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Quantum phase transitions and conserved charges

Subir Sachdev
Department of Physics, P.O. Bor 8120,
Yale University, New Haven, CT 06520-8120, U.5.A.
and
Laboratoire de Physique Théorique et Hautes Energies, Université Paris VII,
75251 Paris Cedez 05, France
(November 30, 1993)

Abstract

The constraints on the scaling properties of conserved charge densities in the
vicinity of a zero temperature (T'), second-order quantum phase transition
are studied. We introduce a generalized Wilson ratio, characterizing the non-
linear response to an external field, H, coupling to any conserved charge, and
argue that it is a completely universal function of H/T: this is illustrated
by computations on model systems. We also note implications for transitions
where the order parameter is a conserved charge (as in a T = 0 ferromagnet-
paramagnet transition).
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I. INTRODUCTION

There has been some interest in the theory of zero temperature quantum phase tran-
sitions in condensed matter systems for a few years now {1}, particularly in the context of
nietal-insulator transitions .|. However, the recent proliferation of experimental systems in
which such transitions may be observed has lead to a surge in theoretical work. Transiiions
of interest include the superconductor-insulator transition in thin films {3], the transition
between the plateaus in the quantum hall effect [4], and a variety of magnetic order-disorder
transitions in the cuprate compounds [5], metal-semiconductor composites [6], and heavy-
fermion (7,8] systems.

In this paper we will examine some special properties, in the vicinity of second-order
quantum transitions, associated with “conserved charges”, i.e. observables which com-
mute with the Hamiltonian. Related issues have been discussed recently by other investiga-
tors [9,10], with their focus being on the T' = 0 properties of the currents associated with
conserved charge. We will study here the unusual and remarkable properties of fluctua-
tions of conserved charges themselves in tlie finite-temperature quantum-eritical [11,5,12,13]
region near the quantum phase transition.

The quantum-critical region was introduced by Chakravarty et. al [11] in the context
of the two-dimensional quantum sigma model. An analogous region can in fact be defined
in the vicinity of eny second-order quantum phase transition, as the region where kT is
significantly larger than any energy scale which measures deviations of the coupling constants

 from their zero temperature critical values. Note that, somewhat counter-intuitively, the

quantum-critical region occurs at high temperatures; of course, the temperature cannot
be so large that it becomes of the order of some high-energy cutoff in the system. At
short distance/time scales the system displays the scale-invariant properties of some zero
temperature critical point; at larger scales, the critical fluctuations are quenched by thermal
effects in a universal manner described in Ref. [5,13]. Because kgT is large, the thermal
quenching occurs before the deviations of the couplings from their ground-state critical
values have had a chance to take effect. Thus, in the quantum-critical region, the dominant
behavior of the systein is described at all scales by the zero temperature critical point and its
universal response to a finite temperature. Further, the only effect of a finite temperature
is to impose a finite length h/(kgT) along the imaginary time direction on the quantum
field-theory of the zero-temperature critical-point; the temperature response of the critical
point can thus be described by the principles of finite-size scaling [11,5,12,13].

This paper will examine the non-linear, finite temperature response of a system in the
quantum-critical region to an external field which couples to a conserved charge. Our moti-
vation to examine this issue comes primarily from quantum spin systems [12,13] and heavy-
fermion alloys [7,8], although we will attempt to phrase our discussion as generally as pos-
sible. After some general discussion on conserved charges and their scaling properties in
Sections Il and 111, we will present illustrative calculations on a number of mode] systems
(Section 1V). 7

Strictly speaking, the considerations of this paper will use only some modest assumptions
about the zero temperature critical point. In particular we will only require that it be
gapless with a power-law singularity in the density of low-energy energy excitations. One
can imagine, particularly in random quantum systems, that this condition may be satisfied

2
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even by systems which are strictly not at a scale-invariant critical point. We expect that our
results will apply to such systems too. However, for definiteness, we will continue to phrase
our discussion in the language of second-order quantum phase transitions.

In Section V, we will consider a special application of our results to the case where the
conserved charge is itself the order parameter of the transition: the most familiar example
of this is the ferromagnet-paramagnet transition in a Fermi liquid. We will show that the
existing treatment of this transition [1] is fundamentally incomplete, and will indicate the
restrictions any correct theory must satisfy; we will, however, not provide such a theory
here.

II. GENERAL CONSIDERATIONS

This section will discuss the general constraints that are imposed on correlators of cou-
served charges and currents. These constraints are perhaps most familiar in the particle
physics context of ‘current algebra’ [14]. We will review these ideas here in a formulation
designed to address quantum phase transitions in condensed matter systems. Moreover, in
the latter context, our point of view is different from previous ones [9,10}, and it therefore
appears worthwhile to present the complete argument in its full generality. Consider, then,

the partition function, Z, of the system of interest in the vicinity of the quantum phase
transition:

1
Z = D, ex (——jd‘rﬁ a). 2.1

balr+Lr)=0a(r) $eeXP\ 7R (6] @D
The Lagrangian L is a functional of a set of fields ¢, which are assumed to be bosonic
for simplicity - the extension to fermionic fields is straightforward. The fields depend im-
plicitly on the d spatial co-ordinates z and the imaginary Lime co-ordinate 7. All allowed
configurations are periodic in 7, with period

h_

L, kg1’

(1}

(2.2)

where T is the absolute temperature. We will find it more convenient to think of 7 running
from —o0o to oo with the constraint on the periodicity of the fields, rather than, as is
conventionally done, restricting attention wo the fundamental domain 0 < 7 < L,.

