made with the ILG (Rothman, 1990a), but note that similar results
have been obtained with the liquid.gas model {Appert et al., 1991).

To investigate the question of isotropy, an ensemble of 1500 independent realiza-
tions of the 2-D power spactrum S(k,¢).of equation (VIIL17) were computed and
then averaged, for the case ny m %y = 128, d = 0.7, and § = 0.33. In each of the
1500 simulations, the initial condition was a homogeneous random mixture, A typ-
ical result of this averaging is shown in Figure 28a, whore here ¢ = 1000 time ateps
after initialisation of the simulation. Inspection of the spectral contours shows that
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although st high wavenumbers one can see & trace of the hexagonal symmetry of the
triangular lattice, at low wavenumbers the contours are circular, and therefore indica-
tive of low-wavenumber isotropy. The high-wavenumber anisotropy is expected, not
only because of the anisotropy of the lattice itself, but also because of the anisotropy
of surface tension detailed earlier in Section VIL.2.. At low wavenumbers the isotropy
of viscous stress appears to win over the anisotropy of surface tension. Indeed, one
may show that in a system with 6-fold anisotropy of surface tension of a magni-
tude comparable to the maximum anisotropy derived in Section VIL2., the resulting
angle-dependence in radius should be less than 1% (Appert and Zaleski, 1993).

Assuming isotropy, one may, as already detailed above, compute circular averages
3(k,¢) for different time steps t. A typical result is in Figure 28b, *here the param-
eters are again the same as in Figure 28a, and the averages are computed at times
¢ = 100,200, ...,1000. One sees that as time progresses, the wavenumber kn of the
maximum value of Sk} decreases, while 5(kn) itself increases.

The phase separating mixture should be self-similar with respect to time: small
bubbles should interact with small bubbles at early times in much the same way that
big bubbles interact with other big bubbles at late times. In other words, given the
characteristic size k}, there should be a scaling function F(k/km) such that (Marro
et al., 1979; Lebowitz et al., 1982; Furukawa, 1985; Fratzl and Lebowits, 1989)

S(k,t) = AHOF(k/kn(t)), (VIIL19)

where A is a time-independent constant chosen to make F(1) = 1. Figure 28¢c shows
precisely this behavior: the scaled structure functions A-'k3 3(k,t) are plotted as
a function of the dimensionless wavenumber k/k.(t), showing no discernible depec-
dence on time. The scaled structure functions aiso qualitatively conform to a scaling
function F proposed recently by Fratsl sad Lebowits (Fratsl and Lebowits, 1989).

IX. Numerical simulations

As we state in the introduct.io-n, lattice-gas models of fluids serve not only as inter-
esting conceptual, or “toy,” models, but also as tools for the numerical simulation of
certain problems in hydrodynamics. In this section, we review some recent work in
which sumerical experiments with lattice gases have illustrated this dual role.
Generally, computer simulations of lattice gases have been performed to either ver-
ify theoretical predictions for the behavior of the models, or to explore new areas of
bydrodynamics and statistical mechanics. Here we emphasise the latter, with partic-
ular reference to numerical experiments with multiphase lattice gases. However, as we
have made clear in the previous sections, multiphase lattice gases are predicated on
the simpler, FHP models. It is thus instructive to first review some of the simulation

work that has been performed with these simpler models.

A. Simulations of single-component fluids
1. Two-dimensional fluids

a. Flows in simple geometries After the introduction of the FHP model in
1986, a flurry of papers followed that demonstrated, with varying degrees of quan-
titative analysis, the striking similarity between lattice-gas simulations and known
solutions of the Navier-Stokes equations. The first such work, an oft-referenced but
unpublished report by d'Humiéres, Lallemand, and Shimomura (d’Humiéres et al.,
1985a), verified the Boltsmann estimaies of the shear and bulk viscosities of the
FHP model, thus testing linear hydrodynamics. Later work by d"Humiéres and Lalle-
mand qualitatively verified nonlinear hydrodynamics by investigating flow in the inlet
length of 3 channel (d'Humikres and Lallemand, 1986), fiow past a backward-facing
step (d’Humidres and Lallempnd, 1987), and the von Karman street resulting from
two-dimensional flow past a fag plate (Figare 3) (d’Humibres et al., 1985b). The work
on channel flow is particularly notable for its successful quantitative comparison with
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the analytic solution due to Schlichting (Schlichting, 1979).

b. Statistical mechanics and hydrodynamics To date, probably the most

precise quantitative invest:gation of the hydrodynamic properties of the two-dimensional

FHP gas is the work oi Kadanod, McNamara, and Zanetti (Kadanoff et al., 1989). By

simulating Poiseuille fiow in a channel, they not only qualitatively verified hydrodynamica—

i.e., the predicted parabouc profile—but they also probed the dependence of the shear
viscosity on the size of the system. Earlier studies (Alder and Wainwright, 1970; Dorf-
man and Cohen, 1970; Pomeau and Résibois, 1975; Forster et al., 1977) had predicted
a logarithmic divergence of the viscosity of two-dimensional fluids as the system size
increases. This divergence arises from microscopic fluctuations; crudely speaking, it
results from the fact that fluctuations create eddies, which then advect the fluctu-
ations elsewhere, creating new fluctuations and new eddies. The prediction of the
divergence of 2-D transport coefficients relies on a first-order perturbation theory
and mode-mode coupling (Pomeau and Résibois, 1975; Forster et al.,, 1977). Though
the prediction had been motivated by observations of power-law decays of correla-
tion functions of fluctuations in molecular dynamics (the so-called “long-time tails”
{Alder and Wainwright, 1970)), no hydrodynamic simulation kad ever been performed
to verify it. The molecular dynamics method contains too much detail to efficiently
perform such a test, whereas direct numerical solutions of the Navier-Stokes equations
do not include microscopic fluctuations, making them inappropriate for studying such
phenomena. The problem thus appeared well-suited for the lattice-gas method, and
results of the work did indeed confirm the predicted logarithmic divergence. How-
ever, discrepancies between theory and simulation found in the course of the work
were due in part to the spurious "staggered-momentum” invariant {Section IV.C.3.)
in the two-dimensional FHP model, and thus required some reworking of the hy-
drodynamic theory of lattice gases (Zanetti, 1989) to improve the correspondence
between the predicted logarithmic divergence and the behavior actually obtained in

the simulations.

Simulations of a similar spirit have Illo been performed to measure the velocity-
velocity autocorrelation function for & un‘le tagged particle (Frenkel and Ernat, 1989;
Van der Hoef and Frenkel, 1990; Noulles and Boon, 1991). The lattice gas is a particu-
larly useful tool for such mmureﬁxdtl because of the vast gain in efficiency compared
to classical simulations of molecular dynamics. In particulas, the fast algorithm of
Frenkel and Ernst (Frenkel and Ernst, 1989) is of general interest. To describe it,
contider the dynamics of a model with a single colored particle. Let vi{x,t) be the
Boolean variable indicating the presence of that particle. A Green-Kubo integral of
the form of equation {IV.102) relates the cotrelation function

Cislt) = (wi(x, t)v;(0,0)}eq (IX.1)

to the aelf-diffusion coefficient (Brito et al., 1991). In collisions involving the tagged
particle we consider that the model is colorbling; i.e., that the dynamics are indistin-
guishable from that of a given one-color model. Let the one-color model be FHP-I.
In head-on collisions, the tagged particle may leave in one of four possible directions,
depending on which pair collision is chosen and where in the pair the tagged parti-
cle goes. Consider that the direction is chosen at random among the two possible
directions. The fast algorithm of Frenkel and Ernst may be defined as follows.

Notice that in equilibrium, the correlation function Cij{x,t) we want to compute
is identical to the the conditional probability W;;(x,t) of finding the particle at x at
time ¢ provided it was initially at x = 0; thus

c@(x»‘) = Wy(x, ‘)("i(o 0)). (IX.2)

This conditional pmbabd;ty myhtappruchedunngunnglesmulatmn of the one-
color model. Topcﬂotmmchtumu.luwn all particle variables n; (without tags)
are defined, Wlhovthncu(x.o)alhx=0md{)othmu For time 1, we
may compute the ptoblb:.hty Wy of finding the tagged particle in one of the sites
adjacent to 0, given ﬂu nohm ofﬂu cdorﬂud model. At each of the subsequent
Mpllrednnmhcwduwfmmnhtonte
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This method is far superior to a method which would propagate i;, as one has to
do in molecular dynamics. A speed up of 6-10 orders of magnitude may be obtained
(Frenkel and Ernst, 1989; Frenkel, 1590). Using this method, & 1/t decay at interme-
diate ranges and an asymptotic lf[t\/(t)] decay was found by Naitoh (Naitoh et al.,
1990). Comparison with Boltzmann predictions at short times and mode-coupling
theory at longer times were made (Naitoh and Ernst, 1991, Naitoh et al., 1991), and
although in qualitative agreement, they showed a quantitative dissgreement with
mode-coupling theory. Fully four-dimensional calculations also yield correct scaling
of the correlations, which decay like ¢-, but the amplitude differs by 15-60% from
the predictions of mode-coupling theory (Van der Hoef et al., 1992).

c. Flows in complex geometries Although the original interest in lattice-gas
simulations was motivated in part by the desire for a new tool for the simulation of
turbulence, it soon became evident that the method offered important advantages
for the simulations of flows through complex geometries, whether turbulent or not.
Indeed, in the first published report of lattice-gas simulations, it was stated in the
conclusion that “the microscopic nature of collisions with walls permits the place-
ment of obstacles [in the flow] of any shape without any difficulty (d'Humiéres et al,
1985b)," contrary, for example, to the more “traditional” finite-element method. As
introduced at that time and studied in detail later (Cornubert et al., 1991}, the “no-
slip” boundary condition is easily implemented simply by having particles bounce
back from a wall with a velocity opposite to that with which they arrive at the wall.

