Foey
INTERNATIONAL ATOMIC ENERGY AGENCY v
UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION m
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
LCTP. P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

SMR. 758 - 29

SPRING COLLEGE IN CONDENSED MATTER
ON QUANTUM PHASES
(3 May - 10 June 1994)

DYNAMICAL MEAN FIELD THEORY OF STRONGLY CORRELATED
FERMIONS: THE LIMIT OF LARGE DIMENSIONS

Antoine GEORGES
Laboratoire de Physique
L'Ecole Normale Superieure
24 Rue Lhomond
F-75231 Paris Cedex, France

and

Gabriel KOTLIAR
Serin Physics Laboratory
Rutgers University
Piscataway, NJ 08854

U.S.A. -

These are preliminary locture notes, intended only for distribution W participants.



Dynamical Mean Field Theory of Strongly Correlated Fermions:
the limit of large dimensions

Antoine Georges
Laboratoire de Physique Théorique
Ecole Normale Superieure
24 rue Lhomond
75231 Paris Cedex 05 France

Gabriel Kotliar
Serin Physica Laboratory, Rutgers University
Piscataway NJ 08854 USA

We review the mean field theory of strangly correlated electrons aystems which
becomes exact in the limit of large lattice coordination. It is based on a mapping
from lattice models onto quantum impurity models. We discuss the physical ideas
underlying the mean field theory, its mathematical derivation and the techniques
developed to study it. This method yields qualitative insights into the strong corre-
Iation problem and a quantitative deseription of the solution of model hamiltonians
in the limit of large lattice coordination. Application of these techniques to the Mott
metal-insulator transition is described in the attached reprints.

Lecture Notes for the Spring College cn ‘Quantum Phases’
ICTP (Trieste), May 3-June 10, 1994

Not intended for publicalion

References to be found in attached reprints

L. INTRODUCTION

The subject of these notes is a mean-field theory of strongly correlated fermicn models,
which freeses out spatial fluctuations but deals with local guantum fluctuations in an sxact
maaner. This mean-field theory becomes exact in the Limit of large lattice coordination,
which insures the internal consistency of the approach. For this reason, it is analogous to
the Weiss mean field theory in classical statistical mechanics. Suitably extended to take into
account the specificity of the local density of states of realistic systems, the method can be
applied to calculations on real materials.

The essential idea underlying this approach is to replace a quantum many body problem
by a single site quantum impurity model in an effective medium which is determined sclf
consistently. This self consistent quantum sero dimensional problem can be attacked with
a-variety of techniques. This method has already given new insights into fundamental
problems such as the Mott transition, the superconductivity of strongly correlated electron
systems, the interplay of magnetism and local moment formation in disordered systems, and
the breakdown of Fermi liquid theory in metallic phases. Many other possible applications
are currently being explored.

In these notes, a pedagogical introduction to the technical aspects of this mean-field
apptoach will be given. Application to the Mott metal-insulator transition is described in
the attached reprints, where references to the Listerature is also to be found.

II. DYNAMICAL MEAN-FIELD EQUATIONS

To strese the analogy with the familiar mean-field theory of classical statistical mechanics,
we shall describe in paralle] the ciassical case and ite quantum generalisation below. For

the sake of clarity, we shall first summarige the mean-field equations without any proof, and
then present vatious useful derivations.

A. Outlook

The goal of & menn field theory is to approximate a lattice problem with many degrees
of freedom by a single-site effective problem with less degrees of freedom. The underlying
physical iden is that the dynamics at a given site can be thought of as the interaction of the

degrees of freedom at this site with an external bath created by all other degrees of freedom
on other sites,



The simplest illustration of this idea is for the Ising model with ferromagnetic couplings
Jij > 0 between nearest-neighbour sites of a lattice with coordination z:

H = —ZJ.','S"S_" - Zh.‘s; (1)
(#) i

The 1907 Weiss mean-field theory views each given site (say, o) as governed by an effective
hamiltonian;

Hepy = ~heysS, (2)

All interactions with the other degrees of freedom are lumped into the Weiss effective field
heyy:

where m; =< §; > is the magnetization at site i, and translation invariance has been
used (m; = m). Hence h,sy has been related to a local quantity which can in turn be
computed from the single-site effective model H,;,. For the simple case at hand, this reads:

m = tanh({fh,s;), which can be combined with {3) to yield the familiar mean.field equation
for the magnetization:

m = tanh(B(h + zJm)) (4)

These mean-field equations are, in general, an approximation to the true solution of the
Ising model. They become ezact however in the limit where the coordination of the lattice
becomes large. It is quite intuitive indeed that the neighbours of & given site can be treated
globally as an external bath when their number becomes large. As is clear from (3), the
coupling J must be scaled as J = J*/z to yield a sensible limit z — co (this scaling is also
required Lo keep the free energy per site finite),

These idens can be directly extended to quantum many-body systems. This will be
illustrated here on the example of the Hubbard model:

H= _Etiicitci’ +h.c-+UZn;[n,»J (5)
ij,o i
It will be assumed in this section for simplicity that no symmetry breaking occurs, i.e that

one deals with the translation-invariant paramagnetic phase. Phases with long-range order
will be dealt with in section II.C.

Again, the mean-field description associates to this hamiltonian a single-site effective
dynamics, which is conveniently described in terms of an imaginary-time action for the
fermionic degrees of freedom (€oesct,) at that fite:
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A
Sy = — Lﬂ dr /: dr’ }; cL(r)G,‘},(f — () + U j; drng(tin,y(7) (8)

G.ss(r — ') plays the role of the Weiss effective field sbov.e. Its phlysical c‘ontent i tl.ut
of an effective amplitude for & fermion to be created on the uo?nted site at time 7 (oon;;g
from the "external bath”) and being destroyed at time 7' {going ba.ck to the- bath). ' .
main difference with the classical case is that this generalised "Weiss ﬁfld" is a function
of time instead of a single number. This, of course, is required .to take into acctlmnt lc:ca.'
quantum flucluations. G,yy plays the role of a bare Green's function for tl:e effect.we action
Sess, but it should not be confused with the non-interacting local Green's function of the
original latiice model. . ‘

A closed set of mean-field equations is obtained by supplementing (6} with the e?:prcmon
relating G.y; to local guantities computable from S,s¢ itself, in complete analogy with eq.(3)

above. As will be shown below, this expression reads:
1/G.pyliwn) = iwn + p + 1/Gliwn) — D [Gliwn)] ()

In this expression, G{iw, } stands for the on-site interacting Green's function calculated from

the effective action S,4,:
Glr - 1) = — < Tefr)et (') >a,, (8)

and D(¢) is the teciprocal function of the Hilbert transform of the density of states corre-

sponding to the lattice at hand. Explicitly, given the d.o.s D{e) :

D(C) = 26(6 - C*) y E = Z:t'_jcl'l-(n.‘-ﬂ,') (9)
L3 i
D1 eatishies: D-'(D(() = ¢, where the Hilbert transform D{(¢) is defined by :
() = [ ae 2 10
D(():fdsc_e (10)

Since G can in principle be computed as a functional of G,;; using the impurity action
S.y » cquations (6,7,8) form a closed system of functional equations for the on-site Green's
function G and the Weiss field G.yy. In practice, the main difficulty lies in the solution of
Sty o

It is instructive to check these equations in two simple Limits. In tlle' free limit U = 0,
solving (6) yields G(iw,) = Goys(iwn} and hence from (7), G(iwn) = D(iw, + p) reduces
to the free on-site Green’s function. In the 'atomic’ limit ¢; = 0, one jusi has a collection
of disconnected sites and D¢} becomes a &-function, with _ﬁ(() = 1/{. Then (7} implies

Goypfiw,}! = dw, + g and the effective action S.yy becomes essentially local in time and
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describes a four-state bamiltonian which yields: Giwn)a = {1 —n/2)/(3wn + ) + n/2(iwn +
u—U), with n/2 = (¢ + LA-UN)(1 4 26/ 4 H2-Y)),