Let us now assume that £ is invariant (upto a total time derivative)}, under some
spacetime- independent symmetry transformation of the fields ¢°. In its infinitesimal form,
this transformation can be written as

$a — ba + 1M Fs (2.3)

where the 5, are the infinitesimal, dimensionless, parameters specifying the transformation
and the F® are the generators of the Lie algebra associated with the symmetry. These
generators will satisfy a commutation relation of the form

[F®, F%} = i fopy F™ (2.4)

Ve o~



where the f,s, are the structure constants of the Lie algebra.

We now use the usual Noether argument to identify the charges and currents. Make the
transformation (2.3) on £, but with the 5, spacetime-dependent. In general, any variation
in the action under this transformation, will depend, to linear order, on the derivatives of
the ,. We therefore have for small 5, (and again upto a total time derivative)

Lo L+ ih/d”zaﬂn,qm(x, T) (2.5)

where the index u extends over the d + 1 spacetime co-ordinates. The co-efficients, g,4
of 8,1, are, of course, the conserved charge densities associated with the symmetry under
consideration, while the ¢., are the associated currents. (At this point, it is conventional in
some field theory books to identify the g, with ¢, F36L/6(8,¢s); we caution the reader that
this latter form fails for the coherent state path integral of quantum spins - the definition
(2.5) is more generally valid.)

We are interested in the special constraints that apply to correlation functions of the
ua- To this end, we place the system in external fields A,, which couple to the g,,; the
correlation functions can then be obtained by taking appropriate functional derivatives w.r.t
the A,,. While it is sufficient to simply add a linear coupling AuaGua to £ to achieve this,
we will find that this approach is not the most convenient in deriving the Ward identities.
The following approach is found to be the most dnrect Generalize the Lagrangian L[¢,] to
the field-dependent £[¢,, A,a] and evaluate

Z(Au) = |

dalr+Lr)=da(r)

Déy ex; (-% j drL[., AM]) . (2.6)

The new L., A.a] is chosen such that it is invariant (upto total time derivates) under
spacetime- dependent transformations of the form (2.3) accompanied by the following trans-
formation of the A,,

Apa = Apa + Oulta = JapyMoAuy (2-7)

In other words, we have promoted the global symmetry to a gauge symmetry, and the A,
are the non-abelian gauge connections.
Let us now examine a few simple examples of the above construction.

1. Non-relativistic electrons in a magnelic field

Non-relativistic spin-1/2 electrons, ¢,(z,7) (a =1,]), in an external magnetic field H =
Napv0a,/0z5 (a, 8,7 = 1,2,3) are described by the following Lagrangian

2
e /dd [ Bca ch. l ey — _h_ (52_. - mc.,) Cq

2
where the ellipses indicate terms without any derivatives, the 0® are Pauli matrices, and
g is tl. gyromagnetic coupling. The paramagnetic and diamagnetic couplings of the field

+ .- ] (2.8)
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to the electrons play totally distinct roles in the present symmetry analysis. There are two
distinct conserved charges - the total number and total spin of the electrons. The first is
associated with the U{1) symmetry

Cu — Ca + NCa. | (2.9)

Upon gauging this symmetry we see that the a, are the spatial components of the A, fields
introduced above

On
a Qo 2.10
a a, + Bz ( )
The second is the spin-rotation symmetry

Co — Ca+ i%vfb% (2.11)

which when gauged leads to the transformation

i
gH, — gHa — T Mo gsuﬂw’?ﬁ”m (2-12)

on the magnetic field (¢ is ihe totally antisymmetric tensor). Thus igHa/h is the 7-
component of the non-abelian SU(2) gauge field, A,a, associated with the SU(2) spin-
rotation invariance. Note that A.q i8 purely imaginary. We shall mainly focus on the
consequences of this second symmetry in this paper.

2. O(3) sigma model

This model is a popular long-wavelength description of low-lying spin excitations-in an

insulating antiferromagnet. In the presence of an external magnetic field H,, the Lagrangian
takes the form [15]

_ L a2 _ig )’ 2
£=15 j d xLz Buia — & caas Hams + (8:ma) (2.13)

where n, is a 3.component, real, unit-vector representing the local orientation of the anti-
ferromagnetic order parameter. L is invariant under an O(3) symmetry under which

g —* Mg — Na€oabfh, (2-14)

while H, continues to transform as in (2.12) and thus igHq/h is the r-component of a O(3)
non-abelian gauge field.



