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Abstract. Patterns of water waves created by a moving disturbance representing a
moving body, floating or submerged, can be found by applying (1) the principle of
stationary phase, (2) the principle that the phase lines are normal to the wave-number
vector, and (3) the perception that the local phase velocity of the waves must be equal
to the component of the velocity of the disturbance normal to the phase line. The
three equations thus obtained are solved, and formulas for the phase lines are derived,
which depend explicitly on the dispersion equation, and on that equation only. These
formulas are applied to deep-water surface waves, surface waves in, water of finite
depth, internal waves, and capillary waves in thin sheets to obtain the wave patterns
sufficiently far from the moving disturbance. -

Finally, the patterns of the surface waves in deep water created by a moving body
are determined, with the nonuniformity of the mean velocity of the fluid in the
wake taken into account. The vorticity in the direction along the phase lines is
shown to be small, so that the wave motion can still be assumed irrotational in a first
approximation. The wave patterns differ from the Kelvin-wave pattern, as a result
of the nonuniformity of fluid velocity in the wake.

1. Introduction. The pattern of gravity waves created by 2 moving disturbance in
deep water was determined by Lord Kelvin (Sir W. Thomson, 1887) fully a century
ago, by applying his principle of stationary phase to the well-known Cauchy-Poisson
solution (see Lamb, 1945, pp. 429-434) for an instantancous concentrated force (a
concentrated impulse). But Kelvin’s application of his own principle of stationary
phase did not result in explicit formulas giving the wave pattern created by a moving
disturbance, once the dispersion equation expressing the wave velocity in terms of
the wave number is known, whatever the kind of wave—gravity wave in deep water
or water of finite waves, internal waves, or capillary-gravity waves. These explicit
formulas were given by Yih (1985). In this paper Yih's formulas will be presented
and applied to gravity waves created by a moving disturbance, which can be regarded
as representing a ship, floating or submerged. Results for gravity waves in deep
water or water of finite depth and for internal waves will be presented graphically.
Finally, the effects of nonuniformity of fiuid velocity in the wake of the ship will be
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18 CHIA-SHUN YIH AND SONGPING ZHU

considered, and gravity-wave patterns will be shown, with the principal effect of this
nonuniformity taken into account.

2. Formulas for phase lines in a ship-wave pattern. For simplicity, we can regard the
moving disturbance to be a moving pressure distribution on the free surface, although
this particularity does not affect the establishment of the formulas for determining
the phase lines. This fact indicates that whatever the details of the disturbance may
be, the wave pattern obtained will be the same, if the region under consideration is
sufficiently far from the disturbance.

Let U be the speed of the disturbance, moving horizontally to the left. The di-
rection opposite to the velocity of the disturbance is taken to be the direction of
increasing x. The y-axis is normal to this direction but is also horizontal. The z-
axis is directed verticallv upward. The wave-number components in the directions

_of increasing x and y will be denoted by { and # respectively, and
k=824 n2 (1)

For our purpose it is not necessary to give the formulas for the velocity distribu-
tion in the wave motion (or the velocity potential when it exists), or for the displace-
ment of the free surface or interface. Such formulas are given for Kelvin’s waves in
Whitham (1972, p. 448, Eq. 13.56), for surface waves in water of finite depth and for
gravity-capillary waves in Havelock (1908), and for internal waves in two superposed
fluid layers by Hudimac (1961), Carrier and Baski (1963), and Yih (1985, Egs. 30
and 31), among others. What is important for our purpose is that in these formulas
there is always the exponential factor

expi({x + ny) (2)

in a double integral with respect to § and #.
The application of Kelvin’s principle of stationary phase at any point (x, y) re-
quires,' because of the factor (2),

y _ 4

X~ "an {3)
The normal to any curve of constant phase has the slope /. The slope of the tangent
to any curve of constant phase must then have the value —¢/#, so that for that curve

dy _ &

dx 7 (4)
The requirement that the wave velocity at any point must be equal to the component
of the velocity of the disturbance normal to the wave front (or the phase line) is

expressed by

U _

% =
IThe Fourier integration is in the (¢, n1)-plane. The main contribution to the integral comes from the
neighborhood of a &-n curve where a factor in the denominator vanishes. This vanishing is represented by
(5). The integration in this neighborhoed involves essentially an integration across this curve (giving what
amounts to residues) and an integration along that curve subsequently. It is to this latter integration that
the method of stationary phase applies. After this application &, , and k are considered (slowly varying)
functions of x and y. This understanding should be kept in mind from (3) onward.

c(k), (5)
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where c(k) denotes the wave velocity, dependent on k, the geometry {for instance,
depth of water), and the physical parameters relevant to the problem, such as the
gravitational acceleration g and the surface tension 7. We are concerned in this
paper with gravity waves mainly. We shall use U as the velocity scale, and a finite
depth d as the length scale. If such a depth is not available we shall use U 1/g as the
length scale. Then &, n, &, x, and y are dimensionless. The dimensionless form of (5)
is now
¢ =F(k), (6)

where F (k) = kc(k), and the function F(k) may depend on other parameters, such
as the Froude number, as well as k, because c(k) does.