Solving the coupled equations above not only yiclds local guantitics but also allows us to
reconstruct all the k-dependent correlation functions of the original lattice Hubbard model.
For example, the Fourier transform of the one particle Green's function Gjj(r - 7') = — <
T¢i.(T)c], (') > can be shown to read:

1
iwy + p = € — E(iw,)

G(kii“’n) =-< ch('-wn)ci(iwn)+ >=

(11)
where the self energy can be computed from the solution of the effective on-site problem as:
B(iwn) = GZ7y(iwn) -~ G (iwn) (12)

It is therefore k-independent in this approach (i.e purely local in space: I;; = §;;I, a fact
first noticed in. From this expression, one sces that the self-consistency condition’, eq.(7)
telating G and G,y insures that the on-site component of the Green's function, given by
Culiws) = T, Glk,iw,) ccincides with the Green’s function G(iw,) calculsted from the
effective action S,yy. Indeed, summing (11) over k yields: D(iwg + p — T(iw,}). Identifying
this expression with G(iw,) and using (12) leads to (7).

Thermodynamic quantities for the Hubbard model can all be simply related to their
one-site model counterparts: the relevant expressions for the free energy and internal encrgy
are given by eqs.{) below. Higher order Green's functions, dynamical response funections
and transport propertics for the lattice model can slso be related to vertex functions of the
on-site action S,zy. Basically, when writing integral equations for the 2-particle Green's
functions, the irreducible 2-particle vertex can be replaced by ite momentum-independent
(but frequency-dependent) impurity model counterpart.

Table 1
Quantum Case Classical Case
- T tised cie + U T nipmiy H=—Y;iiSiS; - WL S Hamiltonian
iy ~ ;}:Ii_ﬂ Jij ~ ‘:Ii_il(ferrmnagnct) Scaling
Gk, iwa) =< cjf (1wn)er{iwg) > < §:5; > Correlation Function
< ¢H{iw, Je(tw,) > m=<5;> Local Observable
— [ [} (T)G s (r — Tea(T) + fUnyn, Heps = hegs S Single Site Hamiltonian
H.4s = T, BEiala. + T, Vifale, + hoc)
—u¥, cte, + Unyny
Gepyliwn) hoss Weiss Field
G:;!(iw.‘) = heyy = 2Jm Relation between Weiss
iwp + g+ 1/Gliwy) — D7 [G(wn)) Field and Local Observable

B. Connection with quantum impurity models

The structure of the mean field theory is that of a functional equation for the local
Green's function G(iw,) and the "Weiss field’ G,z¢(iw,). In contrast to mean-field theory
for classical systems, the on-site effective action S,y; remains & many-body problem. This
is because the present approach freezes spatial fluctuations but fully retains local quantum
fluctuations. As a function of imaginary time, each site undergoes transitions between the
four possible quantum states [0 >,| 1>,| |>,} 1,]> by exchanging electrons with the rest
of the lattice described as an external bath. The dynamics of these processes is encoded in
the Weiss field G, pp(r — 7).

For these reasons, no hamiltonian form involving only the on-site degrees of freedom
(Cos» €1, ) can be found for the effective on-site model: once the bath has been eliminated,
5,14 necessarily includes retardation effects. In order to gain physical intuition and also to
make some practical calculations with 5.y, it is useful however to have such a hamiltonian
formulation. This is possible upon reintroducing auxiliary degrees of freedom describing
the 'bath’. For example, one can view {c,,,c},) as an 'impurity orbital’, and the bath as a
‘conduction band' described by operators (a;,, a} ) and consider the hamiltonian:

Ham =Y Eialaie + 3 V(o cor + chate) = 1Y ¢hcon + Unugna, .(13)
e e L4

This hamiltonian is quadratic in a},a;,: integrating these out give rise to an action of
the form (6), with:



1 . hoo A(E) — 2
GZyGiem) = son+p - [ B —E AB =T V(B - ) (14)
Hence (13) can be viewed as & hamiltonian representation of 8,ss provided A(E) (i.e the

parameters 1}, Ey) is chosen such as to reproduce the actual solution G,y of the mean-field

equations. The speciral representation (14) is general enough to aliow this in all cases.
The hamiltonian {13} is the familiar Anderson model of a magretic impurity coupled to a

conduction bath. Here the isolated site o plays the role of the impurity orbital, and the
conduction bath is built from all other Iattice sites,

There is of course & degree of arbitrariness in the hamiltonjan representation of the local
action &,p;. Inetead of viewing it in the Anderson model language, we can consider the
Wolff model | in which the U-term acts only at a single-site of a conduction
tepresenting the bath:

ku = Z Eia:;d], + U"olnol (15)
lo

If we adopt this point of view the Weiss field is given by

A = [ apAE)  apy 2 S §(E - By (16)

e iw, — F

and it merely corresponds to a different spectral representation of G, ;.

Hence, the mean field theory of the Hubbard model reviewed here maps the lattice
problem onto that of an Anderson impurity embedded in a self consistent medium. The

solution of the mean-field equations involves the determination of G.ss such that, when

inserted in the Anderson model, the resulting impurity Green's function obeys the self
consistency condition (7).

The reduction of a laitice problem to a single-site problem with sffective parameters

is & common feature to both the classical and quantum mean-field constructions. The
main difference is that the Weiss field is a number jn the classical case, and a function in

the quantum case. Physically, this reflects the existence of many energy scales in strongly

correlated fermion models, (We note in passing that this also occurs in the mean-field theory
of some classical problems with many energy scales such as spin glasses). This points out

the limitations of other ‘mean-field’ approaches, such as the Hartree-Fock or slave bosons

methods, where one attempts to parametrize the whole mean field function by a number

{or a finite set of numbers). This in effect amounts to freeze local quantum fluctuations by

replacing the problem with a purely classical one, and ¢an only be reasonable when only
one encrgy scale is important. One such example would be a Fermi liquid phase. of the

Hubbard model. Even in suck a casc, parametrizing the Weiss field by a single number can

T

-electron lattice

only be satisfactory at low energy, but misses the high energy moohl:m.nt ::lt::: ul'o:;:.e;
with the other energy scales in the problem. When no du'n.cteruﬁc {:; Y sole
present, a single number parametrisation fails completely: this is the case chexu;{.q:»a e
correlation functions have power-law decays as a function of frequency (such as X-ray edg
i will be discussed in section .
bEh;z:llll?,l tll:e mapping onto impurity models, besides its intuiti'w ?ppenl', l:]u ‘pr::e:; :.c:
be useful for practical calculations. These models have been studied u.ltens:v ly in the -
30 years by a variety of analytical and numerical tec.hmqflel, and thu kfmw edghc can e
employed to understand strongly correlated lattice modéls in large dimensions. The cruci

step in this game is to use reliable tools to solve 8,44

C. The limit of infinite dimensions

The above mean-field equations become exact in the limit of infinite coordination -on
various lattices. In this section, we discuss several such examples and in ea‘ch cue-e ‘we give
the relation (7) between the local Green's function and the Weiss field G,y in explicit form.
Notice that, in the paramagnetic phase, the mean-field equations depend only' on the free
density of stales D(¢). Since many different lattices give rise to the same den.slty of lhftcs
in the limit of large coordination, one can construct models with the same single 1?ut1cle
propetties (i.e the same Green's function) in the paramagnetic phfscs but very different
properties regarding magnetic responses and transitions to phases with lo-ng-ru-\gc order,

The first example to be discussed is the d-dimensional cubic lnl':hce wn'th nea.re.st-
neighbour hopping (with coordination 2d). In order that the kinetic and interaction energies
remain of the same order of magnitude in the d — colimit, a scaling must be made on the
hopping amplitude. The correct scaling is easily seen from the Fourier trunu.form € of- tis,
which for a 'generic’ vector k involves T4_, cos(k;), & sum of d numbe.rs .w:th essentially
random signs. Hence ¢;; must be scaled as &; = ‘-;7 More precisely, this m‘sufes that the
d.o.5 has a well-defined d — oo limiting form, which reads (from the central-limit theorem):

D(0) = ;= ex ~(3) )

This expression, and various useful properties of tight-binding electrons on a d — oocubfc
lattice is derived in Appendix A. The same density of states is obtained for thed — oo ctlszc
lattice with t;; = t,/v/d fot nearest-neighbour hopping and &;; = y/d for :Text-nclreut neigh-
bor hopping. In this case, one should set ¢ = /4,> + #] in eq.{17). The Hilbert transform of
(17) reads {for t = 1) D(z) = —ia/x exp(—z?)er fo{ ~iaz), where s = :ign(Im(-z).) and er fc
denotes the complementary complex error function. There is no simple explicit form for
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the reciprocal function D~ in this case and hence (7) must be used as an implicit relation
between G,y and G.

