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Strong Correlations and Disorder

in d = co and Beyond

V. Dobrosavljevi¢ and G. Kothar

Serin Physics Laboratory

Rutgers Untveraity
Piscataway, NJ 08854

Abstract

The behavior of strongly correlated electrons in disordered systems is investigated using a new
fun...onal integral formulation of the problem. In the mean-field approximation, which becomes
exact in the limit of large spatial dimensionality, the problem reduces to the solution of an ensemble
of self-consistently determined Anderson impurity models. The methods are applied to different
classes of disorder, and the possible phases of the system analyzed. We present results for the
behavior of the thermodynamic and tramsport properties near the metal-insulator transitions for
each case considered. When strong hopping disorder is present, disorder-induced local moment for-
mation is found, leading to qualitative modifications of metallic phases even away of the transition.
Finally, we indicate how our approach can be systematically extended beyond the mean-field limit,
where the presence of spatial fluctuations makes it possible to address the problem of Anderson
localization in strongly correlated electronic systems.

PACS Numbers: 75.20. Hr, 71.535.1v
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1 Introduction

After more than thirty years [1] of intense research, a comprehensive description of disor-
derud interacting electrons still remains elusive. Much of the current knowledge about the
problem relies on numerous investigations, both experimental and theoretical, of the weakly
disordered limit [2] where satisfactory understanding is achieved. In such systems, both the
disotder and the interactions can typically be treated in a perturbative fashion, and the
behavior can be described using a generalized Fermi liquid phenomenolop [3].

For strenger disorder, the situation becomes more compli ated. As the disorder in-
rreases. the Anderson Iocalization effects [2] gradually lead to the breakdown of the metallic
phase. and sventually the metal-to-insulator transition (MIT) takes place In order to un-
derstand whose disordagomdaeed transitions. scaltng theories of localization were developed
500 Here the MIT is viewed as a eritical point where the physics is dominated by
oz wwveanesh bvdradvpamie) fnetnations. The approach was exiended to interacting
slecorons by Fluxelehtan 7 who constructed a long-wavelength effective Lagrangian for the
reievant degrees of feedam and used renormalization group (RG) methods in 2 + ¢ dimen-
st o anadine she cmtdcal point. This theory, based on Fermi liquid ideas i3] offered a
consistont seenano for the MIT in systems where spin is not conserved ‘e. g in presence
of external magnetie felds or magnetic impurities}. In the situation when the spin t3 con-
served. the G flows take the system to the reqime of strong correlations but weak disorder,
wid the sesopsanres schitn near two dimensions breaks down. [t has been suggested that
e enes some magznene cusiability 7' or that it indicates a contimions Fermi liquid to
msoieer cransiaen with a divergen specific heat coeficient, but with a discontinuous jum p
tn the rondusctivity 810 Other interpretations have also been proposed (9]

More racently. increasing experimental [10] and theoretical [11. 12] evidence has been
pointing out to the hmitations of the Fermi liquid picture of disordered metals near the MIT.

Numerons experiments on doped sericonductors {10}, carried out down to millikelvin tem-
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peratures showed seemingly diverging magnetic susceptibilities and specific heat coefficients
even on the metallic side of the transition. To account for these findinrgs, disorder-induced
local moment formation [13] has been advocated, and a two-fluid escription [14] of the
low energy excitation proposed. These local moments are viewed to exist on short distance
scales, and as such were ignotred in the derivation of the effective long-wavelength theories
of Finkelshtein.

Another route to the metal-insulator transition follows from the presence of strong elec-
tronic correlations even in absence of disorder. This phenomenon. known as the Mott tran-
sition {15] takes place when the kinetic energy gained by delocalization becomes iisufficient
to compensate for the potential energy cost of charge density fluctuations. The transition
can also be described as the point at which the Jow lying excitations transform themselves

.

from quasiparticles to spins - all the electrons become local moments. Historically, this
mechanism for localization was put forward as one of the first explanations for the MIT in
uncompensated doped semiconductors [15). The exparimental values of the critical concen-
tration where the transition occurs are indeed consistent with simple estimates of Mott which
ignored the disorder. Still, as the MIT 1s approached by reducing the dopant concentration,
both the correlations strength and the amonnt of disorder are increased ~ making it difficult
to assess which effect is the dominant one.

All the above facts suggest that a proper treatment of strong electronic correlations in
disordered svstems could very well be a central piece in the puzzle of dirty metals. In
this paper we present a new approach to the problem, which builds non-pertucbative stroug
correlation offects as a starting point. We identify a class of models thin can be solved exactly
in the limit of large spatial dimensions [16|, where a mapping onto impurity models greatly
facilitates the theoretical analysis {17]. In the large d limit, the disordered problem reduces
to self-consistently solving an ensemble of Anderson tmpurity models. The method provides

an intuitively appealing local picture of the interplay of strong correlations and disorder,
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and thus represents a natural language for the study of phenomena such as disorder-induced
local moment formation or the disorder-modified Mott transition.

In the rest of the paner, we begin by presenting a detailed deseription of our formalism,
and the derivation of the self-consistency conditions in the d — oo limit. We discuss various
directions in which the method can be used to obtain systematic corrections to this mean-field
limit. We stress the technical advantage of dealing with the spatially disordered situation, the
possibility of carrying a controlled loop ezpansion [18]. Many aspects of disorder injeracting
electrons conld be studied in this framework, but in this paper we restrict our attention to
the following two basic physical questions: (1) What is the behavior of thermodynamic and
transport properties in the vicinity of the M]T? {2) Can the interplay of strong correlations
and disorder lead to gualitative morifications of metallic phases?

In the exactly solva.l;le d = co limit, we have been able to answer these questions. The
results are presented for several models of disorder and types of transitions. We discuss
the general successes and limitation of the mean-field picture, and co ipare our findings
with experimentai results for doped semiconductors. Finally, we indicate various possible
extensions of our theory and comment on the most promising directions for future work.
A short report on this work has been presented carlier {19]. We mention that a related
stud;- of disotdered interacting electrons, basced on the d = oo limit has been independently
carried out in Ref. [20]. However, the authors addressed questions other that those studied
i the present work. Also, that approach was restricted to f = 20, and did not indicate how

syvstematic corrections to mean-field theory could be ohbtained.

<2 Pure Hubbard Models

The main subject of this paper is to study the effects of disorder og strongly correlated
metals. To put the problem in perspective and to set up the methodology, we briefly review

the results obtained with the mean field method jn the pure limit, following references
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[21. 22, 23]

The mean-field approach based on taking the limit of large spatial dimensionality repre-
sents a general method for the study of many-hody systems [17, 24]. The basic idea, which
goes back to the early work of Bragg and Williams [25], is to focus on a given lattice site and
construct an effective theory for local properties. In this language, the local site is viewed
‘o be embedded in an effective field, the cavity field [26]. When the given site has many
neighbors, i. e. large coordination (large spatial dimensionality}), the spatial fiuctuations of
the cavity field are suppressed, and its value is self-consistently deterinined. The general
formulation closely parallels the standard mean-field theory of (for example)} classical Ising
models of magnetism. In contrast, when the approach is applied to quantum fermionic prob-
lems. a new feature emerges - the cavity field acquires nontrivial time dependence, allowing
a nonperturbative treat.t-nent of local dyna.nics, which proves to be of erucial importance for
strongly correlated electrons. in particular, the approach incorporates incoherent (inelastic)
processes even ou this mean-field level, as opposed to most other treat: ents. As a result,
the formulation can be used even in the study of non-Fermi liquid metallic phases, for ex-
ample in extended Hubbard models {27]. In the following, we limit our attention to simple
Hubbard models of correlated electrons; the generalization to more complicated models is
straightforward {24].

The phase diagram of the pure Hubbard modet on a Bethe lattice at half filling has a
Neel phase at low temperatures. and a paramagnetic phase at high temperatures. However,
the value of the Neel temperature can be made arbitrarily low by increasing the frustration,
a sitnation which is even more relevant to disordered systems like Si:P. which do not or-
der magnetically down to millikelvin temperatures [10] due to wide distribution of random
antiferromagnetic exchanges. In this case, & Mott transition was found [21, 22, 23]. The
phase diagram of the fully frustrated Hubbard model {22}, which remains paramagnetic at

all temperatures is schematically shown on Fig. 1.

| IR J BT & |

- wa Wwraw -



The two possible paramagnetic phases of the Hubbard model are separated by a first
order boundary which terminates by two second order points. One is at finite temperatures,
which has a character of a liquid gas transition, while the other one i3 a zero temperature
critical point at U=/, reminiscent of the Brinkman Rice scenario, as extensively discussed
in Ref. [22] For the purpose of our discussion we will concentrate on the behkavior rear U,,
which vill be the metal-insulator transition in a disordered system. On general grounds
[29], in presence of disorder we expect the first order line found at finite temperatures to he
suppressed. but the zero temperature critical point at U, to remain.

From the technical point of view, the central tool that we shall use is the mapping of a
lattice problem onto an Anderson impurity model which allows to study the local physics
with a mean-field like approach [17]. For example, all the the local correlation functions
of the Hubbard maodel (:n a Bethe lattice can be calculated from an impurity action of the

general form

SinplGol = [} G3'er + U iy, (1)

provided that (7, oheys the self-consistency condition

G =tw, + 5 —t? < ¢le g, - (2)

=]

The hamiltonian version of the action of Eq. (2) is an Anderson impuiity model [28]; in
the foilowing. we will show that in a random medium this statement cap be generalized to

map the loeal physies of a random Hubbard model onto a collection of Anderson impurity

problems.
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3 Disorder in d= co

As we have scen. the main idea of the d = oo approach is to obtain a local description of the
ptoblem. This is accomplished by formally integrating out all the degrees of freedom outside
the considered site. The procedure can in principle be performed in general dimensions,
but then the resnlting contribution to the local effective action - the cavity field - takes an
arbitrarily complicaied form. In presence of disorder the situation is even more complex:
the cavity field varies from site to site, reflecting the random environme-ts in which a given
stte 5 embedded,

The prohlem again simplifies when the number of neighbors s large, in which case the
~avity fields hecomes eif-areraging i e, independent of the disorder. and only local disorder
Anctgauons survive. The theory thus assumes a mean-field character, 1n the sense that the
apaiad Sucvaations hore not the temporal ones) ate ignored, and as a consequence, phenom-
e wien 13 Adersen Secadization will be absent in the strict 4 = = limit. Nevertheless,
coemoay she 1o o level the approach is sufficiently flexdble to allow for a detailed study of
aumeroud questiony relevant to the interplay of strong correlations and (local) disorder.