3. Quantum spins

The symmetry analysis of the path-integral of quantum spin systems is somewhat more
subtle, but our general discussion has been phrased carefully to include this case. As was

first shown by Haldane [16], the path integral of any quantum spin Hamiltonian involves the
Lagrangian

d N
L= ihszwb(na,-)—%—’ + H(a;) (2.15)
j

where S is the half-integral /integral magnitude of the spin, the §),; are unit 3-vectors on sites
J representing the instantaneous orientation of the spin, and W, is any function satisfying

a
a c—Wc - Qa .
Eab a0, (2.16)
(we have momentarily dropped the site index j). The Hamiltonian H does not involve any
time derivatives, and is spin-rotation invariant. Let us now make a space-independent, but
time-dependent rotation of all the spins

n¢| — Qa - nc(T)Ecabea (217)

Inserting this into £, using (2.16) and the unit-length constraint on £, simple manipulations
show that, upto a total time derivative,

dn,
d” SN (2.18)
7

T

L— L+1hS

By our prescription (2.5) this identifies $3_; (1,; as the conserved total spin. In the presence
of a magnetic field the action is clearly

d(ly;
dr

£ =ihS Y Wi(Q;)

2

gl 3" Qi + H(O;) (2.19)
7

This is now invariant under time-dependent gauge transformations with H, transforming as
in (2.12). Note that the ‘rule’ of replacing derivatives with covariant derivatives does not
hold in this case - our formulation is however still valid.

We now return to the general considerations. We will consider first the Ward identities
satisfied by correlators of the conserved charges and currents. This will be followed by a
discussion of properties properties of the system in a time-independent external field.

A. Ward Identities

An important property of the functional Z(A,,) in {2.6) is that

Z(A.uﬂ) = Z(Anuﬂ + aﬂ’?a - faﬁ'rnﬂA,u'y) (22{})

S OF -



for any spacetime dependent gauge transformation 7, such that (2.3) is consistent with the
boundary conditions ¢a(T + Le) = @a(7)- (This fotlows from performing (2.3) on the ¢,
dummy variables of integration, followed by (2.7), which leaves the action invariant.) We
expand (2.20) to linear order in y and obtain the key Ward identity

8§Z(Aua) §Z(Aua)

Al A T e,

(2.21)

The left-hand-side of this equation is simply the divergence of the conserved charge and
currents. The right-hand side is the analog of the ‘streaming’ ot ‘Poisson-bracket’ terms [17]
in the theory of the dynamics of classical phase transitions; this term dictates that the
conserved charge undergoes a uniform precession under the presence of the external field.

In the following we will mostly be interested in constraints on correlators of the conserved
charges g,, under conditions in which only the r component of the A, is non-zero. By
integrating (2.21) over all space we can obtain a constraint on these correlators

§Z(Avar Aza=0) _ [ 4 8§Z( Ao Aza = 0)
]d‘a: o, Az, 7) = fd T fapyAra(2,T) A 5z,7) (2.22)

A particularly useful consequence of (2.22) is the constraints it places on two and three-point
functions of the conserved charges. If we make the expansion (restricting, for simplicity, to
a translationally invariant system) ‘

F(Arar Asa = 0) = [ d99dwG(0,)Ara(0:0)Aral=9,—0) +

fddfhddthdu-hdwzram(m,stwhwz)Am(q:,wl)Afﬁ(qz,wz)Am(‘—m - g2, —wW1 — wz)
+ (2.23)

where the ¢; and w; are momenta and frequencies and F is the free energy density, we see .

from {2.22) that

3i(wr + W) (g, —q,wr,w2) = TP (G(q,w1) — Glg,w2)) (2.24)

This identity will be useful to us later in our study of ferromagnets.

B. Time-independent, uniform, external field

We will consider explicitly only the case of a time-independent, uniform, A,, field; the
spatial components A, will be taken to be zero. As was clear from the examples considered
above, the A,, corresponds to an imaginary external magnetic field in spin systems. To
emphasize this we will use the notation

igH,
.

As in Section 11 A we attempt to ‘gauge away’ the field dependence of Z(Ho) = Z{Ara, Aza =
0) for the case of a time-independent H,. From (2.7) it appears that we should choose

Ava

in

(2.25)

7
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dna _ .9Ha

dr h

(2.26)

(a generalized Josephson equation). However the corresponding transformation (2.3) on the
é. necessarily modifies the boundary conditions. We have therefore

Z(H.) = j Déa exp (% j drE[qS,]). (2.27)

$a(r+Lo)=bu(r)+ilisHaLe [RIFSds(r)
Thus the sole effect of the field H., is to put a twist in the periodic boundary conditions on
¢ by an imaginary angle igHL, [h.

III. SCALING PROPERTIES NEAR QUANTUM PHASE TRANSITIONS

We will focus almost all our subsequent attention in the ‘quantum-critical re-
gion’ {11,5,12,13] where k57T is much greater than any intrinsic low-energy scale associated
with the deviation of the ground state from criticality (we must of course not make kg7 so
large that it becomes comparable to ultraviclet cutoff’s in the system). In this region, the
leading T dependence of all observables is specified by properties of the T' = 0 critical point.
In the following, we will therefore neglect the deviation of the ground state from criticality,
although the extension to including its consequences are quite straightforward. Also, we will
rgostly consider the case of a uniform, time-independent field A,, # 0, A;o = 0, and refer
to the external field using (2.25).

