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1 Introduction

The Atmospheric Boundary Layer (ABL) may be loosely defined as the lowest
kilometre of the atmosphere adjacent to the earth’s surface. Although only a small
part of the whole atmosphere, this boundary layer has a major impact on weather
and climate.

This is due to the interactions between the atmosphere and the underlying surface
(land or sea) resulting in exchange of energy, momentum, heat, water vapor and air-
admixtures. Hence the large scale features in the free atmosphere are predominatly
forced by processes originating in the planetary boundary layer.

Unfortunately, processes near the earth’s surface are highly inhomogeneous in
space and time, yielding a rather complex description of boundary layer phenomena.
In order to reduce the vast amount of observaticnal and theoretical knowledge about
the real atmospheric boundary layer towards a more concise climatological descrip-
tion, we will focuse on horizontal homogeneous and quasi stationary conditions, i.e.,
we will restrict ourselves to a description of the mean vertical structure of the ABL.

If the atmospheric motions are treated as a special class of fluid flows one would
ask first whether one is dealing with a laminar or a turbulent flow situation. Usually
those type of flows are distinguished by the Reynolds number Re = UD/v, i.e. low
Re-number flows (say Re < 1000) are termed laminar, and high Re-number flows
(say He > 10°) are called turbulent. Now taking typical values for the lowest part
of the atmosphere, the so-called surface layer, we may choose a velocity-scale U =
1 m/s and a vertical height-scale ) = 10 m. With the kinematic viscosity of air
v = 1.5-10"°m?/s we get for the surface layer flow Re 2 10°, hence the atmospheric
boundary layer flow is surely turbulent, which has been of course a well accepted
fact for long time.

Without starting a lengthly discussion on the question "what is turbulence?” (see
books by Tennekes and Lumley (1972), Monin and Yaglom (1975} or Panofsky and
Dutton (1984) for more details) we may simply state that in atmospheric bound-
ary layer flows the meteorological variables like wind, temperature and moisture
are highly variable in space and time if observed with high spatial and temporal
resolution. One example of a high resolution ternperature observation is shown
in Fig. 1. On the other hand observations of meteorological variables can be very
smooth if averaged over space or time, e.g. taking an hourly average for temperature
or a 10 minute average for wind velocity. As an example the typical daily variation
of the mean temperature near the earth’s surface is shown in F ig. 2. More on
observations in the turbulent atmospheric boundary layer may be found in books by
Oke (1978), Nieuwstadt and van Dop (1982), Lenschow (1986), Arya (1988), Stull
(1988) and Garratt (1992).

'T'he Atmospheric Boundary Layer is characterized by strong variations of meteo-
rological variables like wind, temperature and humidity with height. It has become
common practice to subdivide the vertical structure of the ABL into three layers.
The lowest layer, adjecent to the earth surface, is called viscous sublayer and has a



thickness of the order of lcm. It is assumed that vertical transport of heat, moisture
and momentum is due to molecular processes within this thin layer. In meteoro-
logical applications this layer is considered seperately only, if exchange processes
between the oceans or land surfaces and the atmosphere are treated.

Above the viscous sublayer a region of strong vertical gradients of wind, tem-
perature and humidity can be found, which is called "surface layer”. This layer
extends up to heights of about 100m above the ground and has been subject of
most extensive observational work in the ABL as will be discussed in Chapt. 3.

The third layer, extending up to the top of the ABL, is called "Ekman layer”.
This may be attributed to the turning of the horizontal wind with height due to
action of coriolis forces. The vertical gradients of meteorological variables are usually
small compared to those found in the surface layer, hence the Ekman layer is also
called "mixed layer” or "well mixed layer” in the literature. The top of the ABL,
frequently capped by an temperature inversion aloft, can be observed at a height of
1km or so, but this heigt is subject to strong diurnal variations. Typical profiles for
wind and temperature for a daytime ABL can be found in Figure 3.

In the ABL over land the physical processes in the viscous sublayer and in the
surface layer are becoming considerable complex if the effect of vegetation has also
to be considered. As this would be outside the scope of this lecture, vegetation is
treated here only indirectly as surface roughness.
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Fig. 1: Short term temporal variations of the temperature fluctuation 7°. The
mean temperature within the observation period is indicated by T.



2 Basic Equations

Before we discuss the observed structure of the ABL in some detail, we might derive
the underlying physical equations which can be used either for interpretation of the
observations of for modelling the atmospheric boundary layer flow.

In any case we need observations for model verification or simply as initial con-
ditions for solving equations. Here we return to the problem of observations in a
turbulent flow. As we have seen from Fig. 1 and 2 the variability of the temporal
behaviour of atmospheric variables depends strongly on the average over which the
measurements are taken. This in turn is related to the problem which one wants
to investigate. If one is interested in the turbulence itself one would take high re-
solution observations (like Fig. 1). But if for practical applications hourly averaged
values of e.g. temperature or wind velocity (like Fig. 2) are only needed, filtered
observational data are suitable.

For most practical applications of modeiling one is interested only in average
quantities, like hourly averaged concentration of an air pollutant or ten minute
averages of wind speed and wind direction. Hence the models need only solve for
averaged variables using also averaged observartions as input. This would not be
a problem if atmospheric flows would be laminar and slowly varying. But as we
are dealing with a turbulent flow described by nonlinear equations, any averaging
proceedure applied to the problem brings the turbulent fluctuations about the mean
state back to the model equations, as will be shown below.

20
f 15 d
re) ]
- ' % 3
10 @ 3
\/l / 3
5
0 6 12 18 24,

local time {hours)

Fig. 2: Typical diurnal variation of air temperature near the ground for spring time
in midlatitudes.
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Fig. 3: Typical vertical structure of the daytime atmospheric boundary layer.

