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New derivations of Darwin’s theorem

By CHIA-SHUN YIH
The University of Michigan, Ann Arbor, Michigan

{Received 1 May 1984}

Two new derivations of Darwin’s theorem on the equality of the added mass for
translation of a body moving in an ideal fluid of infinite extent and the drift mass
are given. The first is based on the idea of time lag, used by Rayleigh (1876), Ursell
(1953), and Longuet-Higgins (1953) to study fluid drift. The second is truly
elementary, relying only on the concept of continuity and Newton's second law of
motion. A geometrical interpretation of the result in the first derivation is given, and
a few examples are provided.

1. Introduction

Darwin’s theorem (Darwin 1953) shows the equality of the added mass of a body
in translation in an ideal luid and the mass of the drift volume of the fluid at a section,
as the body moves with constant velocity from the far right of the section to its far
left. It is a beautiful theorem, for what it revealed was thitherto entirely unexpected
and even today whoever encounters it for the first time still experiences the surprise
and delight it affords. '

In this paper two new derivations of Darwin’s theorem are given. The first is based
on the idea of time lag in steady irrotational flows, which allows Darwin’s theorem
to be obtained with simplicity and directness. At first I thought this idea was new,
but it was pointed out to me that the idea originated with Lord Rayleigh (1876), who
used it to study fluid drift in waves in a geometric way, but whose arguments (where
he assumed two parsllel streamlines near the bottom) are valid only for deep-water
waves, as pointed out by Ursell (1953). It was Ursell (1953, p. 147) who first put
Rayleigh’s idea in analytical terms. Indeed {12) and (13) in this paper are quite
reminiscent of Ursell’s work. The idea of time lag was also used by Longuet-Higgins
(1953) to steady fluid drift in space-periodic and solitary waves. However, neither
Ursell nor Longuet-Higgins was concerned with Darwin’s theorem, whereas this
paper is.

The idea of time lag has also been quite explicitly used by Lighthill (1956). See,
for instance, equation (46) on p. 42 of his article, which treated weak shear flows.

We shall derive Darwin’s theorem for two-dimensional flows first. Then a geo-
metrical interpretation will be given to the result obtained and a few examples
provided. For the sake of completeness as well as to illustrate the usefulness of general
stream functions, we shall derive Darwin’s theorem for three-dimensional flows.
Finally, an elementary proof of Darwin’s theorem based on the concept of continuity
and on Newton’s second law will be given, without the explicit use of integral calculus,
as well as an alternative form of Taylor’s theorem (1928).
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Fioure 1. Sketch for the areas B,, B,, and 4.

2, The two-dimensional case

As usual, the velocity potential ¢’ and the stream function ¥ of the irrotational
flow caused by a body moving in an ideal fluid otherwise at rest are expressed in
coordinates of a frame moving with the body. The velocity components in the
directions of increasing x and y are, respectively,

=g =ty vV =¢,=—¥ ’ (1)
where subscripts indicate partial differentiation. The speed ¢’ is defined by
g2 =u?+v" ' (2)

Let the body move to the left (in the direction of decreasing x) with constant
speed 1. Then the flow is steady with respect to the moving frame, and the velocity
potential ¢ and the stream function ¥ are given by

p=z+¢’, Y=y+y. (3)

The velocity components are
u=¢z='i[ry=1+u»’ v=¢y=_¢z=v’ 4)
and the speed ¢ is given by gF = ul+o% {5)

As is well known, the added mass of the body is given by

My = p J-J'q’*dxdy, ' (6)

where p is the density of the fluid and the integral is over the (infinite) area outside
the body. Now consider the integral

I=p HD [(u— 1)+ o] dz dy, @

where I} is & domain (figure 1) bounded by two streamlines ¥ = gz and o = ¥_p,
one above the body and the other below it. As these streamlines recede to infinity
above and below, respectively, I approaches m,.