We consider the properties of the the free-energy density F = —(h/(L,V))logZ =
—(kgT/V)log Z (V is the spatial volume of the system which is assumed to be infinite)
as a function of T and I. Consider first the case H = 0, and T close to 0. The only
effect of a finite T is in the imposition of a periodicity in ¢ with period L, on the critical,
scale-invariant theory at T = 0, H = 0. The hypothesis of finite-size scaling [18] predicts
the following temperature dependence in F

F(T, H = 0) = F(0,0) — ,T" (3.1)

There is no general expression for the exponent p, or the constant ¢;. However, if the system
is below its upper critical dimension, the hyperscaling hypothesis [18] states that the scaling
dimension of F is identical to its naive engineering dimension: this yields

d
p=1+—z— (32)

The 1 contribution is due to the 1/L, prefactor in the definition of F, and the remaining
d/z contribution is from the 1/V. The dynamic-critical exponent z expresses the anisotropic
scaling between space and time directions. The pre-factor ¢; in (3.1) is in general non-
universal. For the special case of a relativistic field theory we have z = 1 and the ¢, becomes
universally related to the velocity of the low-lying excitations; in this case in d = 1 the
number ¢, is closely related to the central charge of the conformal field theory describing
the critical point.

- 3n -~



Now consider the eflect of a time-independent external field H. From (2.27) the only
effect of H is a twist in the r boundary conditions on the system. The excitations responding
to the change in the boundary conditions will be precisely the same low-energy modes which
led to a size (T') dependence of F in (3.1): the only effect of a finite H should therefore
be a modification of the term proportional to ¢; in {3.1). Furthermore, as the twist is a
long-wavelength effect, the modification of ¢; should be ‘universal’ (i.e. independent of all
microscopic details) function of the ‘angle’ of the twist igH L, /h. Alternatively, this is simply
the statement that all finite-size scaling corrections are universal functions of ‘geometrical’
properties of the sample like aspect ratios, shape, nature of boundary conditions etc. The
fact that the angle of the twist is imaginary should not be too disturbing - the process of
analytic continuation commutes with all scaling arguments, and one can just lift the scaling
forms from those of real twists. We have therefore

gH
F(T, H) = F(0,0) — ;7% (--—) (3.3)
kgT
where ¢; = ¢;§}(0). The value of £2(0) will be chosen at our convenience, but the function Q(r)
is otherwise universal (we use r = gH/(kgT) below). Note in particular that the argument
of the scaling function is precisely gH/kgT and there are no arbitrary scale factors in the
argument. There is no guarantee that the function §)(r) is analytic for finite, positive values
of r. In particular, some systems may undergo a phase transition at a finite H, which will
then correspond to a (universal) singularity in §)(r); we will see an example of this in the
model calculations below.

The form of (3.3) implies immediately that the scaling dimension of H (or equivalently
A,q is precisely the same as that of 7. In other words, under a scaling transformation which
rescales spatial lengths by a factor s

AL (7)) = 5 Asalz,T) (3.4)

where ' = z/s and 7' = r/s*. Exactly parallel arguments can be made for the spatial
components of the A,, by thinking about the properties of the system in a geometry which
is finite in the spatial directions, but infinite along the time direction - this will yield the
scaling dimension of Az,:

AL (2, T’) = $Aa(z, T) (3.5)

We emphasize that that none of the results (3.3), (3.4) or (3.5) rely upon the validity of
hyperscaling.

In the presence of hyperscaling, one can go further, and also deduce the scaling dimen-
sions of the conserved charges and currents. The ¢,, and the A,, zre conjugate variables
and their product should therefore have the same scaling dimension as the free energy (which

is z + d). We have therefore
0al(2',7) = 8%00a(2,7)  qLa(2',7') = 88 gra(, 7) (3.6)

only if hyperscaling is valid.



A number of strong experimental consequences now follow from (3.3). We can imme-

diately obtain scaling forms for the ‘magnetization’ M = —~3F/9H and the specific heat
Cv = ~T3*F[aT*

M _ ng‘z -2

"= wg D M (
where the universal functions Qas, f2c are both simply related to linear combinations of
and its derivatives. Notice that it is the same non-universal number ¢, which appears in
both M/H and Cy, and there are no other non-universal quantities; the only choice that
had to be made was in the value of Q(0). All dependence on this choice, and hence ¢;, can
be eliminated by considering the dimensionless generalized Wilson ratio, W

_BTM/H _ o (gH)
9 Cv kT

which is a fully universal function of H/T. We emphasize that the universality of W did
not rely on hyperscaling. Experimental measurements of this ratio can thus provide us with
strong tests of various theoretical scenarios, and also determine if different experimental
systems are in the same universality class. We note that the universality of the Wilson
ratio as H — 0 has also been noted recently for the incremental thermodynamic response
of impurities in Fermi liquids [19]: these models map onto boundary critical phenomena,
v:'hereas we have been considering the bulk response of a macroscopic critical system.