A second important example is the Bethe Inttice (Cayley tree) with coordination z — oo
and nearest-neighbour hopping &; = ¢//z. A semicircular d.o.s is obtained in this case:

D)= gqVA =3, I <2 (18)

The Hilbert transform reads (for t = 1): D(¢) = (¢ — #/{7 = 4t7)/2¢%, and its reciprocal
function takes a very simple form: D-1(¢) = £3¢ 4 1/(, so that the self-consistency relation
between the Weiss field and the local Green's function takes in this case the explicit form:

G fyliwn) = twy + p — 'G(iwa) . (19)

The same d.0.¢ is also realised in & random Hubbard model on a fully connected lattice
(all NV sites pairwise connected) where the hoppings are independent random variables with
variance ; = t}/N.

Finally, the Lorentsian density of states

t

D(E) = m

(20
can be realized with a t;; matrix involving long-range hopping. One possibility is to take
for the Fourier transform of ¢;;: & = 5)’_",,4:1 tan(k;) = sign(k;} on a cubic lattice as d — 00 .
Because of the power-law tails of the d.o.s, this model needs a regularizgation to be properly
defined. If one introduces a cutoff in the tails, which is like a bottom of the fermi sea, then
a 1/d expansion becomes well defined. Some quantities like the total energy arc infinite
if one removes the cutofl. Other, low energy quantities, like the difference between the
energy at finite temperatures and at scro temperature, the specific heat, and the magnetic
susceptibility have a finite imit when the cutoff is removed. The Hilbert transform of
(20) reads: D{(¢) = 1/(¢ + itaign(Jm(())). Using this into {7), one sees that a drastic
simplification arises in this model: the Weiss field no longer depends on G, and reads
explicitly:

Gogpliws )" = tw, + p + it signw, (21)

Hence the mean-fid equations are no longer coupled, and the problem reduces to solving
S.g¢ with (21). It turns out that (31) is precisely the form for which S,;; becomes sclvable
by Bethe-Ansats, and thus many properties of this d — oolattice model with long-range
hopping can be solved for amalytically. Some of its physical properties are non-generic
however (such as the absence of » Mott transition), as will be discussed below.

L
I11. DERIVATION OF THE MEAN-FIELD EQUATIONS

A. The cavity method

The purpose of this section is to derive the mean.field equations introduced above, using
a method which is both simple and easily generalised to several models. This method is
botrowed from classical statistical mechanics, where it is known under the name of 'cavity
method’. The underlying idea is to focus on a given site of the lattice, say i = o, and to
expliatly integrate out the degrees of freedom on all other lattice sites in order to define an
effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The effective hamiltonian H,;; for site o
is defined from the partial trace over all other spins:

3 e = o AHulS (22)
Siigo
The hamiltonian H in eq.(1) can be splitted into three terms: H = —h, S, — %, Ji.5,5; +
H®) H( is the Ising hamiltonain for the lattice in which site o has been removed to-
gether with all the bonds connecting o to other sites, i.e a ’cavity’ surrounding o has
been created. The fitst term acts at site o only, while the second term connects o to
other sites. In this term, J,,5, = 7 plays the role of a field acting on site :. Hence
summing over S;'s produces the generating functional of the connected correlation func-
tions of the cavity hamiltonian H(®) and a formal expression for H,; can be obtained as:
Hypp=ecomat + T2, 0 o 3, .. < Siy ... Sig >4, For a ferromagnetic system, with
Ji; > 0 scaled as 1/di~9! (|i — j| is the Manhattan distance between i and j), only the
first (n = 1) term survives in this expression in the d — colimit. Hence H,;; reduces to
H.sy = heysSo, where the effective field reads:

h.ff =h+ EJ"' < S.' >(°) (23)

< §i > js the magnetization at site i once site o has been removed. The Limit of large
coordination brings in a further simplification to this expression: because each site has of
the order of 4 neighbours, removing a single aite produces an effect of order 1/d in local
quantities, which can be neglected. Hence the magnetisation < S; > calculated for the
cavity hamiltonian equals the magnetization < S; > for the full hamiltonian. Furthermore,
translation invariance implies < §; >=< 5, >= m. Since this quantity can be computed
using the effective hamiltonian H,;;, the Weiss field h.s; can be related to local quantities
only, which leads to a closed set of mean-fidd equations,
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Let us mention that the relation between the cavity and full Iattice magnetizations is
more involved for Ising models with non-uniform signs of J;;. For spin-glass models with
Jij = +1, -1 at random, one is forced to scale the couplings as 1/v/d so that a correction

term must be retained in the difference < §; > — « 5; >0, This correction term, first

discovered by Onsager in kLis studies on dielectrics, accounts for local-field effects created by
the removal of one site ('reaction terms').

This derivation extends in a straightforward manner to quantum many-body models, Ii
is convenient to write the partition function of the Hubbard model (77) as a functional
integral over Grassman variables:

Z= f [l Det Deiy et (24)

]
5= / (Y clBrcia — L ticheis — 1Y chcio + U S miymy) (25)

iie
We follow closely the Ising analogy: all fermions are traced out except for site o in order to
obtain an effective action:

1 R . / I[ DetDeiyes (28)
cff z i#o.o

Note that the knowledge of Sers allows us to calculate alf the local correlation functjons of
the original Hubbard model, since we can couple sources to degrees of freedom at site 0. This
observation is valid in any number of dimensions. In order to cbtain a formal expression for
Sezy, the original action is again splitted into three parts: § = S 4 5 1 AS, where S
is the lattice action in the presence of the 'cavity', and:

8
S, = /': drz’:c;(&. = B)eos + Ungrn,, (27}

J:]
AS = *f dfzt.-,(c,-tc,, + ¢} en) (28)
o io

Again, % = t;,c, plays the role of a source, and the integration over fermions for i # o brings

in the generating functional of the connected Green's functions of the cavity Hamiltonian,
G

Sepy = i E f’?.-’{(f-'l).--'I.-t(f-'.)'rj.(fj,)~-ﬂj.(n.)fo,J,.,-,.(f.-. Ty T )+ S, (29)

n=14)..0n

As before, the Iarge d limit (with a scaling l/ﬂli#jl of the hopping ¢;;) brings in a crucial

simplification: the nth order term is of order 5"_’ 50 only n = 2 survives the d — oo limit.

