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I. INTRODUCTION

The following lectures on Fermi liquid theory, superfluids and superconductivity cover
the basic elements of Landau’s theory of Fermi liquids and the BCS theory of superfluidity
in Fermi systems. They are thought to provide a reference for what may nowadays be calied
the “standard” behavior of Fermi systems at low temperatures. Here the term standard
is understood to characterize a situation where the low-iying fermionic excitations can be
directly related to the basic fermions, in contrast to the scenarios of spin-charge separation,
or gauge-field models, or anyen wodels, to name a few recent conjectures.

In view of the recent nterest in “unconventional™ anisotropic superconducting states in
the context of high-T. superconductivity (HTSC), the presentation of BCS theory given
here will be sufficiently general to allow for & discussion of anisotropic states. In particular
we will consider superfluid *He, supercondunctivity in heavy fermion compounds, and the
d-wave state of HTSC.

There are a number of textbooks available, covering the first and larger part of these
lectures. On phenomenological Fermi liquid theory. the texts by Baym and Pethick [1] and
by Pines and Nozieres [2] will be useful. The microscopic underpinning of Fermi liquid
theory is discussed in the classic hook by Nozieres [3]. The theory of superfiuid 3He can
be found in Refs. 4,5,6. Further references will be given at appropriate places in the text.
Unconvential superconductivity in heavy fermion compounds is considered in the review by

Sigrist and Ueda [7].

II. FERMI LIQUID THEORY

Systems of interacting fermions at low temperature have been of interest early on in
the development of condensed matter theory. The most important example is the system
of conduction electrons in metals. According to Sommerfeld's theory of metals [8}, the

conduction electrons behave Iike & gas of noninteracting fermions in spite of their mutual



Coulomb interaction. Thirty years later Landau put forth a phenomenological theory of
interacting Fermi systems, the Fermi liquid theory or Landau theory, which was based on
the new concept of quasiparticles {9]. It attempted to map the properties of Fermisystems
at low temperature on to a dilute gas of strongly interacting thermal excitations. To some
extent a microscopic justification of this picture was given hy Landau and others, (see ref.
3), although a rigorous general mathematical proof is not available. After the discovery
of high temperature superconductivity it has been suggested by Anderson {10] that Fermi
liquid theory may not be applicable in this case. Following this conjecture a large nunber of
studies of different kinds have been perfortued in order 1o prove or disprove it, so far without
conclusive result.

In this first lecture, the main content of the phenomenological Fermi liquid theory will

be presented.

A. The quasiparticle concept

Let us start by considering the nomnteracting svstem first. Its energy eigenstates are
completely described by the set of oeenpation wmnhers Ng, of the single particle states
| ko >. Ng, van take the two values 0 or 1 only. Here we assume free ferniions in eigenstates
with momentum & and spin projection a{= +1). U is convenient to define a smoothed
distribution function vy by averaging N over a group of neghboring states,

In the ground state all single particle stares with momentum less than the Fermi mo-
mentum kg are occupied and all other states are empty:

. Lk
np = Bky - k)= (n
ok ke
The Fermi momentum is determined by the total nnuber of particles o the given volume.

i.e. the density n by

Let us now imagine that the interaction between the particles is turned on adiabatically. I
the single-particie energy spectrum of the interacting system is in one-to-one corresponderice
with the Fermi-gas spectrum and if the ground state retains the full sytnmetry of the Hamil-
tonian the system is termed “normal” or more explicitly, a “norma} Fermj liquid”. In any
ordered state such as a superconducting state or a magnetically ordered state, for example,
a macroscopic fraction of the singie particle degrees of freedom wil! be condensed into a
macroscopic quantum state and the one-to-one correspondence of single-particle states is
lost. Even in a normal Ferimi liquid, the interaction will lead to the appearance of socalled
collective mades. However, these hosonie exvitations occupy a negligible fraction of phase
space i the limit of low temperatures and therefore do not spoil the principal one-to-ope
correspondence of single-particle states, as we will see,

Therefore, the state of the Fermi liquicdd may again be described by the distribution fupe-

tion ng

i, of single particle excitations. These single particle excitations are called “quasi-

particles™. I particular. the ground state of the system is characterized by the distribution
function nz defined i (1)
The energy of a quasiparticle, ¢z s detined as the amount of energy by which the total
energy £ of the system inereases, if o quasiparticle 15 added to the mnocenpied state ko
nE = E_,'k‘ﬂ'gnlfn (3)

ke
where dng ik the correspondding change of the distribution function.  Ags a consequence

of the interaction, the single particle energies depend on the state of the system, €, =
- {1 8

feadnp., b The energy of a single low cnergy guasiparticle added to the groundstate may

be parametrized ns
R B TP R 70 B P T P [ ()

where 4 is the cheical potential,




is the Fermi vel..city and m” is the effective mass. Here the isotropy of the system has been
used and the Fermi velocity is assumed to be finite. The effective mass m* determines the

density of states at the Fermi level
_ Tn'k,:‘

5 {for both spin projections) (6]
7

Nr

The effect of interactions with other excited quasiparticles un the energy of a specific quasi-
particle may be expressed in terms of an effoctive two-particle interaction function or “Fermi-
I, ‘
liquid™ interaction Seniin
a(('a - z fk‘nk"rl"h”k"n' ({)
Fme
where dng, = 1y, — nl,. At low temperatures. ane for weakly oxcitod svstems we expect
only a small nuwmber of quasiparticles on top of the gromd <t © ' is then reasonabie to
. . i e N . . . . . _ ; Lo [ =0 &)
approximate f, _:. .. which itself depends on the distribution 2z . by fknk”n‘{n{ml}' To
simplify the notativn. we have assumed here that the spin quantization axes of all quasipar-
ticle states is the z-axis. This precludes the sdiscussion of transverse spin exeitations. Note
that fe e = fr., iy since from (3) and (7) it follows that f is n second derivative of £
w.I.t. ng,.
It is now assumed that for isotropic systems with shart range interaction the Fermni liquid
interaction function is finite, and does only depend on the angle between the momenta &

i i’ . . . . .
and k£’ and on the relative spin orientation of @ and & . and hence may be parametrized as

S rk kOIF 4 Fpoa’] (8)

f o
kak o’ .
‘N“ £=0

Here k = k/ { k |, ¢ = £1, Py(x) are the Legendre polynowials, and F} and F} oare the
dimensionless spin-symmetric and spin-antisymietric “Landau parameters”, which charac-

terize the effect of the interaction on the quasiparticle energy spectrum.

