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Introduction

Models for low energy description (E < E )

Fermions with initial spectrum €, (and density

. (D
of states g(g)) interact with each other via a two
body potential
= Non-interacting Fermions with €p interact (an

with harmonic stochastic fields*

In quantum electrodynamics the potential in (I} is the
retarded charge and current interactions, while the
fields in (1) are the electromagnetic potentials.

In the Hubbard model the potential in (I) is
Uz;‘niTnii , (1.1)

while the fields in (II) (obtained via the Hubbard-
Stratonovich transformation) are related to the particle
and spin densities. We focus on the latter, i.e. on the
exchange field Am(p).

In MPTIi we considered scattering of fermions from
Am(p) near the Fermi surface. The Born approximation
may be applicable because (i) high energy (E > E,) -
contributions have been 'integrated out' so that the
effective interaction of the fermions with the field is
'screened’, (ii) the full unconstrained statistics of m(p)
enters and (iii) the Pauli principle severely restricts the

scattering. The Landau Theory of a Fermi liquid is
approached as E_ and T tend to zero.

* Generalisation of molecular field theory.



The fermions coupled to the fields may be described in
a Langevin model of degrees of freedom interacting
with a bath. The field seen by the fermions will have a

stochastic component plus a part which depends on the
state of the fermions themselves. This can be viewed

in terms of a fermion self-interaction that leads to a
shift in spectrum from e, to I8 = £ satisfying

E=Ep+}:E , (1.2)

where Ly is the memory function or self-energy (which
depends explicitly on both p and E, in general).

E;E yields the relaxation rate ‘EE' (evaluated in MPTI
for I£ > 0}

1l

X =-hi2t, (1.3)

and E'E, which follows from Z'}'a (generalised to describe

both particles E > 0 and holes E < 0) via the Kramers-
Kronig relation, gives the effective mass in the form

my =m(1-ax, /), (1.4)

if the p dependence of Y. can be ignored.

This approach may be used to describe the entropy and
(with greater difficulty) the magnetic susceptibility. In
the critical limit x 1 >0, n = 1 and z = 3 (MPTI) we
find, for example

my, o (17 /1K), (1.5)
and

S/ e (T /T, (1.6)
e I . rl\4/3. (1.7)

The procedure is, however, difficult to implement and
to generalise Lo real anisotropic multiband systems.

Here we adopt an alternative description based on the
idea that efTects of interactions of the fermions with the
fields may be inferred from the unconstrained
behaviour of the fields themselves. By integrating out
the fermions in (II) we arrive at a third description
based on

annarmonic stochastic fields (111)

This leads us to consider a quantum generalisation of
the Ginzburg Landau Model.



The Classical Ginzburg-Landau Model

Classical availability for an isotropic system in terms of
a scalar m(r) with Fourier components m(t)

q < q, and A, << kgT

F[m]—jdd( m +]Zm + - \le +.. ) (2.1)
Z=7_ 3 e PIm (2.2)
[m]

Parameters a, b and c¢ from (Il) after integrating out
the fermions (and plus density fluctuations and
components of the local magnetisation for g outside of
the sphere of radius q,).

Evaluation of parameters from a more microscopic
model and of Z from F[m| are treated separately.

Fourier representation for q < q,
a 2 b
"l — ~-7A_(~]7 M F ¢
Flm|=Y 5 lmql A Lomg.my, (2.3)
0

where a_=a+cq?

q

and * denoles the condition q, + ¢, + q3 + q4 = 0.

(The variables to be summed are unambiguous and will
be dropped hence forth in writing X..)

Shift in a and b due to integration of q's in shell.

srimi=£ 2 m + 22 Ffm, | T [+
:i%mq\z 2.4)
a =a +§E iim .lz+
a8t

Y and X represent sums in shaded region
and shell, respectively.

For each pair (q,-q) in shell

[S

2
2 2r -Ina
[dmgdm e | - or X a
(2.5)
3bh T 2 9b2 = 2 2

Ina_=Ina_ -—Z‘m ‘ — E'm | +...

! X Tql a 2a2n2 q

q o

Thus,
sa - 2" Xa (2.6)

o i

‘)b‘)' I,

Sh=-"" Xa™”. 2.7

o 1

0N



Perturbation series for total shift of a and b as g, — 0
(in paramagnetic phase)

Ag =3P _
ba=2X o e = Q + . (2.8)
b fgbzi 2
A =5 Xg +ooo = WX+ ... (2.9)
AF= L 5 i yl. 3y mt |
= 5 n xq - ZU" m + ... (2.10)
2 _ % e R . xq ‘
m“ = Y |m ‘ , ’mq‘ = (2.11)

2 represents sum (x /vy overall g < q.
The self consistent Hartree approximation

NI WL

4 2m? 4 3m?2m?2-3m , (2.12)

m — 3m°m

x;' = a, + 3bm?, (2.13)

(i.e. each mode m, 1s coupled Lo average contribution of
ali olhers).

Range of validity of mean field description may be
inferred by a Ginzburg criterion (e.g. |Ab/bl ~ 1, i.e.

the coupling parameter is substantially screened from
its bare value b).