11

i i () ., (d,)Hi-dt
This is easily seen by means of a few examples. The Icllll'::’l of ty m“l:l:x::::&;:; - igl:c)ﬁon
i der term involves &
the first term is of arder 1. The second or : . :
:(') . falls off as {4)~(Jq)¥-H(Jg)F-4. While there are four sums which give d*,
e y - in, o i — j] is at lenst 2, of order §. The
and four factors of t giving J&. The net result is, since [i—3 R

effective action therefore reduces to eq.(8) as d — o0, with:

Gify = =B, + b — T tuiteiCl) (30)
i
)
) Expression (30) is important because it relates the Weiss field G,¢s to .the (ilroend s.f::n:;
tion Gg) of » Hubbard model with one site removed. In order 'to obta;n n. .o.:l et 0
equations, one still needs to relate the latter to the Green's fu'nl:hon of .t e Oﬂg:lll e .
Again, the d — oo limit makes this possible here, but this relation takes in gener }: sl gt . y
more complicated form than for the classical case discussed above. On the Bet e attice
however, it remains very simple. In this case, the summation in (30) can be restn?ted to
i = j (since neighbours of o are completely disconnected on i':hil lnttlce. once th? cavity hn:
been introduced), and again, in the limit of infinite connectivity, Temc?wng.one site does :lcl:
change the Green's function so that G = Gy. Using tranllltlo'n ln\'luan::c, t)ne finally
obtains expression (19) for the Weiss field on this Eattice: G:}, =twn+p—1 (j'v'(w,.). .
For a general lattice, the relation between the cavity and full Green’s functions reads:
GiGaj
GY =Gy— =g (31)
This equation can be proven by expanding both sides in powers of ¢;: t]:te substracted tefm
corresponds to paths connecting ¢ and j through site o, which do not exisi whe‘n the cavity
is present. Interestingly, this equation, which is essential to the whole formalism, already
appears in early works of Hubbard himself.
Inserting (31) into (30) we have to compute: T;: tiokju Gy — (X; t.-.G,-,)’/G,,,‘. To proccvlcd,
Iet use Fourier transforms and insert the form (11) of the lattice Green's funch.on, assuming
a local self-energy (this has to be justified independently by power-countirlag in 1/d). .The
above expression reads: fdeD(c)&—(f deD() ) | deD(e)7d; with { = i, + 5 — B{iw,).

This can be simplified further, nsing the following relations:

D(e)e Diee D) _ D(e) 32
e[ [ e e[ Y )

We have used t,, = T, ¢ = f D(e)e = 0. Finally, inserting (31} into (30) yields: G}, =
T+ 1/D(iw, + g — ), which coincides with (7,12).

12



B. Local nature of perturbation theory in infinite dimensions

From a historical perapective, the notion that in infinite dimensions the local Green's
function obeys a closed functional equation was derived by various authors from considera-
tions on pertutbation theory in the interaction strength U.

Indeed, remarkable simplifications in the many-body disgrammatics occur in this limit, as
first noticed by Metsner and Vollhardt. Consider a given disgram, in which the interaction
term Unyyng, is depicted as & 4-leg vertex at site i, and in which each line stands for &
free-fermion propagator between two sites (it is easier to proceed in real-space). The crucial
observation made by Metsner and Vollhardt is that, whenever two internal vertices (i, j) can
be connected by at least three paths, they must correspond to identical sites: i = j. This
property is of coutse only true for d = 0o, and can be shown by simple power-counting. Since
the hopping has been scaled by 1/ v/d, each path made of fermion propagators connecting i to
; will involve at least » factor (1/v/d)F-#.. On the other hand, i being held fixed, the eventual
summation to be performed on the internal vertex j will bring in a factor of order dR, the
number of sites j located at & (Mashattan) distance |i — j| = R from i (R can be summed
over afterwards). Hence an overall factor of d®(1// )PP where Pij is the number of
{independant) paths joining i to j in the diagram. Thus, if P;; > 2, only those contributions
with i = j (R = 0} will survive the d — oo limit. Alternatively, in the perhaps more familiar
reciprocal-space formulation of perturbation theory, this property means that whenever two
vertices can be 'collapsed’ according to the rule sbove, the fermion propagators GOk, iw,)
connecting them can be replaced by their local, k-independent counterpart 3, Gk, sw,),
ignoring momentum conservation at the vertices. Frequency conservation is retained however
as d — oo. Fig. illustrates these considerations on two diagrams contributing to the self-
energy st second and fourth orders.

This simplification of weak-coupling expansions is of course very useful in practice, since
evaluating momentum sums is the main practical obstacle in going to high orders. In fact,
discarding momentum conservation at some vetlices has sometimes been used in many-body
physics as a Tocal approximation’. The d = oo limit provides a framework in which this
approximation can be controlled. This has been used recently by various groups.

Besides this practical use, these properties of perturbation theory in d = oo can also
be used to formally detive the mean-field equations. Consider the self-energy I;;{iw,). It
ia clear that not all diagrams of a standard weak-coupling expansion for this quantity can
be fully collapsed to a local form. An example of & diagram which cannot be collapsed is
provided by fig.. We can consider however making a 'skeleton’ expansion of L rather than a
direct expansion: this amounts to group together all corrections to internal propagators, so
that all lines of & skeleton diagram stand for the full interacting fermion propagator G;;. The
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diagram in fig is & skeleton diagram, but the one in fig. is not . In this way, the self-encrgy
can be viewed as a functional of the interacting Green's fuctions: I;; = elau}]. His
easily scen that two internal vertices of a skeleton diagram can always be connected by more
than two paths, sc that all diagrams contributing to Lina skeleton perturbation expansion
can be fully collapsed to a single-site. More generally, this is true of the Luttinger-Ward
free-energy functional #{G;;], which is the sum of all vacuum to vacuum skeleton graphs,
such that:

Balion) = 553 (33)
Hence, as d — oo, & and I depend only on the local (site-diagonal) Green's funclion
Gi. An obvious consequence is that the self-energy is site-dingonal: E(iwn) = 8§;D(iws).
Futhermore, it must be possible to generate the functionals #(G) and T°(G] from a purely
local theoty. A simple inspection of Feynman rules shows that the effective action S,y
precisely achieves this goal. From this point of view, the Weiss field G.ys just plays the role
of & dummy variable which never enters the final forms of &, L% Once these functionals
are known, the actual value of T is found by writing that the local lattice Green's function
is given by T, G(k, iw,), namely:
. D(e
Gliwn) = / A ):("?-I[G(iun)] (34)
This should be viewed as  functional equation for G(iw,), which is of course egivalent
to the self-consistency condition (7). This point of view is formally useful to prove reduction
to a single- site problem, but is not practical because of the difficulty in handling skeleton
functionals. In fact, it has been so far impossible to obtain exact or approximate expressions
of E* for the Hubbard model which would give reasonable results when inserted in (34),
except for very small U. An exception is the Falicov-Kimball model (section.) for which
T4e(G] can be obtained exactly. For most models, it is much more useful in practice to
think of all quantities as functionals of the Weiss field G.sy and to promote the latter at the
rank of a fundamental object.

This formalism is also uscful to establish the relation between the lattice and the impurity
model free-energies, (t and 0Q;,,, Indeed, {! is related to the Luttinger-Ward functional & by

Q
¥ = 3G] + % 3 {InGa(k, iwn) — Ey(iwn )G, (K, iwn)] (35)

nhe

while, for the impurity model (6):

Qimp = #[G) + T TG (iwn) — Lo (iwn)Goliwa)] (z6)
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Eliminating the functional €, one obtains the following relation:
0 -+ o0 i
7 = Pime =T L[ deD(en(itvn + b — T4 (i)  €) + InG (i) (37)
N pol? S

Note that also the internal energy can be expressed in terms of local quantities only:

E +oo Die
Y e S T LB G0 ) (38

IV. PHASES WITH LONG-RANCGE ORDER

For simplicity, the mean-field equations have been derived in the previous sections under

the condition that no long-range order is present. This section consider the possibility of

phases with some symmetry breaking and establish the mapping ontc an impurity model
for these cases.

A. Ferromagnetic LRO

In the presence of a magnetic field & couplied to §
magnetization the Green's functions

one has to retain the spin.