The desivanien of mean field equations for disordered interacting electrons in d = oo can
be svstematically carned out for any special type of disorder, or lattice form [30]. However,
there are two general classes of models, for which the formulation can be implemented in a
parvicwlarly olegant fashion, whicl also allows for controlled extensions away from the d = oo
s Inoths naper we wiiliimst our attention to olasses of models in juestion, since in other
sased b modifonoens ead o technieal complications. but the nhysical hehavior remains
DATTANS RN A R A 'l"&".‘]‘t!'{""‘i
In the nusy coneral case, the Hamiltonian of a disordered Hubbard model takes the form

H = \/_: \_: ey i) c"&,cjlfr + Uz c!‘[(;‘tchc‘_‘. (3
o7 1

Ustng a finctional integral representtion for quantum averages, and the replica method for

E id



disorder averaging, the (replicated) partition function of the model can be written (7] as

7 = /Ds.—Ps[e,-] Dt,-jPH[t‘,]/DE,-Dq exp{~ S}, (4)
with the action . = S, + whop conststing of a local part (that includes the Hubbard inter-

action)
) a &
Stoe = Z Stoelt) = Z Z/ dr 750 + 6o — ple?, + U Zf dr et e, (5)
and a hopping part

e Ii -
S;,,,T, = L »5*;“’1:“.‘-’;) == Z; {!,J }_‘f dr !F:."(‘:.J + h.r:.}J . (6)

TRl Ll Rt [A V]

Here &Y and o7 are the clectronie (Grassmann) fields with spin s =T, . replica index

=1, n, at [attice'site . and 3 is the inverse temperature, The random site energies ¢,
are described by their probability distribution Fseiicand the random hopping elements t,;

by the corresponding distribution Pyt

3.1 Disordered Bethe Tattices and the 1/d Expansion

The first class of models that we consider consists of Hubbard models with arbitrery disorder,
but restricted to Bethe lattices. In this case, the problem can be reduced to a certain integral
equation. even for a finite coordination number, which is convenient for performing extensions
away from infinite dimensionality, Furthermore. the Bethe lattice has a bounded density of
states even in the d —+ 2 Hmit. a feature that is convenient in tho stndy of the Mott

Fransttion |
3.1.1 Integral Equation

To derive the integral eqnation, we concentrate on a particular site, and perform a partial
trace (in the replicated partition function) over all the sites in the m = 7 — 1 {z is the
coordination number, 7 the “branching ratio” ) branches {all but one) that come out of the

given site. Because all sites of a Bethe lattice are only singly connected, the result of this

B
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al only of the fields living on this site {call it the i-th site).

partial trace will be a function

If we denote this functional by Z{i], it 18 not difficult to see that the functional satisfies the

following integral equation
ﬂﬂ=[[D@D%D%Pﬂ%ﬂmﬁﬁﬁqWHﬂ—$wﬁd}_&mUHEUﬂ (S

ic disorder conserves energy 8o that different frequencies

In the noninteracting limit, stat

decouple and Eq. (7) reduces to an ordinary integral equation; a similar equation was a
basis of studies of localization on Bethe lattices [31] giving an Anderson transition. When

interaction are present, there is frequency mixing, and we have to solve a functional integral

equation. This is difficult. but the problem simplifies in the large m limit.

3.1.2 d4— > Limit

in this limit. an appropnate scaling of the hopping elements

To obtain meaningful results

[16] has to be performed, and we replace f; — tiy/vm . o otder to let d — oo (1. e

(7) and expand in powet of Shop ™ 1/ym. To

m — oo). we take the logarithm of Eq.

Jeading order 1n /. the local effective action Sesslt) = Staelt) — in =(¢) takes the form

a e
Sepslt) = Zj,, drjo dr' € (r){8(r — ) (8, + € —~ B}t Wilr, ) cia(T')

A
v v [ aetnBanetn) (8)

The self-consistency condition determining the “Weiss™ (cavity) field, 1s obtained by

expanding the integral eqnation Eq. (7). giving

Woglwal = /’iEJ'Ps(Ej)['fﬁijpff(tu)i?,G,‘..(wn} =30 Lfwa),

where

Gialwn) =< Talwn)Ciolwn) 25,00
are the local Green's functions evaluated with respect to the
of Eq. (8). In deriving Eq. (8), we have restricted our attention to non-super

9

(9)

(10)

single site effective Action

zonducting

* FE «&H



phases (= 7,7 , »= ), so that W;, does not have anomalous components. We have also
used the fact that. due to spin conservation < ,c, >~ 8,. as well as that for a £ o,
T 5= TFSCIS = 0 (particle conservation). The replicas decouple at m = oo,
reflecting the absence Uf Anderson localization, and we can let n — 0, eliminating the
replicas in the rest of the calcuiation.

We note that the local effective Action of Eq. (7) is identical to the action of an Anderson
impurity model [28] with a given hybridization function Afw,) ~ W(w,). We see that, even
for disordered systems, the solution of a Hubbard model in infinite dimensions can be reduced
to solving an ensembie of Anderson tmpurity models with an additional self-consistency
condition that includes disorder averaging. Once the local effective action is sel-consistently
determined. it is possible to comnpute all the correlation functions of the Hubbard model from
the corresponding {loca.[hj correlation functions of the Anderson model. Because the solution
defines an ensemble of loeal impurity problems. it determines the probability distributions
for foeal quantities (o g the local Kondo tewn.peratures) that fluctuate from site to site in

a disc.dered system.
3.1.3 1/d Expansion

The presented self-consistent equations ate exact on the Dethe lattice with infinite branching
ratio.  However, the integral equation Eq. (7)., which 15 exact for any m can be used to

fenerate an expansion in 1/m. which brings in spatial fluctuations to the cavity field W(1) =

-InZH The expansion generates higher order terms te the effective action, which take the

general form

S -.,/1*"”(;_ i E L eind, (11)
where the vertex functions (1, n) obey self-consistency conditions of the form
C™(Ln) ~ < (L) e(n) >, (12)

10
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The above infinite set of coupled equations is exact for any m, and in fact is just a way
to rewrite a functional integral equation Eq. (7). However, it is not hard to see that
11, ... n) ~ 1/mi*=3/2 5o that at large but finite m, one can obtzin a self-consistent 1/m
expansion by truncating the expansion of the effective action at a desired level. The first
nontrivial term in this expansion generates SS), ~ "% which is a connected vertex function
of fou:r arguments, that has a very transparent physical interpretation. Namely, at m =
0o, the Hubbard model is mapped to an Anderson impurity problem in & self-consistently
determined electronic band, but the on-site interaction U remains unrenormalized. At the
next to leading order, the presence of Sf;)f in the effective action indicates that the first effect
of spatial fluctnations in finite dimensions brings in a (self-consistent) renormalization, and
retardation of the Hubbard U/,

We thus conclude tl;at our approach offers a natural way to extend the large dimension-
ality methods. and to study the effects of spatial fluctuations in a systematic fashion. We
note that the 1/m expansion, as presented above, effectively generates an expansion in the
power of hopping clements. It thus represents a locator expansion (1, , that describes the
short-ranged spatial correlations, i. e. is similar in spirit to cluster generalizations lof stan-
dard mean-field theories. It is worth pointing out that such an expansion, if truncated to any
finite order, can never account for the presence of long-wavelength spatial fluctuations {(such
as spin-waves) that are expected to play a crucial role in determining the critical behavior
of the system. In situations where the long-wavelength modes are important, one expects
that an alternative expansion around the mean field theory, namely a loop ezpansion should
be more nseful. In the next section we will present a class of models that allow for a natural
formn'~tion of stch 1 loop expansion, while reducing to the same mean field equations as

presented above, when restricted to d = oo

i1
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3.2 Gauge Invariant Models and the Loop Expansion

In this section, we consider a different class of models, that can be formulated on an arbitrary

lattice, but correspond to a special form of disorder. In this class. the random hopping

elements are assumed to take the form

ti; = yi; 9(xi, z;), (13}

and in addition, there can be an arbitrary distribution of site energies ;. Here, y,;-s are
independent bond variables with a symmetric distribution, i. e. W =0, and g(z,, x;) is
an arbitrary function of local site variables o

The special class of models which have a symmetrnc distribution of hopping elements
has a very simple [)]lySlll’_'.H.l interpretation. As first observed by Wegner (5], in these “gauge
invariant” models, the phases of the electrons undergo random shifts at every lattice hop and
so the mean {ree path f reduces to one lattice spacing. On general grounds. on iength scales
longer than £ the Jdetails of the lattice structure are washed ont by disorder, so that for gauge
invariant models in the large dimensionality limit, the details of the lattice structure become
irrelevant. We contrast this with the models with arbitrary disorder. discussed in section
3.1, which have a well defined pure. Limit, and accordingly can a'so have an arbitrasily large
mean free path. The presence of this intermediate lengthscale (¢ can be much larger than
the lattice spacing a. but much smaller than the localization length £) is often irrelevant to
both the long-wavelength phenomena such as localization, and Iocal phenomena such as the
Mott transition. The gauge invariant models avoid these unnecessary complications, without
distupting any of the qualitative properties on either very short, or vary long lengthscales.

The general properties are the same for all the models in this class. bu: for the simplicity
of our presentation, we will restrict our attention to the separable case {32] where g(z;, z;) =
rir;, with an arbitrary distribution Pyx(z;) for the site variables z;. F r a trivial choice of

Px{zi}) = 8{zi~1}. the models reduce to the gauge invariant models of Wegner [5]. Nontrivial

distributions Py (z;} which extend to small values of the variable z; are useful for the study of

12
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disurder-induced local moment formation {13]. Those sites with z; small represent the sites
with weak hybridization. At intermediate correlation, we expect the sites with z; small to
behave as local moments and give large contributions to the thermodynamic quantities such
as the specific b .t coefficici.. ¥ = C/T, while other sites remain in the itinerant regime.