2.1 Averaged Equations

In the following we will concentrate on typical equations used in atmospheric model-
ling for the wind velocity vector u;, the potential temperature # and an air-admixture
concentration ¢ which could be water vapor or a chemical substance like SOz, CO
etc. We will use the coordinate system as shown in Fig. 4 with velocity components
u,v,w in the r,y, z direction respectively (in tensor notation this will be u;, ug, us
and z,, 13, z3 respectively). In meteorology the vertical coordinate z is directed
upwards, the orientation of the horizontal coordinates z and y depends on the pro-
blem under investigation. With respect to averaged variables one may take either
temporal and spatial averages. Usually locally fixed instruments on towers or on
ground stations are taking time averages, moving instruments like on airplanes or
integral observing systems from satellites are giving area averages of meteorological
variables. A sliding time averaged may be defined by

80 At/a&(t—t)dt’ 1)

3
Then a variable ¢ can be splitted into an average ¢ and a deviation ¢', by:
¢=¢+0¢ (2)
with
¢ =0 (3)

(1]



Fig. 4: The co-ordinate system with some notations as used in the texi.

by definition of (1).
With respect to numerical modelling or to aircraft measurements one may prefer
a spatial average applied to model equations defined by:

5o %
: 1 ,
¢lz,y,2) = ArAyAz / / f ez —z'y—y 2z~ 2V de' dy' d2’ (4)
R

Hence a value ¢ represents an average over the gridvolume Az AyAz used in the
numerical model.

What kind of average should be applied to atmospheric models is not always
obvious as is discussed by Schumann (1975), Deardorff (1973, 1985), Wyngaard
(1982}, Pielke (1984) or Mellor (1985).

Now as the meteorological equations used for modelling purposes are nonlinear,
we have to consider also averages of products like u;¢. If we split like in (2) u; =
7 + u} and ¢ = ¢ + ¢ and apply rules (2) and (3) to the product u;¢ we obtain:

b =T+ uld (5)

As u; is the velocity vector we may interpret (5) as a relation for the flux of a
quantity ¢ which is splitted (r.h.s. of (5)) into a mean flux of a mean quantity (7;¢)
and so-called "turbulent-flux” u’@’. If, for example we take u; = w and ¢ =0
(potential temperature} we would get wf = W0 + w'® where W' is usually called
"vertical turbulent heat flux” in micrometeorological applications.
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At this place we may note, that in atmospheric sciences the so-called poten-
tial temperature © is frequently used instead of the usual temperature T. Both

temperatures are related by
Py
6
=T ( P) (6)

where P, is a reference pressure (usually 1000hPa), R is the gas constant for dry
air and ¢, the specific heat at constant pressure. The potential temperature @ is
thus defined as the temperature an air parcel would attain, if it would be brought
adiabatically from its actual pressure p to the reference pressure pp. Hence ©Qisa
constant for air parcels for adiabatic processes.

Now the concept of averaging will be applied to the equations describing motions
in the atmosphere. The derivations of these equations are not repeated here as they
may be found in detail in other texts (see e.g. Businger (1982), Pielke (1984) or Pan-
chev (1985)). The set of equations usually consists of a Boussinesg-approximation
of the equation of motions (Eq. 7), the first law of thermodynamics written for
the potential temperature 8 (Eq. 8) and an equation for the mass-continuity of air-
admixtures (Eq. 9) like water vapor or chemical substances. The equations are
completed by the continuity equation for incompressible flows (Eq. 10), which is in
accordance with the use of the Boussinesq form of (7). The set of equations may be
written in standard notation as:

au; Ju; 1 35 0 — 0 0 —
bl I = i fiUk — Sip — — ]
ot + U aIk € _?kf]uk 0 3:1:, +g 90 k dmkukuz (7)
o8 08 0 —
i + uia—.r,- = Sy - ax;u'ﬁ (8)
g _oe ) —
a—t" + u,_a: = Sc —_ 6:1:1- uicl (9)
oy
i = 0 (10)

In (7) - (10) f is the Coriolis—parameter po and 8, are constant reference values for
density and temperature and g is gravity. The terms on the r.h.s. of (7) are the
coriolis-, pressure- and buoyancy force respectively. The symbols Sy and S, denote
source and sinks of heat and admixtures respectively. The last terms on the r.h.s.
of eq. (7) - (9) are due to the averaging applied to the non- linear advection terms of
the unaveraged equations. These terms are called divergence of the Reynolds- stress
uhul (or turbulent friction) in Eq. (7), divergence of the turbulent heat flux @ in
Eq. 8 and divergence of the turbulent mass flux u'd in Eq. (9).

As is evident from (7) - (10) we have four equations for the variables used in
atmospheric modelling, i.e. the wind velocity vector @;, the potential temperature
6, the pressure p and the concentration of admixtures €. But we have as additional
unknowns uku,,u:(:" and u’c’ hence the set of equations is not closed. In order

=1



to obtain analytical or numerical solutions for these equations one has to close the
system, i.e. providing as many equations as variables. Thig is called the ”closure-
problem” and is one of the central parts in modelling turbulent flows. Of course
this closure problem is not restricted to atmospheric flow phenomena but is inher-
ent also in engineering type of flows. Hence there is a large variety of papers on
turbulence and turbulence modelling available in the literature. As examples we
mention the textbooks by Monin and Yaglorm (1971, 1975), Tennekes and Lumley
(1972), Launder and Spalding (1972), Hinze (1975), Bradshaw et al (1981), Panofsky
and Dutton (1984), Lesieur (1987) and the review articles by Bodin (1980), Zeman
(1981), Wyngaard (1982), Andre (1983), Sommeria (1983), Deardorff (1985), Mellor
(1985).