=, or if there is a spontaneous uniform
for up and down electrons are not equivalent. Then
dependence of the local Greens functions and of the Weiss field
in the derivations of section. The local effective action associated with the Hubbard mode}
in a ferromagnetic phase reads:

Supp = «_f: dr f: dr' Y (1) (r - )ea(r) 4+ U /:’ dr ay(r)ny(r) (39)

The self consistent equations for the two functions G, G| and their corresponding Weiss

fields are straightforward generalizations of (7) to this spin-dependent case. They read:

. D(e)
G iw,) = [ de-
(iwn) Wwo + g+ he — I, (fw,) — ¢ (40)
where:
Goliwn) =< c:'(iw,,)c,(iw.,) 28,4 1 Leftwy) = G:}f', -G (41)
From the solution of (39,40), one can reconstruct the lattjce Green's functions:
1
Ga(k, U mn] = =
o (&, 3wn) 1w,.+p+ha'—cr.ﬁ2,(iw,.) (42)
The spontaneous magnetization in the ferromagnetic phase is given by:
m = lim,_, 5 e (G (iw,) - Cyfiw, )] (43)
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B. Antiferromagnetic and Inconunensurate LRO

Similar considerations can be used to study commensurate mﬁiur?mlgneti'c long. Tange
order in the Hubbard model. Note that the 1/4/d scaling of the hopping amplitude is such
that the exchange coupling obtained For simplicity we will again concentrate on the. Hul?bud
model and we will add to the Hamiltonian » staggered magnetic field to the hamiltonian

H,=h,Y 9"CkCx {44)

and to restrict ourselves to the simple cubic Iattice. In this case there are two ineguivalent
sublatiices, say A and B and a simple relation between the local Green's functions on each
sublattice: Gy, = Guo. G, fori€ A, B with:

G aeliwn) = Gpe(iwa) (45)
In d = oo, the skeleton functional & now depends on both local Green's functions: & =
#[G4,,Gp.]. The self-energy is purely local and can take two values with Iy, (iw,} =
% ps(iw,). It is convenient to write the hamiltonian in terms of two sublattice operators:

Ho= Y ex(Cix.Coxe + Chx.Caxe)
sK«RBZ

+ Y. oh(Cix.Caxe — CEx.Coxe {46)
eK<«RBZ

The Greens functions are obtained by inverting the matrix

Car  —ta )
—¢ (B,
Here CAE = iw.. + #— ﬂ'ht - EJIa-CBs = iwﬂ + B + ah‘ - EB" The impunty mOdel to be

considered is still (?7), but the self consistency conditions now read:
Goo = oo [ de D) (47)
o Caclpe — €
with a = A, B. The staggered magnetization and the free energy of the antiferromagnetic
phase are given by similar equations as above.

It is instructive to notice that the simplest approximation to the self energies: T4, =
(U/2)(ns. —np, ), reproduces the usual Hartree Fock results for the staggered magnetization.
Also as soon as Neel order is established and T4, # Ep, it is possible to open a gap in the
single particle spectrum i.e. ImG(w +0%) =0if |w + 5+ E'-';-E‘ll < E‘}Eﬂ This ehould
be contrasted with the results obtained in the unbroken symmetry phase. Notice that to
study ithe phase tramsition between different magnetic phases we have to investigate a free
energy functional in the space of all possible magnetic states. Alternatively one can calculate
directly the relevant divergent susceptibility.
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C. Superconductivity and pairing in infinite dimensions

Superconducting long-range order can be studied in the present dynamical mean-field
framework. We shall illustrate this on the example of the 2-band ’copper-oxyde’ model
described below, in section. Local 'snomalous’ Green's functions are introduced:

Fyir — vy = -T < di(r)di(r') > Fp(r — ') =-T < pi\(r)pis(r’) > {48)

Singlet pairing corresponds to F even: F(r) = F(—7) = —F(8 — r), while §, = 0 triplet
pairing corresponds to F odd: F(r) = —F(~r) = F(8 — r) Allowing for a non-trivial time-
dependence of F is crucisl. The underlying physical idea is that on-site equal-time pairing
is likely to be strongly suppressed in the presence of a strong on-site repulsion but that
pairing involving a ‘time-lag’ between the paired holes may occur. This idea dates back to
Bereginskii's proposal for triplet pairing in *He, a generalization of which has been recently
considered for cuprates superconductors by Balatsky and Abrahams.

In the preence of & non-sero F it is convenient to work with Nambu spinots ¥} = (df,d))
(similarly ¥,) and with the matrix formulation of one-particle Green’s functions:

(49}

Dir-7) = -T < ¥(r)¥*(r') >= (G‘(T -7 Br=r) )

Fir =) —Gur' - 7)

With these notations, the kinetic term of the hamiltonian H reads: —t;;¥4,03%,,; whete ¢,
denotes the Pauli matrix. We will illustrate the derivation of the mean field equations in the
superconducting state using the coper oxide model of the previous section as an example.

We integrate out fermionic variables on all sites except on a single copper site. The
‘impurity’ sction cobtained in this way now reads:

] P LA _ , .
Snp = Us jo dr nay(r)na(r) — L dr L dr' 3 (r)De~H (r — T )Wu(r') (50)
where D; is given in terms of D and P by the self-consistency equations:

Dy~ (iwy) =t + (p — t2)oa — 2,1 P(iwa)os (51)

P"(iw.) = ll{d'l + (’l -_ 6')6'; - t:‘ G’D(‘I-U..)C"

We can account for an externally applied dynamic pairing field Ay(iw,) on all copper sites
in the original lattice problem by adding a forcing term

0 Adliwn) ) 52)
Adiws) O
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to the r. h. 5. of eq. (51).

The impurity action [50] describes an Anderson impurity in a superconducting medium.
Since this problem, even with static pairing turns out to be highly non trivial, we can expect
that the self consistent solution of eqs (51) will allow for very intricate densities of states.
The equivalent of the Weiss mean field hamiltoman for a strongly correlated superconductor
in the same spirit that the Anderson impurity model action is the quantum equivalent of a
Weiss mean field hamiltonian for a strongly correlated metallic state.

V. MEAN-FIELD EQUATIONS FOR VARIOUS MODELS

A. Copper Oxide lattice in large dimensiona

A two-orbital model closely related to the structure of copper-oxygen layers can be built,
which has a well defined limit when the coordination number gets large.

The hamiltonian reads:

H=- Y tydipethete Y phootea Y dhde +Uay nfnd  (53)
\EAGEB o jEBe €A i€A

(ds,ps) represent two atomic orbitals on different sublattices (A, B) of a bipartite lattice.
The ('copper’) orbital d, is strongly correlated, while the (‘oxygen’) orbital p, is uncor-
related. Each site has identical connectivity z, so that the model describes a 'Cu0’-type
system. This model is a large d realization of the three-band model proposed by Emery and
by Varma et al as a minimal model of the copper-oxide planes.

In the absence of correlations (U; = 0), diagonalization of H yields two bands (bonding
and antibonding): £ = {¢, + €4 £ /(¢, — €2)? + 4¢3} /2, where ¢ is the Fourier transform
of t;;. These bands are separated by a gap Ag = ¢, — ¢4, The copper and oxygen density of

states have simple expressions for Uy = 0:

Nofe) = [ =2 Nl - wlle— ) M= [ N(fle—ale= ) (54)

where V(e) = ¥, 6(e - €).