Now, since b, ¥)

oz, y) '

¢ = (8)
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we have

f) = v”.(I—qz) dedy—2 jj.(u—qz)dxdy

sl

where all integrations are over D, and I, and I, are defined by the last equality sign.
But
ox

33

u_
i

so that

L= ﬂ(g—;— 1) dgdy = :” (= )|, dyr = —j: 1%y =0, (10)

since ¢" = 0 at infinity for a body moving in infinite fluid. Therefore

I=pl,. (11)
d
In 1, ?¢=d8,

where ds is the distance along a streamline as ¢ changes by d¢. Thus,

(;—f =dt, : (12)

where dt is the time required for a fluid particle to travel the distance ds. The integral

L[ (A-1)as "

is then the difference between the time required by a fluid particle to go from ¢ = — o
to ¢ = + o0 and the time required by a reference kinematic point moving with
constant  {=1) to do the same. That is, it is the drift distance for a particle moving
along any particular streamline in the steady flow (@, y). (If the particle requires more
time, and eventually its velocity is 1, the same as that of the reference point, it will
never catch up, and will lag behind the reference point by the distance equal to 1 times
I,. This distance is the drift distance.) Hence I, being

Ve
[ Ly,
W—B
is the drift area (or drift volume per unit distance normal to the z,y plane}. Then
in the limit, as 5> o0 and _g-» — o0,

my = limpl{,. (14)

That is, the drift mass is the added mass, per unit distance along the generatrix of
the cylinder, which is the body under consideration. Thus Darwin’s theorem is proved
in & new, simple way.
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3. Geometrical significance of the integral ;
Considering I, again, we see that
I,=D-38, (15)

where

D = area of domain D = .HEIEdQs dir = j dxdy,

s= Hd¢d¢.

Obviously § is the area of the infinite strip of width Yrg—¥_g. including the
cross-sectional area A of the body. Thus

D—8 = B,+B,— A4, (16)

where B, is the area bounded by the streamline ¥ = 5 above and y = Yrg below,
and B, is the area bounded by W =1y_pbelow and y = ¥ _p above. The bounding
lines do not cross if g and —y_g are sufficiently large. Let

B =B +B,
Then in the limit, as ¥ g— o0 and Y_g—> — 0,
pB=m,+m, | {17)

where m is the mass of the fluid displaced by the body.
We do not have to go to the limit, however. From (16) we obtain that

pB =mqtm, (18)

where m, is the drift mass between the streamlines ¢ = Yz and ¥ = ¥_p. It is this
generalization and the geometric relation {16) that lead us to the results presented

in the section below.

4. Examples of fluid drift

Consider the classical solitary wave, the solution for which was first given by
Rayleigh (1914) and refined by subsequent authors. No exact solution exists. But the
result given below is exact, not depending on the particulars of the solution.

Take the steady-flow solution (¢, ¥} for the solitary wave, and take

¢_pg=0

and Yz to be the i on the free-streamline. The velocity scale is the speed ¢ of the
solitary wave. Upon use of this scale, everything developed in §§2 and 3 stands. In
this cage 4 = 0 exactly, because thereisno solid body in the fluid, and B, = 0, because
i = 0 and y = 0 coincide. Hence upon dividing (18) by p, we have

B=B ="4,

or the drift area is exactly equal to the area between the free surface and its horizontal
asymptote, which is Ursell's result (1953), obtainable also by the consideration of
continuity.

Internal solitary waves in two superposed fluid layers have been studied by
Keulegan (1953), Long (1956), and Benjamin (1966). The wave may be one of
elevation of the lower fluid (Case A), or one of Cepression of the lower fluid (Case B).
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Upon application of (18), with m = 0, to the lower fluid in Case A, we see that again
the drift area for the lower fluid is exactly equal to the area underneath the interface
and above its horizontal asymptote. For the upper fluid the drift area is of exactly
the same magnitude, but in the opposite direction {opposite to the direction of pro-
pagation of the solitary wave). The total drift area is then exactly zero. For Case B,
the opposite is true. That is, the upper Auid drifts with the wave, and the lower
fluid drifts in the opposite direction, the drift area for each layer being exactly equal
to the area between the interface and its horizontal asymptote.

Obviously these results can be generalized to apply to solitary waves in a fluid
system of many layers. But I shall refrain from doing so. Instead, I shall give some
other examples.