B. Thermodynamic properties

The equilibrium distribution function "g‘a at finite temperature T follows from the

sssumed one-to-one correspondence of single-particle states of the interacting and non-
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interacting systems. The entropy density must have the same form as for the ideal gas
S=—Z[n;ﬂ(‘rr(n;a}+{l *n,;o)é’n(l-n&)] (9)
ko

The first law of thermodynamics must hold for any deviation ong, from the equilibrium

distribution n,:
oE =TeS + pon (10)
Substituting &E from: {3), &5 = 3. {+S/dn 1due from (9) and
A=Y bup {11)
[

one fids n"ln to be given b the Fermmtbunction

o ]
ne o=

N Y 1z)

This s a complicated implicit equation for 1y, due to the dependence of e, on {n,;,&,}.
We are now in a porition to caleulate the thermodynamic properties specific heat, com-

pressibility and spin susceptibility. The derivative of the internal energy with respect to

temperature vields the specific heat at canstant volutne (where 7= 3 p ng = 0)

Ong,

, O
Cp= ar = %[ﬁ;,, - M_—aT

duy Cho — J d
= Ylew, - e[ = My e, — ) (13)
i ka

In the limit of low temper: ures using the socalled Sommerfeld expansion we may replace
~{dng fideg ) by bie —}c)—%{A‘BTV%b(r — ). The term involving % (éxe —41) is contributing
a correction to Oy of order T* and may be dropped. The leading term is linear in T, as for

the free Fermi gas, and given by the (renormalized) density of states
n?
Cy = ?NpT (14)

The spin susceptibility y follows from the spin polarization S, in the presence of a

magnetic field B



S, = Zaén,;o_ =xB {15)
ka

where dng_ is the linear change in the distribution function induced by the Zeeman energy

shift Aeg = o B in the bare quasiparticie energy. From

g
5, =% 0 a”ka [6ek, — s B (16)

ko ka
and e, = o N7 FES, it follows that

) ,u.f,,\', .
= -1--1" :r':-‘: (17
0

x is seen to be given by the Pauli susceptibility of 0 nomnteractine Formi gas of particles
with mass m”, “screened” by a polarization field roportional to e Landau parameter Ff.
The density response to a change in chemical potential is abtained in complete analogy

as

(18)

Thermodynamic stability requires that the susceptibilitios y and % he positive. which
leads to the requirements F3"° > ~1. A general analvsis of the stability of the system with

respect to anv variation of #p results i the stability conditions
].*;:.‘ " __{-2; N A T “(”

For Galilei-invariant systems there exists a relation between the Landan parameter £
and the effective ruass ratio m* fin. Consider a Galiled reansformation to a system A7 moving
with velocity - @ In A ' the momenta and energies of quasiparticles are given by & + mif

and e, _and the diseribution funetion w centered at &~ i e Ny =1

K+ R YA IO T,

have i linear oder in

R — ey e ( " U
ke Ol A SUIFTR o SN L SR R

_m = - ’ Jn' c
= o2k ik.ﬂ,f‘_"k.ﬁ.( 7‘7)’”;‘ i

Sl
m 7

=

(20)

|

from which we get

m* Fy

=1+? (21)

C. Transport properties.
1. Luasipurticle relazation rate

Sa far we liave been assuning that she gnasiparticles are absolutely stable excitations.
This s not the case, as may be suseepted from the fact that they interset strongly. The
simplifving feature ix that at low temperature T << Tp there is only a smnall number of
thermally excited quasiparticles avond, which may act as interaction partners of a given
quasiparticle.

The decay rate b of a quasiparticle i top of the filled Formi sea may he easily estimated

D is deminared by binary collision processes, in which the

in the following way. At low [
considered quasiparticle nrstare £ | Koy - seatters off a partner instate | 2 >, the two
particles leaving in Hnal states |3~ and [ 4 >0 The decay rate is given by the golden rule

OXPTOSSL

1 - ,
s I S DT O N SRl T 1D IR TV T CN P P DI Y (22)
Tk

where ai L2034 1) is the transition amplitnde, or seattering amplitude, and wy, L —ng, 1~ ny

are distritution funetion factors deseribing the probabiiry for state | 2 > to be occupied
and the final stares to be empty. The sumunzation over momenta and spins is restricted by
mementinn atd spin conservithon, regiring Fovky = byt hyand o v ay = a4 + o, Fora

quick estitnate at 77 = 0 we approximaie (1.2, 3. 4) Iy a constant and the momentum sums

by energy integrals {¢, = o p and fGactors of density of states

1 -
N ~lanNg |? ;'; P ey [ dey o degbley 40y = 3 —ry)

=l aNp (L " dey 70 dea = HaNp) A (23)



The quasiparticle decay rate is seen to be finite, i.e. the quasiparticle states are not
energy eigenstates, but they are approaching true eigenstates in the limit ¢, — 0, i.e. on the
Fermi surface. Hence the quasiparticles are well-defined objects for not too large excitation
energy, | €, — ul<< o

A full evaluation of  yields [1]

1 e — jiy2y |
i - 24
Tk [1+( TI'TJ]TH 24)
where
LAY i no- {25)
Ta 64 €5
and

<W > = [ deos? [T 10 0
W{8,¢) =| Al ¢) ¥ +3| A, (6.0) [* (26)

The quantities A, and A, are the dimensionless scattering amplitudes in the spin singlet

and triplet channel, respectively, defined by

0(1.2‘.3, 4) = #;[A’bglgs("nzﬂi + /1"77”:”5 ° Fﬂ;rrq]
o Rl A VG NP L W (27)
where
A = 41(3A| + Ag)
4 = %(A] - An) (28)

and 7 is the vector of Pauli matrices. In doing the manenturn integrals we have used the
fact that all the momenta Ky, .. . k4 are close the Fermi momentum and conserve momentum
and Ay, may be taken to depend only on the orientation of the k,, leaving only two angular
variables,

The parametrization used here is the one introduced by Abrikosov and Khalatnikov |see

Ref. 1]: 8 is the angle between &, and ks, and ¢ is the angle enclosed by the planes (Eh Eg)
a'nd (E31 Eti)-

2. Kinetic equation

In the presence of slowly varying disturbances in space and time, the system may be
described by a quasiclassical distribution function ng_(7,t). This is possible as long as the
energy and momentum of the quanta of the external field w, g are much less than the typical
energy and momentum of the gquasiparticles, ie. w << T, ¢ << % The distribution

function satisfies the Kinetic equation
dng, + Ve, Vong — Ve - Ving = I{ng} (29}

The left-hand side describes the dissipationless How of quasiparticles ju phase space. It goes
beyond the Boltzmanu equation for & dilute classical gas in that the quasiparticle energy
¢z(F.£) is itself & quantity dependent on position and time, due to its dependence on the
distribution function as given by (7} As we will see, this gives rise to the appearance of
collective modes, as well as interesting nonlinear effects (which we wilt not discuss).

On the rhs. of (29) we have the socalled collision integral [, which describes the
abrupt change of momentum and spin of quasiparticles in a collision process. It is given by

/7o %, which is the number of quasiparticles in state | ko > decaying per unit

Tho = —ng,
time. The nonequilibrium relaxation rate 1/72™ is obtained from {22) by replacing o,
and e; . by their nonequilibrium counterparts.