The limit of infinite connectivity z — co requires a scaling of the hybridization ¢;; as:
tij = tpd//z, 50 that the density of states N(¢) has a proper limit. In practice, one may
consider the d-dimensional hypercubic lattice (z = 2d), for which: N{e) = 1/v/27t,q4 e 135
as d — oo or the Bethe lattice with connectivity z for which N{e) = /4 —~ (¢/t,4)32mi,q as

zZ — 00,

The associated impurity model describing the local physics at the 'copper’ sites is given
by:
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§=1U; fop drng(r)ng(r) - f.. *ar j; 4 L {r)DF N (r — 7'y dH (') (55)

Denoting by D(r ~ ) = - < Td{r)d*(+') >; the interacting Green’s function calculated
with this action and T, the impurity self-energy as a functional of Dy, Byliw,) = Dy Yiw) —
D iw,).

we can set the self-consistency equation for D, (wa = (20 + 1)x/8):

N{e)
Gliwn ) i(hw,) — &
where we have set get Gliw) = i, + 5 — € Calivn) S dwy + 5 — ¢4 — Baliw,).
Once Equ.(56, 55) are solved for D, , the impurity self energy evaluated at the self

consistent value of Dy gives the d electron lattice self energy which determines completely
the lattice one-particle Green’s function. In the {due Puo } basis, it reads in matrix form:

Diuwn) = Gy(iwn) | de (56)

1 (p €Y
i 7
bla=q (fa ca) o7

In the z — oo limit, self-energies become purely site-diagonal, so that L4 depends only on
frequency and the I, component is absent. The absence of the diagonal component Z, in
€q.(57) comes from the simplifying assumption of an uncorrelated p-orbital. From eq.(57),
one sees that the self-consistency equation simply means that the impurity model Green's
function must coincide with the on-site d-orbital Green's function: D(iwn} = 324 D(k,iw,).
Aleo, the p-orbital on-site Green's function is simply given by:

N9
Gliva aliv, ) — &

Notice that on the Bethe lattice the self consistency conditions have the simpler form:

Pliwy) = (aliwn) j de (8)

De* = duontp— e~ 0aPliwn) P =ty taD(iw,) (59)

B. The Periodic Anderson Model
The periodic Anderson hamiltonjan is defined by:
H= ZC},CK, + VZ(C_-*,f.-, + f1C.)
I3 v

‘e fife + U npngy (60)
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i 1 duction electrons
It describes the interaction of localised { moments with ddu;ﬂhled ?o:lﬁom o s
with dispersion ex. This is the starting point of many theore investig

fermion problem.
The Green's functions read:

- v s = - < QG > ()
Mty — mg = L Wy,

G:(iwan)—l = Wy — X —
(62)

v L e ) ot
G.f(3."'-’r|pf()_1 = Wy, — €5 — E(“"u} - m ==-< f(wl)f ( u) >

= — < fliwa)C*(iw,) > (63)

14 1
. 1 -
G p(iwy, K)™' = (iwn — €K ) dwn — €5 — D{iw,} — m_%

Here E(iw,) is the self energy part of the f-electrons (irredudbl? wit'h fespect to‘ G;] G;
and Gy,.). Consider the skeleion expansion of I. In infinite dimenufml it is ;l function . o
the local f electron Green function only, I[Gi, twa]. Using the logic of section II we view
the { electron self energy as an irmpurity self energy

Timp(G, twn) = G5~ < fliwn) fH(iwn) >3 (34) (64)
The average <> is calculated with the impurity action
Simp(Go) = T fH{iwa) G5 (i) fo (i)
‘o [ st OO (65)

The self consistency condition requires that the local f Green’s function of the ong.mnl
problem obtained 62 coincides with the local Greens function of the impurity problem i.e.

/.,., deD(e) i =< f* (i) f(00) > Siup(6}) (66)

ﬂﬂiwn — €y — E;m,[iwm(}';] e

Here D(e) refers to the density of states of the gonduction clectrong in inﬁmte.dlmennoas.
Impurity models for the ferromagnetic and antiferromagnetic phases of this model can

be easily constructed following the lines of section III.

C. The N channel spin 1/2 Kondo Lattice

The hamiltonian
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Y exCh,iCrea+J Y, S1CL, 08, Ciner (67)

Ken are'a
describes N “Bavours™ or “chasnnels” of conduction clectrons interacting with a lattice of
localised ‘spin 1/2 moments described by spin operators S where i is a lattice and a an
Su(2) index .
The conduction electron Green function defines a self energy
. 1

G (iwn, K) = Ea—r (68)
Using the tehcniques of section () we derive the local impurity action by integrating out all
the degrees of freedom except for those at a selected site to obtain:

Simp = — 3, C} ()G (iwn ) Co ($wn)

+JY j' # drsest 4 L[S) (69)

where L,[S] is a spin % Lagragian which can be expressed in any of the standard representa-
tions used to construct a spin lageangian such as the Popov representation , the slave fermion
ot the Schwinger boson representation, the Abrikosov pseudo fermion or alternatively if the
spin is treated in the coherent path integral formulateion then L, is the spin Berry phase .
In eq. 69

d=Y ClLowCoa (10)

er'a

and the second term describes the interaction of a spin with conduction electrons at the
origin. This is the single impurity (N channel) Kondo problem. An impurity model which
gives rise to the local action 69 is the Multichannel Kondo impurity

Y xCiraCxea+d L 51Ch 050 Conet (1)
Kea are'e
Simp allow us to calculate the conduction electron self energy
L(wa)(@") =< CFCp > = Simp(G2) — (G*) (72)
To exptess the self consistency condition as
- De)de
+ = _— 73

< Co Ce > ingia f.... fiwn — €~ B(G3)] 3)

In the last few years there has been an intensive search of lattice models exhibiting » non
Fermi liquid fixed paint at low temperatures. Model (71) with N > 1 is & very interesting
candidate for this bebavior since in the absence of the self consistency condition (73) the
local action {70) is known since Biandin and Nosieres to be driven to a non Fermi liquid
fixed point. This implies that the lattice model () with the Lorentzian density of states is
not & Fermi liquid. The same is likely to be true for other lattices in d = co .
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D. The Falicov Kimball Model

We now turn to the Falicov Kimball model, the first model to have been solved exactly in
infinite dimensions in the pioncering work of Brandt and Mielach. This is briefly explained
here.

This model is defined by the following Hamiltonian:
H=Y tydtd; + Y Esft fi —u 3 (i + ALY+ U dHdift f: (74)
i3 i i i

It includes spinless conduction d electrons with hopping parameters t;;, localized f electrons
which have an energy level Ej with respeci to the center of the d electron band. The on-site
interaction between d and { electrons is given by U. When B} = 0, the modd corresponds to
the spin-; Hubbard model with only one of the spin components allowed to hop. Integrating

out all the electrons except for those at the central site we obtain the impurity action:
8 8
5. - _ ‘4 “lfp ot r
(@) = = ["dr [ ar'et (G - )elr)
s [Ldr(etedra s f2 + E0)f (75)
o r !

The local Green's function is easily obtained from the impurity action

w, wy

G * GG — 0 (7%)

Gliw,) = - < dd* >5(6.)=
where w, = 1 — w; and
w1 = {1+ ezp(B(E] — u) + zﬂ:ifﬂ(GJ'(Wn)) = In{G (iwn) — U)]e™=*")]? (T7)

Differentiating the partition function with respect to E3, we see that wy is the { particle
number per site.

The local self energy is defined through
Gliwn) = (G Y(iw,) — £a)7} (78)

When combined with the explicit form of the Green'’s function Eq. (76), this leads to the
functional form of the self-energy in terms of the local Green's function:

Za(Ga) = Uf2 = 1/2G + \/(U[2 - 1/2G ) + vy U/ G, (79)

Furthermore, & self-consistent equation is provided by the Dyson equation:

Y e Nole)
Go= [ derr TG (80)
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where N,(¢) is the d-particle bare density of states. the Gaussian density of states.
The effective hamiltonian corresponding to the impurity action 75 is the xeay hamiltonian

H= Z*ijﬂ'?ds + B3t f+ Udtdyfty {81)

Vi. METHODS OF SOLUTION

The mean field equations are coupled functional equations to be solved for the Weiss
field and the local Greens function. The most difficult aspect of the mean field theory is the
solution of the Anderson impurity model in an arbitrary bath. This class of problems has

been studied intensively in the last 30 years and we will draw on this knowledge to make

exact and approximate statements on the solution lattice models in large dimensions. The

cssential insight is to use relighle approximations to calculate G{Go}. This step captures
the local aspects of the problem. The self consistency condition (7] then bringe back the
lattice aspect of the problem.