The relative algorithmic ease with which flows through complex geometries could
be simulated soon led to two important applications of the lattice-gas method: simu-
lations of flows through porous media (Rothman, 1988; Chen et al., 1991a; Kohring,
1991b; Kohring, 1991c; Kohring, 1991a), and simulations of suspensions (Ladd and
Colvin, 1988; Ladd and Frenkel, 1990). In both of these applications, the emphasis
has been on the empirical investigation of the dependence of bulk properties of flows

on aspects of microscopic disorder.
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In typical lattice-gas studies of flow through porous media (for example, see Figure
4), one constructs a geometric model of o disordered porous geometry, simulates the
flow through this complex medium, and then measures the functional dependence of

fow rate on the applied force. The linear relation,

7=%x (1X.3)
m

known as Darcy's law. is expecied to reiate the fux J to the force X, via the dy-
namic viscosity 4 and the conductivity, or permeability, coefficient k. In general, the
objective is to determine how the permeability varies with some characteristic of geo-
metric disorder. Early two-dimensional results served first to verify that Darcy’s law
is indeed observed in lattice-gas simulations of flow through porous media (Rothman,
1988), and, later, to measure, for example, the dependence of permeability on void
fraction in a random 2.D array of cylinders (Kobring, 1991a). However, due to topo-
logical limitations, studies of fow through 2-D microscopic models of porous media
bave limited physical significance, and the most important work in this area has been
three dimensional (see, for example, the lattice-Boltzmann simulations of Cancelliere
et al. (Cancelliere ¢t al., 1990}).

Work with suspensions has proceeded along similar lines. One creates, for exam-
ple, a suspension of hard disks by allowing the boundaries of the disks to move in
response to linear and angular momentum absorbed by the disks. The first such work
resulted in a measurement of the dependence of the bulk (suspension) viscosity on the
concentration of the suspension, and included not only an observation of Einstein's
low-concentration estimate of the viscosity, but also measurements at high concentra-
tions {Ladd and Colvin, 1988). Subsequent work (in three dimensions) has included
measurcments of the drag coefficient of dilute and concentrated suspensions (Ladd
and Frenkel, 1990).
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2, Three-dimensional fluids

The current vanguard of lattice-gas aimul.ntiom is three-dimensional flows. Work
in 3-D requires considerably more algorithmic sophistication than in 2-D, for many
reasons. The root of the problem is the FCHC lattice {Section IV.A3): because
there are 24 vertices per node, there are thus 2% & 1.6 x 107 possible configurations
at each site. This poses two practical problems. The first, and more fundamental,
problem is to choose the collision rules. Whereas the possible cheices are relatively
casily enumerated in two d.mensions, this is not the case for the FCHC lattice, nor
is it a priori obvious which among the possible outcomes of a conservative collision
to choose. The second problem is the implementation of the collision rules. A naive
formulation of a collision table would require 22 entties, which may be prohibitively
large, particularly on parallel computing architectures. Decompotition of the collision
rules into Boolean logic likewise appears formidable, though some interesting ideas
have recently been advanced {Molvig et al., 1992; Teixeira, 1992).

Fortunately, however, much progress has been made toward the resolution of these
practical problems. In a series of early papers, Hénon showed how one may estimate,
via 2 Boltzmann approximation, the viscosity that results from any set of collision
tules for the FCHC model (Hénon, 1987b), after which he presented a method for
choosing the particular set of collision rules that minimises viscosity (and thus maxi-
mizes the Reynolds number) (Hénon, 1989). Hénon's work also detailed maay of the
symmetries inherent in the FCHC lattice, thus guiding the development of memory-
efficient collision tables. The most substantial reduction in the sise of the FCHC
collision tables, however, was achieved only recently, by Somers and Rem {Somers
and Rem, 1992). They made the remarkable observation that, because any pair of
velocities ¢; and —c; is unchanged by any isometry (i.e., any sequence of rotations
and inversions) of the FCHC lattice, the FCHC collizion rules can be encoded as a
sequence of tables that are themselves encoded by at most 12 bits of information,
rather than the naive requirement of 24 bits. This clever trick was then shown to
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result in & memory requirement of only about 100 kilobytes for the collision tabies.
Although the outlook for FCHC lattice-gas simulations is now encouraging, lattice-
gas simulations to date in 3-D are much less numercus than in two dimensions. Some
work may nonetheless be noted (see also Section IX.B.4.). For example, following
the first published simulations of the FCHC model by Rivet and his collaborators
(Rivet et al., 1988), Rivet has recently performed an extensive lattice-gas study of
3.D flows past a cylinder (Rivet, 1991). His results show spontaneous symmetry

breaking leading to oblique vortex shedding.

B. Simulations of multicomponent fluids

Lattice-gas simulations of multicomponent fluids—in particular, the interacting lat-
tice gases discussed in the previous sections—have to date generally focused on one
of two goals. In the first, interest has centered on the statistical-mechanical proper-
ties of the models, notably their ability to simulate phase transitions in conjunction
with hydrodynamics. In the second, the objective has been to determine aggregate
properties of flows of multiphase fluids, with special emphasis on multiphase flow
through porous media. In this section, we review recent highlights of both aspects of
this work. We begin with a summary of work on pattern formation in sheared fluids
undergoing phase separation. We then review recent lattice-gas studies of multiphase
flow through porous media. Finally, we conclude with brief remarks on how this work
may be extended to hydrodynamie applications of greater complexity, and include in
that discussion a brief description of receatly introduced 3-D multiphase lattice-gas
models,

1. Phase separation and hydrodynamics

In Section VIIL.C. we have already discussed dynamical aspects of phase separation
in lattice-gas models. However, the patterns of growth due to phase separation were
discussed in the absence of any external hydrodynamic forcing. It is also interesting
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to ask how growth, itseif a nonlinear, nonequilibrium process, interacts with hy-
drodynamics, Qne experimental setting in which to consider this question is phase
separation during pipe (or channel) flow. In this case, simulations of an immiscible
lattice-gas mixture of fluids of different viscosities have demonstrated the tendency
of the more viscous fluid to flow in the center of the channel (Stockmaxn et al., 1690).

Another experimental setting of interest is phase separation in a shear flow (Chan
et al., 1988; Imaeda et al., 1984; Ohta et al., 1990; Hashimoto et al., 1988). Perhaps
mmost fundamentally, one can ask whether the role of fluctuations in initiating phase
separation is enhanced, diminished, or unchanged in the presence of 2 weak or strong
shear iow. Somewhat more practically, one may also investigate rheological properties
of the sheared mixture (Onuki, 1987; Krall et al.,, 1989; Krall et al., 1992). Laatly,
one can ask how the pattern formation due to growth is itself affected by a shear flow
(Chan et al., 1988). Thus far, lattice-gas simulations have been performed to address
the latter two of these three issues (Rothman, 1990a; Rothman, 1991); here we review
the work on patterna.

A 2.D shear flow was created with the ILG with the geometry shown in Figure 29
{Rothman, 1990a). Specifically, on a lattice with L = n, lattice units in the vertical
direction and W = n,v3/2 = n,\/s lattice units in the horizontal direction, the
average y-velocity in the vertical column located at z =0 is held at w, = —uq, while
the average y-velocity in the middle column, located at z = W/2, is held at u, = uo.
By making boundaries periodic in both directions, a “Y*.shaped velocity profile,

(IX.4)

={C(=—W/4) 0<z < W2
—Clz—IW/4) W/2<z<W,

is obtained, where the shear rate C' = 4uo/W.
Phase separation patterns produced in real space are shown in Figure 30. Here
d = 0.70, § = 0.35, n, = 512, n, = 256, and the viscosities are equal. There are 3

cases. In the first, for purposes of comparison, there is no shear. The state of the

system is shown at an early and late time; one a system of circular bubbles, the
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size of which grow with time. In the second case, the shear rate C = Co = 9.02x10°
results from setting ug = 0.10, while in the third case O = 1.5Cy. The patterns with
shear are markedly different than tBose without. Two fentures stand out in the
sheared patterns. First. after a sufficiently long time, the normally circular bubbles
are deformed into eiliptical bubbles, each of which is approximately oriented at 45
degrees to the flow direction. Thie orientabional order is a simple consequence of
expansion and compression along the principal axes of strain; it manifests iiself at
approximately the time when the differential velocity CR across a bubble of size
R becomes greater than the rate of bubble growth, dR/dt. The second, and more
interesting, feature of the sheared growth is the positional ordering that results at
late times. This structure appears as the ordered stacks of elliptical bubbles, each
stack being separated from the nearest stack by » distance comparable to the length
of the major axis of the average ellipse.

Both the positional and orientational ordering are quantified by the computations
of the power spectra S(k, t) (see equation (VI11.17)) shown in Figure 31. S(k) is com-
puted by calculating the power spectra Sr{k) and Sg(k) of the left and right halves
of the box, respectively, and then averaging the two by setting S(k) = (1/2)(Sc(k) +
Sr(-k)]. Again, there are three cases, corresponding to the three cases of Figure 30;
now, however, the results represent the average of 40 independent simulations rather
than just one. The first spectrum (Figure 31a) shows the isotropic unsheared case:
one sees roughly circular contours. In the two cases of shear, however, one sees the
signature of both the orientational aad positional ordering. The former appears sim-
ply ss elliptical contours. The latter, bowever, is somewhat more subtle: it manifests
itaelf in S(k) as the dropoff of spectral power in the region roughly aligned along the
major axes of the elliptical spectra. This corresponds to a relative lack of correlation
in the patterns along the direction parallel to the minor axes of the real-space eliipti-
cal bubbles, and a relatively high correlation in the direction parallel to their major
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These details of the power spectra in Figure 31 qualitatively match the results
from light-scattering experiments perfortned by Chaa, Perrot, and Beysens (Chan
et al., 1988). The real-space patterns in Figure 30, obtained only by simulation,
allow interpretation of those results. Bubbles separated by a distance less than a
bubble size will interact strongly in a shear flow, causing them to be relatively frozen
in place compared to bubbles far from one another. Thus one cbtains the positional
ordering. Similar effects are also known in sheared colloidal suspensions {Brady and
Bossis, 1988), granular flu'ds {Hopkins and Louge, 1991), and molecular dynamics
(Evans et al., 1984; Loose and Hess, 1989).