2.2 First-Order Closure Methods

Although many kinds of closure models with different levels of complexity have been
proposed (see e.g. Mellor and Yamada, 1974), the most simple method for closing
turbulent flow equations (7) - (9) is to relate turbulent fluxes like wul or wl@ directly
to the mean variables ; or 8 by ulu! = F| (w3, 0, e),uld' = Fy(w%;,0,¢) and uld =
I3 (%;,0,), where the functions £y — Fy have to be determined. This proceedure
is called "parameterization” of turbulent fluxes by first order closure methods. In
analogy to diffusion processes in laminar flows it has been become common practice
(see e.g. Hinze (1975) or Monin and Yaglom (1975)) to use following special first
order closure approximations in turbulence modelling:

Revnolds-stress

U; Ur 1 2
ok, (%2 = Sl 11
Uy U (amk + (93:,‘> + 3 kU, (11)

where A, is called "eddy viscosity” or "turbulent diffusion coefficient for momen-
tum” (index: m). In (11) the Reynolds stress is related to the deformation tensor
of the mean velocity field (like in Stokes-law for laminar flows). The term 1 /36 u:-2
on the r.h.s. of (11) (although often neglected) is formally needed for compatibility
with the continuity equation (10) if one takes the trace of (11) to yield the turbulent

kinetic energy £ = w!*/2.

Turbulent heat flux: 55

— 0

wl = — K, (12)

3;5,-

where K} is called turbulent diffusion coefficient for heat” (Index: h). Eq. (12)
relates the heat flux (u/# is the kinematic form, c,pul’ would be the heat Aux
density in standard units Watt/m?) to the gradient of the mean temperature 0,
hence (12) is also called "gradient-transfer relation”.




Turbulent mass flux: i
F I d dE
uled! = —K,— (13)
' 393,'
where K. is called "turbulent diffusivity for admixtures”. If, for example, we would
take ¢ = ¢ (specific humidity) in (13) K, would be commonly termed ”diffusivity
for moisture ( K,;) or water vapor ( K,,)” in meteorological applications.

Although the closure approximations (11) - (13) have been deducted in analogy
to molecular transport processes, the coefficients K,,, K; and K, are not material
constants of the fluid (air in this case), but are properties of the turbulent flow.
Most important, they are not constants like the kinematic viscosity but may vary
in space and time, i.e. K = K(z,y,z,t) in general. Hence relations (11) - {13) have
closed equations (7) - (9) only to a certain degree, because the coefficients K, K},
K. have still to be determined. This will be done in more detail in the following
chapters.

Another problem disregarded so far is concerned with the anisotropy of the
turbulent diffusivities. A more rigorous derivation of first order closure methods
(11) - (13) (see texthbooks quoted in Chap. 2 for details) would have shown, that
the coefficients K,,, K, and K, would also depend on the spatial direction of the
turbulent fluxes under consideration. Hence K, # K, # K, (where the index
indicates the spatial coordinate) in general as is known from diffusion experiments
with airborne materials (see e.g. Pasquill and Smith, 1983). But due to lack of
knowledge on the anisotropy of turbulent diffusivities, usually K, = K, = aK, is set
in numerical modelling (see e.g. Williams (1972), Sheu et al (1980)), where the range
of values for the constant a found in the literature may be given by 1 < a < 100.
On the other hand most numerical schemes used in atmospheric models contain
an implicit numerical diffusion, mainly caused by the advection terms, which can
exceed the physical horizontal diffusion by an order of magnitude (Pielke, 1984).
Hence in the following we will assume the turbulent diffusivities K,,, K; and K.,
which are also called "exchange coeflicients” in the literature, to be isotropic for
sake of simplicity.

3 The Surface Layer
3.1 Turbulent Fluxes

Near the earth’s surface a shallow layer with strong vertical gradients of wind, tem-
perature and moisture can be observed. This layer, extending up to heights between
10 - 100 m, depending on atmospheric stability is called surface layer (see Fig. 3).
There, the wind velocity increases from 0 at the surface to about 70% of it’s maxi-
mum boundary layer value and the wind direction is nearly constant with height.
As the surface layer is regarded as horizontally homogeneous in the average, only
vertical turbulent fluxes are considered in general. Hence the Reynolds stress tensor
reduces to the components w'u’ and w'v’, the turbulent heat flux to w’@ and the



turbulent mass flux to w'¢’. In the following, the specific humidity ¢ will be taken
for ¢, s0 w'q’ may be termed turbulent moisture flux.

In the surface layer, turbulent Auxes are nearly constant with height, which has
also led to the terminology "constant-flux-layer”. The turbulent fluxes as defined
above are usually related to characteristic values for velocity u., temperature 6, and
moisture ¢, by: '

w, = (Wu +wor)l/ (14a)
0, = —wb/u, (14b)
g = —w'q'/u, (14c)

where u, is called "friction velocity”.
Using {14a - ¢} a characteristic length can be defined which is a measure of the
static stability of the surface layer and is called Monin-Obukhov length L:

uy

.,,.,10!
kg w'd

L=-

(15)

where g is gravity and « von Kirman’s constant.
Since the temperature flux w8 in (15) is related to the vertical temperature
gradient 90/0z by (12), the static stability of the surface layer may be defined by:

i > (1, Qg >0 stable stratification
L adz

1 50

- =0, % = 0 neutral stratification
L dz

1 o0

<0 < (0 unstable stratification

' bz
dince the quantities in (14a - ¢) and in (15) are independent of height, so called
similarity laws, first postulated by Monin and Obukhov (1954), can be set up for

the mean vertical profiles of wind speed 1, temperature © and moisture g in the
surface layer. These can be written in dimensionless form:

L

o= (3 o0
o = e(7) (10
o = () 150

The universal functions ¢,,, ¢, and &, have to be determined from observations.
This has been done extensively during the last three decades. Examples can be found
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among others in papers by Businger et al. (1971), Dyer (1974), Yaglom (1977) or
Mc Bean (1979).