Since (6) is an equation between ¢ and k, it is convenient to write (3) and (4) in
terms of & and k explicitly. A brief calculation gives, upon use of (1),

X _ 1 3 (kz _(52)1/2 (7)
x  dn/dE " k{dk/d§) &’
dy ¢
=TT ®
Finally, upon using (6), we have
y _ F:(kz _F2)1/2
x  k-—FF ' )
dy _ F-
dx ~ (k- FR)/T (10)
We can write
y = —f(k)F'(k? - F})!/2, (11)
x = f(k)(k — FF'), (12)
which satisfy (9), and endeavor to determine f (k). From (11) and (12) we obtain
I
dy = '"(—k"'z"jmlff’"(k—}'-f‘-’)"*‘(ﬂ?')'(k2 - Fh, (13}
dx = f(k - FF'Y + f'(k — FF"). ' (14)

These, together with (10), give
fFtk— FF'Y + f'F(k — FF') = fF'(k - FF') + (fF') (k* - F?). (15)

It is satisfying that this equation can always be explicitly integrated, for it can be
rewritten as

fF(k —- FF'Y + (fF)'(k — FF')=2fF'(k - FF') + (fF'Y(k? - F?), (16)
and this can be immediately integrated to (@ = constant of integration)
fF(k — FF'y= fF'(k* - F*) +a. (17)
or

a

f=k—(FTF')' (18)
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Thus,
Y= rr e P (19)
_alk - FF")

These are the parametric equations for the curves of constant phase, when the ¢ikonal
equation is in the form of (6), and it is remarkabie that they can be explicitly given in
terms of F (k). The function F(k) can easily be obtained for any kind of waves and
any geometry in a two-dimensional wave motion (or one-dimensional propagation).
Once it is given, (19) and (20) can be applied to find the wave pattern directly. Thus
they are very useful and convenient.

2.1, Determination of the critical angle ¢.. The critical angle ¢, is determined by

din d kdk/d§ — &
ol —_—— 21
az =0 &z —gn = @
When (6) is the eikonal equation, this becomes
d k — FF'
—f— | = 22
dk [F:(kz - Fz):,rz] 0. (22)

Given F, this can be solved for k. With k known and equal to k. (say), ¢ is known
from (6), n is known, and x and y are known, so that

¢, = tan (23)

-1 ¥ | '

X e,
If there is more than one root of (22), take the greatest of the values of ¢ correspond-
ing to these roots to be ¢.. This determines the vertex angle (2¢.) of the wedge in
which waves can be found. Equation (22), too, is an important result. One expects
to find waves only in some wedge where

—¢e < ¢ < ¢..
3. Applications.

3.1. Gravity waves in deep water, or Kelvin waves. For Kelvin waves the dimen-
sionless eikonal equation is (the length scale for this case is U/?/g)

&=k (24)
Then
Fk)=k'? and F'(k)= %k'”z, (25)
y =gk -2, (26)
5= 22D 27)

Following Lamb (1945, p. 433), we define 8 as the angle of inclination of the normal
to any curve of constant phase, so that, along any curve of constant phase

dy __&__
e = i cot @. {28)
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Because of (24),
kz—k=k2—52=:12,
so that

an a
y:-—wk-—z-:—g

L P

Now (28) can be written as

¢ 3 L
+cotf = I )i = E ey TE-D” (30)

so that
& =sech, (31)

and (29} becomes
y = —aros’ @tan @ = —asin 6 cos® 6. (32)
Similarly, (27) becomes
_ 2 _
Lo a@k—1) _a@f -1

T T = acos6(2 — cos’ ),

or
x = acos#(1 + sin® §). . (33)
Equations (32) and (33) are exactly the equations (Lamb, 1945, p. 434) for the Kelvin
curves of constant phase for surface waves. The wave pattern is shown in Fig. 1, upon
taking @ equal to 1, 2, 3, etc. Since on the centerline k = 1, because the length scale
is U%/g and on the centerline U = ¢, the increment in g, indicating a wavelength
on the centerline, corresponds to 2zU?/g when converted to dimensional length.
(Recall wave number = 27 /wavelength.) The cusps occur at £ = (3/2)/2, giving a
¢ of 19°28'. The flow near the cusps requires better resoiution. This was provided
by Ursell {1960).
3.2. Gravity waves in water of finite depth. Let the depth of the water be d. Then,
as is well known, in dimensional terms the phase velocity ¢(k) is given by

ct= %tanhkd.