2. Multiphase flow through porous media

The second principal problem area in which lattice-gas models of fluid mixtures have
provided useful tools for simulation is multiphase flow through porous media. Here
the origin of complexity in the problem lies not 8o much with the fluid mixture itself
but rather with the disordered medium through which it flows.

The problem of multiphase fow through porous media appears in varied contaxts in
both the natural sciences and engineering applications (Sheidegger, 1960; Bear, 1972).
It is perhaps most ubiquitous in the earth sciences, where it appears, for example, in
hydrological studies of the flow of aqueous mixtures through sand, soil, and rocks near
the earth's surface, in geophysical studies of the flow of magmatic mixtures in the
carth’s mantle (Richter and McKensie, 1984), and in petroleum-engineering studies
of the flow of oil, water, and gas through the pore space of sandstones in hydrecarbon
reservoirs. There are principally two areas of interest for physics here. First, as
summarised in the book by Feder (Feder, 1988), despite the fact that flow through
porous media is slow and viscous and the Reynolds number is quite low, multiphase
flow through porous media can result in fascinating interfacial instabilities, many of
which can have a fractal geometry. Second is the estimation of constitutive equations.
Although it is well understood that multiphase flow at the pore scale obeys the Navier-
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Stokes equations, the equations obeyed by the volume-averaged multiphase flow at a
scale much larger than that of & pore remain unknown.

Of these two issues, thus far only the question of constitutive equations has been
addressed by lattice-gas simulations. The macroscopic equation typically employed to
describe immiscible multiphase flow through porous media is based on the assumption
that the volume-averaged flow of the two fluids obeys a multiphase extension of

Darcy's law, equation (IX.3), given by (Sheidegger, 1960; Bear, 1972)
Ji(8) = z.-(a)ix.-. (IX.5)

Here the flux J; of the sth fluid i proportional to the force X; applied to the ith Rujd
as in Darcy’s law, but with an additional prefactor 0 < i £ 1 that depends on the
portion & of the void space occupied by, say, fluid 1. Thus equation (IX.5) describes a
two-fluid flow in which each fluid flows through a fictitious porous medium constructed
from the unjon of the real porous medium and the void space occupied by the other
fluid, with the same boundary condition at solid-fluid and Avid-fluid interfaces. The
so-called “rela.tive—permea.bility" coefficient ; ia then thought to describe empirically
how the flux of the ith fluid depeads on the portion of the void space that it occupies.

Although equation (IX.5) has survived as an engineering approximation (with vary-
ing degrees of success) for well over 50 years, it has been subjected to much criticism.
For example, Adler and Brenger (Adler and Brenner, 1988) point out that equation
(IX.5) implicitly assumes that fluid-fluid interfaces do not change with increasing
force (or flow rate), thereby justifying the assumption of a linear force-flux relation.
Moreover, de Gennes (de Gennea.j1933) remarks that equation (IX.5) can be valid
only if contact angles are finite, in which cne neither fluid completely wets the solid

surface, the fluid-fuid mterﬁcul area is small, and thus viscous fiuid-fluid coupling
is negligible. Iﬁh:n.m-e’ Dot tlﬂw case, then one would instead expect that the appro-
‘pril.t‘e”mu.ltiplpn‘ ;n;n'gttlimiag;o{ Dnc_y't,h:p would be

v C L J‘“;M‘)Xﬂ (IX.6)
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where
k
Ly (8) = hol8)—. (1X.7)
L]
Then, by an extension of Onsager's reciprocity principle to a system far from equi-

librium, one would expect that
Lij=Lj (IX.8)

Because of the aforementioned confusion concerning the theoretical description of
the macroscopic flow, lattice-gas simulations have been able to make considerable
progress. Two questions have been addressed (Rothman, 1990b; Gunstensen and
Rothman, 1993). First is the question of whether the force-flux relation is indeed
linear. Second is the question of whether the Onsager reciprocity (IX.8) holds, if
there is indeed a linear regime of the flow.

The work was carried out first in two dimensions, using the immiscible lattice gas
(Rothman, 1990b), and then in three dimensions, using a lattice-Boltzmann model
of immiscible fiuids (Gunstensen and Rothmar, 1993). Ao example of 2 3-D lattice-
Boltzmannn simulation of multiphase flow thorough a porous medium is shown in
Figute 32. The results from extensive simulations performed at constant concentra-
tion were contrary to either equation (IX.5) or (1X.3). Specifically, the simulations
showed that at low flow rates and at intermediate concentrations of non-wetting fluid,
the response of flux to force can be highly nonlinear. The source of the nonlinearity
is capillarity: bubbles of a size larger thaa & characteristic pore size require a finite
driving force to be pushed through the porous medium, or otherwise they do not
move. This bebavior can be interpreted as the physical manifestation of a failure to
meet the implicit assumption, mentioned above, of interfacial configurations that are
independent of the driving force.

Simulations did show, however, that for sufficiently strong forcing such that the
nonlinearity due to surface tension is overcome, the fluxes are indeed related linearly to
the forces. Interestingly, in both 2.1 and 3-D the croes terms Ly; were found to exhibit
a magnitude that could be comparable to the diagonal coefficients, showing clearly
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that equation {IX.6) is a better description of the macroscopic flow than equation

(IX.5). Moreover, within the limitations of the accuracy of the numerical experiments,
the cross terms were found to be equal, thereby confirming the expectation of the
Onsager reciprocity ’revious laboratory experiments by Kalaydjian (Kalaydjian,
1990) had also observed the Onsager reciprocity, allowing both resuits to qualitatively

confirm each other.

3. Three-phase flow, emulsions, and sedimentation

The previous exampies have shown how multiphase lattice gases may be used to study
flows of two kinds of two-phase fluids; in one case, a phase-separating fluid which is
itself subjected to external forcing, and in the other case an immiscible fluid mixture
flowing through a complex geometry. Here we discuss examples of how fluid mixtures
of an even greater complexity may be simulated using models based on the ILG.
Our point of departure for these more complex fluids is a model of a mixture of
three immiscible fluids (Gunstensen and Rothman, 1991b). A three-phase model is
easily constructed from a generalization of the ILG collision rule given by equations
(I11.1), (I11.2), and (II1.3). The three species of fluids are represented by Boolean
variables (n;;)ocics, Where the additional subscript 7 = 1,2,3 is used to index the
Buid species, say, red, green, or blue, and an exclusion rule holds such that for any
velocity 1, at most one n,; may equal one. On the two-dimensional triangular lattice,

the lux of species j is then
Qo) na(x)] = Semlx), =123 (1x.9)
while the local gradient of the jth lpecie:il proportional to
f; =};c.{_:u“(x+c.), i=123 (IX.10)

The result of a eollision, {ny;) — (n};), is then the choice of configuration that maxi-

mises the weighted sum

¥ ot ainyy, - omg;), (IX.11)
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subject to conservation of each species,
Zﬂ:, = zmj) J = lv 2) 3) (mlz)

and conservation of total momentum,

Y eanl =Y Y an,; (1X.13)

The coefficients a, are chosen to set the three surface tensions, ¢,3, 013, and o35, If the
a,'s are all equal, then so are the surface tensions, and three-phase contact lines (or
pointa in two dimensions} are not only stable, but act as the point of contact for three
interfaces, each making an angle of 2x/3 with respect to the others. If, on the other
hand, the a; are chosen so that the surface tensions are such that, say, o135+ 043 < a3,
i.e., the sum of two are less than the third, then three-phase contact points are not
stable, and the mixture is in equilibrium when a bubble of species 2 and another
bubble of species 3 reside in a “sea” of species 1. One choice of coefficients that yields
this situation is @ = 0.5, a3 = 1, and ay = ! (Gunstensen and Rothman, 1991b}.

The three-fluid model has met with preliminary success for both phase separation
and flow through porous media (Gunstensen and Rothmaa, 1991b). Three-fuid phase
separation is of intrinsic interest because the pattern formation can be considerably
different than in the two-fluid counterpart, due to the influence of the relative values
of the surface tensions. The problem of three-phase flow through porous media is,
on the other hand, of significant practical interest, since it concerns how oil, water,
and gas flow in subterranean reservoirs. Here basic questions concern the form of
the three-fluid analog of Darcy's law, and how it depends not only on the relative
concentrations of the three fluids and their surface tensions, but also on their wetting
properties. Some progress towards unraveling some of these issues has been achieved
with a lattice-Boltsmann version of the three-fluid model (Gunatensen, 1992).

While three fluids may seem complicated enough, an important extension to the
three-phase model is made by allowing for N fluids, where N is arbitrarily large
(Rothman, 1992). Such a model follows from the observation that, for the case of
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one rest particle, at most 7 different fluid species may be present at any site on the
two-dimensional triangular lattice. Then, by defining one of the N species to always
be the suspending or interstitial fluid (species 1), and the two locally most numerous
species other than the interstitial Suid to be species 2 and 3, a collision may be
performed using the three.fluid rule detailed above, in which the weights a; are set to
make three-phase contact points unstable. We refer to this model as a many-bubbdle
model, because N -~ 1 bubbles are formed in a sea of the Nth fluid.

An example of s typical unforced simulation of the many-bubble model is shown in
Figure 33. Each bubble, shown in black, undergoes » random walk due to the statis-
tical noise of the lattice gas, and is unable to coalesce with any of the other bubbles.
This model thus simulates the hydrodynamic interactions of N — 1 deformable bod-
ies, or, in other words, certain aspects of the hydrodynamics of emulsions. In real
emulsions, chemical agents on interfaces, such as surfactants, act to impede the co-
alescence of bubhles. Here instead bubble coalescence is disallowed by the surface
tension that is created between different phases.