Although many observational experiments have been performed, there is no ge-
neral agreement as to the exact values of the ¢-functions, most data can be fitted
to analytical functions as given by:

(a} unstable stratification (z/L <0):

on = (-8 D) (17a)
o = o (1 - ﬂh%) _1/2, (17b)
bo = au(l- ﬂw%)‘m. (17¢)

(b) stable stratification (z/L > 0):

et

Qbm =1 4+ '7m: 3 (18&)
¢ = ah+vh% : (18b)
¢w = ay + 7w_z" - (ISC)

For neutral stratification the ¢-functions can be derived from (17) of (18} by
setting z/L = 0. As an example of several evaluations of the constants used in (17)
and (18) (see Dyer (1974), Yaglom (1977), Etling (1987) for a collection) the widely
used data sets by Businger et al (1971) and Dyer (1974) are given below:

Businger et al (1971):

k=035 a0, =074, B, =15, =9, Tm =47, v = 4.7
Dyer (1974):

k=041, a, =1, B =16, B = 16, vy = 3.0, v, = 5.0

Profile functions ¢,, for water vapor are commonly set equal to ¢, as is indicated
from the few measurements available (Pruitt et al (1973), Brutsaert (1982)). Thus

for ¢,, one would set a,, = ay, 3, = B and v, = 7 in (17¢) and (18c).

3.2 Profiles of Mean Variables

In atmospheric boundary layer models the flux-gradient relations (16a-c) are often
used to obtain the surface fluxes of momentum, heat and moisture from the mean

11



variables at the lowest grid point of the model. In this way the strong vertical
gradients in the surface layer need not to be resolved explicit by the model grid.
If the lowest grid point is located between zg < z < z,, where z, is the top of
the surface layer, the mean profiles can be obtained by integrating (16a-c) using
empirical functions (17a-c) and (18a-c).

In case of neutral stratification (z/L = 0) ¢m = | and integration of (16a) yields
the so called "logarithmic wind profile”:

Ue | 2

u(z) = p In ” (z > zo) (19)

zo is the so called "roughness length”, which is defined as the height above ground

(z = 0} for which the mean wind velocity & vanishes, i.e. &(zo) = 0. The value of

zo depends on the surface structure (e.g. 2o = 0.1 cm for bare soil, zg = 5 cm for

grass).

For stable stratification (z/L > 0) {16a-c) can be integrated using the general

form (18a-c) yielding the so-called "log + linear” profiles of the surface layer:

@(z) = & ( In = + 3) (20a)
K Zp L

_ — 0. z z

9(2:) = 9(20) + — (O.’h ln— + 'Yh) (201’))
K Zp L

2:) = )+ " (aw o Z 4 vwi) (200)
K Z0 L

For unstable stratification (z/L < 0), Paulson (1970) obtained an analytic solution

for (16a-c):
u(z) = “? (mi — (z)) (21a)

— = /N z z
Bz) = B(z0) + = (m =~ (E)) (21b)
7 - c z
9(z) = G(20) + e (ln — b ([)) (21c)
where the abreviations
_ (1+x) 1 4 z? 1 T 2\ 1/4
¥m = 20— 4o —— —2tan m+§,m_(1wﬁm—ij—)
_ 1+ B 2\ 1/2
Y = In 9 sy—(l_ﬂhL)
'ﬁi’w = wh

have been used. Note that %(z) in (19) - (21) denotes the magnitude of the wind
vector 4, since the wind direction does not change with height within the surface
layer by definition.



-

From the similarity laws (16a-c) one can get also informations on the turbulent
diffusivities K., K and K, in the surface layer. Combining first order closure
relations (11), (12), (13) with the similarity laws (16a-c) one obtains

Kn(z) = ruszel! (22a)
Kp(z) = ru.zg)’ (22b)
Ku(2) = ruoz¢) (22¢c)

For neutral stratification, K., increases linearly with height. The eddy diffusivity
for water vapor K, is usually set equal to Kj. The ration K,,/Kj, called " Turbulent
Prandt! Number”, is derived from (22a,b) as:

En _ o

Kp  om

For modelling purposes equations {20a-c) may be used for the evaluation of the
turbulent fluxes in the surface layer (i.e. wu/, wn’, w'¢,w'q’) from the knowledge
of the computed vaiues %(z,),9(z,), 0(2,), §(2,) and the boundary values 8(20),4(z0),
where z, is the height of the surface layer, generally the lowest computational grid
point of the model, and z is the roughness length. But as the similarity functions
(17a-c) and (18a-c) as well as the integral solutions (20a-c), (21a-c) depend on the
Monin-Obukhov length L, which in turn contains w'@ and wu., this evaluation can
be done only by some iterative methods. But as the numerical solution of the model
equations (7) - (11) has to be performed by iteration proceedures anyhow, it should
be no problem to incorporate surface-layer parameterization described above into
atmospheric models (Busch et al, 1976). If e.g. a temporal integration has to be
performed one could use the Obukhov- length L form the previous time step (L{t))
for evaluation of e.g. wu.{t+ At) from u(t+ At) after (20a) or (21a) without too large
error for small time steps (say 60s). But one may also use an explicit method without
iteration in the surface layer, which was developed by Louis (1979) especially for

application to operational weather forecast models with large time steps (Louis et
al, 1981).

(23)

4 The Ekman Layer
4.1 Ekman-Spiral

Let us consider on atmospheric boundary which is homogeneous in the horizontal
direction except for the pressure forces. If we apply first order closure methods (Egs.
11, 12) to the equation of motion (7) and the first law of thermodynamics (8), we
get following simplified equations:

du . 10p 0 ou

E—fv = —"_éa-f‘affmg (24a)



v 195 9 9p

00 1 arR 8 _ 86
a = -9—6;5-2— + &Kh?,j—z— (24C)

In (24c) R represents the net vertical energy flux due to long wave and short
wave radiation which we might consider as the only source term Sg from (8).