In dimensionless terms, with d as the length scale and U the velocity scale, this
becomes

¢* = N7%k~!tanhk, (34)
where Ny is the Froude number defined by
2 Uz 3
Ng = }a‘ (35)
Then (6) takes the form
¢ = Ny '(ktanh k)2, (36)

the right-hand side of which is F(k). Using this F(k) in (19} and (20), we obtain
the wave patterns shown in Figs. 2 for

Nr =02, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, and 5.0,
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Fi1g. 1. Kelvin-wave pattern.

respectively. On the centerline, § = k = ko, and (36) gives
1
N} = — tanh k. 37

The wavelength of transverse waves is 2nd/ko on the centerline. Given the Froude
number Nr and the depth d, kg is determined from (37) and the wavelength on the
centerline is known. The patterns in the figures should be read with this in mind.
The fact that the patterns have been obtained by assigning integral values to 2 in (19)
and (20) is of little importance since the scale used in plotting the figures is arbitrary.

The most important feature of Fig. 2 is that only when the Froude number Nr is
less than 1 are there transverse waves. This is because the wave velocity ¢ is bounded
by (gd)!/2, so that when Nf exceeds 1 no waves, however long, can be stationary at
the centerline, so that no transverse waves can exist. When Nr exceeds 1, the phase
lines at large distances from the disturbance appear to approach asymptotes.

The k. (k at the cusps), defined by (23) when N < 1, and the ¢ giving the half
angle of the wedge in which waves exist, depend on the value of Nr. We note that
when transverse waves exist, k increases from A on the centerline to k. at the cusp,
and then increases monotonically along the phase line of a divergent wave. When
transverse waves do not exist, k increases along such a line as |y| decreases; i.e., as
the centerline is approached. The same is true for internal waves.

33, Internal waves. Let us consider gravity waves in two superposed fluids. The
upper fluid has density p and depth A, and the lower fluid has density p/(> p)
and infinite depth. Let the velocity potential perturbations (from the mean flow of
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(a) (b)
(c) (d)

Fic. 2. (a)-{d). Pattern of ship waves in water of finite depth.
(a) Np =0.2, (b) Nr = 0.4, (¢) Np = 0.6, (d} Nr = 0.8.
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velocity ¢) for the two layers be ¢ and ¢’, respectively. The displacement of the
free surface is denoted by { and that of the interface by {’. All quantities will be
dimensional until otherwise stated. The phase velocity ¢ will be determined from
a calculation for stationary waves, that is, for a coordinate system moving with the
waves to the left. Then the kinematic condition at the free surface is (the origin of
z being at the interface)

ely=¢; atz=nh, (38)
and the dynamic condition there is the Bernoulli equation
gl +cpy=0 atz=~h (39)
Combination of (38) and (39) gives
Spxx=—¢; atz=h (40)
for the free surface, where
i (41)
£
At the interface, the kinematic conditions are
cy=¢: and cf,=¢, atz=0, (42)
and the dynamic condition is
pgl + pcds = p'gL + pled, atz=0. (43)
Defining ’
p=t2F (44)
and substituting (42) into {43), we obtain
géz =—(B+ )¢ +Pxx atz=0. (45)
Equations (42) can be combined into
$:=¢, atz=0. : (46)
One last condition is
¢ =0 atz=-o0 (47)
Taking
¢ = (Ae** + Be~*)coskx, ¢ = Ce* coskx, (48)

which satisfies (47), since k is assumed positive, we use (40), (45), and (46) to
eliminate the constants A, B and C, and obtain from a straightforward calculation

(ks — DIks(2+ B + e~ ) — B(1 — e~ %M = 0. (49)

The root

[

c

S=—=

g

(50)

& -
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(e) (f)

(8) (b)

\

\

FiG. 2. (e)-(h). Patterm of ship waves in water of finite depth.
(&) Np = |, {f) Nrp = 15, () N, =2, (h) Np = 5.
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corresponds to irrotational wave motion of the entire fluid, with no vortex sheet even
at the interface, as is well known (Yih 1960, and 1980, pp. 60-62). This wave motion
has the Kelvin-wave pattern presented in subsection 3.2. The other root of (49) is

2 _ ﬂ_g__.&l___. (51)
k 2+ Ble*t + 8’

and corresponds to predominantly internal waves. Substituting (51) into (5), using

h as the length scale, we obtain the dimensionless equation

c

12

= (2E)7 (52)

alk) = (2+ Ble* + B, (53)

y(k) =e* -1, (54)
and Np is the Froude number now defined by
=2
F = gh

We have done the calculations for the internal-wave patterns for § = 0.04. The
patterns are shown in Fig, 3 for

Np =0.01, 0.05, 0.1, 0.15, 0.2, 0.5, 1, and 2,

respectively. Again transverse waves exist only if Nr is sufficiently small. The critical
Nr can be calculated from (52} upon putting § equal to k, letting k approach zero
(to get the longest wavelength possible), and taking the limit. Doing so, we obtain
the critical Froude number

(NF)e = T+F (55)

When Nr > (Ng )., no transverse waves are possible. For # = 0.04, (Nfg), is approx-
imately 0.2. That is why in Fig. 3(e) no transverse waves appear.