gH
kgT

gH
kgT

. Cy =T 00 ( (3.7)

(3.8)

IV. MODEL CALCULATIONS

We will now illustrate the general principles described above by mode! calculations on
a number of systems. We begin with the simplet realization in the theory of Luttinger
liquids; in this case the function 2w (r) will turn out to be independent of r. None of
the remaining models will have this property. We follow this by a second simple system
- a dilute fermi gas - which also satisfies the scaling ansatzes. We will then examine a
simple phenomenological model of a very complicated system - the Bhatt-Lee [20] model
of random quantum antiferromagnets. Finally we will present a self-contained analysis of

a truly interacting systcm the O(N) sigma model, whose main applicability is to the low-
energy properties of clean, quantum antiferromagnets.

A. Luttinger Liquids

We begin by presenting the simplest iilustration of our results in the Luttinger liquid
theory of the low temperature properties of a dense one-dimensional gas of spin-1/2 fermions.
In this case we are considering a whole critical phase, rather than a critical point.

The low energy action of the Luttinger liquid can be expressed in terms of two dimen-
sionless scalar fields, 6, 8,

L= % ] dz [1(,, (ut,(a,e‘,)2 F ;1;(0,0,,)’) + K, (u,(a,,e,,)’ 1 ul:(a,oa)’)l (4.1)
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where u,, u, are the charge and spin excitation velocities, and K,, K, are dimensionless
couplings which determine the exponents of the Luttinger liquid; we have used here the
notation of Ref. [21]. Spin rotation invatiance requires K, = 1.

In the presence of an external magnetic field couping via the Zeeman term to the spin-
1/2 fermions, £ gets modified by the replacement 3,0, — 8.6, — igH/(v/2h). Computing
the action of the free field theory £ at finite temperature is now completely straightforward.
We get

F(H,T)= —I;}%%;(gﬂ)z + E%I ; j ‘-g (log (w2 + u2k?) + log (w2 + k) (4.2)

Note that the H dependence of F is rather simple and has decoupled completely from its T
dependence: this is a special feature of the present model. The frequency summations and
integrals can be performed exactly and yield a result consistent with (3.3) which is:

F(H,T) = F(0,0) - (k,fi Lo (f:;")

N\ K
Q(r) = % (1 + :—) + o (4.3)
P

The scaling properties of the magnetization and the specific heat now follow. In particular,
we obtain for the generalized Wilson ratio '

3K,

fw(r) = 272(1 + u,fu,)

(4.4)

As stated above, Qw is in fact independent of r. This is a special feature of the Lut-
tinger/Fermi liquid that does not generalize. The Wilsonr ratio has-most. often: been consid-
er=d in the past in the context of Luttinger/Fermi liquids, and this is perhaps the reason why
its universal, non-trivial, dependence on the ratio H/T at generic quantum-critical points
has not heretofore been pointed out.

B. Dilute Fermi Gas

Consider a gas of fermions (with spin j) in d dimensions described by the following
Hamiltonian

hK?

2m

"%

where ¢ annihilates fermions with momentum k, and 7, contains only repulsive interac-
tions. This model has a T = 0 quantum phase transition as a function of u at g = 0. The
density of fermions vanishes for g < 0, and increases as ~ %7 for p > 0. The scaling prop-
erties of this quantum transition are very similar to those of the corresponding transition for
bosons which has been studied elsewhere [22]. From this analysis [22] we may conclude that
the exponent z = 2. Also, it can be shown that the interaction. in Hj,; are irrelevant at

- u) cher + Hing (4.5)

11



this transition for d > 2 (they are infact also irrelevant below d = 2 for spinless electrons).
Thus, for d > 2, we may compute the scaling properties of the free energy in the free fermion
model.

The conserved charge we focus on here is the density of the fermions. The field conjugate
to this density is g and therefore plays the role here of the ‘magnetic’ field. Thus consistent
with (3.3) the free fermion free energy density obeys

F(p,T) = —(2j + 1)(ksT) 4/ (Eg)"”n( # )

kpT
o) = [

ddy —yi4r

P log (1 + ¢™¥+7) (4.6)
Unlike Section IV A, note that €(r) is quite a non-trivial function of r, and leads to corre-
spondingly non-trivial r-dependences in the scaling results for the density (which plays the
role of ‘magnetization’}, specific heat, and Wilson ratio.

C. Bhatt-Lee model.

This is a simple phenomenological model of the spin-fluid phase (i.e. no spin-glass or-
der) of spin-1/2 random antiferromagnetic spin systems [20]. It has been quite successful
in describing experiments in lightly doped semiconductors [23]. We now show that this
thodel in fact satisfies all of the constraints discussed above on quantum-critical spin fluctu-
ations. Thus the entire spin-fluid phase may in fact be critical in random systems, aud not
just its transition to a magnetically ordered state. Additional evidence for such a scenario
has appeared in recent solutions of random Heisenberg antiferromagnets with infinite-range
inter.ctions [24].