The collision integral is zero, when multiplied by I,E, 7, fg, and summed over E.a, ex-
pressing the conservation of particle number, momentum, spin, energy, in the collision pro-
cess. Conversely, the collision mtegral vanishes if n; has the form of a socalled local
equilibrium distribution function

te e%;(ﬁ t) — (7, t) — k- ur,t)

ng = [exp

+1]" (30)

where p, (7, t) is a local spin dependent chemical potential, T'(F,t) is the local temperature
#(7, t) is a local fluid velocity and c “(7,1) is the corresponding local quasiparticle energy.
The vaiues of these potentials are determined by the local densities. The effect of collisions

is to drive ng, towards a local equilibrium form,

10



Ofen the applied external field causing a particular transport phenomenon is weak and
one is allowed to linearize in the deviation of the distribution function from its equilibrium
value or else a particular local equilibrium value. The resulting linearized and Fourier

transformed kinetic equation is given by

& 40
(w = Br - Qbnglg.w) + 7 »5—6":*&(,; = i8] (31)
k
where d¢; Is defined as
Bt o, w) ~ Z Fion Piig o A w] 132)
i

In principle, f, ¢, is a function of g and w, awd the limit .o - 0 is understoud here. {We
will come to the subleties of this limit later.) For a charged svstem with long range Coulomb

interaction, a ¢lassical or Hartree-type interaction part must be separated out, such that

dme? -
feai o la) = i F fioion (33

which affects only the £ = 0, s channel.

2 Zero sead

As we have seen, o quasiparticle is etmbedded iy oan effective nedinm lermed by the othier
quasiparticles. [t way be expected that this medinm has a certain stitfness or elastieity,
and will provide a restaring fovee for spatially and temporalh arving components of rhe
distribution function.  Of course, the components with large Landau parameters will be
dominant. Let us assume that the Landau pazameter B3 is large and positive, as is actually
the case in liquid *He, and let ns drop ali other Fr's. We will also <deop collision effects for
the moment. The kinetie equation takes the form

(w - Pnplgw) + 5 (‘Ef l."\"L o Z Mg o AT =0 (34
£
where an external potential =647 has been assumed. We v <olve 1his equation to get

the density respouse function

on - XU(Qlw)
Suemt 1+ Foxolg.w) (35)

where

B g
olguw) = T
XO(Q % PR g+ 10 D(k (36)

This is the well-known RPA form of the density response function in the limit g << kp. In

order to shovs that the denominator of (36} vanishes for given g at a certain w,

we expand
va for large o
ey e .’()Hz 1, 0pgy2

Vol i 3 %‘( —_"—) E; - 7‘;(7) (37)

Hence ;ﬁ?,—, has a pole at

"
[

W \',' I‘LI/‘{ P (38)

corresponding to a collective mode of the system with the characteristios of a density wave,
called “zero sound™

In addition to tlex pole contribution the abserptive part of the density respone,
Im{;ﬁ?,—, Vo characterized by o continmnn of particle-hole excitations. Their contribution

follows from

hodyaig. o)t = N ‘L Wy - | w ) {39)

2 ey
One finds that the colleetive mode branch is ontside the p-b continnum for £ > 0. For
=1 = B 0 ahe collective mode s overdaiaped: the collective excitation may decay in -k
pairs.

Zeray sound modes mav exist b any componont £ s or a. of dng . provided the corre-
sponding Landau pacameter i suthiciemiy large. For a charged systen. the zero sound mode
develops a gap and is identical ro the plasma inede as is seen by substitnting (33) into (35).
Of course, the plasma frequency wys = {4xe®n /m)'? is usually beyond the tegime of validity

of Fermi liquid theory,

12



Let us now have a brief look at the effect of collisions. The characteristic frequency
1/7 separates the collision dominated hydrodynamic regime, where w << 1/7, and the
“collis'onless” mean-field regime, where w >> 1/7. A simple phenomenological description
captures the main trends {in the case Fj >> [}. We begin with the conservation laws for

particte number
whn =g {40}

and momentum

winj =gl — g1l {41)

where j = Yo Pelong, - (i e ber 1L is the mulwer enrrvent density, which follows from
the kinetic equation {31). The pressure change /7 mav be expressed in terms of the density
change by ¢ = %ﬁn‘ where the thermodynamic derivative (@7/ih) = met. is connected
with ¢;, the usua) hydrodynamic (or “frst™) souwnd velocity, In the byvdrodynamic limit, the

longitudinal part of the stress tensor is given in terms of the shear viscosity n as

—hn -
G- -§=—1--¢j (42)

since the bulk viscosity is negligible in & Fermi liquid. At higher frequencies, IT deviates

D 0
from IT | but relaxes towards I :
— i = i
Wil=—-—( -1 {13}
T,

The relaxation time is taken to be the one defined by the kinetic expression for the shear
viscosity n = émmrzpr,,. Substituting (42) into {43) and (43) into (41}, and finally (41) into

(40), one obtains « dispersion relation for density waves

. 4 i e
L2y Pty iy 44
W= (l 15c21 - luJT,.,) (44)
The sound absorption o = —Im{q} follows as
o2 [Whe o W <<
alw) = =¥ Y% (45)
15¢; & u+v,, . owr >

In the hydrodynamic regime, o ~ w?/T?, whereas in the zero sound regime, a ~ T?. One

can show that in the extreme low temperature quantum regime, w > T, a ~ w?.

13

D. Quasiparticle scattering amplitude and effective pair interaction

The quasiparticle scattering amplitude a(1,2;3, 4) may be related to the Landau parame-
ters in the Jimit of forward scattering. In order to demonstrate this it is useful to parametrize
2 in & different form. Instead of the scattering of particles 1,2 into 3.4 we may as well con-
sider the scattering of particle 1 and hole 3 into particle 4 and hole 2, or else, taking into
account momentum conservation, the scattering of particle-hole pair (£ + q/2 k- q/2)
into p-h pair (k' + §/2 , k'~ §/2). Taking all momenta on the Fermi surface, the relevant
two variables are ther (i) the mumentum transfer ¢ (i) the “Landau” angle, 8;, enclosed
by & and &', The scatteriig amplitnde agg.(g) may be shown to be equal to the change
of ¢-th Fourier component of the quasiparticle energy dep(), induced by the addition of a

particle-hiole pair with momenta (I:' + g' . [ g),

f"f;;(fld} )
total

4
le',(ﬁﬂ { 6)

u“-,{q] = (
including ail rearrangements in states &7 £ &k . By contrast, the Fermi liquid interaction
is defined by

be -
T = ((,,::,)qzo.n; "

(47)

which is the energy change ey induced by adding a quasiparticle in state | E' >, keeping

the occupation of all other states fixed. Using the kinetic equation, we can write

- fnr .,
3 %) peg v T QG e,
(éfk) :(!A) _Z(Fk) 3 _’BE (Ek) (48)
5'";, total h?’?;, e s f‘.n*‘_,, Ry u—ﬂE"q 6”13' tatal
which yields in the limit w =10, g — 0
aﬂ,;u 49
agz (0 = fep, + Zf,;,;u(*a';;)a,;,.g,(ﬂ) (49)

,':' "
This integral equation may be solved by decomposition into & Legendre series:
s.a 1 &= sa Lot
2,(0) = 'N"-ZA{ (0 Pelk- k) (50)
F

“ke
=0

14



with the result

2.0
Ft’

L+ (20 +1) (51)

AP0} =
Thus we have found that the forward scattering amplituide (limit ¢ — 0) is completely
determined by the Landau parameters. Since we expect the Fy's to vanish rapidly with
increasing ¢, a model form which keeps only the first few parameters F3, F?, F2, ete., will

give a reasonable approximation for A{g.cosf;) at g = 0.

