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Magnetic Phase Transitions
at Low Temperatures

MPTI Magnetic Fluctuation Spectra and
the Quasiparticle Scattering Rate

e Spin Aligned to Fermi Liquid Transition

e Magnetic Fluctuation Model

e Fluctuation Spectrum and the Relaxation Rate Iy

e The Quasiparticle Scattering Rate

Appendices:
Notation and Key Relations

Review of Linear Response, Power Spectrum and the
Fluctuation Dissipation Theorem

G. G. Lonzarich
Cavendish Laboratory
May 1994



1. Ferromagnetic to Fermi Liquid Transitions
at Low Temperalures

A Temperature

Spin Aligned Fermi Liquid
State

-
Control Parameter
(Pressure, Composition, Applied Field)

e Fluctuation frequency I'q 2 kT /i near the critical
pressure or composition.

e 3d ferromagnetic metals near critical lattice spacing or
composition

heavy fermion compounds and low dimensional
conductors

e Quantum Critical Phenomera (breakdown of
conventional view of elementary excitations).

e Quantum Order (fermion condensations, novel
magnetism and superconductivity).

e Millis, Sachdev e Doniach, Hertz, Moriya

Pfleiderer, McMullan, Khmelnitskii
Cavendish Laboratory
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Magnetic Fluctuation Model for Nearly
Ferromagnetic Metals

Low frequency (one pole) model for Xqo

5 I R ) RS | SR
Xaw= %y~ y, - xM1-iw/r,) (2.1)

The relaxation spectrum ',

_ 1

o = YqXq - (2.2)
At low g

Yy =14 (2.3)
X;'I = x4+ eq?. (2.4)

n = 1 : conserved variable decays via ballistic transport
by quasiparticles (e.g. the magnetisation in a pure
incipient ferromagnetic metal). In Fermi liquid theory
at low q

R B L AP
Iq = Vg . ) = 1 + FO (2.5)
n = 2 : conserved variable decays via diffusive
quasiparticle transport (e.g. the magnetisation in a
disordered incipient ferromagnet with weak spin-orbit).

n =0 : non-conserved variable decays via local
processes (e.g. the staggered magnetisation in an
incipient antiferromagnet).



e Variance v

v =
q

e Keyre

2h

q

- fdon Xqo -
0

sults of model

x‘lz a+ (2+N)Y buq ,

q

B=y1M +bM3,

Jv

_ Ny, 1”79
Ac_zgxq dT

Jv
p=0TYq| =m | -
q d
X
d=3 FL (T, ~q) MFL (I, ~ q?=3)
Ax—l TZ T4/3
AC T T In (T*/T)

o T2 T5/3

e Temperature independent parameters a, b, c, ¥.

of m(t) from x; ., Via Nyquist’s Theorem

(2.6)

(2.7

(2.8)

(2.9)

(2.10)



3. Spin Fluctuation Rate in Nearly
Ferromagnetic Transition Metals

Exp: Bernhoeft and Lonzarich; Ishikawa et al. (MnS1)
Calc: McMullan and Lonzarich; Winter et al.

r
C-

Fq = yq(x"l + cqz) — qzz3 for ToT

z = Dynamical Exponent; deff=d +z — 6.



Neutron Scattering

Measurement of fluctuation spectra and introduction to
electron scattering

Assume potential v(p) seen by neutron is a classical
stochastic process (high T approximation)

1 'k_ p = (l‘,t) ’ k = (q,(l)) y
vip) = —=3Y v, e P (4.1)
JPo &

P, = v t, e

Rate of scattering from p — p' in Born approximation

q=p-p Golden Rule:
ho=¢_ -¢€. Uelk? yields
p °p .2
transition rate
1 l t,forp - p
! = E;? (4.2)
p—ép' B 21) )

Differential Cross section

Incident flux x d?c = # scattered from p to range

L/ t . _ - -1 .
p“dQdp’ per time = # In Vo X To yp X # states in

p'2dQdp’

2

2
do_ _ Tn_Pcy (4.3)
UOdQ dm st P



Nuclear Scattering (single isotope):

v(p)=ayd(r—r. () =an(p)

C} =a”C) (4.4)

Thus, cross-section yields the nuclear density power
spectrum.