Several techniques that have been uzed jn the analysis of the mean field equations, they
range from qualitative arguments and analytic perturbative schemes to numerical methods
based on Quantum Montecarlo and exact diagonalization. All the insights obtained on the
Mott transition problem rely on a combination of these techniques.

A. Quantum Montecarlo

Numerical
Weiss field
equations {

schemes introduce a discrete parametrization of the Greens functions, and the
s involving a finite number N, of parameters and reduce the system of functional
26)( 7 }2? ) to n system of N, non linear equations in N, unknowns. The hope
Np increases physical quatities converge relatively fast to their physical values so
that this converged value can be inferred by extrapolating results obtained from a finite (and
usually small) number of parameters N,. The application of Quantum Montecarlo methods
to impurity models was carried out by Hirsch and Fye.
derivation of this class of algorithms.

To apply the quantum montecarlo method to our
by  discrete set of points Gr)r = j{% 1i=0...

15 that as

Here we present an alternative

problem one parametrizes G(r)m 0,8]

N, — 1, Then one introduces a discrete
Hubbard Stratonovich field to linearize the interaction term and teduce the action [ 26] to

3 quadratic form. Then one traces over the fermion field and the partition function then
becomes a sum over Ising variables 0;,i =0, ., N, - L
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Z = 3 det[Ar(o)][Ai()] (82)

. . s linearised by an
Here A is the discretized version of the effective action after the U term is linearized by

Ising Hubbard Stratonvic transformstion. . -
The discretised Greens function are also expressed as & sum over lsing variables.

_ Eo det{Ar(on)}lA(an)lA s (83)
= ;

G(n—n)
Most of the work was carried out with the Fye Hirsch algorithm whick corresponds to a
specific discretization of the functional integral

ARy =y 4 ey + e Ay (84)

Here 4 =1, ], Ajp in a discretized version of the Hybridization function in eq.[??] and th;
antiperiodic delta function is defined by §p,, = 1if{ =1 +1,1 = 2,...N-1 ,fuq.l =-—b111
{ =1IF = N and is zero otherwise. The quantities V}* are proportional to the Ising variables

oy
Vi* = ayparcosh(e*47V) (85)

All the sums are evaluated by importance sampling. To decide wether a Montec;nlo n:mv.re
from o to o' is accepted or rejected one needs the ratio of two determinants. This ratio is
evaluated in terms of the local Greens function
= et L e )Y - 1) (86)
det{A{e1)]
When the move is accepted the new greens function G’ is given by
(1)
R

G 1) = G, 1) + (G(I", 1) - bm)(e¥-Y —1) (87)

Other discretizations of the effective action such as
APy = B+ e b + Ay (88)

have been investigated and they give comparable results. Therefore we concluded that
a major improvement of the algorithm requires a discretization which is accurate to order
Ar’ » . .

Typical values of L ate 64 and 128 and 254. Typical values of §r is .25 which in practice
restricts the simulations to inverse temperatures less than 5 of 64 .

We stress that there arc two approximations in this scheme, the first has to do with the
finite discretization of the greens function while the sccond has to do with the subsequent
discretization of the functional integral. Both this approximations get better as &7 goes
to zero. In addition there is & source of error in the evaluation of the sum by importance
sampling. This statistical error can be reduced by increasing the length of Montecarlo run.
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B. Exact diagonalizsation

The results of section I paves the way for the application of exact diagonalization tech-
niques to large d problem. To use exact diagonalization methods one needs to produce:
a) & cotrespondence between the exact Go and an Anderson hamiltonian involving a finite
number of conduction electron orbitals and b) a correspondence between the exact local
Green's function G{iw,) snd Gy or the parameters of the Anderson impurity hamiltonian.

Once the correspondence a is defined, one can carry out the operation illustrated on the
upper box in figure ??. Given Gy ,the correspondence & assigns to it a unique Anderson
impurity with a finite number of orbitals, i.e. a finite dimensional matrix whose green
function G can be computed by standard exact diagonalization algorithms.

Once the cortespondence b) is established we can carry out the operation illustrated
on the lower hox in figure 7. The G obtained by the methods described 1n the previous
paragraph contains a large number of poles. The correspondence b) assigns to any Greens
function G a Gy containing a finite ( small) number of poles, i.e. an Anderson impurity
model with a finite number of conduction electzon orbitals.

Combining these two steps we obtain a discretized version of the mean field equations
that converges to the exact answer as the number of orbitals is increased. There is a large
amount of flexibility in tbe application of this method.

In the first application of exact diagonalization techniques to the d = oo Hubbard model
Krauth and Caffarel associated to GO an Anderson model with N, bloch orbitals,

Hae= Y aol,am +UF fifY i+ Y, Vilalfo + flaw) +esf* 1o (89)

LN k=1,N,
For the purposes of the exact diagonalization it can be visualized as a star geometry, (see fig
17). To carry out step b, one represents the greens function G{iw, ) obtained form the exact
diagonalisstion by s rational approximant descibed by 2N, parameters which are obtained
by minimaizing the L,norm of the difference between G(iw,) and its rational approximant:

I Sy (90)
P iy — &

here (min ADd (lmae are low and high frequency cut-offs, respectively.
G, is parametrised by an Anderson model :

Ng-1
H=Y T (Y otefbel, + K(c!fe + hc)
¢ pu> < aml
Neg-2

+ ¥ et L, +he)) +Ulng - %)(’m - %)

an]

+Y be{flce. + hec). {91)
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It contains two chains of conduction elecirons and an extra orbital having sero energy.

The correspondence b is obtained by: decomposing the Green function G(z) into “par-
ticle” and “hole” contributions as G(z) = G>{z) + G*(z) with G (£} =< 0|cm&|0 >
and G<(z) =< °|Ctmﬁ:l;jc|0 > . and expanding the respective contributions in a continued
fraction expansion:

>IC e>f<
< Bl R > B (02)
w¥F (H - E,) z_a:k_ [}
.__?Ic___‘hz__
e

where |7 >= fllgs >, If >= flgs > avd |fors >= H|fa > —8alfa > =B |far >,
Gn =< falH|fa >, B = 505422 by = 0. This implies that G> sad G< can be regarded
as resulting from a Hamiltonian describing an impurity coupled to two chains with site
energies 0>/< and hopping amplitudes b2/< and an extra site at zero energy. Since the
number of poles in the Green function is in general larger than then number of sites of the
hamiltonian and the continued fraction is iruncated to a given finite depth.

The approximation in this scheme relies on the fact that the continued fraction repre-
sentation captures exactly the moments of the energy of the hamiltonian, up to the order
retained in the continued fraction. It can thus be thought of as the best rational approxi-
mation in a norm that measures the difference between the first 2N, moments of the exact
greens function and its rational approximant., The approximate momenta moment by mo-
ment fitting. The extra site at the Fermi energy is introduced in order to better represent
the low frequency region and, more importantly, to allow a feed-back of a metallic bath.

The chain geometry is reminiscent of the Wanier represenation. It naturally captures the
high frequency parts of the spectral function. The star geometry is much more suitable for
describing the low energy features of the spectral function. Rational appreximations using
norms which are convex combinations of the ones would correspond to more complicated
geometries and are probably worth exploring.