The Bhatt-Lee model [20] describes the random antiferromagnet as independent pairs of
spins which have an antiferromagnetic exchange interaction J with probability P(J) ~ J-=,
The exponent a is estimated from numerical work to be approximately 0.6 in d = 3. The
free energy of this model in an external field H, is obtained by summing the contributions
of each pair of spins and is therefore

F = Fo— kT j dJP(J)log [1 + =% T(1 4 2 cosh(gH/kT)] (4.7)

This can easily be collapsed into the scaling form (3.3) with p = 2 — @ and the universal
scaling function §)(r):

Q(r) = fm dyy ° log [l + e7Y(1 + 2cosh r)] (4.8)
0
The value of Q(r = 0) has been chosen for convenience; apart from this single scale, the

function {}(r) is otherwise universal. If we assume hyperscaling then we get the dynamic
exponent

r=—" (4.5)



The integral in (4.8) cannot be evaluated exactly, but we quote some useful asymptotic
limits:

[ =I(1 - &) [Lig—a(~3) + r’Lin_o{=3)/3] =0
fir) = { - f((2— o)l —a)) + x'r-af6  r—ooo (410

where Li,(z) is the polylogarithm function, defined by analytic continuation of the series:
Lip(2) = ) _ — (4.11)

The scaling functions for the magnetization (§3y), specific heat (3¢}, and the Wilson ratio
(Qw) can now be easily obtained by taking suitable derivates of }(r): The results are plotted
in Figs 1 and 2 for the value o = 0.6 (a function closely related to fly was evaluated and
compared with experiments in Ref. {23]). As we noted earlier, the results for Qw are totally
independent of any choice of an overall scale - we state below the asymptotic limits of Qw:

2Li;—a(~3) o
nw(r) — 3(1 - 0)(2 —30)Li2_a(—3) (412)

r— 00

X1 — a)

Note also in Fig 2 the non-monotonic behavior of iy between these two limits.

Qur identification of the exponent z also allows us to make a new prediction on the
temperature dependence of the spin diffusion constant D. The scaling dimension of D is
z — 2, leading to the low temperature dependence

D ~ T1-2/z .. Tld-2420)/d (4:13) -

D. O(N) sigma model in 241 dimensions

We first generalize the O(3) sigma model of Section II 2 to the O(N) model by allowing
n, to have N components, @ = 1 ... N. The external field H must now generate one of the
rotations of the O(N) group. These rotations can be built out of combinations of rotations
in the N(N —1)/2 different hyperplanes in N dimensions. For general N, unlike N = 3, not
all such rotations are equivalent, and cannot be transformed into each other by a change of
co-ordinates: this is related to the presence of more than a single Casimir invariant in the
O(N) group. We will therefore choose a specific orientation of the magnetic field to facilitate
a simple large N limit: other orientations of the magnetic field will have physically different
properties (for N > 3). We choose a magnetic field to generate a simultaneous rotation
by the same angle in the (1,2),(3,4),...((2p — 1)N,2pN) hyperplanes, with no rotation in
the remaining N(1 — 2p) hyperplanes; the fraction p is chosen such that pN is an integer,
and p < 1/2. The large N limit will be taken with p fixed. Clearly, the model relevant to
collinear quantum antiferromagnets is N = 3, p = 1/3. These considerations lead to the
following action for the O{N) sigma model in a magnetic field:

13
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N N , 128 . . , )
S=3 ] dr j E2| 3 (Vana) + 5 ¥ [(@rmaes = igHnan)? + (im0 + igHng_1)]
a=1 a=1

1 N
t5 X (@ma)|, (4.14)

a=2pN41

where the coupling constant ¢ determines the strength of the quantum fluctuations and c is
the spin-wave velocity.

The T = 0 phase diagram of S can be deduced by a straightforward extension of the
methods of Ref. [13] and the d = 1 analysis of Affleck [25]; the results are summarized
in Fig 3. In zero external field, there are quantum disordered and Néel ordered phases
separated by a critical point at ¢ = t.. This critical point has z = 1. The quantum
disordered phase has a gap A which vanishes near ., as A ~ (t —t.)”. For finite H the
Néel ordered phase transforms into a second ordered phase in which the spin-condensate
is preferentially oriented in the pN planes in which the field generates rotation. For the
physical case pN = 1 this phase has XY order and is so identified in Fig 3. The transition
between the finite H ordered phase and the quantum disordered phase occurs exactly at the
field H = H. where the zero-field gap A equals gH. This quantum transition has z = 2 and
is studied in some detail in a separate paper [26).

The T # 0, H 3 0 properties of S are quite different for the cases pN =1 and pN > 1.
We discuss first the case pN = 1, which is summarized in Figs 4-6. The T = 0 XY order
survives at finite temperature as quasi-long-range order. There is a Kosterlitz-Thouless
transition from this state at a temperature Tkt to a fully disordered state, The dependence
of Txr on H depends crucially on the value of . We found (See Figs 4-6)

2np,/ log(p,/H) E<t
_ KgH b=
kgTkr = g(H — H.) log(A/(H — H,)) t >t

4 loglog(A/(H - H.))