Also, we take the the yi;-s to be Gaussian random variables with zero mean, and with
the variance

— 1
yh = =fii £, (14)

Here. the funiform) matrix f,; specifies the lattice structur-

(15)

(), for disconnected sites

s { 1. for conneeted sites
o=

and we have sealed the (square of the) hopping elements by the coordination number

z =Y fiy. in order to obtain fimite result in the 7 - oo linnt.
3.2.1 Functional Integral Formulation

At this point. it is convenient to explicitly perform the averaging »ver the Gaussian random

(bond) variables y;;, after which the hopping part of the action takes the form

2

1 ~ 1 A N
Shop = Ef,i Z .z_fij r? r,j [Z/ dr (& (), (r) + hell . (16)
v x.a7?

As we can see from this expression, the averaging over disorder has generated a quartic term
in the action {5, that is nonlocal in (imaginary) time, spin and replica indices. We are
now in a position to introdnce collective @-fields 5. 7] of the form (in terms of Matsubara

frequencies w = 2nx T the indices 'n” are omitted for brevity:

- . .
(J::S_:"I'?(L) = ;—z‘fu T.? ’--‘j.‘..(‘-‘)l}(‘;.-;\““'!)' (17)
J

by decoupling the (quartic) hopping term using a Hubbard-Stratonovich transformation. For

simplicity, as before, we will ignore the superconducting phases, as well as the fluctuations

13
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1n the particle-particle (Cooper) channel, so that the Q-field does not have anomalous com-
ponents. [The procedure can be straightforwardly generalized [6] to include the omitted
terms].

It is now passible to formally integrate out the electron {Grassmann) fields, and the

resulting action for the (J-fields can be written as

SEQ] = Sﬁ-ﬂp[Qi + SJOC[Q]- (18)

The nonlocal part of the action Shop|@] takes a simple quadratic form in terms of the ¢ fields
4 ‘ 1 - IR S TN N ‘T2xy 814 :
Shopt @] = s T BTN ST ST Ky QU QT (), (19)
= t3 xR Ay wyuy

. " " - 1 ,_1 5. . . . . .
whern, K- 1 15 the inverse lattice matnx, sealed by coordination number . in contrast,

AV
all the nonlinearities are contained in the local part of the action

Steetd] = - '2_: In /rfr,-]’_-( (r‘)/ffFlPS(E‘)fDF[D(‘1' exp{ =5, 7% 0. Q. T &}, (20)

1

where the effective actjon for onesite eloctrons takes the form

Sp-ff'ﬁ‘f.‘,- (-t)l'w Ti\"-_‘, =

- 22 3w liwn 4 - “i) By Baan b — 2] LT QTIZIN ()] 682, ()

TELYY A A wywy

U Do Al el (wa )7 (ws)eT fwa). (21)

T s g 4w
The loeal effoctive action Seppif e Qioxieg] is identical to the action of a (generalized)
Anderson impurity model embedded in a electronie hath characterized by a hybridization
fanetion »? 'jf.,],‘",;.f,j T We ean thas interpret our system as  -nilecfion of Anderson
mpunty models (28] that are “connected” through the existence of a collective Q-fields.
Here we note that, in contrast to an ordinary Anderson model, the hybridization function
tS Now non-diagonal in frequency, spin and replica indices. Physically, this reflects the fact
that tn general dimensions a given site can be regarded as an Anderson impurity model in a

fluciuating bath, which breaks local translational invariance in time, space and spin.

14
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3.2.2 Saddle-Point Solution

The action has a general form which is very similar to standard lattice models investigated in
statistical mechanics [33]. As usual, the problem simplifies considerably in the limit of large
coordination number, when the spatial fluctuations of the Hubbard-Stratonovich field (@ in
our case) are suppressed, and the mean-field theory becomes exact. It is worth pointing out
that there are two classes of lattices which can have large coordination:

{a) Lattices with short-range bonds but living in a space of large dimensionality. For
ex  mple, on a hypercubic lattice with nearest neighbor hopping 1n 4 limensions, z = 2d.

(b) Lattices embedded in a finite dimensional space, but having long hopping range. In

this case, the Iattice matrix fi; takes the form

. { 1.]i - j| < L, (22)

(0, otherwise,
and the coordination mimber z ~ L%

'n either case. when z — 20, the functional integral over (J-ficlds. representing the
partition function, can be evaluated {exactly} by a saddle-point method, and we obtain
mean-field theory. In order to detive the mean-field equations in out case, we look for
oxtrema of the action S[€2] with respect to the variations of the ()-fields, i. e,

5S4
FQEET)

Sinee the saddle-point solution is translationally invariant in time. space, and conserves spit,

= 0. (23)

it s diaganal in all indiees
Q] e = A B QI (24)

and the saddle-point equations assume the form

Q3" (w) = [deiPste) [ dniPa(r =} Goatw), (25)
where
G.-‘,(w) =< E.(w)c.(w} >5¢H['E.C.QSP.2..8-'] . (26)
15
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If we identify
W,ilw) = 22 2057 (w), (27)

we sce that our saddle-point equations become identical as the d — <o equations on a Bethe
lattice {(Eq. (8)-(10}), when applied to the appropriate model of hopping disorder. We
emphasize that the present equations are exact at z — oo for an arbitrary lattice, due to
the presence of the “gauge invariant” form of the hopping disorder. Since the saddle point
equations determine the local effective action. this means that the all the local correlations
functior= will be msensitive to the lattice structure, in this mean-field limit. However, other
properties such as the tendency to the formation of the sptn and charge density wave, are
very semsitive to the details of the lattice stroctire.

As an example, we can compare the case of a simple hopping disorder, tii = ¥i;, on the
case of a bipartite lattice, such as the Bethe lattice. and the case of a lattice with infinite
* tange hopping (the limit [ — 20 of the model (b) above). The seif-~onsistency {mean-field)
equations are wdentical in the two cases, and in fact reduce to those of a pure Hubbard model
on a Bethe lattree with hopping t. On the other hand. it is well establisned {22] that in the
first case the system is unstable towards the formation of an antiferromagnetic ground state,
even for arbitranly small U/¢, while ** *he second. the system remains paramagnetic fo. any
U/t. due to large frastration. In many physical systems, such as doped semiconductors [10],
disorder introduces large amonunts of frustration. and magnette orderier does not occur, even
though the system is strongly correlated. In order to study such situations, it is useful to
have at hand microscopic models that have a non-magnetic geound ate, and allow one to

study the approach to the metal-insulator transition which occirs 1. T =1
3.2.3 Loop Expansion

The present approach is particularily convenient for the study the effects of strong corrcla-
tions on disorder-driven transitions. and the interplay of Anderson localization and strong

correlations in general. This is especially true, since Anderson localization 18 not present
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in d = oo (or infinite range) models, and so one has to extend the approach to include
the presence of spatial fluctuations missing from the mean-field description. In order to
systematically study the fluctuation effects, we proceed to carry out an expansion in terms
of the deviations of the collective J-fields from their saddle-point value, i. e. in powers of
5Q(i) = Qi) —~ @57 This procedure, also known as a loop erpansion [33] has becn used in
other disordered problems, such as spin-glasses (34], to generate systematic corrections to
the mean-field theory. The method is particulatly convenient when applied to long-range
models [34] {class (b} above), since in that case the loop corrections are ordered by a small
parameter 1/z. The loop expansion can be applied also to large dimensionality models {class
(a) above). but in that rase a given order in a loop expansion can be considered to be an
infinite resummation of the simple 1/d expansion [35], since each term contains all powers
of 1/d.

When the expansion of the effective action in terms of §6)-s is carried ‘o lowest, quadratic
order, we obtain a theory describing gaussian fluctuations around the saddle point, that rep-
reseut weakly interacting collective modes 5, 7). Bigher order terms in the expansion then
generate effective interactions of these modes, which under appropriate conditions can lead
to Huctuation-driven phase transitions. In practice, if all the components of the collective
QQ-fields are retained in this analysis, the theory becomes prohibitively complicated and cum-
bersome. However, in order to analyze the critical behavior, it is not necessary to keep track
of all the degrees of freedom, but it suffices to limit the analysis to soft modes, i. e, those that
represent low energy excitations. In disordered metallic phases, charge and spin conservation
laws lead to the existence of diffusion modes which are the hydrodynamic modes descnibing
charge and spin density relaxation. In the Fermi liquid regime {3]. all the other collective
excitations require higher energy, and can be neglected in a hydrodynamic description of the
system. One is then lead to construct a theory of interacting diffusion modes, as a theory of

critical phenomena for disordered interacting systems.
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This line of teasoning was used in field-theoretical approaches to tie localization problem
of noninteracting electrons, as first developed by Wegner [5]. In this theory, collective ()-
fields. simalar to the ones presented in this paper. are introduced. At the saddle-point level,
no phase transttion orenrs, and all the states are extended. An analysis of the fluctuations of
the Q-fields is then performed, and a subset of those fluctuations identified, that represented
the hvdrodynamie (iiffusion) modes. Only the fAuctuations of these modes are retained,
and an effective hydrodynamic theory constructed - the non-finear styma model [5] . The
mteractns of these modes lead to the metal-insulator (localization) .ransition, which was
walyeed gane rencrniahzation-group techniques and 2 + ¢ expansions. In subsequent work,
Fonkelshiom 70 was abde 1o apoly a similar procedure to mteracting disordered electrons.
However s vheary 1s hased o a gainber of implicit asamnptions, that restrict jts validity to

gl tegnnes 1y e snguage of J-fields, one again expands around a noninteracting
sredlens wd e gtereygon effects appear only at the level of the Buctuation corrections.
woed clectronie systems are considered, mch of the physics relates
Sy Sehne seernstayy o epherent guasipartieles by inelastic processes. so that one needs
PO i s 0 nted Lo Ferms-liguid regimes. In the language of hydrodynam-
c3oew s U moddes appear. shat indicate the tendency for interactton-driven instabilities.
tr parvenlar strang correlations ean lead to local moment formation and the Mott transi-
cons b harh casess che charee fluctnations are suppressed. and lnw-energy spin fluctuations
Boomnate he oy hves
YUl reSent g oAb 0 canirast b the work of Weyner wnd Finkelshtein, the strong
Poestione e crease oy e nerturbative fashion already at the saddle-point (mean-
Gebdr leveis s e 0 dhe soft modes can systematically inclnded. fo particular, even at
venedoap devel we can adedress the question of how the disorder-induced local moment
P nen and the approach so che Mott transition affect the weak localization (diffusion)

rrectons s Vltimately our approach indicates how a more general low energy theory can
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be constructed that extends the o-model description as to include strong correlation effects.
In the present paper, we will limit our attention to the form of the Gaussian fluctuations
of the -fields, that allow one to compute the leading correctioas t. mean-field theory. The