As for surface waves in water of finite depth, the angle ¢. which the line of cusps
makes with the centerline, defined by (23), depends on Nr. This dependence is
evident upon examination of Figs. 3(c) and 3(d). From Fig. 3(e) onward to Fig. 3(h),
the wave region narrows as the phase lines, which appear to approach asymptotes,
make smaller and smaller angles with the centerline.

3.4. Capillary waves on a thin sheet. For a fluid sheet of tnickness 2A, there are
two modes of capillary waves. For the one mode, the sheet deforms as a whole an-
tisymmetrically, with hardly any change in thickness. In this mode the waves are
nondispersive. For the other mode, the sheet deforms symmetrically, and the dimen-
sional dispersive equation is, upon neglect of gravity effects and on the assumption
that the wavelength anywhere is much greater than A,

c2 = T_h kz.
P
where T is the surface tension, p is density of the fluid, and ¢ and k& are the di-

mensional phase velocity and wave number, respectively. (See Whitham, 1972, p.



(a)
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(b)

(c)

(d)

/

\

Fia. 3. (a)-(d). Pattern of internal waves created by a moving body.

E

{a) Ng =001, (b) Nr = 0.05, (c) Nr = 0.1, (d) Np = 0.15.
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405.) We shall use 4 as the length scale and (ph?/T)!/? as the time scale. Then the
dimensionless dispersion equation becomes

c=k or F(k)=ck=k>.

Putting this into (11) and (12), we have
_a(l-2k?%)
— —-—-—kz_—‘,
in which the square root may be positive or negative, while & is restricted to values

less than 1.
It is a very simple matter to show that the x and y given above satisfy a parabolic

relation i 2

Z=1- (Z) : (56)
The source of the disturbance is at x = 0 = y, at which a must be taken to be zero.
Along the centerline (y = 0) in front of the disturbance, the dimensionless & is 1.
That is to say, the dimensionless wavelength 4 (in units of k) is 2z. Hence to show
the wave pattern one must take successivelv .

a=2n, 4r, 67;, etc.

Whitham (1972, pp. 415-416) gave a more indirect derivation of the pattern of
capillary waves in thin sheets, and obtained “roughly parabolic crests” in his Fig. 12.7.
From our derivation here it is clear that the crests are not merely roughly parabolic,
but exactly parabolic.

We note that Whitham's Fig. 12.7 (Whitham 1972, p. 416) is for the disturbance
moving to the left. Our formula (56) is for the disturbance moving to the right.
Otherwise our pattern for capillary waves is the same as his.

4. Gravity waves in the wake of a moving body. The wake behind a moving body
is an important effect of viscosity, for it is ultimately related to the boundary layer
on the body. Again let U2/g be the length scale and use x and r as dimensionless
coordinates, r being the radial distance from the x-axis. The velocity distribution
in the wake can take a variety of forms, depending on the shape of the body and
the Reynolds number, as is well known. Using U again as the velocity scale, the
dimensionless velocity can be represented, without serious error, by a class of profiles
as follows {(a and # are not the same as in subsection 3.3):

u = 1—ax~exp(—prix=43). (57)
The momentum flux across any section of constant x below the free surface is, for

the mean flow given by (57),
R 176,-2
25 pUSg™2, (58}

and this is equal to the viscous drag force CpApU?, if A is a cross section of the
body and Cp the coefficient of drag. This equality is based on the neglect of the
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(€) (f)

(8) (h)

| N

Fic. 3. (¢)-(h). Pattern of internal waves created by a moving body.
(¢) Np =02, () Np =05, (8} Np = 1, (b) Np = 2.
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longitudinal stress across any section of constant x, and gives

a 2 _
5= ECDFA". : (59)
where F, is a Froude number based on a linear dimension 4!/2, defined by
U4
4= oy (60)
In our calculation we have taken
Cp =0.05, (61)
a 1
I = 35° (62)
This corresponds to
F,= (;) = 0.89, (63)

not an unreasonable number. Other values of Cp and F4 can be taken, resulting in
other values of a/8.
On the free surface (57) becomes

u=1-ax"*exp(-fy’x~3). (64)

We shall assume this velocity to be prevailing in the fluid, and furthermore shall
assume the wave motion to be irrotational. This requires some justification and
explanation. Assuming (64) throughout the fluid amounts to assuming that the wave
motion does not penetrate the fluid significantly to distances below the free surface
where u is very different from that given by (64). This is true only if x is large. As
to the irrotationality of the wave motion, one justifies it on two grounds. '

(i) The length scale of the variation of # for large values of x is large, and therefore
much greater than the wavelengths in the wave region.