(4.15)

The result for ¢ < ¢, can be deduced from the results of Nelson and Pelcovits [27) on a
closely related model; here p, is the fully renormalized spin stiffness of the ordered state of
theT' = 0, H = 0, sigma model. The situation for ¢ > 1, follows from the work of Popov [28],
and is discussed in more detail elsewhere [26]. Our main focus here is on the ¢ = £, case: the
finite T, finite H properties can then be deduced by applying the scaling methods of this
paper to the z = 1 critical point at ¢ = t,. The free-energy of the model continues to satisfy
(3.3). The existence of a finite T Kosterlitz-Thouless transition implies that the function
(r) must be non-analytic at, say, r = K: this leads to the result above for Tk at t = t..
Moreover as there are no non-universal factors in the scale of r, the number K is universal.

The finite T properties for pN > 1 are simpler - there is no phase transition at any finite
T. The windows of quantum-critical behavior with z = 1 (as in Fig 5) and z = 2 (as in
Fig 6) are however still defined.

We will now present the N = oo computation of the universal function (r) in the
vicinity of the T = 0, H = 0 critical point at t = .. As the large N limit is taken with
p fixed, we necessarily have pN > 1 and there is no finite temperature Kosterlitz Thouless
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transition as in Fig 5. Nevertheless, from the insight gained in Ref. [13], we expect that our
results for {)(r) are reasonable accurate for the physical case N =3, p = 1 provided r » 1
or gH >» kpT.

The technical steps in obtaining the N = oo free energy of S are quite similar to those in
Ref. {13] - we will therefore be quite brief. We impose the length constraint on the n, field
by a Lagrange multiplier; at N = oo this Lagrange muiltiplier is frozen at its saddle-point
value and gives a ‘mass’ m to the n, field. The value of m is determined by solving the
saddle point equation, which at ¢ = {. is (using units in whichh=kp =c=1)

* dik 1-2p 2p _ dsq 1
ng (k2+wz+m3 +k2+(wn--—igH)2+m2) - -g-ﬂ._;;qz (4-16)

It is easy to check that m = 0 is a solution at T = H = 0, confirming that the system is
indeed at £ = £.. Asin Ref. [13] it can be shown that the leading term in the solution for m is
independent of the nature of the ultra-violet cutoff. Evaluating the frequency summations,
and a subsequent momentum integration we find that (4.16) reduces to

3]
- _ .8 _ 8- =BTy — _ M
(1 - 2p)log (1 e ) + plog (1 e ) + plog (1 e ) 5 (4.17)
where
_ 9l =m
=T 0= (4.18)
The Eqn. (4.17) implicitly determines © as a function only of r.
The N = oo result for the free energy is
F T dk ) _ 2
N=3 Z] i ((l — 2p) log (k2 +w? + mz) + 2plog (k2 + (w, - tgH) + m’)) — %
(4.19)

We evaluate (4.19) using the methods of Refl. [13] and find (after reinserting factors of kp,
k, c)

_ (ksgT)? ., ( gH
F(H,T) = F(0,0) ~ N2 2200 (kBT) (4.20)
with
fir) = 1671 - 2% . vdy [(1 - 2p)log (1 = ¢™¥) + plog (1 - e77") + plog (1 - e™*+")]
(4.21)

where © is also a function of r specified by (4.17). Exact evaluation of the integrals in Q(r)
is not possible, but we have obtained the following asymptotic results
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Wit 0

w.}.ﬁelog ‘/5+l)r2 r_’o
27

0(r) = Sx 2
1 5, pr  pC(3)
122" T2t Ton

(4.22)

r — oo

where { denotes the Reimann zeta function. In obtaining the above result we have used the
non-trivial polylogarithm identities discussed in Ref. {29].

Resulta for the scaling functions for the specific heat and magnetization now follow as
before and are plotted in Fig 7. The Wilson ratio (Eqn (3.8)) can be obtained by taking
the appropriate ratio, and the results are shown in Fig 8. The scaling function has the
asymptotic limits

5v/5p log (~/5+ 1)

Qu(r) = ¢ 12¢03) 2 (4.23)

2pn?

V. PHASE TRANSITIONS IN QUANTUM FERROMAGNETS

*We now consider the application of the ideas of this paper to one of the very first models of
quantum phase transitions that was considered by Hertz [1]: the zero temperature transition
from ferromagnet to a paramagnet in an itinerant Fermi gas. The order parameter for this
transition is clearly the local magnetization density, m,(x,7) (@ = 1,2,3). This transition
is special in that m, has a dual role - it is also the conserved charge density associated with
global spin rotation invariance.

The order parameter susceptibility

x(z,7) = (ma(z,7) - m4(0,0)) (5.1)
is expected to satisfy the following homogeneity relationship at the quantum fixed point

X'(x',7') = sy (2) 1) (5.2)

This relationship defines the value of the critical exponent . The scaling dimension of m,
is then immediately fixed at (d + z — 2 + 5)/2. However, m, is a conserved charge density,
and below the upper critical dimension its scaling dimension must be precisely d. Equating
the two scaling dimensions we get one of our main results

z2=d+2—-73 (5.3)

Thus the three independent exponents z,7n,v have been reduced for the paramagnet-
ferromagnet transition to just two - the values of z and 5 are no longer independent.