Gaussian part of the action takes the form

) 1, dk
S™Q) = -5t E.fwécg,,,,(k) (227 + 1) 1,80

—EW (LYW (12811, 8151, + 'T(h - )| 8Qu (~K)- (28)

This expression is approrriate for the long ranged model (b} ab we. in which case the inverse
lattice matrix in momentnm space takes the form K(kV == 1 + L?k?* and we cut-off the
momentum integrals at A = 2x/L. Note that the coefficient of k*. which can be interpreted
as stiffness of the 4Q modes s ~ L%, so we see that indeed the fluctuations are suppressed
at L — oo, In the above formula. the index [, is used to represent the frequency, spin and

teplica indices. The local vertex function I'(1y - - - {4) is given by
F(ll v I‘} = dE.'Ps(E,‘)](iI.‘px(Ig) 1!: < 'é‘(ll)c..([,)‘c‘(!;,}r.(l‘) >5c“,[QSP] . (29)

At this level, the dynamics of the collective fluctuations 8 is governed by the form of
S{EQ). which is express in terms of the local correlation functions of the saddle-point
theory. i. o of the d = oo disordered Hubbard model. Accordingly, a detailed study of
the 4 = ~ limit does not provide only a mean-field description of the problem, but also
Aetermines the farm of the leading corrections resulting from fluctuations. In the rest of this
paper, we will liinit onr attention to the mean-field limit, a:i.d study the effects of various
types of disorder present. Extensions of the theory to include tb fluctuation corrections

remain to be addressed in more detail in future work.
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4 Thermodynamic and Transport Properties

As we have seen in the previous section, the solution of the d = o Hubbard models with

disorder teduces tao suiving a set of self-consistency conditions determining the local effective

action. The solution of the self-consistent equations immediately gives the single-particle
local spectral functions, but we would like to use these resnlts and also calculate other
thermodynamic and transport properties of the systemm. In this section, we indicate how

these quantities can be obtained in the 4 — o framework [36].

4.1 Thermodynamies

Onece the local Groen's fanctions are self-consistently determined. we can immediately obtain
all the thesmodynamie properties from the caleulation of the energy E(T'), Using standard
methods 137]041 is possible to express the energy in terms of single-particle Green's functions.
Ty do this, we use the Heisenberg equations of motion for the ficid operators cia(T), for a

given fircd teahization of disorder, whiel (for 9 =7) takes the form
Gebec—ple(r) =+ 3 tieiir) - Ueii(r)el (r)eiy(r), {30)
J
and similarly for 3 —|. Multiplying this equation by r:f‘f(r), and perforiing the summation
over 3 =1 | and the site index 1. we can relate the interaction energy

V = Ur X r‘:.["‘-f"!‘j""‘ll (31)

o the kinene vporgy

"

ho= X Z: 5[_"{‘) 4 -":fli ‘.‘!.{,)I!‘ (32)
5

and we find

p—

K +37el(r) (0 — pleca(r] . (33)

Vi=-g

Using the definition of the single-particle Green's function
Giir o) =< ¢ (r)e;u(r) >, (34)
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we ohtain an expression for the energy E =< K > + < V > of the form
1 . 1 Cr
E(T) = '2'2 ['—tij + E.‘Jij] G,(!T,]T) + lgm 52[‘"8,- + [f-] G.(t‘rr,lf). (35)

17,0 1,8

This expression for the energy is valid for a Hubbard model with an arbitrary realizati-a
of disorder, and in arbitrary dimension. In the limit of large coordination, the hopping
elements are rescaled as £;; — t;;//z [16], and the leading contributions can be obtained by

an expansion in powers of t;;/y/=. To leading order, and for the classes of models that we

consider. the off-diagonal element of the Green's function factors

Gl wa) Gl diom) + 002 (36)

(o1, ),um) =

<
N\]i ~

The expression for the energy for the models of Sec. 3 then assumes a simpler form

% S fiw + g + £ = Wikwa)] Gilwn). (37)

The expression is valid in the paramagnetic phase, where we have performed the spin sum.

E(T) = /dg.- Ps(eq) /dn Pr ()

It is impottant to note that the cnergy takes an additive form with respect to sites baving
energics ©; and hopping parameters z;. Once the energy is known - a function of temper-
ature. we can calculate quantities such as the specific heat, entropy. ete. We immediately
conclude that the specific heat 1s also additive, reminiscent to the phenomenological “two-
fluid model” of doped semiconductors; we will discuss the relevance of our results to such
systems 1n nlmm details in Sec. 6. Finally. the procedure can be easily generalized to include
oxternal nniform or staggered magnetie fields, allowing the calculation of the appropriate

suseoptilalities

4.2 Conductivity

Transport coefficients can be expressed quite generally wusing the Kubo formulation |37},
and the caleulation reduces to computing appropnate electronic correlation functions. In

particuiar, the real part of the conductivity can he expressed as

]. S
aplw) = ﬁhnz:{;‘j(m;w}‘ {38)
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where the (7, 1"w) is the retarded current-current correlation function corresponding to
lattice sites ¢ and ', and (2 s the volume of the system. For lattice models that we consider,

the enrrent operator takes the form
J)y = —iae z [c:‘ic,“, - ‘—'I,ica‘i—nJ . (39)

Here, we have used the nnits in which & = » = | apd a 13 the unit lattice vector in the
direction of the enrrent.

As for other «quantities, considerable simnlifications occur in the d = oo limit, essentially
due to the cancellation of the vertex corrections, as first potated vut by Khurana [38]. For
general maodels of diserder it is then passible to express the conductivity in terms of the
(averaged) local spectral functions - a feature temuniscent of the Coherent Potential Ap-
proximation (CPA) (26} In fact. in the nomnteracting limit, our self-consistency conditions
reduce to CPA . which is consistent with the absence of Anderson lncalization in d = oo,

The specific expressions for the conductivity take different forms depending on the precise
form of disorder, but as in Sec. 3 we limit onr attention to two clas: 3 of modelg where the

results take o particularly simple form.

4.2.1  Gauge Invariant Models

This class of models is characterized hy hopping clements with random signs, which corre-
sponds to a mean free path of ane lattice spacing. Upon averaging. all off-diagonal (nonlocal)
clements of the single-particle Green's funetion vanish, and the result is expressed entirely

mterm of the laeal speetral funetions

’tz ' N .
Tt o) = dnat— / dw’ pw(w’)pw(u + w)f(w ) f[‘u " w), (40)
z

W

where fla) is the Fermg function, and pwlw) is local the spectral finction corresponding to

the averaged cavity field
1 .
pwlw) = — = !mfdf.-Pg(f.-) /d::,-PH(a:.-)sz.-(w + i), (41)
.
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We note at this point that. since the conductivity is an off-diagonal correlation function, the
leading contribution is o ~ 1/z (after rescaling the hopping elements), and in the z — oo
Wit one shonld consider a rescaled quantity & — zo. In the following, we consider this
tesealed conductivity, which remains finite in the z — oo umit.

At w = 0 and tow temperatures, after performing the spin sum, the expression reduces

apc(T) = dratipl(w = 0.T). (42)

The esult coincndes with e expression obtained by Wegner [5). for ncninteracting electrons
o opresenee f ragenvanant hopping disorder with ¥ orbitals per sive, in the N — oo limit.

A< we ap oo from this expression. the conductivity is finite i the metallic region
tp¥o = T e m conteast to the case of pure lattices where the resistance (inelastic

seattenng wangshes at 2o o) For gauge invanant models, the pure limit cannot be obtained

Che g 4 ameter sde riered strength) since the mean free path £ cannot exceed one

aviies dpacinz o/ e X the pure limit). However, as we will see. these models with
A UE TAIIRHeSS o whdition to possible site randomness) dispiay generic behavior at

e etaioanedlver cransition. which presumably is relevant for realistic systems.
1.2.2  Models With Site Randomness

The ther chiss of models that we consider corresponds to pure sit> randomness, in contrast
zvsre cnviniant meodels that o addition have hopping randoniness. In this class, which
W b hocneeed onown ity lattice, thoe bsorder strength can be arbitrarily weak,
b owrng che sty £ obe sorrelation sereening of the disorder Mtan wall be discussed in the
o e FFor moedets with site tandomness in d = o, the conductivity expression [38] is

Arost el as n the pure Hubbard meoded 21,

EBR 1-"‘/@'&)' k. w)plk. o’ po i) = Sl v ) (43)

Apiw | = o
: AN "i:‘ )
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15 the spectral function (2t momentum k) cortesponding to the single-particle Green's fune-
tion averas ¢ over dise e, Here, £, describes the electronic dispersion in the Pute nop-
interacting limit and v, = d:x/0k is the corresponding lattice velocity; their specific form
depends on the details of the lattice structure. This expression is identical to the familiar
CPA expression [26] for noninteracting electrons. In our case, p(k.w) is the fully renormalized
quantity with respoct to interactions, and this acquires a steong frequency and temperature
dependence in the strongly correlated region. Note the diference ig the way the momentum
SUMMALIon entoers ¢ conductivity expression. ag compared to the gauge invariant models,
where the expression 1involyes {ocal spectral funetions only

Ind = nothe self-energy Taelwn ) is wamentum wdenenden! and s it can be caleulated

from the {oeal faveraged ) Green's function

Gl ) = /ri"—"/’pzlf.i(a\uﬂ: : (43)

where Giw,) is the solution of the d = ~ mean-field eqnations, B (8)-(10). On:e Glwn)
19 known. the auantity Ly, (w.) can be obtained frome Eq. (41), which npon wmomentum

summation can also e written ag

(;'(Ct-'qi = !],)(‘.4,',; - E'iu{-‘-‘n i (46)

where g (wg ) is the bare Loea] Green's function tin absenes of mreractions and disorder). In

particular. for a Hubbard wode] with pure site randomness with a hare semicircular DOS
we can wriife