In the following, we will focus only on the equations of motion (24a,b). If we
further consider a stationary and frictionless atmospheric flow, we obtain an equi-
librium between Coriolis force and pressure force, which can be written in vector
notation as:

JEx=—-Vp (25)
e
where £ is the vertical unit vector.
The wind velocity ¥ fullfilling condition (25) is called "geostrophic wind” and is
usually defined by:

- 1

Ty = —k x Vp 26

If we now allow frictional forces to be considered, but still for steady conditions,
equations (24a,b) can be written with the aid of (26) as:

_ ad ou

—f(v-v) = EK"ZEE (27a)
_ a . O

+f(u - ug) - 5;]‘:%5; (27b)

where u,, v, are the components of the geostrophic wind defined in (26). Equations
(27a,b) are called Ekman-layer-equations and can be solved sub ject to the prescrip-
tion on the eddy viscosity K,,. Solutions of these equations for arbitrary profiles
Km(z) will be discussed later. Here we consider the most simple case with K,, =
constant. With the boundary conditions

u=v=>0 z =

u=u,,v=0, 2 — oo
the classical Ekman solution (Ekman, 1905) is obtained for (27a,b) as:

u(z) = uy[l - e B cos (%)] (28a)
o(z) = wu, e D Sin% (28b)

In solving (27a,b) the coordinate has been orientated with the x-axis in the
direction of the geostrophic wind vector Uy, hence v, = 0. In (28a,b) D is the so

14



called Ekman length .
D = (2Kn/f)? (29)

Solution (28a,b) is shown in Fig. 5 as a hodograph of the horizontal wind vector
v, where the T-component is defined parallel to the direction of the geostrophic wind
#,. Although highly idealized, solution (28a,b) contains the pronounced feature of
the ABL, namely the turning of the wind with height due to the combined action
of pressure, coriolis and friction-forces. The angle o between the surface wind (near
z = 0) and the geostrophic wind is 45° for the analytic solution (28a,b}, which is
more than the observed values of about 20°. The reason is, that a constant eddy
viscosity K,, has been employed which is not quite appropriate for a turbulent
boundary layer.

The height of the ABL can also be estimated from (28a,b). If we define this as
the height &, where the wind ¥ is parallel to the geostrophic wind v, for the first time
(i.e. ¥ = 0) we obtain A = xD. In the example given in Fig. 5 we get A ~ 1000m,
which can be regarded as an typical value for height of the neutrally stratified ABL.

Fig. 5: Hodograph of the horizontal wind after analytical solution (28a,b) (Ekman
spiral) for | 7, | = 10ms™!, K,y = 5ms™! and f = 10~* s7!(p = 43°).

4.2 Eddy Viscosity

The so-called Ekman-spiral (Fig. 5) is hardly ever observed in the atmosphere. This
is not only because ideal conditions (steady state, horizontally homogeneous ?itl_xa-
tion) are not easy to be found in the real world, but also because the restricting
assumption of an eddy viscosity constant with height (K, = constant) has be.en
used in solving Eqs. (27a,b). In reality, K, (and also K, and K.) are not properties
of the fluid but properties of the flow. In fact the eddy viscosity K, (and Ki, K)
is dependent on the wind speed and thermal stratification and may t!ne.refore vary
considerable in space and time. Hence there is only limited use in giving exphcit
formulations for K., K and K, valid for all situations in atmospheric flows.
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Although there have been numerous proposals for vertical profiles of eddy diffu-
sivilies (see e.q. Wippermann (1973) or Mc Bean (1979) for a collection), we will
give only some typical examples. As the values of diffusivities for heat (Kj) are
usually directly related to the eddy viscosity K,,, we will concentrate on the latter.
Some proposed profiles are:

Neutral stratification (Wippermann, 1973):
Kn(z) = K, ze~TOFET (30)
with H = ku./f as the height of the boundary layer.

Stable stratification (Brost and Wyngaard, 1978):

(1 — %)1.5
I +4.72

Kn(2) = Ku,z

where h is the height of the stable boundary layer.

Unstable stratification (Moeng and Wyngaard, 1984):

. . 3/2
Km:25m4(1—i)(ﬁ) (32)
Zy Z

where z; is the height of the capping inversion. In (26) w, denotes the so-called

convective velocity scale defined as w, = (zig/%w'—%)lm.

In all empirial functions (30) - (32) the friction velocity u, and the surface heat
flux w8 as well as the height of the boundary layer has to be known. These
parameters can be obtained from other model variables during the computation
proceedure or from observations if available.

Although relations (30) - (32) are only examples of several possible functions
proposed by different authors, they are based on the typical behaviour of the eddy
viscosity in the atmospheric boundary layer: an increase near the surface height, a
maximum in the lower part and a decrease in the upper layer. Also the magnitude
varies with thermal stratification: small values (say 1m?/s) for stable, larger values
(say 10 m?/s) for neutral and large values (say 100 m?/s) for unstable stratification.
This qualitative behaviour is illustrated in Fig. 6.

4.3 Mixing Length Approach

As stated before, the turbulent diffusivities Ky, Kj and K. are usually not fixed in
time and space as is suggested by empirical formulae like (30) - (32), but are pro-
perties of the flow, which might be quite complex in certain atmospheric situations.
In order to take the variability of diffusion coefficients into account the so-called
"mixing-length
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Fig. 6: Typical vertical profiles of the eddy viscosity K.

hypothesis” has been applied quite often in atmospheric modelling. In general
form, the eddy viscosity is assumed to be related to the deformation for the mean
velocity field by:

ou; Oug
2
Km =€ Oz Ox; (33)

Here £ is called "mixing length” and is a representative measure of the scale of the
turbulent eddies in the flow under consideration, hence ¢ is also termed "turbu-
lent length scale”. In the atmospheric boundary layer, where vertical gradients are
usually predominant, (33) may be written in the more familiar way:

o

K,=#¢
0z

(34)

where u; denotes the horizontal wind velocity vector.

In order to apply (34) to real flow situations the mixing length ¢ has be to
described in order to close the set of equations. This has led to numerous proposals

in the literature which can not be treated here extensively. For more details we
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refer to papers by Wippermann (1973), Clarke (1974), Yu (1977), Mc Bean (1979)
or Bodin {1930) where a collection of different mixing length formulations can be
found.