Magnetic Scattering (unpolarised system):

v(p) = —Hy -B(p)
v 1 : _
Ck - ('S‘JHNZ Cg (4.5)

Field fluctuations in terms of spin magnetisation and
transverse currents

% o . .
VxB= WC\(‘}spin * Jorbital )’ ‘]Spill =cVxm,

; _4r
iq X Bq = —

C

lieqxm +j ), (4.6)
CB=@am?[Cp +Cj"/c%q?] .

Thus, the cross-section has contributions from spin and
transverse current power spectra.



1)

i1i)

Quantum Limit: v(p) is an operator which does not
commute with itself at different times, and hence

C, =2h(1+n )0, (4.7)

replaces the classical form for the power spectrum. C,

includes both zero point and thermal fluctuations
(spontaneous and stimulated processes). Also factor of 1/3
in (5) is replaced by unity. Derivations are based on application of
Born Approximation to the system as a whole or via an operator form
of the one particle Schrodinger equation which yields an equation of
motion for the singl: particle Green function. This operator description
takes account not only of the non-commutation of v(t) and v{t + 1) but
also the indistinguishability and statistics of the scattered particles
which will be important in the electron scattering problem.

Comments

Charge density fluctuations are normally suppressed at

low q,» but quadrupolar fluctuations may be
important.

Simplest models in the normal metallic state
A_ n
P
0

> (1)

Softening of I', may be expected (a) for C}' in nearly
magnetic metals around the ordering wavevector, (b)
for CJ,} in incipient superconductors, and (c) in C}’ and
the quadrupolar spectrum in heavy fermion systems.



Spin Fluctuation Spectra in d-Metals
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5. Electron Scattering

In Born approximation at T = 0

1
T "= —
p 12

oo _ 1 v _ ¢ d%
(2 > 2 = j(zn)“)'

Phenomenological models of effective potentials

Cp P> Prs (5.1)

"U_M>

N+ n(p) nuclear
vip) = (5.2)

—i-Am(p) magnetic

Similar to neutron potential but with much greater
strength. Born approximation may apply because of
screening, use of final statistics of n(p) or m(p) and
Pauli principle constraint on scattering for p very close
topratT =0.

Simpliest models for OL',; (associated with either n or m)

and hence for C;;

2 real poles

at +o (5.3a)

1
5[6(0)u<uq)+6((u+wq)] .

= r/ . .
O = T 0L q " imaginary pole

0 + T2 at irq. (5.3b)
{ q



Express sum over p' as integral over q and o for an
isotropic system in 3 dimensions. First integrate over

0, hence ¢, for fixed radius p' and then over the
magnitude p' from p to pg.

G . q2 = p'2 er“Z — 2pp’ cosO
¢ d cosp =-399
PP

) 2:—’§,p‘2dp'=g(8')d8’- (5.4)
T
ge) = DOS of starting
system for both spins
per unit volume.

thenif p=p = pp, g(e) = gleg) = gy for scattering near
the Fermi surface.

1A g E/h 2pF
<X = -5 [ qdq do (5.5)
h p’ 4f’pp 0 0

Scattering from Acoustic Phonons
Consider J = [qdq dw Otk

Assume 2 pole form of ak with w, = yq" and o, — o at
low q.

Integral over o gives zero unless h(oq < E or
q < (E/my)in



* Then integral over qu_ finally yields

n+2

J = o (E_) o

2(n + 2)\ _hy
(6.1)

nzg

and tél =—=5J
ZpF

e For acoustic phonons at low q, n =1 so that
-1 _ w3
g < L (6.2)

7. Scattering from Spin Fluctuations at Small q

¢ Assume 1 pole form of OL;E —> x;z with My = vq" (! + cq?)
— tg?atlowq. z=nify1=0, and z=n+2ifyl=0,

“y

(7.1)

e J=Jqdgqdo-5 5
_ o 4+ (Lq7)
e If ®m2in denominator can be neglected in lowest order,

then IEI has .he form expected for a Fermi Liquid
1 2

This holds if the q integral does not diverge at low q,
i.e. if there are more factors of q in numerator than in
the denominator (n + 2 > 2z), a condition satisfied for

y1#0,n<2.



For n + 2 <2z, i.e. for = 0, the E dependence of J is

determined by the low q (infrared) regime. Integrating
over ®

2
J=2X[dq qm'lln(1+ B 2)
2 (h{g®)

(7.3)

n+2
_Y[(E) = n+1 1
“2(ng) Jdx x zn(1+x2z).
'The upper bound of the integral can be set to « if

n+2< 2z Forz =n + 2, II}} has the form of a
Marginal I'ermi Liquid.