Bdiolwa) = dwm 40— 70w} - [E’T(_x:q)j " (47)

We emphasize the distinetion between Yaelwn) and the self-energy EA(wn) of the local

Anderson model corresponding to a given site 5 Physically, La{ei,wn) measures only the

loeal inelastio seattering from electron-electron interactions, while Ydia(w,) measures the
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total seattering that includes both the inelastic and the elastic (impurity) contributions. In
presence of disorder, the scattering rate 5‘; = —ImZg,(w = 0) remains finite even at T=0,
ceflecting the preseuce of eiastic impurity scattering. At sufficiently weak disorder, -2-1; can be
arbitrarily small, and we get a Drude-like expression ope ~ T, tesulting in arbitrarily large

DC conductivity,

= W +WH



5 Metal-Insulator Transitions

Alter describing the formal aspects of the d = oo approach to correlated disordered electrons,
we will now present our fludings obtained by applying the methods to various physical
situations. In practical terms, solving the mean-field equations reduces, even in presence
of disorder, to the solution of Anderson impurity models supplemented by additional self-
consistency conditions. From the technical point of view, the problem is of the same level
of difficulty as in the pure limit. Over the last few years, a number of ey~ct numerical
and approximate analyti: 1l techniques {21, 22, 23, 39 useful for solving such equations has »
been developed and testod. Sinee the same technmical approaches ean be ~mployed even in
the disorder case, we will not spend muach time elaborating on various methods that can
be nsed to solve the mean-field equations. Instead, in the following we shall concentrate on
making a clear summary of our conclusions for varions models i disorder considered, and
thesr smplication for realistic expenmental systems.

In general, when either sufficiently strong correlations or deorder is present, metal to
insulator transitions (MIT) can take place. In the d = oo framework, the Anderson localiza-
trion effects are absent, but the MIT can still take place because of strong correlation effects.
In the following, we discuss the possible classes of MIT-s present in 4 = oo models, and make
predictions abont the hehavior of thermodynamic and transp. .t properties as the transition

15 approached,

5.1 Hopping Disorder

In o~ anmber of materials that display a metal-insulator transiion neh ag uncompensated
doped semicanductors. the main source of disorder stews from random position of dopant
atoms. thus leading to strong hopping randomness. In order to study such situations, we

begin our analysis hy examining the models with pure hopping randomness,
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5.1.1 Random Bond Elements

As a first example, we consider the case of simple uncorrelated hopping disorder, of the
form #;; = yi;. with y;; gaussian distributed random numbers with variance t?. In that case,
the self-consistency condition determining the effective action are identical as for the pure
Hubbard model on the d = oo Bethe lattice. The solution of this modecl is well known
(21, 22. 23], as discussed in Sec. 2. At moderate correlation strength, the system is metallic,
and displays nsnal Fermi liquid behavior. At T =0, a Mott-Hubbard transition takes place
at a critical interaction strength U, where the quasiparticle hand vanishes and a gap for
charged excitations appears. leading to an insulating state. Az the transition is approached,
the effective mass, and thus also the specific heat is found to diverge as y ~ (U, - Uyt
While these propesties are identical as in the pure model. the behavior of the conductivity
proves to be more sensitive to the presence of disorder. By using the expressions for the
conductivity of See. 4. and the well known results for the local spectral functions (21, 22, 23],
we can readily compute the transport properties at arbitrary termperature T and interaction
strength U At T = () the behavior of the DC (w = 0) conductivity is particularly simple, and
can be computcd-analyI.if‘a.lly. In this limit, Fermi liquid theorems for the Anderson model
assert that in the metallic phase, the imaginary part of the Anderson model self .nergy
vanishes [physically this reflect absence of inelastic scattering at T' = 0]. When this resuit
is applied to the d = 2o model, we conclnde that at half-filling {(at particle-hole symmetry},
the loeal speetral funetion plw = 0.T = 0} 1s pinned to its nemmteracting value p, = (me)~

A< a gesnlt the T = 0 value of the DC rondnctivity 15 also pnaed, 1oe
opclT =0} = a, = 4a’ /. (48)

throughout the metallic phase. Although the precise value of o, given here is appropriate
ounly for this particular model of hopping randomness, the proof for the conductivity pinning
can be easily generalized to more complicated situations. In fact, pinning is obeyed at

T = 0 for any model obeying {local) particle-hole symmetry, i. e. models at half filling
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with arbitrary form of hopping randomness. Random site energies break local particle-hole

symmetry, and thus violate the pinning condition: in that case opc(T = 0) can depend on
I,

Thns., we have shown that ©r models with hopping rando.aness, the conductivity at
T = 0 remains constant inside the metallic phase, and than abruptly jumps to zero as
the system becomes a Mott insulator. The behavior can be described as a manifestation of
minwmum metallic conductivity, in agreement with early ideas of Mott. |

At finite temperature. the pinning condition is violated due to inelastic scattering, and
we have to explicitly solve the self-consistency equations at T # U in order to obtain resnlts
for the conductivity, As we have seen above, in the present model the calculations for the
conductivity reduces to calenlating the local DOS. which is the same as in the pure model]
with hopping ¢ Explicit results for the conductivity as a function of {7 at fnite temperature
have heen presented ip Ref. (19}, The jump in the conductivity was found to persists at
small but finite temperatures 7« T7. which is of the order of one prreent of the bandwidth.
A higher temperatures, the conductivity is a smooth function of {7 and continuously drops
to exponentially small values as U7 is increased, reflecting the destruction of the cohetent

s1asiparticles by thermal inelastic scattering.

5.2 Correlated Hopping Randomness

Before leaving the models with pure hopping disorder. we would like comment on possible
modifications of the transition i presence of more complicated models of random happing.
The generalizations that we have in mind correspond to correlated hopping disorder where
m addition to tandom bond variables ;. the hopping elements can take a more general form
tij = yi;rir;. where we can have arbitrary distributions of random site variables z;. These
models, useful for the stndy of disorder-induced local moment formation, are designed to
implement the strong fluctuations of the local hybridization of a giveu site to its environment,

an effect which is important in realistic systems, but drops out in the d = oo limit if models
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with bond randomness only are cousidered. In another interpretation, fluctuations in the
local site variable z;, which do survive in the d = oo limit, represent the fluctuations of the
local bandundth of the Hubbard model.

Fotr these models with correlated hopping disorder, the behavior of the system nroves
to be very sensitive to the detailed form of the probabiuity distrtbution Px(z;) for random
variables z;. If the low-r tail of the distribution extends to very small values, local moment
formation occurs, and even the qualitative nature of the metallic phase can be modified; this
effect will he discussed in more detail i1 See. 6. On the other hand, it is the form of the
high-r tail that is the most 1elevant for the metal-insiwlate, transitions.

On general gronnds, we expeet that sufficiently long high-» tails can completely suppress
the existence of the Mott gap at any value of U/, even at T = (. In principle, it would
be desitable to bhe al)l;z to obtain precise criteria on the forms of Py(z) that result in the
suppression of the Mott phase. Unfortunately, with few exceptions, closed-form (analytical)
sobutions of the 4 = ~o mean-field equations are not aviwiable, so obtaining exact criteria is
difficult. Still, much can be learned from approximate scher ies used in solving the equations.
[n particular, an approximate solution to the mean-field equations can be obtained. by solving
the appropriate Anderson impurity problem using the approach of Yosida and Yamada [40,
L7} (YY) using second order perturbation theory in U. This inethod, often called the iterated
perturbation theory (IPT) {22, 23] has been found to he quite nseful in obtaining information
about the problem.

In the present case. IPT is particularly useful. as it allows a simple dedvation of an
approximate criterion for the destoetion of the Mott phose by strong hopping disorder. To
obtain this criterion, we examine the stability of the insulating solution under an iterative
procedure. In this iterative method, one makes an initial gress for a form of the cavity field
Wolws). This defines a specific form for the local effective action, Eq. (8). Within IPT,

the corresponding Anderson model is solved in perturbation theory, and an expression for
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G (wa) obtained. The procedure is repeated for every value of z sampling the distribution
Px(r). A new value of the cavity field W.{wn) is obtained from the self-consistency condition
Eq. (9} [in the present case Ps(e;) = 8(€:) - no site rar. __mness), Firally, the procedure is
iterated until convereence is fonnd.

The procedure is typically implemented numerically, but a stability criterion w%ich is

eract within IPT can be derived analytically, as follows. In the present model of hopping

randomness, it is useful to consider the quantity (compare Eq. (25))

Qlwa) = [ drPytz) 2% Gofwn). (49)

which represents the part of the cavity field which is independent of the loc 1 disorder pa-

rameter roso that
Wolwn) = 2770 (w,). (50)

If we assunie that at some stage N of the iteration. the solution is insulating, 1. e. there
1s & gap i the single particle excitation spectomm. then the local Green's functicns assume
A linear form at wy +)

GV ) ~ oty de- (51)
and the same is true for the cavity field. Here, we have speaialized to half-filling (u = U/2),
where particle-hole symmetry holds even in presence of hopping randomness. To proceed, it

15 convenient Lo parametrize the corresponding (Eq. (49)) fow frequency form of Q(w,) as
D]~ ot i o e (52)

Plysically. the parameter ay measures the gap size (a — 0 f the gap closes). According
to Yosuia and Yamada [40]. the Anderson model is solved in second-order perturbation

theory with respect to the non-magnetic Hartree-Fock solution. and so the expressions involve

“bare” propagators of the form

Gz wn) = fiwn — Walwa)) ", (53)
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which. nsing the ahove form of the cavity field take a singnlar form

t

S NN prwn) = (14 zlan) Hiwa) "t + (regular terms). (54)

As the YY expression for the self-cnergy of the Anderson model £ 4(x; ewn) involves a third-

order convolution of G,(#:wa)-s, it is not hard to see that the result is also singular