Instead as an example the widely used mixing length profile due to Blackadar

(1962} is given, which reads:
Kz

o) = oz
X

Here A is the assymptotic value of the mixing length ¢ for large z, i.e. in the upper
part of the atmospheric boundary layer. A may be related to the geostrophic wind
v, by

(35)

|z

A =27 107 %’ (36a)
or to the friction velocity u. by
A=63 1073 3} (36b)

where f is the Coriolis parameter.

The proposed mixing length profile (33) has a linear increase near the surface
(like in the surface layer, see Chap. 3) and approaches the limiting value ¢ =
(typically 30 m} in the upper part of the boundary layer.

As an example simulations of the so-called Leipzig wind profile (Lettau, 1950)
with mixing length profile (35) are shown in Fig. 7 - 9 (after Detering, and Etling,
1985). In this case the observed geostrophic wind was V, = 17.5 m/s and the
roughness length 2y =0.3 m. The lowest layer with zo < 2 < 2z, was modelled using
the logarithmic wind profile (Eq. 19), where z, is the height of the surface layer
and also the lowest computational grid point. The mixing length formulation seems
to agree reasonable with observations, but this is expected as this profile has been
fitted, among others, to the measurements of Leipzig wind profile. Although this
case is just an example of wind profiles observed in the ABL, simulations in Fig. 7
- 9 give an impression of the typical vertical variation of mixing length ¢ and eddy
viscosity K., as well as for the horizontal wind components @ and ¥, in the neutral
atmospheric boundary layer for strong geostrophic winds.

4.4 Influence of Thermal Stratification on the Mixing Length

As already stated in Chap. 4.2, the magnitude of the turbulent diffusivities (or
exchange coefficients) depends also on the thermal stability of the atmosphere. If
we apply this idea to the mixing length approximation (33), (34), the influeance of
stratification should be incorporated into the formulation of the mixing length ¢ (z).
Many modifications of the neutral mixing length, denoted by ¢, in the following,
by stratification have been proposed by various authors (see Wippermann 1973),
Clarke {1974), Yu (1977), Mc Bean (1979), Therry and Lacarrere (1983), Detering
(1985), Lacser and Arva (1986) for collections of proposed formulations. Here we
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will give only few examples of methods incorporating the influence of stratification
into the mixing length approach.

If the mixing length ¢ is regarded as a characteristic length scale of the so-called
"energy-containing-eddies” in turbulent flows, the result obtained so far may be
interpreted as follows: under unstable stratification the size of the turbulent eddies
is enhanced by buoyancy forces, whereas the size is reduced under the action of
gravity in stably stratified flows.

It is quite common to use the so-called Richardson Number Ri as a measure of
stratification in the atmosphere:

00
_ g0z
NZOSNTEAS
(%) + (&)

In (37) the consideration of the vertical shear of both velocity components @ and T
is necessary in the atmospheric boundary layer due to the turning of the wind with
height (see Fig. 5). Many relations for the modification of the mixing length by
stratification expressed through the Richardson number have been proposed in the

literature. A collection of different forms may be found in Blackadar (1979), from
which we quote the following proposals:

(37)

(a) unstable stratification ( Ri <0):

¢ =£,(1 — 18Ri)/* (38)
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{b) stable stratification (0 < Ri < 0.2):
¢ = 0.(1 — 5Ri) (39)

where ¢, is again the mixing length for neutral stratification.
The influence of thermal stratification on the mixing length in the ABL is shown
schematically in Fig. 10.
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Fig. 10: Typical profiles of the mixing length ¢ for different stratification.

The form (39) used for stable stratification implies a critical Richardson number
Ri. = 0.2. i.e. £ — 0 for Ri > Ri., which physically means vanishing turbulence
for large positive values of the Richardson number. But as the critical Richardson
number is still a matter of discussion, and a vanishing mixing length also leads to
Ky = 0 (which is not always desirable in numerical modelling), also other mixing
length formulations for the stable case have been proposed. An example as given
by Gutman and Torrance (1975) may be written:

£=0,(1+3R)Y Y2 | Ri>0 (40)

In this case £ — = 0 for Ri — oc in an asymptotic way without defining a critical
Richardson number a priory.

Although the relations (38) - (40) give some idea how to incorporate thermal
stratification into the mixing length profiles, the correct method is still debatable as
can be seen from the different papers quoted in this context.



4.5 Equation for the Turbulent Kinetic Energy

In the mixing length approach (33) or (34) the eddy viscosity K,, was related to
the local deformation of the mean velocity field. But as eddy viscosity may also
depend on time history and turbulence properties of the flow under consideration, a
shightly different mixing length formulation has become quite popular in turbulence

modelling. Here instead of the deformation tensor the turbulent kinetic energy
(TKE) defined by

E = 05u" = 0.5(u? + o2 4 57) (41)

has been used for a mixing length hypothesis. This approach may be called ”Prandtl-
Kolmogorov” relation and is termed ”level 1.5” approximation in the closure hier-
archy developed by Mellor and Yamada (1974). It reads:

K, =c. tEY? (42)

where £ is the mixing length as in (33), (34) and ¢, a constant. Although there
are slightly different values for ¢, offered in the literature (see Detering and Etling
(1985) for a collection), we may adopt the value c. = (.4 here.