-1 y
. Tl<E (7.4)

Large Angle Scattering Relaxation Rate and
Thermal Averages

’cél is the total rete for all scattering processes. Define
TFEI biased relative to ngl for large angle scattering by

factor (1-cos®) = q2 /Zp%



-1, g5 ¥ (8.1)

* For phonons e

* For spin fluctuations

; E? if 4 +n > 2z
TE_' o 4+4n (82)

E z if 4 +n <2z

Thus, T

three dimensions at the critical point o'l =0, (n = 1,
Z = 3).

E*l ~E”3  for a pure ferromagnetic metal in

* Thermal average over (-0f/dE) yields a temperature
. dependence with the same exponent as that of the
energy dependence in leading order.

(') =1(- &) st dB=T i TleEt. 83)

#Damping of phonon spectrum by coupling to electrons or
impurities can lead to E2 rather than ES.



9. The resistivity

e Assume current is lost via transitions from states of
low to high effective mass, or via Umklapp processes
which transfer momentum to the lattice

* From an analysis based on the Boltzmann equation,
with scattering of carrier from spin fluctuations in the

Born approximation, we find that p has same T

dependence in leading order as <’c“E—1

expressed in the form
Ty ocy
P % 41 or
' X

Ju
= ol ¥ q ( a'l?} : (9.1)
X

> and can be

q



MnSi: Temperature Dependence
of Ap(T)/T?
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Al. Notation and Key Relations

e Space and time: p =(r,t), k= (q,m)
in large volume v, and long time t,, py, = Voto

* Space and imaginary time: u(r,1), k =(q,v)
in v, and T, = i}, uy = VT, P = LkgT

* Fourier representation of fluctuating variables x and
conjugate force f (assume translational invariance and

X=01ff - 0y

1 1

P,

4 A ~
k-p=q - r—ot, iZzJ‘“Z (or Y= [d*R) .
Po & (2m)

x(p) = %xkeik'p, X, jd4px(p)e”ik'p_,

Pk
0

e Response Function and its Fourier representation :

Perturbation = ~jd3rxf, x(p) = fatp—p") f(p') d4 ,

x, =0, f, il o, =[d*p alp) e kP,

(nb: oy is defined without 1/\/()0 factor in xz.)

. ! < dQ an
e Kramers Kronig: oo, =P | =

,  o=o'+ia".
qo T Q-0

(o'=Re v, o'=Imaw).



Power Spectrum:

4 .
C,= C}e‘ = j%—p— jd4p x(p'ﬂ))y«:(p')e""”'p = XpX_, .

0

CR=FT of x(p)x(p+p)=X_yx,, C§=2(Cy+C})

Bar denotes quantum-statistical average; result
depends on order of products in quantum mechanics.

Fluctuation-Dissipation Theorem:

Ck = 2h(1+ n(;))a;e » Ny = (e[}ﬁﬂ) o 1)#1’ 1+ n_o) =" 4
I+n, o> 0

Y
= Zh(qu :
o o < 0

R _on, ) S _ 1 "
Also (’k = Zhnm(xk and Ck = 21‘1(2 +nm)0tk.



A2. Response Function and Fluctuation
Dissipation (Nyquist’s) Theorem

f :
* Perturbation = -xf, f= ;5 o (glot | g-ioty

® Transition rate =

2
2n 2 f
v :h_z'xn.nl (é’-) [Blo-w  )+do+o_ )].
* Power absorption = 2P v . ho .

2
= —xf OLUFUU)/Z

* Thus o,="3P [x. F[3w-0,)1-0+o_ )]

nn

' ="(1-e P3P x . [foo-w_. ).

nn
Real part from the Kramers-Kronig relation.

* The correlution function: C(1) = cl (T)—X(‘E)X(O)
=P (nx(Dx(O)n) = TP |x, . [P n

n'n

‘ 2
e Power Spectrum: C, = C(LD = 211:21:’n'xn.n' o(w—w_.

nn

).

* The Fluctuation Dissipation Theorem:
Cw =2h(1+ n, )u;), n_ = (ew’(” -1

(£}
e CR(p=x0x(0),

2 B8R "
Cg =21y Pn‘xn.nl 6(0)+wn.n) =e Br’”C(I:) = 2hnmam ,

S 1 "
C(n N Zh(g f n(!) )aw )