Had we taken the opposite limit, ¢ = 0, o — 0 In (48] the result would have been very
different: lim, .o lig_o{fep/ng T = S

The form of A{q, cos@y) for large momentiimn transfer ¢ is to some extent deterniined
by exchange symmetry, which requires the singlet {tviplet] scattering amplitude to be even

(odd) under exchange of the momenta of the particles it the initial state,
Ay = (- 1) Agb e+ JT=01 (52}
or in terms of the . #; parametrization
Afq By = (=1 A0y L 0 (53)

where in terms of variables » = i(;’; oo Land i = om0 - 1) the exchauge transforimation

takes the (linear) form

WEIFEVIREI
== = 1h4}
g 2N 3 i 2 (1
The latter transformation has a Line of Hxed points
R AR | (5H5)

e g = qaulf = #; along this line in the Lgoeostt plane. [t follows that the triplet
amplitude A, is zero along this line. At the poim ¢ = 0. A, = U the condition Adg =
0,8, = 0) = 0 yvields a sum rule for the A3"(H0):

STCARO) 4 AR =0 {hf)

=0

The scattering amplitude may be expanded in terms of & complete set of orthonormal

functions with definite exchange symmetry [4,11]:

Xel8,0) = {(k + 120 + 1)] (=) Pcos )] sin g] PR cos ) (57)

where Pr(r) and sz”lo {z} are the Legendre polynomials and the Jacobi polynomials of

index {2€ + 1,0) and degree k - 7 These functions obey the orthogonality relations

1 ! LR i
.—zfldf‘mff/‘n’mu‘) sin® 5 N0 ) X (B ) = Spp by - (58)

The parity of Xge under the exclange operntion is obvionsly {~ 1YY, Therelore, the singlet and

triplet amplitudes ay be expanded in termis of the even £ and odd £ functions, respectively:

1(1( Lol = \._.: n\_,.hk dilk \“.(ﬁ @)

Aol = S Y an X9, 0) (59)

Using the available experimental information on the F7 and additional imformation on
angular averages of the tvpe < o4 A, from various transport measurements (see the
expression [or 177, (25)) the first few coethicients vy way be determined, assuming the
higher coefficients to he zero.

JFrom the general form of the scattering amplitude, we may exteact information on
the interaction of pairs of particles with nwnnenta [ {corresponding to seattering angles
# = w. ¢ arhitrary ], relevant for superconductivity. As we will discuss i the next leciure, the
scattering amplitude hax a singularity o the instability towards a superconducting ground
state aceurs, which s the case tf one or several angular mementun components Vy of the
pair mteraction

=30 Gk A {60}

-

are negative |attractive interaction) We note that & = %(El ~ k), and k' = %(Eg — E,;),
and therefore & - k' = coséh. For sufficiently small coupling constants, Ay = %NFV, < 1,

the components of the scattering amplitude are approximately equal to the pair interaction,

16



except for a small region around the singularity. The pair coupling constants A, may then

be extracted from the scattering amplitude by

10 .
- Eﬁldcos¢ Pi(cosd) Asim. o) (61)

where J =0 or 1 for £ even or odd. Employing the expansion (59} of Ay one finds

A = 2€+ '”Z koD (62)

Let us use this general result to obtain a rough estinate of the pair interaction in lignid

*He. The three Landau parameters F3, ¢, F7 deterimae the weight factors age of the three
— ~

lowest eigenfunctions: ag = ~347 — 443, an = V20347 4 AJ + A" any = - A7 - 48

This yields the following explicit expressions for the pair coupling constants:
Loe .
Ay= ~§(.4;1 + 340 - A
Lo, .
A= 6( nt A (63)

Substituting the values F7 2 10 to 100. Ff = 6 (o 15 an! F# ~ —0.7 for low to high
pressures. respectively, one finds Ag = 3/2 and A} = -1/3. Thus the simple estimate yields

a clear indication for attractive pair interaction in the p-wave channel.
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111. SUPERFLUID FERMI LIQUIDS: THE CASE OF *HE

Superfluidity is a property of a macroscopically occupted quantum state. In a Fermi
system a macroscopic occupation of a quantum state can occur for componnd objects with
bosonic character, like pairs, quadruples, ete. One should expect the most likely compound
ta be formed for a one-component system to be a pair of particles. One can distinguish two
limiting cases: (i) the case of preformed pairs of extension less or at niost comparable to
the interparticle distance (31) the case of weakly bound pairs, of extension mmeh larger than
the interparticle distance. In case (i) the systewe behaves at energies less than the binding
energy (which must he larger than the Fermi enerpy) as a Bose system, e, there will be
a Boge-Einstein transition into a superfluid state. A good example is lignid *He. In case
(i1} the bound state of energy much less than the Fermi cnergy will be hroadened into a
resonance and the svstem will beluve like a normal Fermi hquid down to a temperature T,
below which a coherent “condensare™ of pairs will forim. This is the case of BCS theory [12],

which we will consider now in the example of liquid *He.

A. Cooper instability

We will be interested i Fermi svsiems with largely repulsive interactions, such as the
repulsive hard care interaction hetween twe He atoms or the Coulomb repulsion between
electrons. In this situation we can not expect an attractive interaction component to be
very strong, such as to prodwce @ hound state of two isolated particles in three dimensions
{actually, the necessary condition. | Vi, | > A% finri. where Vg and g are strength and range of
the attractive potential, would require | V4 | e, for a shortrange potential with rozk;-l).
However, as discovered by Cooper [13]. the fact that in & degenerate Fermi system the
occupied states in the Fermi sea are not available as final states in the scattering process
changes the situation dramatically. Let us consider the two-particle Schrvdinger equation

in momentum representation
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(€p/aek +pr = ENg == 3 £Vig Vi (64)
where §; = 2— — . P/2 £ k are the momenta of the two particles and V _i» is the pair
interaction. The summation over final states ﬁ/z + k' is restricted by the conditions
| Bf2 £ k' |> kr due to the Panli principle It is clear that the lowest energy eigenvalue is

obtained for zero center of mass momentum F = (.