Figure 34 shows an application of the many-bubble model to a problem of two-
component sedimentation {Rothman and Kadanoff, 1993). Here the red bubbles are
positively buoyant and rise, while the blue bubbles are negatively buoyant and fall.
The initial condition of the simulation was a random mixture of red and blue bubbles.
One finds that for this concentration of bubbles and acceleration of gravity, the mix-
ture is unstable and segregrates into regions composed primarily of red bubbles or blue
bubbles, as shown in Figure 34. Such instabilities in two-component sedimentation
are kaown from experiments and, to a lesser extent, from theory (Whitmore, 1955;
Weiland et al., 1984; B&tc.helor lnd Janse van Rensburg, 1988). Insight gained from
an understanding dtha ladlmmmmn uutabzhty in Figure 34 allowed the construc-
tion of an interesting model of high- Pn.ndtl number thermal convection (Rothman
and Kadanoff, 1993).
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4. Three-dimensional flows

Three-dimensional work with the lattice-gas modeis of mixtures introduced in Section

111, remains in its infancy, but some progress may nonctheless be reported.

a. Liquid-gas model Construction of a 3-D liquid-gas model requires little com-
plexity beyond that of the plain FCHC lattice gas (App&t et al., 1993a). After
performing the “standard” FCHC collisions, the interacting collisions are performed
by implementing equations (V.26) and (V.27) in the FCHC geometry. Figure 35
illustrates an example of phase separation in the 3.D liquid-gas model. For this sim-
ulation the interaction range is r = B and the box size is 64°. Because the range of
the interaction is large, the most unstable wavelength for the initial stage of spinodal
decomposition is of the order of the sise of the box. Thus the system decomposes

into just one lurnp of liquid and one lump of gas.

b. Immiscible lattice gas In contrast to the liquid-gas model, the ILG requires
some significant reworking to allow for practical implementation in three dimensions.
The first 3-D ILG was proposed and implemented by Rem and Somers (Rem and
Somers, 1989). They used a model, subsequently explained in more detail in 2-D
{Somers and Rem, 1991), that employs colored “holes” in addition to colored particles.
The use of boles allowed them to obtain an estimate of the color gradient from the
local site itself, rather than having to obtain information from neighboring sites as in
equation (II1.2).

An alternative model for & 3-D ILG has recently been proposed (Olson and Roth-
man, 1893). If only one color is present at a site, then the model performs the usual
FCHC collision. If instead two colors are present, then the model splits the ILG
collision into two steps in the following way. Colorless particle pairs n; = r; + b and
n_, = r_;+b_; are formed, where, as in Section V.C.1.a., ¢; = —e_;. In the first step,
occupied pairn (n, = n_; = 1) and unotcupied pairs (n; = n_; = 0) are rearrsaged to

new values nf, n’;, such that only exchanges between occupied and unoccupied pairs
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are allowed, and that the exchange maximises

3 - o (IX.14)

1

The quantities ¢, and &, are the projection of velocity ¢; on the direction parallel
and perpendicular, respectively, to a previously obtained discretized color gradient.
Performing this rearrangement of occupied and unoccupied pairs requires the con-
struction of a lookup table indexed by only 12 bits, rather than the full 24 bits of the
FCHC model itself, or the 48 bits of the colored FCHC model. The second step of the
collision is the redistribution of color (i.e., vt — r¥ and b} — bf'). This is performed
such that the flux of color ¥, ¢,(*" — ¥) is as much as possible in the direction of
the discretised color gradient, under the constraints that color is conserved and that
n’ = n!. Thus the colorblind configuration changes only in step one, which ptovides
surface tension, whereas the color is rearranged on the new colorblind configuration
in step two, which acts to minimize the diffusivity of color.

Figure 36 shows an example of an immiscible mixture in s shear flow simulated
with the two-step 3-D ILG described above. The simulation shown is & 3D version
of the 2D sheared phase separation of Figure 30. Due to the competition between
shear and surface tension in 3D, the bubbles reach a characteristic size R after which,
statistically, they grow no larger. The capillary number Ca = pyRC/[c ~ 1, where C
is the shear rate and u is the viscosity of both fluid phases.
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X. Conclusions

This review has had two principal objectives. First, we have attempted to give a
broad overview of the achievements to date that have followed the introduction of
lattice-gas automata as a model of the Navier-Stokes equations. Second, we have
emphasized the contributions to the field that have come from lattice-gas models of
phase separation. In conciuding, it seems appropriate to objectively evaluate the
progress that has been made, and to point out some interesting areas of research that
lie ahead. We do not repeat any bibliographic citations below that have already been
given; the reader is instead referred to the detailed descriptions given in the body of
the review.

To an extent, progress within the field of lattice-gas sutomata may be considered
to lie within either statistical mechanica, hydrodynamics, or both. In addition, one
may speak of purely methodological advances that create progress in either of these
two disciplines. Below we follow such a categorisation with the hope of creating some
order in an otherwise bighly interdisciplinary field.

A. Statistical mechanics

It is perhaps casy for the casual observer of the field to overlook the connection of
lattice-gas automata to statistical mechanics in favor of its relation to hydrodynamics.
Nevertheless, many of the more impressive achievements to arise from the field have
been of considerable importance to statistical mechanics.

First, as already emphasised in the introduction and detailed in Section I'V., lattice
gases have provided & simplified microscopic model from which the bydrodynamic
equations may be derived. An understanding of this *discretised” molecular dynamics
then leads a researcher to consider one of two directions. The first path, perhape the
longer of the two, leads to gratification that the macroscopically complex world is
really not so complicated after all, aad encourages oce to find equally simple models
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of complexity in other fields. The second path is somewhat more practical: it leads
one to consider what quétions. if any, thin:aimpliﬁed malecular dynamics can belp
answer.

We have already indicated, primarily in Section IX.A.L.b., how lattice-gas sim-
ulations have helped address basic quutinhl in statistical mechanics. We simply
reiterate here that one of the major achievements has been the experimental (i.c.,
numerical) verification of the prediction of the divergence of transport coefficients in
two-dimensional fluids, while another has been the observation of long-time tails in
velocity autocorrelation functions. Results such aa these have been possible precisely
because the lattice gas acts a3 a kind of midway point between molecular dynamics
and the Navier-Stokes equations, and therefore serves as an efficient tool to investigate
problems where microscopic fluctuations interact with macroscopic hydrodynamics.

The lattice gas it also an interesting conceptual tool with which to consider not only
the relationship between the microscopic and macroscopic levels of hydrodynamics,
but also the microscopic and macroscopic descriptions of phase tranaitions in hydrody-
namic models. The models of phase separation discussed at length iz the latter half of
this review are unconventional in that they are microscopically irreversible. Precisely
what impact this loss of reversibility has on the macroscopic aspects of phase tran-
sitions, however, remains to be quantified. Indeed, we find these dynamical models
of phase transitions to lie somewhere in an imaginary continuum between the clas-
sical phase transitions of statistical physics and bifurcations in nonlinear dynamical
systems.

As emphasised in this review, equilibrium aspecta of phase transitions in lattice-gas
models of phase separation are much better understood than nonequilibrium aspects.
To gain some insight into both aspects of the phase transitions, and therefore make
an sttempt st understanding-where the spectre of irreversibility might make itself
Inown, models thltmemmphtthn the ones we have presented here have
been proposed. These have; in-one cass, made it easier to prove theorems concerning
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phase separation {Lebowitz et al., 1991), and in another, provided a somewhat greater
efficiency of simulation (Alexanderet al., 1992). It is fair to say, however, that despite
much effort (see also Bussemaker and Ernst (Bussernaker and Ernat, 1993) and Geritr
et al. (Gerits et al., 1993)}, the effect of irreversibility remains to be quantified.

Also not yet systematically investigated is the behavior of lattice-gas models of
phase transitions in the vicinity of their critical points. Whereas some work on critical
exponents exists (Chan and Liang, 1990), the nature of hydrodynamic transport at

the critical point is not yet known.

B. Hydrodynamics

Progress in lattice-gas methodology, though general in its applicability, is most ob-
viously interwined with progress in hydrodynamica itseli. Thua it .3 appropriate to
first make some observations about technical advances.

Progress in the development of lattice-gas methods has indeed been enormous.
With respect to single-phase lattice gases, the lion's share of effort has been devoted
to making 3-D computations practical. This has demanded not only a thorough
upderstanding of the relationship of collision rules to transport coefficients, but even
more importantly the invention of practical schemes for encoding these collision rules
in lookup tables (or sequences of logical operations) that are of manageable size. Due
to the advances reviewed in Sections [V.A.3. and IX.A.2., we can now say that these
issues are resolved.

One methodological issue still in its infancy, however, is the use of special-purpose
computers for lattice-gas (or, more generally, ceilular automata) computations. Early
attempts (Toffoli and Margolus, 1987; Clouqueur and d'Humiéres, 1987) led to ex-
citement but not wide use. A more recent and much awaited machine (Toffoli and
Margolus, 1991} has, at the time of writing, just led to its first prototype; its appli-
cability to scientific computation sppears promising, but remains to be exploited.

With respect to models of phase separation, much of the technical progress has

il6

been devoted to the construction, and consequent understanding, of 2.D models.

 Three-dimensional models, however, are only beginning to be considered, and may

appropristely be deemed to be at one of the methodological forefronts of the field.
While formulations m& prelirinary simulations of these models exist, their properties
remain to be charactenzed, both theoretically and empirically.

Given this wealth of models, a genuine practical concern is their relative efficiency
compared to competing methods for the simulation of hydrodynamics. The efficiency
of & given method involves the memory usage and central procen'or unit {CPU) time
required by s simulation, the Rexibility of the numerical scheme, and the cost of
development and maintenance of the computer codes. The perceived elegance and
simplicity of the method may also be of value.

A few attempts bave been made to discuss specifically the memory and CPU costs
of lattice-gas simulations. Orszag and Yakhot (Orssag and Yakhot, 1986) arrived
at pessimistic conclusions for high Reynolds-number lattice-gas simulations of single-
phase flow. However, a different estimate of the efficiency of the lattice gas arrived
at mixed conclusicns (Zaleski, 1989).