(ii) All the vorticity lines for the flow (57) are circles in planes normal to the x-
axis. Near the free surface they are nearly vertical, whereas the local wave motion,
assumed irrotational in the plane containing the wave-number vector and a vertical
line, can become rotational only if the local wave motion bends the vertical vorticity
lines of the mean flow in the direction of the phase lines. But any bending of the
vorticity lines by the local wave motion would be in the direction normatl to the phase
lines. Thus the irrotationality of the local wave motion is hardly affected.

We can use equations (3) and (4) again, but must modify (6) to

ué = F(k). (65)

The calculation is one of step-by-step computation, as k is increased from ky (now
not constant) on the centerline toward k. (at the cusp) and beyond. The & for the
transverse waves on the centerline is determined from (64).
We have performed the calculations for .
a=1/8,1/4,1/2,3/4,
A =25751015
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The results are shown in Fig. 4, in which (a) is for (a, ) = (1/8,2.5), etc. In
starting the lines of the same phase, we start with x = 8 on the centerline, calculate
the wavelength of the transverse wave there, and mark off the next point on the
centerline of the same phase, and use that point to start the calculation for the next
line of the same phase, and so on. From Fig. 4 it can be seen that near the centerline
the transverse waves bent back toward positive x more pronouncedly than in the
Kelvin-wave pattern, but become straight sooner. The curvature of the transverse
waves at the centerline is larger when there is a wake.
For the Kelvin-wave pattern,

E=¢& =3/

at the cusp, and ¢. = 19°28'. In our case, since u in (65) is variable, it is not obvious
that ¢. has the same value. However, our calculations seem to give the same value.
An explanation of this on analytical grounds goes as follows. It can easily be verified
that for any fixed value of u the maximum value of dn/d¢ occurs at & = (3/2)!/2,
and gives ¢, = 19°28’. Now fix the x and y in u, and perform the caiculation for
the phase lines as if # were constant. A cusp is encountered at some point (x., y.).
If these are not the same as the fixed x and y, the cusp has no real significance. But
if they happen to be the same, then, since the caleulation in a neighborhood of that
point is now valid, it must be a cusp in the wave pattern. This can be seen in the
following way. Start from any cusp point (x,, y.), calculate u(x.,y.), fix u at this
value, then use the equations of Section 2 to trace out the two branches of the phase
line originating from the cusp. Let us call this line 4. Then starting from the same
cusp, use the actual u in the step-by-step numerical computation in this section to
trace out the two branches of the phase line originating from the cusp. Let us call
this line B. Lines 4 and B are not the same, of course, but they have the same cusp
and are nearly coincident near the cusp.

5. Range of k values for the figures. For the benefit of those who wish to reproduce
the wave patterns given in the figures of this paper, we supply the ranges of the values
of the dimensionless & for each of the figures, except Figures 4(a)-4(d), in Table 1.

TABLE |
Values for ki, and & at cusp for the figures.
Figure 1 2a 2b 2c 2d 2e-2h
Kmin 1 25 6.24995 2.7554 137458 1.5

katcusp (3/2)1/2  37.432 9.39995 4.0574 1.74508

Figure 3a 3b 3c 3d 3e-3h
K min 196.0784 7.84313 1.91763 0.6113 0.3
k atcusp 294.3604 11.74913 2.72963 0.7933
For Figures 4, the minimum k for each of the phase lines is for the transverse wave
at the centerline, and this minimum k is determined by the equality of the local wave
velocity of the transverse waves at the centerline and the local speed of the fluid in the
wake. Because of the nonhomogeneity of fluid velocity in the wake (even apart from
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(a) (b)

(c) (d)

Fic. 4. (a)-(d). Pattern of gravity waves in the wake of a ship. (a)
a=1/88=25 b a=1/4§=235 () a=1/2. =10, (d
a = 3/4, 8 = 15. The phase difference between consecutive phase
lines is approximately 1 radian.
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wave effects), the spacing of crests at the centerline cannot be determined simply, and
can only be approximated by computing the locations of many intermediate phase
lines. For this reason only phase lines, which are not necessarily crests, are shown
in Figure 4, to give a general idea of the wave pattern. The maximum k for all the
figures, including Figure 4, is infinity. We have simply stopped at a large enough
k when the position of the disturbance has become too near to draw phase lines
distinctly. We believe this description will be sufficient to guide anyone wishing to
reproduce our figures.
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PATTERNS OF SHIP WAVES II.
GRAVITY-CAPILLARY WAVES*
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In a previous paper [4], Yih's formulas [3] were used to obtain patterns of gravity
waves, or of capillary waves in a thin fluid sheet, created by a moving disturbance. In
this paper the effects of surface tension are taken into account in finding the patterns
of capillary-gravity waves in deep water with a free surface created by a moving
disturbance, and much more extensive results than those of Rayleigh [2] have been
obtained. The most important feature of the waves is that there!are capillary waves
behind the disturbance, which have very short wavelengths at high values of the speed
U of the disturbance and which are confined to a wedge of an angle that decreases
as U increases. Of interest too is the existence of two cusps in the phase lines on
either side of the centerline at high values of U/ (relative to a minimum wave velocity
defined in the paper) for those waves which are entirely behind the disturbance.