In order to determine a possible bound state, it is convenient to expand Ve g, m terms

of Legendre polynomials

e

--Z)rﬂ\rw'/'i-f' (65)

’:-;
-
-

and to modet the coeflicients Vy as

, Vi L& & igena
Velk k') = (66)
(+ else

The separable integral equations for each ¢
(26— E)ahy = —ViN (o [tk e (7)
may be easily s iveit. One observes that for each f-channel with atiractive interaction,

Ve < 0, there exists a hound state with energy
2
N1y

E; = __25((,‘\-‘,( . ,,) {68)

The reason is that dne to the blocking of states in the Ferind sea the formation of the bound
state involves particles in states neay the Ferml enerpy, where the denstry of states is large
and approximately independent of energy, whereas in the usual two-particle problem the
relevant states are near zero energy, where the density of states vanishes as E . The
Cooper pair prablem is thus sinilar to the nsnal two particle problem in two dimensions,
where the density of states is finite for £ 0 and exactly one banned state is known ro exist
for arbitrarily small attraction.

We conclude that in the case of one or several attractive interaction components 1y, the
Fermi sea is unstable sgainst foru ation of Cooper pairs. The pairs may be expected to form
in the angular momentum channel L with the sirongest atrraction. [n the case of "He rhis

is the L = 1, or p-wave component.
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B. Mean fleld theory

The Hamiltonian of the interacting Fermi system

1
- — + - VAR +
H ‘U'N - kaainakﬂ + > Z lk—k'al'p' 'n-a'_l;'+qg a‘—ku ’a’k+qa (69)
ke RN

may be approximated in terms of the mean fields
e e = A B M,
T AT W S (70)
expressing t' e possibility of a “pair condensate”, as
Hyp — N = 30 &} g, + [\ . (._\.‘; e e babat, AL, ,0)
}-r,k:nﬂ B E’f’(? ’ Flfr,, ' (71)

where the “ofl-diagonal energy™ or “gap function”™ has been introduced as

AT L‘ Firmn (72)

Since Hppp i bilear form iy the field operarors g, a1t may be dingonalized hy a
iinear fransformation, imixing particles and hales in states & and —&, the soealied Bogolinboy-

Valatin transfornzation. The new lermion operators Ae 8! detined Ty

hL;“ - l: (HA;" R A o '“ ) (73}

are chosen sch that terms bt ovanash inrhe teansformed Hamiltonian, One finds for the

simplest cases of 13 meary e, and i dimeenal teas o ansl tga.

il
Ui -7 P (205, + E Y J
I - . 142
P = Ny |25, + Ep)Eg] (74)
and
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1 (AAl Yoo
Har N = Bt e, - 5[ 2055 + (80P} e

The energy eigenvalue E;_ is found as
1/2
o = (6 + (A 00] (76)

The mean field Hamiltonian (75) describes independent fermions, the socalled Bogoliubov
quasiparticles (BQP). The munber of BQP's is uot conserved. The energy spectriin Eg
has a gap at the Fermi surface, which 15 int general anisotrope

The expectation values ng  and £

e Wy beoabrtained from the inverse 13-V-

transformation, and using

+ ML JF.
<hzbg, > o= dgbaa fo

< bEnhE‘n’ > =10 (77

where

1

feo = fLER) = o B T {(78)

These relations follow from the fact that in the approximation (75) for the Hamiltonian the

Bogolinbov quasiparticles form a noninteracting Fermi gas. One finds

Ngg™ 2( sko)fkﬂ (
_ £(1 B €kg anks &)

B2 (1 - f,)
ke

2 Eh, 2T
Apys -
FEan" 2E_ (l_th' ("9)
The expression for Fi,o i terms of Ag, . is used to determive Ag ., by substituiing into
{73). One obtains the socailed gap equation
Ag, E;.
AEaa P = ? Vk E’ 2E 2T (80)

The solution of the gap equation is most conveniently discussed in terms of the eigen-

functions of the pair potential on the Fermi surface, assuming V;_. to vanish outside a shell
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of width 2¢. about the Fermi energy. These eigenfunctions may be classified according to the
representations of the symmetry group of the Hamiltenian. In the casc of *He the symmetry
group is G = S0(3)p x £~ 17(1), corresponding to the full rotation groups in orbital
space and spin space and the gauge group {we negiect the small spin-orbit coupling for the
present). The representations are labelled by the angular momentum L and by the spin §
of the Cooper pairs, and hence are (2L + 1) x (25 + 1) fold degenerate. We may write the

elgenvalue equation

VinS = Visen (81)

where m = =L, ~L + 1. fand e=-5-5+1,....5. The Pauli principle requires the

gap parameter to he antisyminetric. or &g . = - A and therefore only even (odd)

—ka ‘o

values of L are allowed for spin & = 0 (5 = 1}. The eigenfunctions are given by

:,,’n'l',(l. ac ') ::rr,fﬁd},m(l;t} . L even

Pk ) = {7970 Yok}, L odd (82)

where the ™ are the Paull mairices and the ¥y are spherical harmonics. For liguid 3He,
the L = 1 pair interaction component is the strongest attractive one, and hence there are
3 x 3 = 9 degenerate cigenfunctions u:j,;fjt(E : 7¢ ') available, in which the gap function may
be expanded:
303 .
Appor = Z Z Ao Y KT "0 - = Z Z dy b, (17974 Y50 (83)
m=1,-1 g=lp=1

wherte ch arc the components of k/ | £ | Thr matrix d,,, is the order parameter proper of the
system. The considerable freedom associated with the large number of components gives
rise to a rich variety of behavior, in particular the existence of several different equilibrium
phases as a function of pressure, temperature and magnetic field, the appearance of new

broken symmetries and collective modes.
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C. Thermodynamic properties

1. Transition temperature

The critical temperature T, follows from the gap equation in the limit A — 0, when the

different components > are independent. In the L-channel one finds
p

« tanh(§/2T,
ARy s (84)
0 S
which shows that as expected all components n;'-,{:_“ enierge at the same T, given by
. . I Car
o= 1131 e exp —— {85)

N vy
In the case of several attractive V;'s. the gap parameter may have very small admixtures
from these other channels, appearing at T << T, except if these Vi's are accidentally very

close to the leading V.