Besides from the problem, that the mixing length ¢ has to be specified an ad-
ditional equation for the turbulent kinetic energy £ has to be used for closing the
problem. This equation (see e.g. Busch (1973) or Businger (1982) for a derivation)
may be written as:

OF oF a . Ok
—&--f-mag:ZmeLPt-E*-amiKea—; (43)

In (43) P denotes the production of turbulent kinetic energy by mechanical forces
and F; the production (or dissipation) by buoyancy forces, described by:

/
‘(‘jl‘k
g

JDt = EW (44b)

P = —ulu (44a)

The production terms P, and P, in (43) may be also written with the vertical
gradients of the mean variables using the boundary layer approximation as:

po= k| () (2] (50

g o0
P == —:K e 4
¢ 7 g (45b)
'The turbulent diffusivity for kinetic energy K, in (43) is usually related to the eddy
viscosity K,, by K. = cK,,, where the constant ¢ is about 1.3. Also often the
relation K, = K} is used for stmplicity.
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The energy-dissipation e still has to be determined in Eq. (43). This is usually
done by the so-called Kolmogorov relation

[N

E
€ =C—

; (46)

where £ again is the mixing length. The constant c, is related to the constant ¢, in
Eq. (42) by ¢. = ¢ (see e.g. Detering and Etling, 1985). Hence with ¢, = 0.4 one
would get ¢, = 0.064.

For application of the Prandtl-Kolmogorov closure (42) and (43) to numerical
modelling also boundary conditions for the turbulent kinetic energy E have to be
specified. Whereas at the top of the boundary layer (z = h, or z = z;) usually the
condition £ = 0 is applied, there is no obvious condition for the lower boundary
at the earth’s surface. Observations show that the turbulent kinetic energy in the
surface layer is related to the friction velocity u. by:

E=ullc® | m<z<az (47)

where 2, is the top of the surface layer and ¢, is the same constant as used in Eq.
(42). Indeed if (47) is inserted in the Prandtl-Kolmogorov relation (42) one yields
K, = lu, which is the same as (22a) for the eddy viscosity in the surface layer
under neutral stratification.

But one has to keep in mind, that all closure methods for turbulent fluxes contain
some empirical assumptions, which might not be applicable to real atmospheric flows
in all situations. As an example we might mention that simple first order closure
models like (11) - (13) are not suitable under very stable (h/L > 5) or very unstable
(h/L < -10) conditions for describing turbulent transport (Wyngaard, 1985). In
those cases turbulent fluxes may be even up- gradient of mean quantities, implying a
negative diffusivity in flux-gradient relations like (11) - (13). In order to handle these
problems of buoyancy-dominated turbulence in the parameterization of turbulent
fluxes, some kind of integral closure methods have been proposed recently (Fiedler
and Moeng, 1985; Stull and Driedonks, 1987), but will not be discussed in this
context.

4.6 Turbulent fluxes

As the flow in the ABL is usually turbulent, one might be also interested in the
vertical profiles of turbulence quantities as already discussed for the surface layer in
Chap. 3.1. Although data on these quantities are not easily obtained in the lowest
1000m of the atmosphere typical profiles of the turbulent heat flux w’'®’, momentum
flux w'v’, w'v’ (also called Reynolds-stress) and the velocity variances u w?,v? w'?
have been documented through various field experiments (see data collectlons in the
books by Nieuwstadt and van Dop, 1982, Lenschow, 1986; Arya, 1988; Stull, 1988;
Garratt, 1992).
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Some examples of vertical profiles of various turbulence quantities are given in
Figs. 11-13. In general, turbulent heat and momentum flux as well as temperature
and velocity variances are decreasing with height and vanish above the ABL height
z = h. The maximum values can be found at the lower boundary, i.e. at z = z,.
This is due to the fact, that near the ground vertical gradients of mean wind and
mean temperature are very large and thus give rise to strong turbulent fluxes.

Some exceptions from this behaviour can be found in the so-called convective
boundary layer under unstably stratified conditions. Here some regions of negative
heat flux can be observed near the top of the ABL (Fig. 11) which is due to entrain-
ment of warm air from above the temperature inversion (see also Fig. 3). Also the
velocity variances sometimes have a maximum in the middle of the ABL and not at
the ground, which is related to the appearance large-scale structures (plumes and
thermals) in a strongly heated boundary layer (Fig. 12).
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Fig. 11: Normalized turbulent heat flux as a function of normalized height 2/A in
the unstably stratified ABL (after Caughey, 1982).
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Fig. 13: Velocity variances normalized with the friction velocity u. as function of

height z/h for a stably stratified ABL (after Caughey, 1982).
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5 Applications of ABL theory

This lectures on the atmospheric boundary layer might seem very specialized within
the workshop on Fiuid Mechanics. But if we look for practical applications we will
find, that knowledge of ABL physics is essential for various fields in meteorology
and engineering. In order to illustrate this, we will give some examples below.

Prediction of weather and climate

As weather we may simply define the variation of the atmosphere e.g. wind, tempe-
rature, humidity, clouds, rain within global spatial scale and temperature variation
within days. Climate might be defined as the temporal variation of global wea-
ther within time-scales of months, years or decades. The prediction of weather and
climate by means of numerical models is an actual task performed by hundreds
of scientists worldwide. Although the ABL covers only about 1/10 of the volume
of the whole atmosphere, it is also the lower boundary of the troposphere and all
exchanges of physical and chemical quantities between the earth’s surface (contin-
ents and oceans) and the free atmosphere are taking place at this lower boundary.
Hence it is very important to know the excact transfer of momentum, heat, moi-
sture and trace substances from the surface to the atmosphere and vice versa. For
this reason, knowledge of the turbulent exchange processes in the ABL is neccessary
in order to obtain the correct forcing of the free atmosphere from below. As one
excample we might mention the heat exchange between the land surface and the
overlying atmospheric layer which lead to the diurnal variation of air temperature
in the ABL, as ist discussed in some details in Part II of this lecture. On the other
hand, ocean circulations are driven to a great part by wind forces applied to the
water surface, hence knowledge of the surface wind stress (e.g. w'n’) is required for
calculation of ocean currents. More information on the role of the ABL in weather
and climate prediction can be found in the monograph "The Atmospheric Boundary
Layer” (Garratt, 1992).

Air pollution problems

The pollution of the earth’s atmosphere by antropogenic sources is one of the major
environmental problems of our society. Except for aircraft emissions, all pollutants
are produced near the earth’s surface, where human life takes place. Hence it is
obvious, that the ABL is the most polluted part of the whole atmosphere. And as
all people are living on the earth’s surface, the effects of air pollution on mankind
is pronounced in the ABL.