1. Introduction. Explicit formulas for phase lines of any kind of dispersive waves
created by a point disturbance moving in a fluid with a free surface were given by Yih
[3). These formulas are in terms of the parameter k, which is the local wavenumber.
The point disturbance is an idealized representation of a ship, for instance, so that
the formulas are useful for determining the pattern of waves far enough away from
the ship. Yih’s formulas were used by Yih and Zhu [4] to obtain patterns of ship
waves in deep water (Kelvin waves), in water of finite depth, in a stratified ocean,
and in the wake of a ship, as well as patterns of waves in a thin sheet caused by a
moving point disturbance. But capillary-gravity waves were not treated in [4]. It will
be treated in this paper, and many patterns of capillary-gravity waves caused by a
moving disturbance will be presented.

The main reason for giving capillary-gravity waves a closer examination is that
the treatment by Rayleigh [2], as quoted in Lamb ([1], pp. 469-471), is very sketchy
and calls for a new calculation after more than a century, especially in view of the
relevance of the problem to remote sensing. As will be seen, one important feature
of capillary-gravity waves caused by a moving disturbance is that there are (predom-
inantly) capillary waves behind the disturbance. This point has not been stressed in
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Lamb’s book, but explains the presence of short waves within a narrow wedge which
are often found in photographs obtained by remote sensing in the wake of a ship.

2. Analysis. Let the point disturbance move with speed U in the horizontal direc-
tion of decreasing x. The y-axis is also horizontal, and is normal to the X-axis. As
in {4], p denotes the density of the fluid, g denotes the gravitational acceleration, T
denotes surface tension, and we shall continue to use U?/g as the length scale, so
that the local wavenumber k will continue to be measured in units of g/U2. The x
and y components of the wavenumber vector k will again be denoted by ¢ and 7, so
that

=k (0

With this in mind, the requirement that the local wave velocity must be equal to
the component of the velocity of the disturbance normal to the wave front (or the
phase line) is

& = F(k) = k(1/k + ok)'/2, (2)
which is Eq. (6) in [4] for the present problem. The o in (2) is
_ T8 _ 1 (Cun)*
"‘pU4‘“Z(U)' 3)

where cqin = 2(Tg/p)'/? is the minimum value of the wave velocify ¢ calculated from
the dimensional dispersion equation, given by

2 = % + %fc. (4)

in which k denotes the dimensional local wavenumber. The k for Cmiq is
ke = {pg/T)'2. (5)

If k> ke, or
k> (1/e)'2,
the waves are predominantly capillary waves. If
k< (1/a)'2,
the waves are predominantly gravity waves. The word “predominantly” may from

time to time be omitted in the rest of this paper for brevity.
Yih's formulas for phase lines are (see Eqs. {19) and (20) in [1])

y =gy - P (6)
_ a(k — FF')
* = RF-KFY (7)

where a is a constant of integration. The k in (1) will be treated as positive. Since y

is real, (6) demands that
k?-F2>0, (8)

or
ok? -k +1<0. (9)
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That means
Kmin € k < kmax, (10)
where
1—(1-4g)12
kmin=___(_2..aL)_' (11)
1+(1-40)12
e = LT L= 40) = e (12)

Equations (11) and (12) show that there are no waves if ¢ > 1. This condition can
be written as U/cmia < 1, by virtue of (3).
Equation (7) contains the factor

h(k)=k_FF'=_§ak1-k—%. (13)
This can be written as
B{%) = ~3a(k — ky)(k — ky), (14)
where
R RPNy
ki = 5=[1-(1-30)"?, (15)
=L — 353172
ky = 311+ (1= 30)"/2], (16)
Thus

hik) >0 if k <k<k,,
hik) <0 if k<kiork>k,.
The sign of (k) affects the sign of x through (7).
Another quantity of which the sign is important is

a(k) = F — k' = ]

m(l—o’kz). (17)

It is evident that
gk)>20 if k<ky=0"12,
gky<0 if k>ky=0"12
The sign of g(k) affects the sign of y through (6), and the sign of x through (7).
It can be shown (the demonstration is omitted here), that
klskmin5k3sk2$kmlx~ (18)
Hence k; has no significance, since a k less than kmin results in no waves,
Finally, the k-values for the cusps, denoted by k., and k.,, are determined from
2
‘;—fg- =0, (19)
d kdkjd-§ 0
& (k2 -gmyr =
With (1), this becomes, after a brief calculation,
d 2h{k)E _
dE (1 + 30k2)(kT - 2)172 =
This can only be solved numerically once ¢ is given, and we shall list the values of
k.| and k.; in Table 1 for various values of .

or

0. (20)
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TasLE 1. Important values of k and values of y and ¢.