1 ‘
E(A'w(.r,; P ) = z{_irz{l. + rlay) Pliwa) ! + (regular terms). (55)
Using the Dyson’s equation
. -1 -~ vt
(-’.r(wn) = [GJ [Jf:u.:,‘) - LA(I':L"]'\)j ' (56)

and the self-cansisteney condition Eq. (48]0 we find a new value of the cavity field
Q)N ) = — U drri il & rlan)?| Gead o (57)

Comparing this with Eq. (19). we obtain a recurston relafues ‘or the parameter apy, of the

frm

1 1
YN T EJ—? {/\ffg + 3M, ey + I Mq (‘!i’ + My '-!?V] . (58)

where we have introduced the moments of the probability distribution Px(z), defined as
M, = /d:: ' Py(z). (59)

fn order for the tnsatating solution to exist. there has to he a nontrivial solution of
fhe cquation oy = oxe A araphical solution of this algebrair sqnation is schematically
presented i Frgo 2 Since all the moments M are posttive. the function awsi(ay} 18
monotonically increasing. as are all its derivatives. Clearly, for finite moments M;, and small
values of {7, the solution does not exist, and ay — 20 under steration, indicating that the
Mott gap closes. On the other hand, for I/ larger than some critical value [/, the insulating

sotution dees exist. The precise value of U, depends on the value of the moments M;; a

closed form expression for U.y can be derived, but will not be presented here. Experience
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with pure models [22] showed that the value Ucy where the insulating solution disappears is

generally smaller than the value U. where the metal is destroyed and the MIT takes place
(the metallic solution is typically lower in energy). Nevertheless, the value of U., can be
wsed as a lower bownd on the critical int ‘action strength where the MIT occurs.

At this point we observe that if any of the moments M (1 =2,4,6,8) are infinite, there
cannot be a solution to the above equation, and thus the insulating phase is suppressed.
This ran oceur if the probability distribution has algebraically long tails, characterized by
sufficiently simall exponents. We conclude that within IPT, the [ollowing criterion applies:
If the probabisty distribution has the a3ymptotic form Py(r) ~ 5 gt 7 — oo, uth v < 9,
the Mott ansulating phace cannot eprat af any ralue of {7

It is interesting to note that the [PT crrterion for the stability of the insulating solution
involves anly the low-order moments{ A { = 2,4.6.8) of the protability distribution. This
feature os cleady an artifact of the IPT, since the expression for :he self-encrgy T, stops
at O aned <o the reenrsion relation for wry staps at the cubir order. Clearly, if higher
crder oo g (O corrections were inely led in the caleulatior f the self-energy, there
wonld be higher ovder torms in Eq. (58} which in turn would invoelve higher moments of
the probability distribution Py(rz) This suggests that even in the situation where only the
moments of relatreely high order diverge, the insulator wonld still be unstable. The above
argnment alsa points to the limitations of the IPT. which for these pathological distributions,
would he mare stgnificant than in ahsence of disorder.

Baced o the ahove arguments we suspect that in the exact scernien of the d = oo mean.
field couations any geboueally Tong tails wonld lead to the destinuion of the Mott phase.
This resnit that the metallic phase can survive at arbitranly streng disorder is almost
certamnly an artifact of the d = a0 limit. In fnjte dimensions we cxpect that localization
and, or perealition effect rostore the insulator at sufficiently strong ‘lisorder. From a physical

pornt of view the presence of iong tails in the distribution of hopping elements simply reflects
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the occurrenee of rare bonds with anomalonsly latge value of the hopping elements. In
realistic systems such as doped semiconductors, such events correspond to closely spaced
pairs or clusters of dopant atoms. Loosely speaking, if these clusters are far from each other,
clectrons can be trapped ine e each cluster, but still not strictly localized on one atomic
site. It is plansible that a Mott-like transition still takes place, but this time on a slightly
longer length scale - where the cluster (long tail) effects are irrelevant. These interesting
modifications of the Mott scenario by finite dimensional fluctuaticns remains to be addressed
by extending onr approach to large but finite dimensions [52].

We conelnde this section by illustrating how the modifications of the probability distri-
hution fur hopping elements Py (r) affect the transport properties of the system. At T' =10
the peneral theorem disenssed above guarantees that #pc remains pinned, i. e, independent
of U all the way to the transition. On the other hand. at finjte temperature, the pinning 1s

violated and the effects of disorder are more apparent. As an ~xzmple. we have caleulated

Tpe for a ganssian distribution
Petr) = (208) M exp{—(z - 7,)/247}. (60)

The calenlations were performed numerically using the IPT scheme described above, and
the results for T = 0.050 presented in Fig. 3. We have chosen r, = 1, so that for A =0
the model reduces to the model with uncorrelated hopping clements of Wegner (see Sec.
1), {or which the mean-field equations for the local DOS are sdentical as in the pure case
a1 22930 n this Hmit. the local Kondo temperatures doeal quasiparticle bandwidths)
e identioal on all the sites. and we find an abrupt decrease in the conductivity at Tie ~ T,
which in the present case (full line in Fig. 3) occurs at 17 ~ 2.5 (in units of ). When
additional randomness in the local hopping parameters z; is present (A = 0.1,0.2), there 18
a distribrtion of local Kondo temperatures, and the destonction f local coherence leading to
the decrease in the conductivity takes place more gradually (dashed and dotted line in Fig.

3).
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[t 15 intetesting to note that by introducing fluctuations (thermal in this case) the effective
erponent charactenizing the behavior of the conductivity, is increased from g = 0 at T = 0
(minimum metallic conductivity) to a small but finite value g ~ 0.5 at T # (. The addition
of local hopping disorder (random 2,-s) also helps increase this effective exponent. On general
grounds. vwe can speculate that even at 7 = 0. but in finite dimensions, the quantum and
draarder fuctuafions ahsent in 4 = oo might play a similar role - to increase the value
of the conductivity exponent to small but finite values observed in uncompensated doped

seyennduactors 1

5.3  Combined Hopping and Site Randomness

nad e o bopgong isorder. in realistic systems one also expects some degree of site
andoemnesss winch can cngnate for example from the presence of long-ranged electrostatic
Sovds v o chacged nnparnities (acceptors). As discussed above, random site energies locally
stk b vartese e symmetrys evenof the system is on the average at half-filling. One
Bt coesslate thay e presence of site randomness might lead to a qualitatively differ-
shtoscemane et Song anto question the relevance of results obtained with pure hopping

sag i omimess
Motrvated by these consuderations, we have examined Hubbara models with random site
snergies o Weoreeall (See 3) that the same d = oo equations correspond to either (a)
Pevhe dastees with pore site randomness. and (L) arbitrary lattices with site randomuness
e eared tandom epping clements £ = oy The resulting loeal speciral

Aeoae et the s cases, bt the transport properties aze very differeat (Sec.

W stadied these self consistency conditions using a combination of several different
cechmgquesinclidding numerncally exact quantum Monte Carlo methods (21, 22 | Lanczos
hagonabization approaches 390 . and approximate slave-boson methods [41]. Detailed re-

sults.and predictions for the case of pure site randomness will be presented elsewhere [42].
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Heie, we just comment on the consequences of these results for the case of combined hop-
ping and site randomness. As we have seen, in this case (gauge invariant models of Sec.
3} the conductivity can be expressed entirely in terms of local spectral functions pw(wn).
Our tesult demors..cated that pw(0) remain  finite all the way to the MI™, so according to
Eq. (42), the jump of opc (“minimum metallic conductivity”) persists even in presence of
combined hopping and site randomness. Our qualitative conclusions for the MIT scenario

remain unchanged.

5.4 Other Types of Transitions in d = c©

In this paper. we have concentrated much of our attontion to metallic phases assuming the
absence of spin or charge density wave formation. since these phenomena typically do not
ocenr in disordered systems of interest. Nevertheless, one can consider systems on lattices
with perfect nesting, which then leads to vanous instabilities that can open a gap on the
Fermi sutface. and thus induce metal-insulator transitions. Typically, such effects are not
associated with strong correlations, since perfect nesting leads to instabilities even in weakly
correlated systems. For example, pure Hubbard models on hypercubic or Bethe lattices
have antiferromagnetic (insulating) ground states for arbitrary small U. One could also
investigate situations where disorder is added to such systems, and examine the resulting
thermodynamic and transport propetties near the transitions using the d = oo methods.
Stndies of this type have tecently been carried out by Janis, Ulmke, and Vollhardt [20} on
the example of the antiferromagnetic instability. The presence of sufficiently strone . *s.rder
was [atned to suppress the antiferromagnetism. as can be expected, since randomness washes
out the perfect nesting and leads to the broadening of the clectronic bands. In another
study. Uhrig and Vlaming [20] examined the charge density wave formation in the case of
disordered sptnless electrons. In absence of spin. there is uo Koundo effect and the associated
heavy qnasipatticle band at the Fermi surface found in Hubbard models. As a result, the

conductivity was found to continuously decrease to zero, as expected in ordinary band-
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crossing transitions.

ln general, the spin and chatge density wave instabilities are found even on a single-
particle (Hartree-Fock) level of description. [Note that for spinless electrons the Hartree-Fock
approximation becomes exact [20] in 4 = cc.] We expect the role of further (many-body)
correlations to be Luited to quantitative modifications of the effective band structure near
such transitions. The behavior of thermodynamic and transport properties in this case is thus
most likely to remain qualitatively the same as in ordinary (noninteracting) band crossing

transitions.
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6 Disordered Metallic Phases: The Formation of Local
Moments

Most metallic systems, both in the pure limit and in presene of small amounts of disorder,
can be understood by using Fermi hquid concepts [3]. In such situations, the elementary
excitations can be described as a set of weakly interacting quasiparticles, leading to uni-
versal properties at low temperatures. Of course, this simplified description is valid only
at temperatures T < T.n. where the “coherence” temperature Te,, represents the energy
ceale associated with coherent quasiparticles. which depends orn the relative strength of the
correlations 1n the system.