The hopping parameter & = % is calculated by a single parameter minimization of the
expression

Wy
X'{a) = 3 |Galiwn, a) - Gliw)[* (93)
iwm
where now G(iws, &) = & + (1 - a)Gp(iws). G, ie the truncated Green function to
length No = N /2 sad wr and wg are low and high energy cut-offs defined by the lowest
poles of G and Gy, respectively. The coefficients a and b in eq. 91 are obtained from the
coeflicients of the partial fraction expansion in eq 92.
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C. IKterated Perturbation Theory

One of the advantages of dealing with a well studied tmpurity model, is that one can rely
on & host of reliable approximate methods which have been specifically designed for treating
this problem. At half filling Yamada and Yoshida demonstrated that for the Anderson
smpurity model second order perturbation theory in U converged extremely well up to values
of § of order 6. Georges and Kothiar implemented this scheme to study the large d Hubbard
mode} at half-filling.

It was later shown that this approach to the Hubbard model gives results in very good
agreement with the quantum Montecarlo results at finjte temperatures. Furthermore they
showed that this scheme gives the atomic limit results for large U and therefore it is an
interpolating scheme valid for small and lazge U. The important insight is that the Anderson
impurity problem is analytic in U irrespectively of the nature of the bath, so it can be
treated perturbatively. The non analyticies, describing the lattice aspects of the problem,
are brought in by the self consistency condition which is treated exactly by this method.

The results obtained with this method are usefy] because they provide a concrete an-

alytic realization of the functional E;.,[Gy] and exhibits the functional form of G[Gy) =

[Go -~ Zimp|Gal}l™* defined in section II, and illustrates in a simple example the important
role played by the self consistency condition. The perturbative calculation is very fast and
allows us to scan the paramter space at low temperature. This task would be prohibitively
expensive for current QMC or exact diagonalization algorithms.

To second order in perturbation theory impurity self energy is given by:
Zimp[Gol(7) = -U*Gy(7). (94)

We can understand the success of this approximation for the following reasons: 1) It is
good for weak couplings (U << t) by construction, since the expansion is around U = 0.

As shown by Yamada and Yosida {YY}, it is able to produce not only the Abrikosov.-Suhl

resonance, but also the upper and lower incoherent bands as well. YY showed that the 4t
order correction is two orders of magnitude smaller that the 2™
range of the interaction where the MIT occurs.

order contribution for the
2) The atomic Limit is exactly captured.
When U is very large, and the system is deep in insulating side, Cp~! = ww, , the non-
magnetic Hartree-Fock solution of the Green’s function becomes exact,

L 1/2 1/2
Culiw) = o~ * Gol(iw) + U2 (%)
therefore, the self energy reads,
£ = (5)Gafiww) (56)
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which is identical to the self cnergy that results from mextm; G in Ett (Ml)l:i:n : :hu:::
transforming. Thus, the second order approximation is -at least an interpol

which becomes exact for both the U — 0 and U — oo limits.

D. The self consistent projective method

The self consistent impurity model near U,y has two energy scales U and A The collapse
of the scale A causes unsurmountable numerical difficulties. To lmldle. this p‘ro’f)lem the
projective self consistent technique was introduced in reference The‘idel is to eliminate the
high energy configurations having scale U and simultanecusly the high energy states of t'he
bath of conduction electrons to obtain a problem containing a single energy sc.ule A whlc.':h
can then be easily handled with the methods of the previous subsections. This method is
quite general, and is applicable to a large class of models of strongly correlated electrons
where separation of scales takes place. .

The one particle speciral function is decomposed into a sum of & low and a high energy
part, p(e) = p'™*{e) + p**(€). p'*(¢) containe all states up to a cut-off that we take to be
the Kondo temperature or renormalised Fermi energy of the half filled Hubbard model and
carries spectral weight A.

A=t {97)
L]

where the primed summation runs over the low energy states only. p*#(¢) describes t.he
upper and lower Hubbard bands, two atomic-like features at energy scales :}:5;-, and carries
spectral weight 1 — A, .

We can solve for p*#*(¢) using the techniques of the previous section. The main idea of
the projective self-consistent approach is to eliminate the high energy states to obtain a low
energy effective problem involving p'* only and thus containing only one energy scale. .To
carry out this program we separate the impurity configurations of the impurity Hamiltonian
(89) into a low energy sector f1|E >, with eigenenergy —U/4, and a high energy |e¢.:tor
|E > and frf fl' |E >, with eigenenergy U//4, where |E > denotes the empty conﬁgurutlol-:.
Furthermore, as a result of the self consistency condition the conduction electron bath is
divided into three bands (see fig (77)) : a metallic band centered around the Fermi energy,
and semiconducing valence and conduction bands centered around energies +U7/2. For
the analysis of low energy properties, the valence and conduction bands can be taken ag
dispersionless, with the corresponding atomic states crested by n! and 71, respectively.

We now eliminate the high energy impurity configurations and the high encrgy orbitals
of the conduction electron bath, to obtain a low energy hamiltonian wich we can use to
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calculate pr,,,. This is done usting & canonical transformation which results in:

H.’! = 2'1“..?. B + EIE.CL(:“ (98)
[ e

where Jy: = 8-‘-”;‘5(1 + %g- - %E‘A), §= %2,,. XewBeor and by =317, cf,.,&‘,,-c,,-_,-.
Here, X5 = ja >< f|, where |a > and {8 > ate the cigenstates of the atomic Hamiltonian,
are projection operators.

H, 4y corresponds to & Kondo problem coupling the atomic spin doublet to the low energy
conduction electron bath.

The low energy pazt of the Green function can now be calculated directly from H,4;,

G (i) = — j dré=T < T,F(r)F'(0) >g,,, (99)
where F, = €¥f,e % is the canonically transformed single particle operator and has the form

Fo =Y aa[(Xoe = Xoooo)one +2Xooachos] (100)
a
with o = 3!‘;!(1 + %g» - EEA) The self-consistency equation for the low energy Green
function then becomes
EAV,,’/D’

& Wa — &

= G (iw,). (101)

The projective self-consistent method thus results in the closed set of equations (98-101)
which form the basis of our low energy analysis. The system contains only one energy scale,
AD and is therefore numerically tractable.

VII. THE MOTT METAL-INSULATOR TRANSITION

The Mott transition, that is the metal insulator transition induced by the electron elec-
tron intersctions in & periodic system, has been investigated theoretically and experimentally
for many years, Experimentally it is realised in three dimensional transition metal oxides
such as V30, and Nil; and can be driven by varying pressure temperature and compotition.

From a theoretical point of view, several ideas have been put forward and various ap-
proximation schemes have been used to anderstand this transition. Hubbard first dealt
with the problem using a single-particle (rigid-band) approach and introduced the notion
of Hubbard bands. These describe propagating empty and doubly occupied sites in a half
full lattice. For large U/ thess bands are scparated by a gap of ordes U —2D. As U is
roduced there is a critical value of U where the two bands merge again. This is the Hubbard

%

picture of the metal insulation transition. This kind of approack emphasises the incoherent,
high-energy parts of the spectrum but fails to provide a suitable Fermi-liquid description of
the quasiparticles in the metal.

Brinkman and Rice, building on the work of Gutswiller, started from the metallic phase
which they described as a strongly renormalised Fermi liquid with a characteristic Fermi
energy scale the ferm: energy. As the interaction strenght incrases this energy vanishes at a
critical value of the interaction U. In this framework the metal insulator transition is driven
by the disappearance of the Fermi liquid quasiparticles. Incoherent parts of the spectrum
(associated with charge fluctuations) are neglected in this approach, leading to a very crude
description of the insulator.

Slater pointed out that the metal insulator transition is always sccompanied by long
range antiferromagnetic order, and viewed the doubling of the unit cell which makes the
band structure of the system that of a band-insulator, as the driving force behind the metal
insulator transition.

The limit of latge dimensions provides a unigue framework in which these various aspects
can be studied simultaneously, i.e in which quasiparticles and incoherent features are treated
on the same footing, and in which the competition between a Mott paramagnetic insulator

and a Slater insulator can be quantitatively studied. This is reviewed in the attached
reprints.
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