Avide from these semi-quantitative studies of efficiency, a consensus among work-
ers in the field is emerging. First, for genezal-purpose simulations without geometric
complexity, the lattice gas does not appear to have any computational advantages. In
fact, CPU efficiency depends stzongly on noise level and Mach number (Zaleski, 1989),
and it is easy to reach values of these parameters for which lattice-gas simulations
become much more costly than their classical counterparts. Second, fiows in media
with complex boundaries are easier to simulate, from the viewpoint of programming,
with lattice gases, but may not have any particular advantages in speed. The 1ame
is probably roughly true for simulations of multiphase fiow, eapocially with complex
boundasies. However, compared to classical methods, there is the additional limita-
tion that only certain specific panmeter ranges can be simulsted with lattice gases.
Thus, as far as efficiency is concerned, the status of the lattice-gas method is not
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unlike that of an analog device: it is very appealing for some specific probiems, but
not very flexible.

With these opinions stated, several caveats are in order. As emphasized in Sec-
tion IX., if one desires only qualitative results for quantities obtained by averaging
over an entire simulation box (as in, for example, many studies of single and multi-
ple phase flow through porous media), the lattice gas may possibly be very efficient.
This efficiency arises from the tradeoff of microscopic noise for algorithmic efficiency:
in principle, one averages out the noise at the scale of the boxsize. Secondly, par-
ticular characteristics of lattice gases, such as fluctuations, or the phase transitions
in the models discussed here, offer a natural framework for studying certain prob-
lems {e.g., the influence of fluctuations or phase transitions on hydrodynamics) that
are relatively difficult to approach otherwise. Third, there is the hope that special-
purpose computers for lattice-gas computations may someday lead to unprecedented
efficiencies, but this has yet to be concretely established. Lastly, we note that the
lattice-Boltzmann method (see Appendix C) overcomes many of the inefficiencies of
the lattice-gas method. This gain in efficiency, however, comes at the cost of the loss
of some of the more interesting properties of lattice gases, such as intrinsic luctuations
and phase transitions.

Thus we turn to the question of what has been learned about hydrodynamics from
simulations of lattice gases. Here the results are quite positive, and perhaps reflect
less any intrinsic efficiency of the method but more the fascination of physicists and
others for its innate simplicity. We have already reviewed many of the principal
achievernents in Section IX.. Here we simply restate that in the majority of cases, the
exciting lattice-gas simulations of hydrodynamics have exploited one of the strengths
of the method: fuctuations (1o excite bifurcations), complex geometries (to exploit
the ease of coding boundary conditions), and phase transitions. In these areas, we
find the field not cnly quite healthy, but in anticipation of more important, three-
dimensional resuits yet to come. ’
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XII. Appendix A: Symmetry and related geomet-
rical properties

The purpose of this appendix is to prove several useful symmetry results. We shall
prove that for regular Bravais iattices all the symmetry assumptions on tensors neces-
sary for the derivation of lattice-gas hydrodynamies without isotropy are true. More-

over, we shall prove that certain lattices also yield isotropic hydrodynamica.

A. Regular Bravais lattices

This section and the next consist mainly of definitions and are reminders of geometry
and crystallography. As in section IV.A.1. we define & Bravais lattice as a lattice
for which each point has identical surroundings. It is easy to prove that all Bravais

lattices are periodic. Thus the lattice is invariant by & set of translations {Tw} with

W=l oo+ (A1)

where all the r; are variable integers and the u; are fixed vectors. It is easily proved
that all Bravais lattices are periodic. The u; are & set of generating vectors of the
lattice.

Bravais lattices possess & point symmeiry group G, i.e. a group of congruent trans.
formations that leaves a point of the Jattice fixed and the lattice globally invariant.
The symmetry properties of the lattices are better grasped as the set of symmetry
properties formed by a set of neighbora or polytope. (The definitions of regulur poly-
gons and polyhedra are well known. They can be extended to yield & definition of
higher dimensional, regular polytopes as shown in the section below. )

Consider a reference point O of the lattice and a set of peighbors Af; of 0. We take
this set to be large enough to contain a set of generating vectors. The lattice may be
obtained by the reproduction of the pattern formed by the lattice and the neighbors
M;. The set M; forms a polytope in D-dimensional space. The vectors generating
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vectors ¢; = OM, alternately characterisg dw lattice. They are identical to a set of
velocity vectors for particles in the main text of the article. However here we consider
a set of c; all of identical norm iic.|} = ¢.-We further require that the poiytope formed
by the M; or the ¢, be regulsr. A Bravaislattice having s set of neighbors that form a
regular polytope will be cailed a regular Bravais lattice. In this articie and in almost
all the lattice gas litenlure! {the only exuphom are unpublished attempts to define
lattice gases on quasilattices) one deals only with regular Bravais lattices.

B. Polytopes

There are only five regular polyhedra or Platonic solids: the tetrahedron {3,3}, oc-
tahedron {3,4}, cube {43}, dodecahedron {5,3}, and icosahedron {3,5}. The Schidf
symbol {p, g} indicates the number p of edges around each face and the numbez g of
edges attached to each vertex.

For a D dimensional polytope P we will denote “Et P(c;)" (Berger, 1978) the D1
polytope formed by all the vertices adjacent to a given vertex c;. An example of this
construction is given for the cube in Figure 37. The notion of a regular polytope may
be given a recursive definition. The definition of a regular polygon is obvious. The
polytope P is regular when all the Et P(c;) formed about the various vertices are ail
regular and transformed into each other by isometries. We may then write Et P for
Et P{c;) when orieatation is not important. The Schlafi symbol {p,q,r,...,2} of &
regular polytope P is then formed by the sumber of edges p of a face and the Schlifi
symbol {q,r,...,5} of Et P.

The group of lymuntna G of a regular polytope is found for instance in Coxeter
{Coxeter, 1977). The p;lytope is left invariant by reversal about the origin (parity
transformation for all the coordinates) and rotations about pairs of opposite vertices.
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C. Tensor symmetries
1. Isotropic tensors

Let R be the matrix of any linear space transformation R. Let T,,..q, be & rank &

tensor covariant in all indices. It is transformed by R as

T;Pﬂ = TA...p.R:" vas R:: (A2)

A tensor is isotropic if it is invariant by all congruent transformations, i.e. all trans-
formations in the orthogonal group O(D). We now seek to determioe all rank &
isotropic tensors symmetric by exchange of their k indices up to rank 4. By equation
(A2) the tensors Jaa = 8.4 and Aapys = (Sapbus + Saylps + Sasbpy) are isotropic. We
shall show that ali the sought tensors are proportional to [ in rank 2 or A in rank 4.

Consider & rank k isotropic tensor R. All the lattices we consider have at least
cubic symmetry: they are invariant by parity transformation of all coordinates and
by permutation of coordinates. The consequences of cubic symmetry are developed
in mechanics textbooks such as Aris (Aris, 1962). We give the derivation here for
completeness. In rank 2 cubic symmetry immediately yields T3 = 0 and T,y = Ty
for all a (no summation). For tensors of order 4 we find only four independent terms
T, T, Tiam, and Tiypz. The last three are identical since we may permute the

indices. Thus the general tensor invariant under cubic symmetry is

Tasrs = MBapbos + buybips + Sasbpy) + Blngbribay (A3)

Consider now a 7 /3 rotation. Using equation (A2) we find

1 9 9
Tan = ﬁTun + ITua + l_GTm’ (Ad)
and
Tun = 3Tun. (A%)

We thus find s = 0 in (A3). The rotstion leaves all components other than 1 and 2
invariant. It is thus a general D.dimensional result.
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2. Tensors invariant under the lattice point symmetries

We now apply symmetry consideration to find the form of tensors having the discrete
group ¢ of lattice symmetries.

a. Tensor invariant under the whole group All the lattices we consider, ex-
cept the hexagonal lattice, have cubic symmetry which readily gives the form of the
4th rank tensors to be (A3). The hexagonal case is readily treated as in the section
above using parity, /3 and 2x/3 rotations (Landau and Lifshits, 1959b). We find
that on the hexagonal lattice Tog.4 is proportional to A and thus isotropic. In the
square and cubic case the general form is (A3).

In the FCHC case we have cubic symmetry and symmetry about the plane defined
by 21 + 23 + 23+ T4 = 0, i.e. the transformation

, 1
a::,—»z.:z.—-z-;zg. (A6)
The scalar obtained by contracting R with the vector y = (2,0,0,0) is alsc invariant

by ¢. Thus

VYY" Taprt = V™V Tasms (AT)
where ' = (1,-1,~-1,~1). Inserting (A3) we find 164 on the left-hand side and 44
on the right-hand side of (A7). Thus x = 0 and T4 is isotropic.

b. Tensor attached to a given lattice vector It is of interest to determine the

g
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general form of a tensor s attached to the lattice vector ¢; and symmetric in the 3

indices off. A tensor attached to a vector is invariant by lattice symmetries in G that
leave that vector c; invariant. Its form is of interest to determine the general form of
perturbations st ‘first ceder in the Chapman-Enskog expansion. It is determined by
the following theoremn, which uuatm of similar results by Frisch et al. (Frisch
ot al. 1087 aid Bidgoss (Biooo, 1967 i

Thearem 1 L Che ¢ n,llchmnu Ipttice ond let ¢; b the generating vectors,
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tensor symmetric in the indices and invariant by all symmetries in G leaving ¢; fized.
Then tia 1o of the form

Lag = ACiaCia + plng. (A8)

Proof:
We first introduce a definition, then proceed with 3 lemmas. The following defini-

tion is classical: A set of transformations of space RD which leaves no linear subspace

invariant is called an irreducible family (Boerner, 1955).
Lemma 1 The symmeiry group § of a regular palytope is an irreducible family,

We work by recursion on the dimension D of space. We start the recursion in
dimension I = 2. There we deal with regular polygons such as triangles, squares,
etc., which have at least n = 3 vertices. The symmetry group of & regular polygon
is a group of rotations and reflections. It is obviously irreducible: consider any linear
subspace of R?, i.e. any straight line, and rotate it by less than 2x/n. Since no line
is invariant, the group is irreducible.