In a disordered system. the parameter that measures the relative interaction strength
w = [J/t. where 7 i3 the on-site (Hubbard) interaction, and t the hopping element (¢t ~
bandwidth) is also a random function of position. Those sites which are weakly hybridized
with the test of the system (¢ small) will be n the strong correlation regime (u large) where
local charge Anctuations can be ignoted. and local moment {ormation [28, 13| occurs even if
the system is not very close to the Mott transition. For a broad istribution of hoppings, only
a few of the sites are expected to correspond to u >> 1, and thus represent well formed local
moments. Instead. most of '~ sites will be in the intermediate regime u ~ O(1), where the
charge fluctuations cannot be ignored, and the coupling of the local moments to conduction
slectrons 1s appreciable. We expect a broad distribution of these “Kondo" couplings, leading
vy an oven broader distribution of the cortesponding " Kondo semperatures which represent
charactonstic energy scales at which Incal Fermi liquid behiavior sets i,

17 ho resulting distribution of the local Kondo temperatures T is sufficiently broad and
extends all the way to Ty = 1), one can expect the behavior o the system to be qualitatively
changed (11, 12). and the Fermi liquid regime is not restored at any T # 0. This kind of
non-Fermt hgoed behaviot. characterized for example by a diverging specific heat coefficient

v = /T at T ~ 0. is indeed observed in a number of materials containing strong hopping
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disorder. such as doped semiconductors {10]. The presence of this “disotder-induced local
toment formation” is also expected to play a crucial role in determining the transport
propertied near the metal-insulator transition.

Disorderanduced local moment formation in a Hubbard model with random hopping
was tecently investigated in a Hartree-Fock framework [13]. This approach clearly indicated
the presence of instabuities to local moment formation. but it did not address the nature
of local moments, or their interaction with the conduction electrons needed to determine
the properties of the ground state. I+ contrast. the present approach based on the d = oo
formulation offers a natural language for problems involving .ne interplay of local disorder
fHuctnations and strng correlation effects. Furthermore, onr approach is not limited to a
a particular temperature interval and thus can be used to obtained results in *he entire
temperatiure range.

In order to study the physics of the disordered metallic phase, and the associated disorder-
indured local moment formation. 14 is useful to consider madels of correlated hopping ran-
domness of the form ¢,; = Yi; oz, introduced in Sec. 3 In re: istic systems such as doped
semuconductors, there are large fluctuations in the local hybrdization of a given site with its
cnvironment originating from randomness in the position of dopant atoms. To represent such
systems in onr A = o framework. it 15 useful to consider models with broad distributions of

loral hopptne parameaters r;.

6.1  Binary Hopping Disorder: Two Fluid Model

As the simplest example. we consider binary disorder. where the hopping parameter
assumes bwo values 7yoand rg owith probability ¢ and 1 - o tespectively.  This model
could represent an alloy {32] with two types of atoms, here denoted by A and B. To study
disorder-induced local moment formation. we consider a situation where one type of sites (A
sites] has appreciably smaller hybridization (hopping) than the other type (B sites). As the

correlation U is increased. the A sites will enter the local moment regime, whereas the B sites
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<l temain tinerant . This would he the simplest possible sceaario where the system can be
foserihed by a phenomenological “vwo-fluid” model [14] often used to iterpret experiments
1 materials such as doped semiconductors. Our approach provides a controlled microscopic
Qerivation of the two-fluid model, and permits detailed investigations in the limits of its
ealidity. In partienlar. the method clearly includes not only the mechanism for local moment
formation. Lut also the feedback effects rssociated with the interaction between the twu
Hrrds (1oeal noments on sites A, 14 itinerant electrons on sites B). When the correlation
s nereased coven farthers both types of the sites ente. the loeal moment regime, but with

Wilerent Koneto fomperatnees T# and T8 which define eharacteristic energy scales of the low

Daieeds praiparticles Both Kondo temperatures deceease as the correlation is

-1
-

et et ediy oanishoat the Mot {ransition when 1 gap for charged excitations

[ the IPT diseussed a0 Sec. 4 to explicitly solve

IR R TE i [ € S have 1use

s T e onediniens for (e considered model of tinary hopping randomness. The

cnite qre npesenned o Freo 4o whern we plot the partial and the average densities of state

T N R =W Ak and ¢ = ‘5 at T = 0 »nd for half filling, in three

In Fie ta. we show a weak correlation situation U/D = 0.1 (D = 2t)

roobarien peaes

e s [oares apeatimerant and the corresponding DOSs are broad, featureless

Ve ermediate correlation. (1) = 16 the I3 sites are still deloealized. but

W constdering the partial DOSs

R N I R TSR R TR LI R L R this 15 10est clearly soen
v s me oo Fag th Nate the uppet and ' wer Hubbard bands forming

o e A atea, aa sl s the corpespanding sharp Koudo resonance at the Fermi surface.

Finally Fig e shinwa the regime of strong correlation LoD = 3.2, where local moments

©roy on el svpees of siteal bt the system is still metallic due to the Kondo effect.

Pl apqreach o the Maott fransition is casiest to monitor by evaluating the effective

(el fuid” which we define from the corresponding self-energies of the Anderson

eSO
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models. These Tpartial™ solfenergies are given by

Valriwad = 1w 4 = Wolwn) = [Go(w)] ™ (61)

the offective macses are then defined by the standard expression

. fimn [1 il
my,g;m = hm [l -~ —
4B/ Jm S

EA(J’!,”B:W)]‘ (62)
The variation of these effective masses with the correlation is presented on Fig. 5. As
expected hoth inverse magsses vanish at t! o same pornt which signals the disappearance of
the quasiparticle hands and the opening of the gap at the Ferg surface - the Mott transition.

The Cinration of the loead nioments is oven more apparent if we calenlate the thermody-
nawe respense of the system. Using the expressions of Sec o 3 and the above solution of the
self-eonststency conditions, 1 is not Biffienlt o calenlate e “nergy, and thus the specific
heat of the < ostom,

The ealewtation s partieularly stnple at I' = 00 where 50 inear coeffcient of the specific
heat v = 7 T van be casily obtained, 1n <he noniteracung anit y s simply proportional
o the DOS. but in presence of interaction effective mass certeetions have to be introduced.

In onr case, we find

¥ m7 my N
e e=Ap g (=)= (63)
Yo m 7

i

The partial DOSs py pi) are pinned at the noninteracting vdues, but strong correlation
dependencs comes from oflective masses. As we can see from Fie. 5. even tn the intermediate
correlation segime the cffective mass on the A sites is stronglv snhanced. and thus we conclude
that the speetfic hoat will be dominated by the contnbution from the “heavy electrons”
resutting from local moment formation.

The calealation can alse be extended to T £ 0. and in Fig. 6, we present the resulting
specific heat as a function of temperature in the intermediate correlation regime (Fig. 4(b)),

cotresponding to the coexistence of the local moment and the conduction electrons. As

expected. we find linear specific heat at the lowest temperatures T << T2, where the Fermi
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liquid behavior is restored. We also note the presence of a peak in C(T) at T ~ T2, typical
of the presence of local moments. As in a usual Schottky anomaly, such a peak in the specific
heat teflects the presence of a local excitation of energy E{ ~ T2, in this case corresponding
to the energy needed to destroy the local Kondo singlet. Tt is interesting to observe that

at higher temperatures T > > TZ. the specific heat takes an approximately linear form, but

with a fintte 1" = 00 infercept, so that we can wote
(T 7,
HT) = = PO (64)

This expression is very stmitar to the phenomenological “two-fluid model” [14] of local mo-
ypent and conduction electrons, recently advoeated as an accuraie representation of expen-
mental findings in doped semiconductors [10] near the metal-insulator transition.

Finally. we nxamine how this disorder-induced local moment formation modifies the trans-
port properties. in particular the temperature dependence of the conductivity. Typical results
are presented in Fig. 7, where we plot the conductivity as a fun +ion of temperature for the
binary madel corresponding to the same parameters as in Fig. 6. As expected 1n presence
of loeal maments. the conductivity shows a sharp increase at T ~ T4, since at th;a.t point
the spin-flip scattering from the local moments (on the A sites) gets dramatically reduced

by Kondo sereening by conduction electrons {on the B sites).

6.2 Continnons Distributions of Hopping: Non-Fermi Liquids

As we have <een an the above example, in the case of hounded distributions of hopping
clements ;. althongh the local moment formation does ocenr, the Fermi liquid behavior is

. Almin)
restores helow acertain low trmperature Ty

~ On the other hand, if the distribution Px(z;)
extends all the wav to z; = 0, the behavior of the thermodynamic and tramsport properties
will display non.Fermi liguid aspects (11, 12} even at arbitranly low temperatures. Some

explicit results for the specific heat in the case of a continuous distribution displaying non-

Fermi liquid hehavior were presented in Ref. {19]. [n this paper, we will not present further
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mnmerieal results for realistic distrrbution of disorder and general temperature ranges; these

studies will be presented eclsewhere. Here. will limit onr presentation to the discussion of the
Aasvmptotic o fempe-afire hehavior that ean be determined analytically for an arbitrary

form of PPyir
6.2.1 Specific Heat

We begin with the analysis of the Jow temperature form of the specific heat in the present
case. To obiain the leading temperature dependence as T -4 ), we can use arguments
suntlar to those wsed by Bhatt and Fisher (11 and Dobrosavljevié =t al, [12]) in previous
work  Aswe have seonin Seeo 40 the energy of the svstem takes an addiine form with respect
to contnibutions coming from different sites. Those sites that have their tespective Kondo
temperatires o) lower than the temperature of the systemy Toowill provide the dominant
contribntions ta the specific heat. To feading vrder, we ean taiore the temperature as well as
the frequency dependence of the Weiss freld Wiolwn ). In that case, the contribution coming
from a given <ite is just that of an Anderson model with hybnidization A{i) = z?A,, where
A, s the energy seale cotresponding to the typreal hybridizaticn in the system. Since the
sites in question. having very weak hybridization, act as loeal moments in the Kondo regime,

the carresponding Konda temperatore is given hy
Telroy = Doexp{ 17 7IA L} (65)

where 0 06 qr enerey of the opdor of the tvprcal handwidth 1 che svstem.