Consider a circular cylinder of radius a moving with unit velocity to the left along
the x-axis. As is well known, the stream function is given by

aly
— 19
=y o . (19)
the origin of Cartesian coordinates x and y being at the centre of the cylinder. Area
B, is given by ® ® oy
B, = J‘—m (y—rg)dx = a? J_w Pty dx, (20}

in which y is a function of iz and =, obtained by letting the i in (19) be 5. As ¥rp
increases indefinitely, we can replace the y in the second integral of (20} by yg,
committing thereby less and less error as i increases, and ultimately no error at
all. Doing so, we obtair_l from (20) that
B, = na®
Similarly B, = na?, so that
pB = f(B,+ B,) = 2pna®.
Since m, the mass of the fluid displaced by the body, is pra?, it follows from (17) that
the added mass is 2
ma = PTCG -
By letting Y5~ o0 and _z—+ — o0, we obtain from (18) the same value for the total
drift mass m,, as expected.
Another example is provided by the stream function
a*y’

'/’=y'"x—,g':;fg,

where the flow in the ', ' plane is the flow past a circular cylinder. If the coordinates
(z,y) and (x",y’) are related by
by b
y=y - xzz+y;2!

x’z + y’z !
we have the well-known result that the flow in the x,y plane is that past an elliptic
cylinder with semi-major axis a+5?/a and semi-minor axis @ —b%/a. We have then

_ (@ —bhy
y 'lk - xrg_,_y:g -
If we replace 5" by 5 and 2’ by z, and integrate with respect to x, in the limit, as
¥ g tends to oo, we obtain without error

B, = fmw (y—y)dx = (a®*— b)) m.
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Similarly B, has the same value, and

pB = p(B,+ B,) = 2pn(a?—b®) = m,+m = my+m.

But B b2 .
AT )

bz 2
Hence My, = My = Pﬂ(a__) ,

a
as is well known.

Nota that Darwin proved this theorem (as I do here also) only for a fluid of infinite
extent. It can be generalized to apply to a semi-infinite fluid bounded by a single plate
to which the velocity of the immersed body is parallel. But it is not true for a restricted
fluid, such as the fluid between two parallel plates, in which a body moves. In such
cases the J, in (10) is not zero, and therefore Darwin’s theorem does not hold, because
¢’ is not zero at infinity, as Ursell (1953) pointed out in the case of the solitary wave,
and as can be shown easily in the case of the fluid bounded by two parallel plates.
For such a case {(9) needs to be carefully re-examined, for there is a subtle point
involving the interpretation of the integral § in (15), which no longer represents the
area of the infinite strip including the area A, as stated after (15), but contains an
additional part that can be easily shown to be —1,. Then, since B vanishes in this

case, (9) becomes, upoxn use of (15), |

I=—pA—pl,, or —pl,=m,+pA,

as can be shown independently by using a control volume and z;,pplying Newton’s
second law and Bernoulli’s theorem (for unsteady flows with the body moving and
the fluid at rest at infinity).

5. The three-dimensional case

We shall now return to a new proof of Darwin’s theorem for three-dimensional
flows, based on the idea of time lag. This proof has some incidental merit in
demonstrating the usefulness of stream functions for three-dimensional flows (Yih
1957, 1979). Let these be denoted by y and x. Then the velocity u is given by

u = grad y x grad x. (21)
Thus 3, ¥,2)
= ERLVER AY. ¢
= = ) (22)
v _loy.x Oz (23)

in which u, v, and w are the velocity components in the directions of increasing =,
y, and z, respectively, with the velocity at infinity being

u=1, =0 w=0

We shall not assume any axial symmetry. But it is still useful to define
r=(+h 0=tenL, (24)

* pecause, at z = + o0, =14 x=06. . (25)
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Since the body is assumed to move with speed 1 (in the direction of decreasing x),
the added mass is, as is well known, )

my, = p J‘J.J. gt dxrdydz, (26)

¢’ being the speed of the fluid for the (unsteady) flow caused by the body in the fluid
otherwise at rest. The integral in (26} is carried over the entire space occupied by
the fluid. We now take D to be the domain between ¢ = 0 and ¢ = i/, = r2, from
x =—00 to x = + 00, and consider the integral

I=pJ.J‘L flu—1)2+v+w?]dxdydz.

Then the development is exactly as that following (7), and we obtain

£= 'U (7°—2u+1)dxdydz

= J.Jj(‘;?_ 1)d¢ dy dy—2 M(é‘;—l) dgdyr dy
= 1,—21, o

where I, and /, are defined by the last equality sign, and all integrations are over
the domain D. Again, for an unrestricted fluid,

L= [[[E-asavax=[]  e-ormapax-o

I

and we have -=1.
P

In the limit, pl, =m,.