2 Free ruergy

The free energy
F=cH pyN»-TS (86

is obtained from (75} and the expression (93 for the entropy of o ideal Fermi gas, this time
a gas of Bogoliuvbov qnasiparticles, with ng veplaced Iv fas wiven by (78). One tinds

2 O fk

. [, 1
P = ZE’?_ Im(n)z < AARA e =y EZE (87)
F - i

£en

Of the several solutions the gap equation mav have, the ane with the lowest free PLETEY 1S
the stahle one, I order to bring out more clearly the tminimum property of the free eneray,
it is useful to have a free coergy functional of A . which has a minimum value given
by (87) and is stationary for any Ag, . satisfving the gap equation. This is obtained by

adding to (87} the expression obtained from the gap equation wlter multiplying by A} and

averaging over k. as well as eliminating the interaction 17 in favor of the quantity T/ T
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F{lAe A5} = Fy + %N(U)z < $1{(B7 Ak)e] — al(AF Ar)s) >4 (88)

where

‘ anh £/2T
S (AYA),]= (A;Ak)ﬂfd&[m" £/2r t&nhE,,/2T]

Q‘Ek 2Ek
tal{ATA)]= (% - fn;)(A:Ak)o + ]d&-ﬁf[%%—) - 9%%] (89)

and Fy is the free energy in the normal state. The functions ¢:(z) and ¢a(z) are both
monotonicaliy increasing and concave. The difference ¢, — ¢ starts out proportional —z at
suadl o, goes throngh a nunnnon and inereases as r o for large positive r. Thus the least
anisot ropic gap function will give the lowest free energy. In the case of p-wave pairing this
will be the BW state to be discussed below, which actually has isotropic A A,

Near the transition temperature, when the gap parameter is small, one may expand (88)
to get the Ginzburg-Landau free enorgy funetional

1 T o 1 .
F=F¢+ -5;\'(111{”7; L AN DV +Eﬁnz < [A:Ak)i,, By (90)

Bl a
where 3, = L (3IN0)/TY
S Glop parameler
For & given augnlar varintion of the sqiare of the gap, we may write
! + 2o
én:,{_\; Ag = Aalk) {91)

where we choose < {,‘“;‘} == L osueh thiat A s the average squared gap. Minimizing (90)

with respect to A one Hnds

s N0 T
ATy = - e 1o = (92)
o < gtk g Tr)
and the frec enerpy is found as
1, Ty, 4
F=Fy- Ei\ ({])(1 - ﬁ)ﬁ“ (T) (93)
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Thus, A(T) vanishes as (1 — T/T.)"/? as T — T. from below, and the gain in free energy in
the condensed phase is ~ (1 — T/T.)?, making the transition second order.
We note in passing that the ground state energy obtained from (87} in the limit T — 0

is given by
1 .
Eg= En — éN(ll)Az(l)} {04)

(From the gap equation, multiplied by A} and integrated over k. and eliminating the cou-

pling constant in favor of 7, one finds the gap in the limit 7 — 0 as
! . .
A(0) = 1.76kyTeexp | - 5 < glh)iglk) >k] (95)

Let us now consider two model states, thought 1o deseribe the A phase and the B phase
of superfluid SHe The B phase occupies the low temperature part of the phase diagram
8t elevated pressure and is the only stable phase {(in zero magnetic feld) at low pressure.
The corresponding model state is called the Balinn-Wertheimer (BW) state [14] and has the

form

AB“ = A Z [fjl}(,TyTl“)rrrr ‘I‘J (96)

koo '
.2

where R, is a rotation matrix deseribing a relative rotation of spin and orbital space. This

state has the unique feature among L # 0 pairing states of having a uniform energy gap,

since
(A Aghsar = A%, (97)

This is obviously the “least anisotropic state”, which minimizes the weak coupling free
energy (88). It is therefore no surprise that this state is stable over most of the superfluid
region in the phase diagram.

The second observed phase, the A phase, is thought to be described by the socalled

Anderson-Brinkman-Morel (ABM) state [15.5], defined as

ALBM = Aod - (iT9F)p0 ok - (1h +18) (98)

koo
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where the unit vectors d, 7 and # specify preferred directions in spin space (d) and orbital
space (fm and 7). The ori tation of 1 and n is perpendicular, #i - rh = 0, and 7, # and
¢ = i % 7 span a triad, Noto thot ASBM ¥,,(k), i.e. the Cooperpairs have a finite angular
momentum projection along #. The spins of the two partners of the pair are aligned parallel
in direction perpendicular to d (equal spin palring”).

The energy gap of the ABM state is anisotropic.

(AL A0 = A1~ (k- 08, (99)
with two poiut aodes at k = 4. In weak-conpling theory the ABM state is unstable with
respect to the BW state, as we have seen. The experitnental observation of the ABM state
can vnly he described by going bevond weak coupling theory,

4. Specific heat
The specific heat is most conventiently derived from the entropy,

z dflm

ko ar

a
- ~;ZM{Z[ - ST (AL A (100)
ket

The term ~ %(A“LA) gives rise to a discontinuity at T,., of relative weight

ACy 12 1,
Cv  TB)x (101)

where x =< [AFA? > /(< Ay =;)% For the isutropic BW state x = 1 and for the
ABM state k = %. It follows from Schwarz's inequality that < > 1.

At low temperatures, the thermodynamic behavior is governed by the node structure of
the gap function. Thus, in the case of an isotropic gap function, as in the BW state or for
s-wave superconductivity, the distribution of thermal excitations is of the Boltzmann type,

2
fra ~ exp _ﬁﬁf&‘ and

ngwexp~?~ , T<<T, (102)
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For the case of point nodes, as for the ABM state, we can argue quelitatively that for any
given temperature T, there will be Fermi surface regions around the point nodes, where
i & [< T and the Bogoliubov quasiparticles behave like normal quasiparticles. For the
ABM state we have | Agsin 6 |< T and hence 8,<T/Aq = 8,. The specific heat is given by

the normal state value times the fraction of Fermi surface contributing, 2m62/4n,

T
CAEM (Kﬂ}?m(r) x T (103)

Obviously, a similar estimate of a state with a line of nodes i the gap fanction would give

C,~T

5. Nermal fhad density

At finite temperature 0 < T < T, the hyilrodvnainic properties of a superfluid Fermisys-
tem may be described in terms of 2 “two-fluid model”. vonsisting of a superfluid component,
the condensate of Cooper pairs, and a normal-Huid compaonent. the thermal excitations, here
mainly given by the Bogoliubov quasiparticles. The density of the normal-fluid component
may be calculated in the following way. We assiine a situation, where the superfiuid con-
ponent is at rest, while the normal-Huid component is Howing with aniform velacity #, The

distribution function of BQP is & shifted Fermi lunction

FEos fiRe - k8 (104)

Since the BQP are inomentum eigenstates, for whicl the energy < ange induced by a Galilean

transformation 1= given by —& -7, We may now caleulate the momentum density in linear

order in 7,

. o ~q O 2
DD NTEED SR (105)
- 7
i
Defining the wormal-Huid density tensor g, by
Gu =Py Ty (106)

[~
~1

we find
B =3 kik;(—0f:dEx) (107}
ko

Near T, pﬂu decreases linearly with decreasing T, o, ~ (1 - nu%ﬁ), whereas at low
temperatures ane finds for the largest eigenvalue of p2
exp(—A/T) isotropic
JARNE L point nodes (108)
T line nodes
At T we shonld have o) -« powhere = s the mass deusity. [nstead, one obtains
from (117} ;:‘"’U = 5:—:;’-,:?!,), The diserepaney i< die to Fenini bguid corrections. which we have
not yet taken into aceount. As seen from the discussion of the effective mass relation in

normal Fermi hquids. the bare velocity is sereened by backflow effects, involving the Landau

parameter 7, and must he replaced by the effective velocity

- . I m o

Uy, Ty - =1y

nweff Sp e 1 9n (109)
fthis derives from the quasiparticle enerpy change arz = N%.I'TZF«,,L‘ kg, =