We now continue the recursion for D > 2. Consider an arbitrary regular polytope
P and the regular polytope Et P{c;) formed around ¢;. By recursion the symmetry
group G; of Et P(c;) is irreducible. Moreover Et P(c;) is in some D — 1 subspace
II; of RP. We reason by the absurd and suppose that  is reducible. Let II' be a
subapace of RP invariant by G.

We will first assume that [I' is neither in II; nor is it the line L; parallel to ¢; (see
Figure 38). Notice ¢ contains G;. Thus II' is also invariant by G;. The action of G; on
IT' is shown in Figure 38. The intersection L of II' and II; must also be invariant by
C;. But since L is a subspace of II; the assumption that §; is irreducible is violated.
Thus IT’ is either equal to II; or is the line paralle] to c;.

Thus if G is reducible it may only leave [T and c; invariant. Take now another vertex
s such that c; is in Et P(c;). Et P(c;} has a wymmetry group J; that exchanges
c; with yet another vector c) as in Figure 33, Otherwise ¢; would be invariant by
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¢; and G; would not be irreducible. But we sssumed that ¢; was invariant, hence &
contradiction. ' ’

Comment This lemma may be intuitively understood in the following way. If the
symmetry group of a polytope leaves a subspace II invariant, this means that this
subspace is somebow “privileged” with respect to the others. Although it is & symme-
try axis, it cannot be “rotated” into another similar subspace. This is contradictory

with our ides of the symmetry of & regular polytope.

Lemma 2 (Schurr) /f o transformation commutes with all transformations in an

irreducible family it is proportiondl to idendity.

A proof of this famous lemma of the representation theory of groups may be found
in Boerner {Boerner, 1955).

Lemma 3 If a symmetric tusce covarient lensor tn is invariant by & congruent
transformation R then the corresponding lnear operator M with the same matriz
M? = t.5 commutes unth R.

Indeed we have from (A2)
tas = tepRCRY (A9)
M = MLRCRY (A10)
Since for & congruent transformation (R-*)3 = R§ we have
M2 = RS ME(RTY, (A11)

which may be written MR = RM.

We may now.prove the theorem. Comsider the hyperplane II; orthogonal to c..
Contider the linear map A of matrix tig. It is not difficult to show that A leaves
the line L, generated by ¢; invariat. It thus also leaves I1; globally invariant. It is
symmetric and thus of the form

A= ( » 0 ) ' (A12)
0B
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where B is a transformation acting on II;. The hypothesis in the theorem is that
tias is invariant by all transformations in the subgroup ;. From that statement
and Lemma 3, B commutes with all the transformations in the group §; defined in
the theorem. From the discussion in Section A.2, G; is the symmetry group of Et
P. From Lemma 1, G, is irreducible. Since tiap restricted to II; (in other words B)

commutes with all the members of an irreducible family it is proportional to §,4 by

Schurr’s lemma.

D. Tensors formed with generating vectors

Lattice gas theory involves the r.th order tensors
EQ) o =) Giay - Ga,. (A13)

We are now able to determine these tensors to order 3:

2 Ga=0, (Al4)
2 CaGio = %5-.5. (A15)
3 ciacipcin =0, (A18)

Expressions {A14) and (A16) are obtained by parity. It suffices to remark that vectors
¢; appear in pairs: for each c; there in another opposed vector c¢; = —c;. To derive
expression (A15) we first remark that the tensor on the left-hand side is invariant by
the symmetry group § of the lattice. Since all the lattices we consider have at least
hypercubic symmetry the results of Section XIL.C.1. imply that E(® is proportional
ta I. The coefficient of proportionality is readily found by summation over a and 5.

For those lattices determined in Section XILC.2. to yield isotropic fourth order

tensors we also have

BV = KA,  (A17)
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The propertionality constant K is determined by summing (A17) over all indices to
yield .
Zr-..c.acnc.:=—-£—(5 vt + Saylps + asbas) (A18)
- D(D+2)" AT CasOorl:

The form of £) in the square and cubic case in given by {A3).
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XIII. Appendix B: A catalogue of properties of

the lattice Boltzmann equation

A. Basic definitions

We consider the discrete Boltzmann equation of Section 111,

Nix +¢,,t 4+ 1) = Ni(x,t) + &;[Nix,t)] (B1)
where A is defined by
A(N) = Y (s} — ) A(s, s") [] NJ N2 (B2)
w i

The transition rates A are ail positive and have the following prorerties:

1. Conservation of probability:
Y Als,s)=1 forall . (B3)
2. Semi-detailed balance:
Y. A(s,#)=1 forall . (B4)
3. lnvariance under the action of ¢:
A(Rs,Rs') = A(s,s") for any isometry Re€ Q. (BS)

4. Mass conservation: A(s, s’} vanishes whenever the s, o' have different masses.

5. Momentum conservation: A(s,s') vanishes whenever the s, & have different

momenta.
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B. Symmetric expression for the linearized operator

Under the properties 1-4 'above; the linsarised operator A,; defined by

oA B6)
= B (
is given by .
Ay = '1'2 To(s! = 5:)(8} = 85)A(s, N (1 = A (B7)
(14

where n = 3, 5;.
Proof. Notice first that
NP (1 — NyJi-+
aN;

since s; may be oply 0 ot 1. Then

Ay = 6! - a2y = DAG, ) T1 N A

[ TN

=2-’j—1

Using the approximation Nj = d we obtain

Ay = Lot — 825 — 1)A(s, )"~ (1 - d)frurfs)

g
where w(s) = d*-!(1 — d)*-*-" with the notations above. From conservation of maas

w(s)A(s, o) = w(s')A(s, o). (B8)
Then
A = (o0 — a){ai(1 = d) — (1 — s;)d)A(s, s Y (a) (B9)
= E;(,; - 5:)a;A(s, 8" Yw(s) + Ay, (B10)
where, using (B8), then (.;3) aud (B4),
A = - g(sz - #;)dA(s,5"ho(s)
= );W(l)dg Als,s)
- }; SEW(S')JE Afs,s)
= ).:m(v)l - ;4«(4')4
) (B11)
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Similarly using (B3) and (B4} we obtain
Y ais A(s,8") = Y as;Als, ). (B12)
e o

We now show one last useful identity. Let R be rotation of § exchanging c; and «¢;.
Then (Ra), = 3; ,(Rs), = s, and thus

]

S ais,A(s, ) 3 sis;A(Rs, Rs")
Ty e

Y sisiAls, 8). (B13)

From equations (B10), (B11), (B12), and (B13} the desired result (B7) obtains.
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XIV. Appendix C_:f"The lattice Boltzmann method

The lattice-Boltsmann method or Beltsmann lattice gas is & numerical method for
the solution of the artificially compressible Navier-Stokes equations. It is inspired by
lattice gases but is in some respects akin to an explicit finite-difference method. It
has several advantages with respect to the lattice gaa for the numerical solution of the
Navier-Stokes equation. In this appendix we briefly describe the method and mention
some of its applications. For further details we refer the reader to the references,
especially the recent review written by Bensi et al. (Bensi et al., 1992).

We begin with & word of caution. There is a great deal of similarity between the
Boltzmann method and the Boltamann theory of “Boolean” latlice gases developed
in Section IV.. Several definitions and expressions of the Boltsmann methods have
counterparts in the theory of lattice gases based on the Boltamann approximation.
However the definitions in the Boltsmann method are motivated by the construction

of a simulation scheme.

A. Basic deflnitions

Space is discretised just as in the lattice-gas sutomaton. A regular Bravais lattice £ is
given with a set of generating or velocity vectors (¢iJogics. The geometrical definitions
and theorem of Appendix A are relevant here also. Typical lattices are the hexagonal
and FCHC lattices as in the Boolean case. The basic dependent variables in the
method are the population variables, written Ni(x,t), where x € £ and ¢ is discrete
time. We will not introduce rest particles or multiple-speed models in this appendix.

B. Evolution equations

i w, ¢ . .
Several evolution bave been proposed for the populations N;. The simplest
ides is to use the “full" lattice-Boliamann equaticn (IV.18) to evolve the populations
(McNamars and Zanetti, 1988). In & typical simulation bydrodynamical variables
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u(x,0) and p(x,0) are given at the initial time. Then initial populations N(x,0) are
calculated using one or two terms in the multiple-scale expansion (IV.36). Popula-
tions are then evolved iz time using equation (IV.18). Velocity and density may be
recovered at each time step.

The above method is impractical when too maay cotlision terms appear in the Boltz-
mann equation (IV.18). An alternative is then to define a prioria peeudo-linearised
operator A,; similar to the linearised operator defined in Section IV. (Higuera and
Jimenez, 1989; Higuera and Succi, 1989; Succi et al., 1989; Benzi et al., 1992). We
describe this operator in detail below. To each local population vector N we asso-
ciate a pseudo-equilibrium distribution in the following way. First we define the local

invariants associated with the population vector

p= 2 N;, (C1)
1]
and momentum vector
pu =3 Nici. {c2)

Then the pseudo-equilibrium N(@ is defined by
N =d (1 + gc.'-u- + Goa.-.,u.u,) (C3)

where Qiog in defined as in equation (IV.31) and G is an adjustable constant. The
above expression resembles the low-velocity expansion (IV.30). However it is not the
approximation of say Fermi-Dirac distribution. It is easy to check, just as in the
Boolean case, that this pseudo-equilibrium population has the same invariants as the
criginal populations.

The Boltsmann equation with linearised collision operator is then

Ni{x+ et +1) = Nilx,8) = T AgNyx, ) - MOk, 0). (O4)
3

This equation fully defines the evolution scheme. The pseudo-equilibrium populations
N}°)(x, t) that enter equation {C4) are calculated from the populations Ny(x, ) using
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definitions (C1), (C2), asd (C3): The evolution scheme (C4) is entirely explicit since
the populaticns at time ¢ + 1 may be obtained without any operator inversion. The
simplest linearised operator is simply the scalar operator A;j = whij, where w is an
adjustable relaxation rate and 4, is the Kronecker symbol (Qiag et al., 1992b).