But, as before, 7, is the drift volume. Hence we have given a new proof of Darwin’s
theorem for three-dimensional flows using the idea of time lag.

6. A proof of Darwin’s theorem without calculation

Darwin showed in his paper (1953) that the drift volume ¥, for three-dimensional
flows (the formula for two-dimensional flows then follows directly) is given by

Vp = —J‘j ¢, dz dy dz, (28)

where the integration is carried over the entire fluid domain, and where the sign
convention of (1) regarding ¢ has been adopted. I have used a minus sign in (28) to
make V' positive, since in this paper the body is assumed to move toward the left
(i.e. in the direction of decreasing x). It is evident that the integral is the total
momentum of the fluid divided by p, and, if the body is moving with unit velocity
to the left, the right-hand side of (28), with the minus sign included, is obviously the
added mass divided by p, upon consideration of acceleration of the body. So the drift
mass is the added mass, and this fact is the substance of Darwin’s theorem.
Darwin’s theorem is not only true; it is beautiful as well. Part of the reason for the
delight it gives is its unexpectedness. And yet one could wonder whether it is a
fortuitous truth stating a fortuitous equality, or whether the equality it states is
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dictated by kinematics and dynamics in so simple and direct a way that it is obvious.
Evidently if the latter is true it has hitherto not been recognized, for Darwin's
theorem is widely regarded as difficult to grasp, and its unexpectedness (for this
writer at least) seems to indicate that the equality of drift mass and added mass is
fortuitous. But then how could such a general equality, regardless of shape of the
body, be only fortuitously true? One could argue, of course, that any truth
demonstrated mathematically is not fortuitous, that it has mathematical necessity.
Yet mathematical necessity is not mechanical necessity, and, upon learning of
Darwin’s theorem, one is always left wondering why it must be true mechanically.

I shall now show, without the explicit use of integral calculus, that Darwin’s
theorem is to be expected on the basis of continuity and Newton's second law.

Consider the domain D shown in figure 1, bounded by two streamlines (or a stream
surface if the flow is three-dimensional) and the body. For convenience, and
convenience only, I shall treat the flow as two-dimensional. But every stater:ent that
follows can be made applicable to three-dimensional flows by the change of a word
here and there (e.g. the word ‘area’ to ‘volume’). The geometry of D will be called
the ‘pattern’. The pattern moves with the body, though the fluid at infinity is at
rest.

Now, at x = 0 and ¢ = 0, let the intersection of D with the y-axis (or the y, z plane
in three-dimensional flows) be dyed blue, and let the streamlines shown in figure 1
be dyed red at t = 0. Furthermore, let the body move left from x = loo. After the body
has moved to the far left, the blue line will have drifted left, and the drift area is
the area swept by the blue line from its initial position to its final position. The red
lines (but not the particles on them) move with the body and are made of the same
fluid particles.

Consider the fluid mass to the left of the blue line and bounded by the red lines
and the body. There is no flow across either the blue lines or the red lines since they
are material lines, and there is no flow at z = — co0. The fluid area just described must
then be constant and equal to the area initially to the left of the blue line (and
bounded by the red lines), when the body was at z = 0. Thust

B—A4=0, (29)

where B = B, + B,, and C is the drift area between the red lines. (Recall the definitions
of B, B,, and 4.)

Now consider the domain D at any time. As the body moves left, the centre of
gravity of D moves also. There is no flow at infinity and the ‘pattern’ moves with
the body, so that the area B and the area 4 (occupied by the body, which is a fluid
hole) move with the body. Hence the amount of fluid moving with the same mean
z-velocity as the body is p(B—4) = pC, which then must be the added mass, as
the time-rate of change of the momentum of the fluid in D is equal to the force
imparted it by the body when it accelerates, if the z-component of the force from
integrating the pressure on the red lines is ignoredt as it can be ignored when the
red lines recede to ¥ = +c0. Thus the drift mass must be equal to the added mass
upon consideration of continuity and Newton's second law, and Darwin’s theorem
can be expected on these principles.