Now what has boundary layer physics to do with this problem? All pollutants
set free by industrial or natural sources are transported with the wind from their
source to other regions of the near surface layer of the atmosphere. Vertical and
lateral dispersion of pollutants is due to turbulent motions in this layer. This can
be illustrated by means of the equation for air admixtures (Eq. 9), which is repeated
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here.

Jc dc d . 0c

ot + uia_as,- = F)?ihch_,- (48)
¢ 1s the mean concentration of an air admixture, T; is the mean wind field and K.
is the turbulent diffusivity for an air admixture c.

Although % and K. are usually varying in space and time, it is sufficient for
many applications in air pollution problems, to know only the vertical profiles of
the wind %(z), () and of the diffusivity K.(z) (usually related to the eddy viscosity
Km(z)). These can be obtained from ABL theory or observations, as described in
Chap. 3-4. More details on air pollution problems as related to the ABL can be

found e.g. in the monograph ” Atmospheric Diffusion” (Pasquill and Smith, 1983).

Wind Engineering

Under wind engineering we might summarize the applications of wind to technical
problems, e.g. wind forces on buildings and structures. Also the problem of wind
energy, i.e. the production of electrical power by wind converter, can be taken as an
example. For the latter we know, that the power output from wind energy devices
is proportional to the third power of the wind speed. Hence a good knowledge of
the vertical wind profile in the lowest 100m or so above ground is very important
for the proper placement of wind energy devices.

Another application of boundary layer meteorology is related to aviation safety
during take-off and landing. Here strong wind shear near the ground or unexpected
turbulent gusts can be hazardous to aircrafts in this situations. Most information
on wind engineering problems can be found in the book ” Engineering Meteorology”
(Plate, 1982).
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Appendix 1-D Boundary Layer Model

For computer demonstrations we choose a simple 1-D model for neutrally stratified
boundary layer.

The model equations read:

g—;—‘ — fo = %ngg (A1)
G- = Lg% (A2)
In Al, A2 the x-axis (u-component) is aligned with the geostrophic wind u,.
Boundary conditions:
bottom : z=2 : uwu=v=10 (A3)
top : z=h : uw=—u,u=0 (A4)

Solution of eq. (Al, AZ2) as combination of surface layer laws (chapter 3.2) and
mixing length approach (chapter 4.3) for the Ekman layer:

(2) surface layer : zo < z < 2,

K, = ku.z (A5)

u(z) = > n (i) cos ay (A6)
K r4y)

v(z) = “n (i) sin ag (AT)
] 20

Qo is the angle between the wind vector #, at z = z, and the geostrophic wind u,
(cross-isobar-angle). z, is taken as z, = 25 m.

u,
(b) Ekman layer: z, < 2 < h
. ,11/2
K, = P [(g—“) 4 (%) ] (A8)
Kz
i = A9
with { 7= (A9)

and A = 2.7 107%,/f (A10)

I



Wind components u(z),v(z) obtained as steady state solution from (Al, A2) by
numerical integration.

Friction velocity u. and angle oo needed in (A5 - AT) are obtained by iteration in
combination with {Al, A2).

Model input: geostrophic wind u, and roughness length z,
Model output: u.,ao, u(z),v(z), Kn(z)

Example: u;, = 10 m/s, 20 = 1 m — u. = 0.41 m/s, ap = 29.6°

Profiles of wind velocity components for this case are shown in Fig. A2 and as a
wind-hodograph in Al. Eddy viscosity K,, is shown in Fig. A3.

For steady state (3/3t = 0) an analytical solution for Al, A2 can be found using a
two layer model:

Z,r——- Ekman layer: Ko = Kuoz,, z> 2,
Surface layer: K, = Ku.z, 20 <z <z,

Windprofiles (analytical solution):

(a) surface layer: (2o < z < z,)

#z) = 2 [ £

u(z) = p In (20) cos ap (A11)
w(z) = 2in [ 2 si

v(z) = , n (Zo) sin aq (Al12)

(b) Ekman layer (z > z,)

(z) = wu, (1 ~ V2 exp (—z Bz’) sin ag cos (z I)z" + g - ao)) (A13)

Wz) = uy, (\/i exp (—z ;z,) 8in ap sin (z ;z’ + g - ao)) (Al4)
with D = (2ku.z,/f)'/? (Al5)

ag 18 the cross-isobar angle as defined above.

Model input: geostrophic wind u,
roughness length zg
surface layer height z,
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Model output: w., g obtained by matching solutions (A11,A12)
with (A13, Al4) at z = z, by iteration
u(z), v(z) with u,, oy from All - Al4

The variation of the surface layer height z, may be regarded as influence of thermal
stratification. Typical values may be:

2z, = 10 m stable stratification
z, = 30 m neutral stratification
z, = 50 m unstable stratification

Typical range of friction velocity u, : 0.1 - 0.5 m/s
Typical range of cross-isobar angle a : 10° - 40°

Typical variation of u, (and also of K, = Ku.z,) and ap with the input parameters
ug, 29 and z, are shown below.

Uy U, Uy ,,’d.g U, u,
“.0 ~.. C(.O ,/’ “‘0 ~ -
- - -
%o //* ‘\“--._
N 0
P
0
Y 0 Zg 0 z

The analytical model A1l - Al4 is also used as initial profile for stuting the nume-
rical solution of boundary layer model Al - A10. Both can be run interactively at
the PC’s.

S00m

) =
0.5 1.0

u

wind hodograph T
9

Fig. Al: Wind hodograph (Ekman-spiral) resulting from a boundary layer model
with u, = 10 m/s™" and 2 = 1 m.
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Fig. A2: Same as Figure Al but for the wind profiles u(z) and v(z2).
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Fig. A3: Same as Figure Al but for the eddy viscosity Km(z).
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