For an N component field in the paramagnetic state
3 52+Nin(2.8),9 58 +Nin(2.9)and AF in(2.10) is
enhanced by N.

Quantum m? Model

Quantisation of the field must be consistent with
Nyquist's theorem in which statistics depend on the
dynamical behaviour of the field, e.g.

2 L hoT 1 " 1
_ 1 = 1
imq} = - - L doo(2 + nm)xk ; I
= ‘zero point’ component + v . (3.1)
k=(q,v), v = gjlnl , t,=hB, n=0, %1, +2,.

0

The arguments in the appendix suggest the
generalisation of the Ginzburg Landau Model is of the

form  BFIm| — Almyh, (3.2)
Alm| = Y k 'lnkl2 + b 3 m m,
= ‘ =
9 Au (3.3)
+ )] m !
where u =1 1 andin a one pole model
A =a 4 M (3.4)
Tk T q Y "

q

An analysis analogous to that in §2, then yields (2.8-
2.10 in paramagnetic phase) with Xg — Xk (and sums
over k instead of q alone)



. —3 ¢ Ford + z <2z, the low q regime dominates and
Aa = B—?:?ka+... = 3bm? + .. (3.5) aregl
0 L _d.+_"
m2 T 7 . 4.4)
-9b> 2 T
Ab = -[_‘}G_ E xk + ... (36) —_——
0 - ~ 2
[ ] b 2 = =
1 . o, More generally, my = X Vs V= 'mqlT ,
_ 1 5 -1 4 2
AF = 2 X In oy 7 VoM o+ (3.7 , o
. <M g(____q_), (4.5)
-1 q £] 27
A = 4, + Aa. (3.8)
gix) = 2x [ln X - % - \p(x)} (4.6)
Temperature Dependence of y(T) in Low T Limit h
= .1
Tl 6x 4.7)

Redefining a to include the "zero point’ part of Aa, then

|

where y(x) is the digamma function (Gradshteyn and

y=a+3Db “m"g . where m?l‘ =3 . 4.1) Ryzhik). (4.7) differs from (4.5) by at most a few % for
4 all x and is identical to (4.5) in leading order in x and
t/x.
For a 1-pole model for y, (MPT1) X
— - « n 5. The Curie Temperature (a < ()
m.i = -‘-]-‘%h- fq*! dq dw wﬁ"l‘-”--—m—a , (4.2)
T w? 4 (qu)
*  The condition x (T ) = 0 yields
where ;= 1, n, 2r for d = 3, 2, 1, respectively.
My -7 - g(x)
Whend + n> 2z a4b2;“cc Ju dq—q_? =0,
5 m2 43 (5.1)
mTOCT , ( . ) hﬂcqu
X=—%—  z=n+2.

. 2
as expected for a Fermi liquid. . or



Ford <2, T, — 0 (as for classical case).

Ford =3
It 1+l
a +nb(kpT,)*z =0, (5.2)
3r(1 v ‘) C_,(l + —‘)
n = : 4 (5.3)

2n?s cnn(-—’?-) c{hye)?
27

For N components, the factor 3 - 2 + Nin (5.3).

If temperature dependence of a and b can be neglected

-a/b —» M2. Then for a pure isotropic metallic

ferromagnet in 3 dimensions with weakly spin
polarised ground state

kT, = 2.39 cM¥2 )/t (5.4)

Model consistent with observed T, and measured M, c,

and v for the low T ferromagnets Zrzn,, NizAl, YNi,,
and MnSi.

Table 1. Properties of the magnetic cquation of state for NiLAII a=a(T=0)=
115 X 10, b =0.53 G, ¢ = 1.5 % 108 A¥®, Ay = 3.3 eV A®); also g, = (T =
0) = 0.1 A~ and T, = 300K > T, The quantities @, py and p.q in the table are defined
respectively through the equations & = (IM(T)/ModT%), My = (—a/b)'? = Nuzpo/V and
(3x71/aTy = 3kgV/Nhp. , where () designates an average over the temperature ranges
given in the table, in the zero-field limi:. p = 0.075/Ni atom™.

Property Experiment Present model

M(T,0) Quadratic® Quadratic®
T=07T.

xNT) Lineart¥ Linear®
2T. =T =< 1T,

e{107* KN 3740 3.4-37

T.(K) 41.0(5 39

PenPe 16(2) 2

" De Boer er al (1969).

®) Bernhoeft er af (1982, 1983, 1985).

© Sigfusson er al (1984).

@ Approximate temperature dependence in the tempersture range given.

) Assuming A, in th2 equations defining p, and p,, to be the number of Ni atoms.
Corresponding values given by Lonzarich (1984) are for N, equal to the total number of
atems (N1 and Al

Table 2. Properties of the magnetic equation of state for MnSi above T a=a(T=0 =
SIS AP, A= 015G W, =21 x 10 AMY), Ky = 2.6 ueV A®. Below T., MnSi is
ferromagnetic at high magnetic ficlds and orders in a long-wavelength helical structure
below about 6 kG, p, == 0.4/Mn atom

Property Experiment Present model

LN Linear® Linear®®
=TS,

T{K) 29.5(5) 3l

Pu/ P 5.5(4) 4.7

) Levinson er al (1973), and Bloch et af (1975). Values were estimated from p, = 0.4/Mn
atom and the high-ficld slope of M? versus B/M at4.2 K.