It is regrettable that we can no longer ask Sir Charles what inspiration led him to
his discovery. I think it was unlikely that the considerations I have just presented

+ The same arguments can be applied to viscous fluids to obtain the same result, which can also

be otherwise established.
t The foree arising from pressure at the ends of D (where x = + 00) is zero.
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went through his mind. These considerations are mere hindsights, and his theorem
stands as an interesting example of the essential inexplicability and intractability of
inspiration of the human mind. However, my attempts here perhaps serve to make his
theorem more graspable and therefore more satisfying to his readers.

7. Connection between Darwin’s theorem and Taylor’s theorem
Equation (17) is in effect Taylor's theorem (1928). To save space, I shall consider
only two-dimensional flows here. The three-dimensional counterpart of the develop-
ment can be established without difficulty.
It is clear that
BB~

o0

oD

R L L ALY (30)

where y, is y on the streamline i = ¥z and y, is y on ¥ = y_p, the B’s being defined
in §3. Equation (30) can be written as

B~_-—f w;dﬂfw ¥ pdz. 31)

As yrg—00 and ¥_p—>— o0, we obtain from (17) and (31)
oo [+ o]
p[—lim j Y dz+ lim :ﬁ’dx] = M+ my. (32)
Y+ v —o Yr—0 ¥ —®

By taking an infinite strip bounded externally by
¢p=¢p and ¢=9 4 (33)
and internally by the surface of the body, we can obtain (see Appendix)
a ¢
p[lim f ¢ dy— lim ¢ dy] = m+my. (34)
X—+00 & — T-r— J—xD

The left-hand side of (32) and (34) are an altérnative expression of Taylor’s expression
obtained from the singularities inside the body. On the other hand (32} is (17), (34)
is an alternative form of (17), and (17) is closely related to the proof of Darwin’s
theorem. Thus, although Darwin was thinking of drift mass and Taylor was not, the
grounds they traversed, a quarter of a century apart, were not far from each other.

This work has been supported by the Fluid Mechanics Program of the Office of

Naval Research.

Appendix
To show (34), consider the domain 7’ bounded by the curves (33) externally and
by the body internally. Then

.- H,, (7g) vy~ _UD, (gf- t)agay
- .”D- dxdy--J.J.D, dxd;b—'[,:o [(xg—$g) —(z_p—P_p)]dY. (A1)

The first integral on the right-hand side is the (infinite) area of D’, the second integral
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is the area of the infinite strip bounded by (33), inciuding the body of Area 4. Hence
their difference is — 4, and upon multiplication by p, and recalling that m = p4 and
I->m, as ¢pp-—>c0 and ¢_g—> — 0, we have, in the limit, (34), since ¢’ = ¢—x.
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=~ Steady flows of an incompressible, inviseid, and non-diffusive fluid of variable density

in a gravitational field are first considered. By a transformation it is shown conclu-

 sively that there are infinitely many flows with the same flow pattern, provided the

density gradients of these flows at any section (e.g. far upstream) differ only by =
multiplicative constant. These flows have identical local internal Froude numbers at
all corresponding points of the flows and, hence, identical local Richardson numbers.
They are therefore dynamically similar. Every time a solution for one stratification is
obtained, one has in fact obtained the solutions for infinitely many stratifications.
The creation of vorticity in steady stratified fiows is then examined, and it is shown
that this creation can be divided into two parts, one part being entirely due to the
inertial effect and the other originating from the gravity effect of density variation.

-~ Finally, compreasibility is considered and the results on similarity of stratified flows

and on vorticity and circulation are extended to apply to steady flows of gases stratified
in entropy.

1. Similarity of steady stratified flows of an incompressible fluid

For an incompressible and non-diffusive fluid stratified in density, the equation of
incom pressibility is

Dp/Dt = 0, (1)
where, since only steady flows are considered,
-+ D/Dt=wu,dfbz,. : (2)

In (1) and (2), p is the density, ,, ,, and %3 are Cartesian co-ordinates, and u,, u,,
and , are the corresponding velocity components. The summation convention is used
in (2). The equation of continuity is, by virtue of (1),

du oz, = 0. (3)
If the fluid is also assumed inviscid, the equations of motion are
U, aui/aza = -ap/axi—gpaﬁ (i = 1! 2: 3)! (4)

where p is the pressure, g is the gravitational acceleration acting in the direction of
decreasing z,, and &, is the Kronecker delta.
- Let the density be put in the form