Waves of Sets 2 and 3
Lk
Cmin a=1 a=2 a=13 a=4 a=>5
kot 1.000025
10 ke 1.500253
ke2 78.41496
ke 1963524 1927049  189.6653  186.0177  182.3702
Ky 1.000193
6 ke 1.501962
k., 28.06051
kew 70.02272  67.82574  65.84847  63.65150 61.23482
kst 1.000978
4 ket 1.510122
k. 12.30653
ko, 30.71992  29.34138  27.96284  26.38736  24.71341
kn 1.016133
5 k. . 1.808496
kea 2.535961
ke 7590197  7.180394  6.715951  6.224187  5.623143
1.8 Kyt 1.025022
7 ke 6152701 5798128 5416279  4.979881  4.461658
Ls ks 1.054960
T ke 4276073 4.304920  3.759316  3.466488  3.087534
11 ks 1.279578
" ken  2.248937  2.089277  1.941023 _ 1.809875  1.695823
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Waves of Set 1

E:nq;; a=1 a=2 a=13 a=4 a=>5 7 ¢
ket 39999

0 X 6000 5.71°
kcz
ken 4816.684 7045.430 8716.984 1007C.15 11104.93
ke 5183

§ Ko 750(9.59°
kc2
ken 6137659  899.9819  1114.644 1278.196 1421.304
kgt 1023

4 K 150 [t4.47°
ka ’
ken 1271359 182.6319 2242538 255.9658 283.7139
st 62.98387

) Ka 10(29.98°
kcz
keo 1107910  13.27845  15.37935 16.57748 17.89709
ket 40.96538

1.8 - 10
ken  8.962947 10.68722 11.99766 13.10193 14.06678

LS kst 19.19504 10
ken 6.057674 7.027547 7.732909 8.291320 8.732171

L1 kg 4576822 1
ken 2588232 2752151 2.907442 3.054106 3.187829)

3. Procedure of Computation. There are three sets of waves created by the moving
disturbance:

1. Set 1. Capillary waves ahead of the disturbance.

2. Set 2. Largely gravity waves behind the disturbance.

3. Set 3. Capillary waves behind (!} the disturbance.

The first set is the well-known fish-line waves. The starting k-value for this set,
denoted by kg in Table 1, is just kn,.. There are no cusps in the phase lines for this
set, and for each phase line the k-values decrease from Ky, at which y = 0 and x
is negative, to kz, at which x = 0, and then to k3 at which x is positive and both x
and y are infinite. In plotting the phase lines, one cannot reach k3, of course, and
we have stopped at an ending k, denoted by k., and given numerically for all values
of Cmin/U and for Sets 1 and 3.

Set 2 corresponds to Kelvin waves, except the effect of surface tension has been
taken into account. For this set one starts with a kg equal to [, at the centerline
¥ = 0 and a value of x given by (7), once a is given. One then proceeds along
a transverse phase line to the first cusp on either side of the centerline, where k
is k;;. Then one increases k toward k.,, in the process tracing out the phase line
corresponding to the divergent part of the Kelvin waves, except that one does not
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reach the origin (where the disturbance is) but reaches the second cusp instead, at
which & is k3.

Then one traces another divergent wave, of Set 3, as one increases k from k.2
to ks, in the process tracing out the phase line that is almost straight, and diverges
from the second cusp toward infinity (with positive x), asymptotically making an
angle ¢ with the centerline. The angle ¢ is recorded in Table 1 for all cases, and is,
incidentally, the same for Set 1 and Set 3. That is, the asymptotes of phase lines
for Set 1 at infinity also make the same angle ¢ with the centerline. The angle ¢ is
determined analytically by putting k = k3 = 6~!/Z in

dy F 21)

dx =B = o

with F defined by (2). Equation (21) is equation (6) of [4]. It is immediately clear
that, as o decreases to zero, k3 approaches infinity and ¢ approaches zero—a result

of great significance to remote sensing.
1t is clear from the foregoing description that

ky < k < Kmax
for Set 1,
kmin S k < k2
for Set 2, and
ka<k<ks
for Set 3. For Set 2 (Kelvin waves with surface tension taken into account)
kmin < k < kei
for transverse waves, and
ki <k <k

for divergent waves.

4. Results. The results for various values of o, represented by U/cp;,, are given
in Table 1 and the figures. In Table 1, the results for Sets 2 and 3 are presented
together, and those for Set 1 are presented separately. For U/cpin equal to or less
than 1, there are no waves, as mentioned in Sec. 2.