(Npkp 212G, and can be shows 1o earry oser to the superfluid state]. The correct p,-tensor

is then given by
- I call
R T I N B
m(l +3[' ,;) ' (110)

[

D. General Ginzhburg-Landau expansion of the free energy

Lo Unaform system

Near s second vrder phase transition the order parameter ((OP) is small and the change
in free energy induced by the formation of order may be expanded in powers of the OP.
The general form of this expansion is determined by the symmetry of the system. In the

case of liquid *He, the free energy F must be invariant under rotations in orhital space and
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spin space (neglecting again the small spin-orbit coupling), and F must be a real quantity,

of course. In terms of the normalized order parameter matrix
Ay =370, AT (111}
the G-L free energy takes the form

1 .
F= Fy +aA? + 513‘{;3. [te(AATY 7 440,

fmr[(AA?')(AA" )'] + mn[mA')ﬂ] | ,i:,tr[t.«hl’ A4} (112)

There are five possible fourth order invariants in this case. abtained by contracting the
orbital and spin indices of AA* 44" in all possible wavs, maitiplied by phenotenological
parameters [3;.

By comparison with the weak coupling result {00). one finds the values i%) = 3y = 3 =
By = ~23 = gﬁ,, in this timit.

The problem of finding the stable phase by minimizing F for a given set of $-parameters
has not been solved in general so far. However. a combination of analytical and numerical
studies has provided a rather complete picture; there are 13 possible order parameter strue-
tures characterized by their residual symmetry gronps. which fall into two classes. The first
class comprises five socalled “inert” states. These states rotain a fixed strueture within their
respective domain of stability in J-parcimeter space. The BW and ABM states are of this
type. The remaining “noninert” states depend contimionsly on the #-parameters.

The free energies of the BW state and the ABM state are given hy

n
[

FOW Py oo .
" 20y + _%Aiun)
pamv_ g o (113)
2

where 012 = (3, + g;, etc.. In the weak-coupling limit, 35% = B, + 1Bus = By, wheress
BABM — g = gﬁo. Thus a 20% relative change of 35" and 342™ is needed to stabilize the
ABM phase relative to the BW phase. There are several microscopic models involving the

effect of spin fluctuations or transverse current fluctuations. and other excitations, which can
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qualitatively account for the stabilization of the ABM state. The intuitively most appealing
one is due to Anderson and Brinkman [5]. It emphasizes the importance of spin fluctuation
exchange in producing the atiractive interaction in the --wave channe). In the superfluid
state, the spin-fluctuation spectrum, and hence the pair interaction is modified. The equal
spin-pairing configuration of the ABM state enshances the spin-fluctuations at higher pressure

(large m*/m) and not too low temmperature, relative to the BW state.

& Superflow and Tertures

The most spectacular propetty of a pair-correlated Fermi system is of course the super-
Huidity. This property is related to the complex-valuedness of the order parameter, which
in turn 15 a consequence of the hroken U{1} gauge synumetry. Let us consider the local pair

amplitude
3.0 —thF' R~ 1-—1 : o oy
Frog A7) = [ e 47" < V(P b 57V (F = 57) > (114)

A Galilean transformation into a fratme of reference moving with velocity @, under which the
single-particle momentum eigenstate zz(7} = cxp(z’f;-r_’) transforms into wg, = pexp(—imdg-

) (using &' =k — mit) causes F to change as follows
Fiva \F) = Fp AP exp(—2imit- 7). (115)

The locai gap parameter A, . vanstorius in the same way.

For the BW state where the O is given by a real quantity times a phase factor,
7 =] DFY | Ry (7 expligl7) (116)
the phase ¢(7) is seen to transform as
) — B(F) - 2mid -7 (117)

JFrom this relation one concludes that the quantity
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= iffeﬁ(#) (118)
2m

transforms as a velocity. It is referred to as the “superfluid velocity”. The corresponding
super current is given by §, = 7, - &, with 5, the superfluid density tensor. By invoking
the two fluid model, we can determine 5, in the following way. The total mass current is

obtained by adding the superfluid and normalfluid currents

Fopo et i, T (119)
By Galilean invariance, the nue s current oo relerenee fro o - wing with velocis - is

Fi=g+pi=p, (T +a+p, (@ +d) and hence 5, + 5, = pl.

For the ABM state things are more subtle, as the O is intrinsically complex,

A7) =] Aair) | J,,m[mj(ﬂ + i, 1) (120)

Muttiplication of d,,; by a phase factor is equivalent to a rotation of 1 and @ in their plane

by the angle - ¢ or ' +A " = "0 4 i), Taking the pradient and letting ¢ — 0 yvields
Vo =-%u,n, (121}
4

Inserting (121) into (118}, one can see that the superthid velocity does no longer describe
potential low Rather. the flow depends on the foeal orientation of the OP g other words,
changing the local orientation of 1the OF can have a major effect on the superflow. Two
important consequences are (1) supertlow is less stable in the ABM state a continuous
motion of the orientation of the proferred dicection ¢ van nnwined” 1le phase and <lissipate
the superflow. Tlie cure for this desastrous effect is the pinning (or "locking” ) of the 7 vector
field at boundaries or by external fields (rp. magnetie Belds). (i) there may exist defects
or “vortices” in the f-field, which varry a huoite [quantized) circtlation, but do not bhave a
normal core. These are actually energetically Tavored

In general, the configuration of the preferred directions. ¢ o 4. ¢, will not be uniform,

but will vary smoothly to form a sacalled “texture”. The toxtures are determined by the

3

interaction of the OP with boundaries and with external fields. For example, the f-vector
of the ABM state is oriented normal to a boundary, because the quasiclassica) orbit of the
partners of a Cooper pair obvicusly prefers to be in a plane parallel to the surface, The
d-vector of the ABM state, being perpendicular to the spin vector of the Cooper pair wil]
orient itself perpendicular to an applied magnetic fieid.

The socalled “bending” of the OF costs energy, which causes a certain stiffness of the

preferred directions.

This is described by the socalled “pradiont feee energy™. which has to be added to the

GL free euergy in nomunifornt statos [t takes the form

I _ o )
Fo=3 / r{ KT du) (V50 + KoV d,0) (V0

RT3Vl ) (122)

with coeflicients K, which i the weak conpling lnni take the values M=Ky = K3 =

%:\"p{f,. where &y = [TC0N/ 1877 70y /T s the (zero temperature) coherence length charac-

terizing the extension of a Cooper pair.
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1v. UNCONVENTIOIVAL SUPERCONDUCTIVITY

The existence of superconductors with unconventional order parameter has not been
prove . beyound doubt, although clear experimental indications exist for twoe classes of
strongly correlated electron systems, the licavy fermion compounds [7] and the cuprate
superconductors. The term “unconventional™ here meaus states with order parameter struc-
ture violating a rotation or reflection symmetry of the system in addition to gauge symmetry.
As in the case of superfluid ®He, the reason for pairing i states with reduced symmetry is
a strongly repulsive short range interaction. which can he largely avoided if the partners of

the pair are in a state with effectively finite angular iomenton.