® Values deduced from neutron scattering data of Ishikawa eral (1982) above T,.

' Approximate temperature dependence in the temperature range given.

) Preliminary numerical calculations were carried out by De Souza (1984).

&) Assuming N, to be the number of Mn atoms,



6, Pressure Dependence of T,

If a mean field model is applicable (dyp=d +2z>4,38§7),
then expect that a(p) can be expanded in a power series
about the critical pressure a(p_) = 0 so that for T > T,

= a'p,) (p-p,) + (2+N)bm? | (6.1)

* Then x (1) = 0 yields

‘1+1
T, ? e p. (6.2)

# For a pure metallic ferromagnet z = 3, so that (if
deff> 4)

T4 o« p, (6.3)

consistent with measurements in MnSi and ZrZn,,
except close to p, (see MPTIII).

* For an antiferromagnet z = 2, so that (if d ;> 4)

T2 o« p (6.4)

(measurements in progress).
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The Quantum 'Ginzburg Criterion’

In the limit T — 0 the sum for Ab (3.6) can be replaced
by an integral

1 Tdv
where 1 = #f}.

For the 1-pole model, (3.6) then yiel.ls for T — 0

Ab -8 + Nmkb 7

i q% 'dq
b o fav | I (7.2)
()

J
q, q(lﬂvldq
J = 'Y I ’tlm 5" (7.3)
o X *coq

As x 1 50,(7.3) diverges at low q if

dyp=d+z<4. (7.4)

For d_g > 4 (the upper critical dimension), mean field
theory (or conventional perturbation theory) applies.

Increase of the effective dimension from d to d + z is
due to the sum over v which corresponds to an
imaginary time’ range of finite size (for T # 0) of 0 to 7.
Since I' ~ g%, this time is 'equivalent’ (in the sense

required in the Ginzburg criterion) to z space
dimensions, so that the total is d + z.

Temperature Dependence of the Mode Coupling
Parameter

hiyg z z=n+2
Cq fory'1 >0
T->0

kp:‘ __________

Quantum

(lassical

-
qr q

for q < qp ~ TV the modes are essentially classical.

1

5 2 A = quantum’ +—1 X Aq o (8.1)

q<qy

so that ford =3

1
5 i
m,zF «T 7  as before. (8.2)



Next consider sum % Zxﬁ , (8.3)
then
. Ll e
Abp ~T % Xy ~T 2 (\]cx q% - 1) . (8.4)
q<4qp

Thus, Aby could have a stronger T dependence at low T

than m%. What is overall T dependence of ¥ 1(T) as

T — 0? Connection to {inite size scaiing theory?

Al

Quantum Extension of the Ginzburg Landau
Model

Nyquist's Theorem can be expressed in the form

2
‘mql B L Ao
where
k=(q,iv), v= 21““' , (AL.1)

)
1, =h3, n=0, £1, *2, ..
Introduce a new variable m(u), u = (r,1),
1 . ik-u
miu) = -\-j—— b3 m, e . (Al.2)
1

where
k-uﬁq-lruvr,

u =v 1., and k=(q,V)

A+

(use iv in definition of k in

Now

_ 1 -ivt
mq(’c)w\[T 2 m e,

0

(A1.3)



2 1 .0
{mq’ R hm, | (A1.4)
if
Imk|2 =hxy (A1.5)

then (A1.4) agrees with (1).

Thus, m, looks like a stochastic process anclogous to
m,, but with both q and v indices and B -5 1/4.

This leads us to guess that the quantum availability
model will be of the form

Z=7, 3 eAmin (A1.6)

where Ajm], the Euclidean Action, replaces /i B Flm] of
the classical model.

We assume Alm| can be expanded in the Ginzburg
Landau form

Alm|=3% 'Y |mki2+4t’ Ymy .oy, o+ Olm? ], (AL.T)

1If)
where a, and b are the parameters of the model.

Ifb=0

m, |” = na;l (AL8)

From (A1) a, is thus ;' in the absence of mode

coupling.

In the Hartree approximation

! —52

Xy 2 3 2
Alm] - 375 m|" = = bu,m® (A1.9a)
where, as 1n (3.5, 3.8),
X' =a, 13bm? (A1.9b)
SIS DR T R A
me= u, L ’"lk' B BUO L Xk' ( 19C)

From an analysis identical Lo that in §2, we obtain (3.6)
for Ab.

Integrating over the my, we recover (3.7) for AF.

The quantum model may also contain non-local terms
third order in m, which are disallowed by symmetry in

the classical model (MPTIID.

These results may be confirmed for the Hubbard
Hamiltonian via the time-ordered operator formalism
and the Hubbard-Stratonovich transformation. The
latter also provides estimates of the parameters

defining Alm] in terms of g(¢) and U.