The various k-values given and the angle ¢ in Table 1 have been explained in Sec.
3. Since the wavelength for Set 2 at the centerline is enormously greater than the
wavelength for Set 1 at the centerline, it is inconvenient to present the entire wave
pattern in a single figure with the same length scale. For this reason, for all cases
except U/cmin = 1.1 (see Figure 1), the phase lines for Set i are presented separately
from those for Sets 2 and 3. TlLe ratio of the length scale for Sets 2 and 3 1o that
for Set 1 is denoted by ¥, and given in Table 1. In reading the figures, then, one
must, for all cases except U/cmin = 1.1, imagine the parts b to be magnified y times
in one’s mind. It is also helpful to keep in mind that along the centerline (y = 0)
consecutive phase lines for Set 1 and Set 2 are spaced at one wavelength apart, and
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il
L

Fic. 1. Pattern of gravity-capillary waves at Ufcqi, = 1.1.

that the wavelength for Set 1 (predominantly capillary waves) is very much smaller
than that for Set 2 (predominantly gravity waves).

From Table 1, one sees that for transverse waves of Set 2 the kivalues are of order
1. These are predominantly gravity waves. For divergent waves of Set 2, k increases
from k. to k.2, and k., may be considerably greater than k., if U/cq,, is greater than
4. Hence the divergent waves of Set 2, which have their counterpart in Kelvin waves
(for which only gravity is taken into account), become more and more capillary waves
as k. is approached for U/cy;, greater than 4 (which is not a sharp boundary, and
is cited here only because it is one value of If/c,,;, chosen in Table 1 which seems to
divide large values of k./k., from modest ones of order 1).

(a) (b)

N

S

Y Y

Fi1G. 2. Pattern of gravity-capillary waves at Ufcg,, = 1.5.
(a) Set 1, (b) Sets 2 and 3 merged.
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For U/Cmin > 4, the waves of Set 3 are predominantly capillary waves. For smaller
values of U/cmia (see, e.g., Figure 2), one can only say that as the phase lines depart
more and more from the center (where y = 0), the waves they represent become
more and more capillary waves.

As noted before, the waves of Set 1 are predominantly capillary waves, and it is
emphasized again that as the phase lines approach y = +o0, they become increasingly
straight lines that make the same angle ¢ with the centerline as the asymptotes of the
phase lines of Set 3, as k3 is approached (or as y approaches +oo).

The most important part of the results is that there are capillary waves with wave
fronts making a smaller and smaller angle ¢ with the centerline as U/cpin is increased.
This has been observed in photographs obtained by remote sensing, and has been a
point of keen interest in naval circles.

From Table 1, one sees for the case U/cyin = 2 that k.; is not equal to k.
Therefore the phase lines for Sets 2 and 3 in Fig. 4b should show a loop as in Fig. 5b.
The loop is too small to be seen, and Fig. 4b instead shows a discontinuity in slope
at a point near where the loop should be. This loop disappears when UfCmi, = 1.8
(which may be taken as the limiting value of U/cyi, below which there is no loop),
which may be compared with the tentative value 2 of Lamb ({1], p. 471, footnote 1).
When the loop disappears, the slope at the juncture of the transverse wav~s of Set 2
and the divergent waves of Set 3 should be continuous. Figure 3b (for U/cpin = 1.8)
shows a slight but detectable discontinuity at that juncture. That discontinuity should
not be there, and is a consequence of the finite-difference calculation when Ak, the
increment of k, is not small enough for the neighborhood of the juncture.

@) ()

//\\ 2

4 Y

FiG. 3. Pattern of gravity-capillary waves at Ufcmi, = L.8.
(a) Set i, (b) Sets 2 and 3 merged.

Finally, we note that the sauare roots in (2) and (6) involve ambiguities in sign.
The square root in (6) can be positive or negative, so that both positive and negative
y-values are allowable. The sign of the square root in (2), which has a consequence
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on the sign of x given by (7), is chosen so that waves of Set 1 start in front of the
disturbance before they wrap around it to positive values of x, and that waves of Sets
2 and 3 are behind the disturbance, so that x is always positive for waves of these
sets.
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FiG. 4. Pattern of gravity-capillary waves at Ufcmn = 2.
(a) Set 1, (b) Sets 2 and 3 (loop with cusps invisible).

)
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FiG. 5. Pattern of gravity-capillary waves at Ufcpin = 4.
{a) Set 1, (b) Seis 2 and 3.
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(a) (b)
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Fi1G. 6. Pattern of gravity-capillary waves at U/cp, = 6.
(a) Set 1, (b} Sets 2 and 3.

(a) (b)

Y

Fia. 7. Pattern of gravity-capillary waves at Ufeq, = 10.
(a) Set I, {b) Sets 2 and 3.
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