It is not difficult to see that Hertz’s simple paramagnon model in fact violates the expo-
nent equality (5.3) below its upper critical dimension. In his model

z =34 0(?) n =0+ O(e?) (5.4)
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where ¢ = 1 — d is the deviation from the upper critical dimension. It is clear that these
relationships are inconsistent with (5.3) at order ¢.

We believe that this discrepancy can be traced to a more basic difficulty with Hertz’s
effective action: the incomplete treatment of the Ward identity (2.22) associated with total
spin conservation. In the vector-formulation (equivalent to our m,) of the effective action
there clearly must be cubic terms present if (2.22) is satisfied; such terms our absew. in
Hertz's treatment. Hertz also has a scalar-field formulation in which no such cubic terms
will arise; however the full symmetry of the effective action is then hidden, and one cannot
expect a proper treatment of the critical phenomena.

‘A complete analysis of this problem clearly requires a more detailed consideration of
the effective action of paramagnons, including the effect of cubic paramagnon vertex I'. A
preliminary analysis along these lines suggests that the identification of the upper critical
dimension of d = 1 is incorrect.

VI. CONCLUSIONS

This paper has discussed the theory of the non-linear response to an external field, H,
of a bulk quantum system in the finite temperature quantum-critical [11,5,12,13] region of a
zero temperature, second-order phase transition. In particular, we have considered the case
where H couples to a conserved charge. For such a field, we obtained the general result that
the scaling dimension of H is equal to that of k5T, even in the absence of hyperscaling. This
result is encapsulated in the scaling form (3.3). We also introduced a generalized Wilson
ratio (3.8) associated with the non-linear response, and argued that it was a fully universal
function of H/kpT. These principles were illustrated by calculations on some model systems.

Tsvelik and collaborators [7,8] have also recently studied the non-linear field dependence
of the thermodynamics of heavy-fermion alloys. However they did not consider the special
consequences of having a total conserved spi.. The experimen'al data appear to indicate
that the scaling dimension of H is unequal to that of kgT {7]. Using our results we may
then conclude that any theory with a conserved total spin (some of the speculative proposals
in Ref. [8] have a conserved spin) cannot explain the data. Spin-orbit scattering from the
impurity sites must be included in an essential way in the final theory.
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FIGURES

FIG. 1. The universal scaling function Qas and Q¢ for the magnetization and specific heat (Eqn
(3.7)) for the Bhatt-Lee model with o = 0.6. The functions are obtained by taking appropriate
derivatives of (4.8). The coordinate r = gH/(kpT). ' ‘ .

FIG. 2. The universal scaling function Qw for the wilson ratio (Eqn {(3.8)) for the Bhatt-Lee
model with a = 0.6.

" FIG. 3. Ground states of the 2 + 1 dimensional O{N) sigma model in a magnetic field H
described by the action (4.14). We have specialized to N = 3, p = 1/3. The coupling ¢ measures
the strength of the quantum fluctuations. The H = 0 critical point at ¢ = t, has the dynamic critical
exponent z = 1. The line separating the quantum-disordered and XY ordered phases represents
gecond-order transitions with z = 2. This phase boundary approaches H = 0 as H ~ (¢ —1.)"
where v is correlation length exponent of the classical Heisenberg ferromagnet in three dimensions.

FIG. 4. Finite temperature properties of the model of Fig 3 for t < 1.. There is a Koster-
litz-Thouless transition at Tk separating a phase with algebraic X Y order from complete disor-
der. The dependence fo Txr on H at small H can be deduced from the results of Ref. [27]; here
p, is the fully renormalized spin stiffness of the Heisenberg order at T =0, H = 0.

FIG. 5. Finite temperature properties of the model of Fig 3 for t = t.. The number K is
universal. The small T,H properties are described by the z = 1 critical point at 7'=0, H = 0,
t = t. and obey the scaling form (3.3). The scaling function Q(r) has a singularity at r = K.

FIG. 6. Finite temperature properties of the model of Fig 3 for t > t.. The physics. of this -
phase diagram is discussed in some detail in Ref. [26]. The dashed line represents a crossover,
while the full line is a Kosterlitz-Thouless transition. The functional form of Tk T is deduced from
Ref. [28].

FIG. 7. The universal scaling function 1y and Q¢ for the magnetization and specific heat
(Eqn (3.7)) for the O(N) model in a field (4.14) at t = #.. The results are obtained in the large N
limit and plotted for N = 3, p = 1/3. The scaling functions are obtained by taking appropriate
derivatives of (4.17,4.21). The coordinate r = ¢H/(kpT). The actual scaling function for pN =1
will have a weak singularity at r = K (corresponding to the Kosterlitz-Thouless transition of Fig 5)
which does not appear in the large N calculation.

FIG. 8. As in Fig 7, but with the results for the scaling function w for the fully universal
Wilson ratio (Eqn (3.8)). The asymptotic limits of Qw are given in Eqn (4.23).
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