C. Hydrodynamic limit

The hydrodynamic limit is obtained by an expansion identical to the multiple-scale
or Chapman-Enskog expansion of Section [V.:

N.=NI(°)+N._(“+...+N§")+..., (C5)

Here the 0-th order term is the pseudo-equilibrium density. Equations are obtained
at each order by substituting expansion (C5) into the evolution equation (C4). These
equations are formally identical to those derived in Section IV. with the equilibrium
distribution and the linearized operator replaced by their Boltsmann-method coun-
terparts. The continuity equation is obtained from conservation of mass. Thus the
Euler and Navier-Stokes equations (IV.54) and (IV.88) are obtained. However the
calculation of the coefficients is slightly different. The g(p) factor is now a constant
go- Uning the continuity equation and (IV.58) we obtain

pBitig + goput - Vs = —85[p(p, u?)] + 8 {91 [Bs(pua) + B pus)l} + Oa [vadiv(pu)],

(C6)
where
p
f= Gnm (cn)
and

‘We may chooss Gy in aga to recover the Galilean-invariant form with go = 1.
Ancther choice may be to set Go = 0 when the sero Reynolds-number limit is sought.
This removes the u? dependence of the pressure and makes the calculation of the
peeudo-equilibrium N(%} faster.
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The equations are sgaio pseudo-compressible and the incompressible limit is recov-
ered for vanishingly small Mach numbers.

The prediction of the viscosity coefficients is simplified. In a Beltsmann scheme the
eigenvector ) is directly available and the shear viscosity follows by equation {IV.90).
For instance in the case of the trivial linearised operator A = w. For the “user” of
the method this amounts to setting directly the viscosity. The only restriction is
one of stability: the viscosities may not be made too small without the creation of

inatabilities, which we discuss further below.

D. Construction of the linearized operator

The pseudo-linearized operator shares the following properties with the “true” Boolean

linearized operator:
o Symmetry. We must have A;; = Az,

o Angle dependence. A,; may depend only on the angie (¢;, ¢;). On the hexagonal
lattice, the matrix A;; is thus s symmetric, circulant matrix.

o Conservation laws. Mass conservation implies that

Y Ay;=0 (C9)

§

Momentum conservation is expressed by
2 Aye; =0, (C10)
i

The linearised operator is completely characterised by these properties and its
cigenvectors and cigenvalues. We give an example on the hexagonal lattice, where
we may find all eigenvalues and eigenvectors easily. The possible angles are kx /3 for
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k= 0,1,2,3. Thus the gegeral form of A is:

(ﬂo Gen 10 1w Nix dlo\

Gso G0 Geo G130 Q10 G120

g
£

8120 4de0 ' a a
A= 1 120 Gim0 . (C11)
a0 4120 Ge0 G0 Gen G120

G120 G0 G130 @e0 Oo Geo

Gsa G120 Gise G120 dep Go )
The indices in the coefficients ag refer to the angles between the directions { and ;.
Since the matrix A is circulant, its eigenvectors (u?)).- are the 6-th roots of unity:
the k-th eigenvector is (vﬁ")), = (¢}); with {4 = /3. The mass cigenvector is
(¢3i =(1,1,...,1) while (¢]), sad ({{); are the two momentum eigenvectors (c;a);.
The vectors (¢}) and ({}); span the space generated by the three vectors (Qjas);.
By symmetry they correspond to the same cigenvalue, A, of the linearized operator.
Finally the last eigenvector, ((]); = ((—1)); haa another cigenvalue 7. At this point
we notice that the coefficients ay are not independent but are instead related by -
equations (C9) and (C10). This leaves two independent coefficients. The eigenvalues
can be expressed in terms of these two coefficients (Bensi et al., 1992):

A = 6(a0 + 6e0) = ~6{aq + 2a40). (C12) |
R
From equation (IV.90) the shear viscosity 1 is obtained, The coefficient X is zero
as in the Boolean case with no rest particles. The second viscosity then results from
expression (IV.56).
E. Stability _
An clementary stability analysis cap be performed in the following way. Consider
the special case whers N is everywhere constant. Let the populations N; be a
homogmmcycgturhtm of the form
L A, . Lo N
v ‘N=N®4ve, (C13) ©
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where V is an eigenvector of A. Then inserting into equation {C4) one obtains
(§ —1)V = AV. (C14)

As A is symmetric S — 1 is & real cigenvalue. Linear stability requires that |8} < 1.
Thus all eigenvalues § of A must verify =2 < ¢ < 0. From equation (IV.90} this seems
to allow all positive values of the shear viscosity, but see below. Equation {C14) also
shows that if an eigenvalue is equal to —1 the resulting perturbation from equilibrium
vanishes in one time step. This “superfast” convergence to equilibrium is one reason
why 7 = —1 is chosen in practice.

The above analysis of stability is however rather incomplete. A more classical anal-
ysis of stability, akin to the stability analysis performed for finite-difference methods
(Peyret and Taylor, 1.983). could be made in the following way. Let the hydrodynam-

ical variables vary as

u(x, t)

#(x,1)

uy + euy exp(ik.x + st) (C15)
Po + €p1 explik.x + st) {C16)

It

]

where k is a wavevector in the reciprocal lattice of £. Such a full analysis is rather
intricate and has been carried out only in the one-dimensional case (Qian et al., 1990).
A condition very reminiscent of explicit finite difference schemes was found. It seems

likely that it can be geperalised to all Boltsmann models to yield
v > 01“., (CIT)
where C, is a dimensionless number depending on the specific mode] considered. Our

numerical experience seems to confirm this fact in a qualitative manner.

F. Multiphase models and other applications

A multiphase version of the lattice-Boltsmann method may be created by modifying
the rules used to construct the [LG (Gunstensen et al.,, 1991}, The resulting 3D
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models (Gunstensen and Rothman, 1992) have led to interesting work on two-phase
and three-phase flow in, parous media (Guostensen, 1992; Gunstensen and Rothman,
1993). Extensions of the method to mmultxple viscosities and densities have also
been proposed (Grunau et al., 1993). 1t is also of interest to note that the multiphase
Boltzmann models have inspired new devlopments in finite-difference methods for
multiphase flow {Lafaurie et al., 1993).

The Boltsmann method may without too much trouble also be extended to multiple
speeds and square lattices (Qian, 1990). The former extension is motivated in part
by an interest in thermal models and the gimulation of shocks.

Among the other applications of the lattice-Boltzmann method are viscous flow
in 3D porous media (Cancelliere et al., 1990), thermal convection at high Rayleigh
number (Massaioli et al., 1993), and flow behind & symmetric backward facing ;tep
{Cornubert, 1991). la the latter case an extensive analysis of the accuracy of the
method has been performed (d’Humidres and Cornubert, 1993). Dispersion in various
flow geometries has also been studied (Flekkoy, 1993). A variety of other applications
may be found in the review article of Bensi et al. (Bensi et al., 1992).

In closing this brief review of the lattice-Boltsmann method, we note that it has
several practical advantages with respect to Boolean lattice gases. It is easier to
extend to 3D. Calilean-iovariance is restored easily which simplifies finite Reynolds-
number calculations. The surface tension coefficient of the latiice-Boltzmann ILG
may also be predicted theoretically with accuracy (Gunstensen et al., 1981; Paul
et al., 1983). Finally, the lack of statistical noise in the Boltsmann method can
bring a considerable gain of efficiency in problems where fluctuating hydrodynamics
is neither of interest nor any possible use.
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FIG. 1. An example of cnie time step in the evolition of the FHP lattice gas. Each
arrow represents & particle of unit mass moving in the direction given by the ar-
row. Figure la is the initial condition. Figure 1b represents the propagation, or
free-streaming step: each particle has moved one lattice unit in the direction of its
velocity. Figure 1c shows the result of collisions. The only collisions that have changed
the configuration of particles are located in the middle row.

FIG. 2. Explicit exsmples of some collisions that may occur in the FHP model. The
two-body head-on collision may result in either a clockwise or counter-clockwise rota-
tion; here we show just one example. The two-body collision shown with non-zero net
momentum results in no change, since no other configuration exists that conserves

both the number of particles and the net momentum.

F1G. 3. Two dimensional flow past a Bat plate, simulated using the FHP lattice gas
(d’Humitres et al., 1985b). The Reynolds number is approximately 70,

FIG. 4. Lattice-gas simulation of flow through & two-dimensional porous medium
(Rothman, 1988). The fluid is forced from left to right.
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Fic. 8. Microdynamics of the immiscible Iattice gas, in which the initial condition
(), the propagation step (b), and collisionshep (<) are displayed as in Figure 1. The
initial condition snd propagation step are &t‘mne as before, except that now some
particles are red (bold arrows) while okbers’are blue (double arrows). In the collision
step, the particies are ro-arranged so that, as much as possible, the flux of color iz in
the direction of the local gradient of coloe. Compare the middle row here with Figure
1 to see how ILG collisions can create & “colorblind® microdynamics different from
that created by FEP collisions.

FiG. 6. Phase separation in the immiscible lattice gas. The initial condition was a
homogeneous random mixture, with 50% red {black) particles, and 50% blue (grey).
Time ¢ is given in time steps. Boundaries are periodic in both directions. From
Rothman (Rothman, 1992).

F1G. 7. Microdynamics of the liquid-gas model, in which the initial condition (a), the
propagation step (b), and collision step (c) are precisely the same as that showed in
Figure 1. The new, interaction, step is shown iz (d). In this example, the interaction

distance r = 2. -

FiG. 8. The interacting collision in the simplest liquid-gas model. Smooth arrows
represent particles while broken arrows represent the absence of & particle. The sites
on which the interaction occurs are situated r lattice units apart.