A. Low temperature properties and node structure of the gap

As we have seen in the last lecture, tie additional svmmetry breaking usually leads to
very anisotropic gap structures, characterized by nodes of the gap oun the Ferini surface.
The node structure governs the low temperture bebavior, Jeading to temperature power
laws in the thermodynamic and transport properties. A qualitative determination of the
temperature power can be given following the discussion preceding {103}, Essentially, the
normal state result has to be multiplied by a T-dependent reduction factor accounting for the
fraction of Bogoliubov quasiparticles with energy gap | Ag < T In principle, experimental
observation of the temperature power laws would allow the complete determination of the
node structure of the gap.

Unfortunately, the power laws tend to be masked by additional effects, such as caused
by impurity scattering, which can destroy the node structure at low energies.

A classification of the possible order parameter structures can be given in analogy to
the earlier studies of *He [7,16]. Starting point is the symmetry group of the system, which
consists of the point symmetry group of the crystal, the group of rotations in spin space,

the gauge group and time reversal symmetry. In the case of heavy fermion compounds the
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spin-orbit scattering is strong, and the symmetry operations of {discrete) rotation/reflection
in position space and rotations in spin space are combined into a single finite group. In this
case only one continuous symmetry is left, the gauge symmetry. Again a natural framework
for classifying different gap structures is in terms of the eigenfunctions of the pair interaction

V on the Fermi surface
utl) = ) (12)

The eigenstates ) mav be grouped ju nudtiplets labelled by the irreducible representations

I" of the peint group. Different sub-states of an dp-dimensional representation, labelled by
v = 1,2, .dp have the same eigenvalue /\flm. For each representation [" there is an infinite
number of eigenstate multip tslabelled by r. With increasing n, the eigenstates wgﬂ acquire
an increasing number of nodes. For given [, we may expect the eigenvalue Aé” with the
smoothest eigenfunction to be largest (in modulus).

The largest negative eigenvalue, A((‘l.”j. determines the transition temperature. Then, the

equilibrium state (near T, at least) will have the gap parameter structure
ar Tod, &
A= 3 e, (k) (124)
v=1

where the ¢, are determined by minimizing the (G-L) free energy.

Let us now consider two examples. The first will be the heavy fermion superconductor
U Pt3, probably the hest-studied example of its class. The crystal structure is hexagonal, the
point group Dgy. Due to the inversion symmetry of the lattice, the single particle states are
two-fold degenerate, so that inspite of the strong spin-orbit coupling there is a pseudo-spin
dependence. One observes a splitting of the transition of about 10% of T, (T, >~ 0.5K).
The splitting has been shown to disappear under applied pressure, at about 4kbar. There
is & weak antiferromagnetic transition at T ~ 5K, which seems to be absent at pressures
S3kbar. This is very suggestive of a two-dimensional representation with a weak symmetry-
breaking field due to the anti-ferromagnetic order. The low-temperature behavior of the

specific heat, the thermal conductivity, the ultrasound absorption indicates a line of gap
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nodes in the basal plane. There are two possible representations left, £, and E,, an even

perity, pseudospin-singlet and an odd-parity, pseudospin-triplet state, with order parameters

E]g : AE:{: = Aop'-cz(l.c: B Iicy)

Byt Ay = Dock, (kg + k) (125)

where ¢ is a unit vector in pseudospin space pointing along the ¢ axis. A general state in the

two-dimensional space may be denoted by a 2-compunent vector 7 = (7. 12). which specifies

the state
1 ‘ o 1 .
Ags= 5[m. i), vy g (126)
The phenomenclogical G-L free energy [17] is a functional of (),

F= [dr{a(Ti- 7 + 077 + i |77
+HI(D!??J)(D1U1). + h‘z(”:’h)(Dﬂ?:J' + "\'.l(DIT?))(Dﬂh)'

. I & o
+rg(Da Doy} +g”2} e

Here o, B, [y, k1. .. wq are material parameters. which can be ealenlated from microseapic
theary. There are two fourth order tevms and fonr grivlient terms. due to the haxagonal
symmetry of £'Pty. The Ds are tiw components of the gauge invariant gardient operaror
D; = 5‘}‘ + 1% A,. where A7) s the vertor potential. The last teom is the cnergy of the
magnetic field in the sample.

One finds two possible homogeneous equilibrinen states. For — i < gy < 0.7 = (.00,
and for & > 0.3, = no{1.1), or equivaleatly 57 =%

As already mentioned. one ohserves a splitting of the toansition, which would be cansed
by the symmetry breaking feled dne to the weak anriferromaguetic order. Asswining that
the corresponding staggered field, AT.. transforins as a vectar in the basal plane, one obtains

the additional symmetry breaking contribution to tie free energy

Fopr = e312 [ 'rilm [F — {o 1) (128)
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This term favors an order parameter 7 = 79(0,1) (f = n(1,0)) for € > 0 (e < 0). If 5, >0,
this state becomes unstable w.r.t. condensation of the other component at & second eritical
temperature Ty, and develops into 7, for T << Ta.

So far both, the Ey; and Fy, states would be compatible with experiment. As noted by
Sauls [18], a further distinction can be derived from the anisotropy of the upper critical field
Hg. The H.z curves for field parailel and perpendicular to the basal plane are observed to
cross at low temperature. This can be understood, if the lower curve (A i €), s suppressed
as a consequence of “Panii linnting™ In high magnetic fields, such that the Zeeman energy
is of the order of the gap energy, g, ~ AT + 0), the magnetic feld breaks Cooper pairs,
which are (i} either in the spiu-singlet state or (ii) have spin projection S, = {} in the case
of triplet pairing. For the assnined Ey, state with orientation of the d-vector || f-axis, the
Cooper pairs have S, = 0 along the quantization axis I| é. which would explain the anisotropy
of Ha. In the spin-singlet F\, state, o the other hand, the Pauli limiting is independent
of the field direction. A still vemaining problem is the existence of a tetracritical point in
finite magnetic Held For a possible resolution of this probiem we refer to Sauls (18].

Let us now turn te the other exampie. the high-T. superconducters. Theoretical model

calenlations identify a spin-singlet state with d-wave symnetry
Ap = Apfeosk, - cosky) (129}

as the most stable superconducting state. This state has four Hnes of nodes paralle] to the
z-axis on the cvlindrical Fermi surface. The low temperature properties may therefore be
derived from the fact that the fraction of therinal excitations (BQP) near the line nodes is
proportional to T

The specific heat is varving as Oy ~ T2 while the largest eigenvalue of the normal fluid
density teusor p, ~ T Sinee the magnetic penetration depth A is related to the superfluid
density by \-11 = ;,"—;;ps and g, = p — pn. one finds MT) = const + aT. A linear dependence
of A with terperature has been observed in very clean samples {19]. This is one of the

important indications of unconventional superconductivity in high-T, superconductors,
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