P =potpy(xy, 24,7,), (5)
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where p, is a constant, and consider another stratified fluid with the density distri-
bution ‘
ﬁ = P_0+ﬁ1 (21! er &s): (6)

where j, is another constant and the circumflexes on the 's denote the co-ordinates for
the flow with density 5. Since two flows can be similar only if the geometry of the
boundaries are similar, we denote the length scales of the two flows by L and L,and
write

m="L/L. 7 (7

A point in the flow with length scale L is said to be corresponding to a point in the flow
with length scale L if the dimensionless co-ordinates (measured in units of L or L)
of the two points are identical. For dynamical similarity to exist, we must have

Prlpr=r (8)

at corresponding points of the two flows, r being a positive constant.

The question is then posed: Can a flow have the density distribution p and be similar
to a given fiow with the density distribution 37 We shall show that the answer is in the
affirmative. '

1f the solution with distribution 5 has velocity components &, we have

P0.00,/09, = — 07/ —Loprdn ! (9)
where .
# = p+pogzs O ==/l ' (10}
We also have :
2,08/0, =0 (11)
and .
0,/0; = 0. (12)
Now let (actually an arbitrary constant can be added to # or 7)
u, = (pfrmple, ==7[rm, y,==z/L, (13)
where 7 is defined By
: - W=D pag e
Then, the first equation in (13), and (5), (6), and (S)AQuMantéé that o
udp/dy, = 0, (15)
provided (11) is satisfied. Furthermore, obviously
u, 9p/0y, = 0. - (18)
Equations (7), (8) and (13) allow us to writet
Thus (9) can be written as
rmpu, du, [y, = —rm om [3y,—rLgp,8,s, (18)

t Remember that ¥, = §, at corresponding points, so that /2y, = 8/2§,. This would be even
clearer if we had used 2, = mx,. -
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which, after division by rm, is
pugdufoy, = - omfoy,— Lgp, 8,5 (19)

This is exactly (4) with the Cartesian co-ordinates in dimensionless form. Thus, if
(9) is satisfied by 4, and 7, %; and = given by (13) satisfy (19), or (4).

Also, because of (15) and (18), (3) is satisfied if (12) is. Hence we have proved what
we set out to prove. The boundary conditions, if they are kinematical, are identical
since the boundary geometries are identical, and, if they are dynamical (such as at
density discontinuities), are also identical since dynamic boundary conditions are
natural boundary conditions derivable from the differential equations. Hence the
boundary conditions are satisfied by the flow (u,, p, p) if they are satisfied by the flow
;, 5, p).

( ‘Ifl'o w.?deﬁne the local internal Froude number F' at any point of the flow by

F* = pu,u,/q|Vp| L* (20)

(and similarly for the flow with density 5), and the local Richardson number Ri at
any point of the flow by

Ri =g|Vp|/p|Vq|?, ¢*=u,u,, (21)

(and similarly for the flow with density ), then we can say that the two flows have
identical local internal Froude numbers at corresponding points (i.e. for y, = ), and
congequently the same local Richardson numbers at these points. The flow patterns
are also similar, by virtue of the first equation in (13). The two flows aré indeed similar
geometrically, kinematically, and dynamically.

But since g, and r are arbitrary, we are not merely treating one flow similar to the
flow 5; we are treating a doubly infinite family of flows, all of which are similar to the
flow for 5, and hence to one another. This result is new, and I think it is very useful for
laboratory simulation of natural phenomena. Note that density discontinuities are
not ruled out. But, for similarity to exist between any two flows, they must occur
at corresponding places, and, wherever they occur, their ratio must be the same
constant (denoted by r in this paper). We note that when the density variation is small
as compared with the mean density, the factor (3/p)} in (13) can be replaced by (3,/p,)
(and by 1 if water is used in the laboratory to model lakes or oceans), and the effect of
density variation, important at low Froude numbers, is embodied in the factor » and
is entirely associated with gravity.

In conclusion, to ensure similarity, the requirements expressed by (8) and the first
equation in (13) must be satisfied at corresponding sections somewhere, say far
upstream. Note that o does not have to be proportional to P at corresponding points.
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