Fi1G. 9. Phase separation with particle removal in the 2D liquid gas mode! (Appert
and Zaleski, 1993). The pixels are black for more than 2 particles per site and white
otherwise, Thus the liquid phase is mostly black while the gas phase is mostly white.
The lattice is initialined with a uniform pasticle distribution. As time progresses
particles are slowly removed st random. AfVer a initial transient, the density of the
liquid and the gas remain constant, bat the fraction of space covered by the dense
phase is decroasing. This leads to the formation of & 2D sosp froth.
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F1G. 10. A table of configurations for the six-velocity FHP lattice gas. Each entry
corresponds to a given class (n, g, g3). Other configurations in the same class may
sometimes be obtained by rotation. The number of configurations in the class is then
shown in parentheses. Configurations for other values of (g3, ¢*) may be obtained by
veflections. Configurations for n > 3 are all obtained by exchanging particles with

holes:

F1G. 11. A table of configurations for the seven-velocity FHP lattice gas, constructed
using the same scheme as in Figure 10. Notice that for (n, g, 93) =(3,0,0) there are
two subclasses A and B. In each subelass the configurations may be deduced from
each other by rotations and reflections.

F1G. 12. The face-centered cubic lattice. The filled circles belang to the face-centesed
lattice and correspond to coordinates {a,3,c) of even sum. The unfilled circles have
integer coordinates with odd sum. This lattice is the analog in three dimensions of
the FCHC lattice. A 2D layer of the lattice contains points of coordinates ¢ = 0 or
1. Similarly a 3D layer of the FCHC lattice spans two values of the coordinate in the

fourth dimension.

FIG. 13. A perspective view of the FCHC primitive cell, projected into 3D space.
Instead of explicitly showing all 24 velocities, oaly 2 of the 12 velocities which extend
into the fourth dimension are shown, along with just one of the velocities with no
component in the fourth dimension.

FIG. 14. A projection of the polylope of Schlifi symbol {3,4,3} (Coxeter, 1977).
Vertices are shown as small circles. As indicated by the Schlifi symbot each face has
3 edges. The 8 edges atttached to each vertax join it to & cube. This cube is the Et P
polytope connected to each vertex and its Schlifi symbol {4,3}. A definition of Et P
and the Schlafi symbol may be found in Appendix A.
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F19. 15. A more complex interacting model. The five interactions are performed in
s sequence for a given pair of sites. The diagrams represent the particles before and
after the collision as in Figure 8. A thin line is added between the two sites to guide
the eye.
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FiG. 16. Control volume ABC D (bold curves) around an interface (thin curve). The
capillary forces, [, act on the control volume,

FIG. 17. Estimates of apparent viscosity s a function of velocity for the liquid phase of
the liquid-gas model (di Pietro, 1993). The viscosities were obtained from simulstions
of Poiseuille flow in & 2D rectangular channel for various velocities aad channel widths.
The various symbols correspond to different channe] widths, and the dotted curve
corresponds to the best-fitting quadratic function of velocity.

F1G. 18. Measurements of equilibrium pressures on each side of curved interface
for the liquid-gas model on the FCHC lattice (Appert et al., 1893¢c). Pressures are
plotted as a function of the curvature 1/R. The descending curves are the equilibrium
liquid and gas pressures, stars are gas pressures, diamonds are liquid pressures, and
the straight lines correspond to equation (V163) in text. The ascending curve and
the triangles are the difference between the liquid and gas pressures.
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Fic. 19. a) The O-degrea ipterface. ‘;k);m‘mnpee intecface.  The directions
€1,---, €4 are labeled wxplicitly ip the fopmgr case. Note that the 0-degree inter-
face may be described by tya layers wherega that the 30-degree interface requires
four layers. . o

F16. 20. Surface tension as & function of reduced density d in the immiscible lattice gas
(Adler et al., 1994). Smooth curve: Boltsmans approximation for a two-layer 0-de-
gree interface. Dotted curve: Bolismann spproximation for a four-layer 30-degree
interface. Circles: empirical results from fitting Laplace's formuls to measurements
made from bubbles of different sizes. Squares: measurements made from flat, 0-de-
gree, interfaces. Triangle: measurements made from flat, 30-degree, interfaces. Error
bars are smaller than the sise of the symbols.

F1G. 21. Verification of Laplace’s law in the immiscible lattice gas (Adler et al., 1994).
Bubble radii R range from 4 to 84 lattice units. An estimate of surface tension in
given by the slope of the best fitting line that passes through the origin. Error bars
are smaller than the sise of the symbols. ’

FIG. 22. Setup for interface calculations in the liquid gas model on the FCHC lattice.
Momentum trapsfer across the surface T is calculated.

F16. 23. Density profile (dashed line) obtained from the resolution of equation
(VIL234), and from direct numerical simulation.

F16. 24. Comparison of interface fluctustions {|A,|’) obtained from simulations {cir-
cles} and those predicted from classical theory (straight line, given by equation
(VIL.38)) (Adler et al., 1004).
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F1G. 25. Pressurc measurements for the liquid-gas model on the FCHC lattice. Sym-
bols tepresent estimates from numerical simulations: stars are simulations of the
non-interacting, ideal gas, diamonds are the liquid-gas model for r = 3, and triangles
and squares are the liquid-gas model for r = 8. Triangles refer to early measurements,
whereas aquares have been plotted after equilibrium has bheen reached (except in the
metuta'blc region). Solid lines correspond to equation (VIIL1) in text. Pressures are
divided by ¢ = 2.

FIG. 26. Typical free-energy curves in & binary finid mixture, for temperatures
<<, where Ty = T..

Fi1g. 27. Plot of Boltsmana approximation for D(d,#) = 0 (smooth curve) vs. em-
pirical estimates of the point of marginal stability (circles) for ILG mixtures, in the
plaae of concentration 8 and reduced density d (Rothman and Zaleski, 1989). Errors
in the empirical estimates are approximately the same sise as the symbols. The curves

represent theoretical and empirical phase diagrams, respectively, for the ILG.

FiG. 28. (a) Contours of logyo S(k) at ¢ = 1000 time steps after quenching, in
intervals of 1012, The highest contour level (near center) is bold. (b) S(k) for
t = 100,200, . .., 1000, where the maximum of each curve grows with time. (c) Scaled
structure functions A-1k3 (k) for ¢ = 100,200,...,1000. Wavenumber axes in (a)
and (b) represent cycles per lattics unit. From Rothman (Rothman, 1990a).
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F16. 20. Design of numerical experiment for sheared phase separation. Boundaries
are periodic in both directions. ’

FIG. 30. Phase separation pattetns at two different times after quenching (Rothman,
1990a). (a) No shear. (b} Shear rate C = G, (c) Shear rate C = 1.5C,. Time tisin
time steps; C't is shear strain,

F1G. 31. Contours of log,, S(k) computed by averaging spectra from 40 independent
simulations of sheared phase separation (Rothman, 1990a). The contour interval is
10%/2; the lowest level in each plot is the same and the highest contour in each plot
is bold. Times ¢ and shear rates € in (a)-{c) correspond to those of the real-space
patterns depicted at the later time in (a){c), respectively, of Figure 30.

F1G. 32. Three dimensional lattice-Boltsmann simulation of multiphase flow through
porous medis (Gunstensen and Rothman, 1993). (See Appendix C for a discussion
of the relation of the lattice-Boltsmann method to the lattice-gas method.) The
porous medium is modeled by the random placement of overlapping (yellow)} spheres
of constant radius. The medium is initially filled with a transparent wetting fluid.
The non-wetting fluid, shown in blue, is injected into the porous medium from behind,
forcing the transparent clear fluid to evacuate the medium. The lattice sige is 323,

Fig. 33. An equihhnum canﬂ;untwu m the many bubble model (Rothman and
Kadaooff, 1993). Thqh“u:ell l”xl” u:hbubblehu;nd:u.lof;bout 5 lattice
units, udthemtuﬂondbubblahow The random placement of each bubble
resulted from collective Browniaa moticn.
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FIG. 34. A simulation of two-component sedimentation, using the many-bubble model ;

(Rothmaa and Kadanoff, 1993). The lattice contains 512512 points; positively buoy- : Co 1
ant bubbles are red and negatively buoyant bubbles are blue; there are 1024 bubbles, ; -

each with a radius of about § lattice units, encompassing & total volume fraction .
of 0.4. The figure shown is 8500 time steps after initialisation of the gravitational
acceleratic;n, at which time the distribution of red and blue bubbles was random.
The recent motion of the individual bubbles prior te each snapahot is indicated by a
reverse fade.out: the more distant in time prior to the present configuration, the more

FiG. 37. An example of the conatruction of Et(P). The cube (symbol {4,3}) is shown.
All the vertices attached to vertex A form the triangle Et P {A) shown in the figure.
The cube has 4-edged faces and thus bas symbol {4,3}.

pale is the shade of red or blue. If bubble trajectories cross, the more recent trajec-
tory takes precedence. Note the appearance of large-scale finger-like or column-like
structures. while other structures look more like the heads of plumes.

F1G. 35. Phase separation in a 3D implementation of the liguid-gas model.

F16. 38. A construction used in the proof of Lemma 1.

FiG. 36. Simulation of sheared phase separation, using a 3D immiscible lattice gas

model (Olson and Rothman, 1993). The shear strains Ct correspond to time steps

800, 4160, and 4240 after quenching from an initial condition of & homogenenous

mixture with 10% concentration of the minority phase; the height of the lattice is 64,

the width is 32, and the depth is 16. The flow is downward on the left and upward _

on the right; boundary conditions in the shear direction are periodic with vertical ' : .
displacement due to the shear (Lees and Edwards, 1072) and simply pericdic in the |
other two directions. The two later snapshots are from the steady state in which
a characteristic bubble sise bas evolved due to the competition between shear and
surface tension. Note the bubble at the bottom center for C't = 26 has broken into
two bubbles by Ct = 26.5. ; s . L

F1a. 39. Another construction used in the proof of Lemma 1.
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