Che comtrbuotion of a miven site (o v 1 then approxamately given by

. .
. Iry o T
) - !
vl { 4 Tz > T (66}

Cotleeting the contnilintions from all the sites with Te(z;} = T'. &~ find that to leading order

1
AT) ~ gl T). (67)
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Hero. the number (fraction) of “{ree spins’

zm"'(T)
ngo(T) :[) dz.Pr(z:), (68)
and
A, Do\7?
x""’”(T):(—»b-r—ln-i_,—) | (69)

Using these exptessions, it is not difficult to see that for any distribution Py (z,) which
extends all the way to r; = 0, and having a low z; tail longer than expunential {e.g. power-
law or lognormal]. the resulting (T diverges as T — 1. The precise form of this singularity
depends on the details of Pyir.}. However, for any power-iaw or even lognormal form of the
low r, tail, the quantity ng(T) decreases to zeto as T — (0 alower than any power, giving
an anomalously slow decrease of the number of “free” spins with temperature, and a large
anomaly in ¥{7T).

The above argnments ngorously show that for a large class of models with continuous
distributions of hopping our d = 00 equations admit non-Ferm tquid metallic solutions. We
expect this non-Fermi liquid behavior of disordered metallic phases to be a generic feature and
thus persist cven beyond mean-field theory. However, the dependence on the details of the
probability distribution for disorder is likely to be an artifact of the d = 0o mean-field theory.
Arguments presented in Ref. (12], as well as those 1o Ref. [43] suggest that fluctuations
present i finite dimensions will lead to a renormalized distnbution of randomness which takes
A wnirereal form. insensitive to the mictuscopie details of the system. The fluctuations could

also modify the behaviar of the conductivity near the metal-insulator transition, possibly
ions in the values of the appropnate critical exponents. We emphasize

leading to modificat

that the present apptoach allows for a systematic study of these fluctuations effects, by

performing a loop expansion aronnd the mean-field solution.

43

¥

" YW W



6.2.2 Conductivity

As we have seen in the See. 4. the “pinning condition”, which is valid for any model of
hopping randoniness, guarantees that at particle-hole symmetry (half filling) the T = 0
vatue of the conductivity in the metallic phase remains unaffected by the interactions, and
thus by the associated disorder-induced local moment formation. However, the presence of
local moments does induce anomalomns low-temperature corrections to ope which could be
cencial in understanding the transport properties in systems such as doped semiconductors.

Fo determine the loading temperature corractions to @ -, we proceed in a fashion similar
as in the dhsenssion of the specific heat. In See. 3, we have seen that for the models under
considetation. the conductivity i expressed through an averaged spectral function pw {wn)
that can he wntton as

pwltw,) :-/'il‘.Px(ﬂ.)T?ﬂ;(w-d (76)

[n this expression, p,(w, ) is the local spectral function (of the Anderson model) corresponding
to a given site 1. and we have assumed hopping disorder vniy. In the strongly correlated
regime, p;(w,) has a sharp (Kondo) peak near the Fermi surface. describing the coherent
quastparticles, As the temperature is increased form zero. inelastic scattering will destroy
the existence of this coherent peak at a characteristic temperature T,. However, in a randem
system. this process takes place locally, end a given aute beconos “incoherent” at T~ Ti(x,),
when this Kondo resonanee 13 washed out. Thus, in contrast oo therinodynamic tesponse,
appreciable contrihntions to the conductivity rome from those sites with Te(zg) > T. which
rematn coherent. Mate precisely.

1}, Teirgy = I

] : (71}
;?fgj‘ Tz} o o

Pl — 1) ~ {

A

Agan. to feading order we can ignore the frequency dependence of py(wa}, and we find (at

We — ”)

pwiT) ~ /m dz, Px(z;). (72)
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By using this result, and Eq. {42}, we conclude that the leading low temperature correction

to the DC conductivity assumes the form

Sopc(T) = apelT) = apc(®) ~ —ng(T). | (73)

i. e. we find an anomalous increase as T — 0.
It is interesting to note that, although n;(T) vanishes slower than any power as T — 0,

for realistic distributions {11, 12] one can wrnite
ng ATy = T, (74)

whete (T} only very weakly. typically logamthmaeally 11, 12] depends on temperature.
Experimentally, one expects to measure some effective cxponent o, As a — 0 at T — 0,
one expects these effective exponents to be small. This tehavior is to be contrasted with
the fact that simular, nonanalytic finite temyperatsre eorrecsions to the conductivity of dirty
metals follow from weak localization and interaction effecvs © . Our results suggest that such
temperature dependence could have an entirely different ongin - due to disorder induced
loeal moment formation. Of course, a full theory should inciude both the local moments
and the mentioned hydrodynamic (diffusion) corrections ‘2, 7}. In the framework of our
approach these additional terms wonld appear at the level of one-loop corrections to the

d = ~ (mean-field) expressions.
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7T Comparison with Experiments

After three decades of intensive investigations. there are various constraints on theoreticaj
models of nncompensated doped semiconductors. [n the followin,;, we list these constraints
and comment how onr perspective fares vis a vis the experiments.

(1) At the accessible temperatures, the thermodynamic quantities y and v vary smoothly
{10} as a function of concentration across the transition, and are increasing functions of the
inverse temperature even throughout the metallic phase.

(2) The NMR experiraents [46] portray a strongly inhomoe 2neous picture. There is a wide
distributions of Knight shifts on the phosphorus sites. As the transition is approached. a large
number of sites acquite Knight shifts that are larger than the measurable range, indicating the
formation of local moments. The Koight shift on St is a smoeother function of concentration
[47] suggesting that the metal insulator transition takes place in the phosphorns impurity
band. Furthermore, the /71T obeys the Korringa law suggesting that the susceptibility is
momentum independent.

{3) Finkelshtein has emphasized {48] that the ESR line width [49] AH| is proportional
to Yy Since AH§ ts proportional to 7. x{q). this indicates that the divergent part of the
susceptibility is roughly g independent.

(1) The thermodynamic hehavior should be contrasted with the measurements of charge
transport, which vary much more rapidly near the transition. The T = 0 extrapolated
value 10 of the conductivity vamishes with an exponent g which is thought to be rlose
to 1,2, However, no dynanucal scaling range in temperature ind conecentration has been
nhserved. making the determination of the exponents ambiguous. In particular, values of
the conductivity exponent ranging from p = 0 {45 to ¢ = 1 {44] have been obtained on the
Liasig of the aame data.

(5) Small amount of compensation or the external maznetic field are very relevant per-

turbations [10] that alter dramatically the cntical behavior of the conductivity. Significant
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differences between the compensated and the uncompensated samples are also scen in the
high temperature extrapolation of the linear term in the specific heat (50] yur. The compen-
sated sample has a 7y which varies smoothly at the transition while in the uncompensated
case yu1 drops shacply at n. indicating the presence of a Mot Hubbard gap.

(6) Spin-orbit scattering, however, is an irrelevant perturbation [51] since Si:B (where
spin-orbit scattering is dominant) shows similar behavior as Si:P.

The approach presented in this paper, on the most qualitative level, is consistent with
all these observations on the metallic side. The collection of Anderson impurity models as
a mean-field theory of the disordered Hubbard model provides a iicroscopic realization of
the two-fAnid model which phenomenologically explains (1-3}. The local inhomogeneity of
the system described in (2} is naturally captured in our formulation. The weakly coupled
sites can be thought of as the P donots where the wave functions of the delocalized electrons
are concentrated. The ¢ independence of the thermodynan.: response discussed in (2,3) 1s
diy »ctly built in onr formulation at the mean-feld level. The loop expansion corrections will
bring possible departures from this behavior.

Underlying this picture is a broad distnbution of energy scales which makes the Mott
trapsition in dirty systems very different than in the pure case. The conductivity goes dis-
continnously to zero at T =1, but at any finite temperature is a rapidly varying continuous
function. This observation may account for the lack of scaling, but here the loop correc-
tions to mean-ficld theory might modify the effective exponeats. In our model, the relevant
serturbations are those that cause departures from parttele-hole  mmetry. Our approach

thus jnstifies the fact that the uneompensated semiconductors represent a nnique universality

('!FISS.
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8 Conclusions

In summary. we have presented a new, nonperturbative approach to strongly correlated
disordered electrons. Even on a mean-field level, our results agree with many of the surpris-
ing features fonund in doped semicondnctors. Furthermore, our formulation also allows for
systematic corrections to the mean-field description, which makes possible a detailed inves-
tigation of the interpiay of Anderson localization and the strong correlation effects. A large
anmber of problems eould be addressed using our approaches. hat several specific directions
appear particulariy promising.

One of the most interesting results that we have found is that the combination of hopping
randomness and strong correlation can lead to disordered-induced local moment formation,
resulting 1 van- Ferme bgud metallic behavior even away from the transition, By performing
a loop expansion around such solutions. we can study the «ffoct of the local moments on
weak localization and interaction effects (2] which were the focus of the scaling theories of
localization.  One conld also study how these hydrodynamic -ffect would be aflected by
the approach to the Mott transition, where new low energy spin fluctuations emerge. In
this way., onr approach show - ~xplicitly how the exsting theories for the metal-insulator
transition [5. 7. G should he modified to account for strong correlation effects.

Onr theory can also be extended to models that display von-Ferma liguid behavior, even
in absenee of disorder. For example, extended Habbard 27 i dels and multi-channel Kondo
artiee madels 24 can be formalated and solved in the ¢ = x framework. Effects of weak
dhsorder in such meoherent metals conld then be examined by performing a loop expansion
aronnd the mean-field solution, In this way. one could make predictions about the weak
localization corrections in materials such as the high-T, compounds.

Another mteresting direction involves developing a mean-field theory for the metal-
insnlator transition that would encompass both the Anderson and the Mott mechanism

{or localization on the same footing. In the framework of the large dimension apptoach, such
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a theory can be formulated by examining disordered Hubbard models on Bethe lattices with
large but finite coordination. For these models, the problem can be reduced [52] to the so-
lntion of a conpled set of stochastic equations describing an ensemble of Anderson impurity
models. Such equations can be studied by a variety of methods, ranging from numerically
exact simulation techniques, to approximate analytical schemes. Once these equations are

solved. a novel picture will emerge, bringing us closer to the long-awaited solution of the

Anderson-Mott problem.
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Figure Captions

Figure 1 Phase diagram of the pure Hubbard Model in d = oo (following Ref. [22]),
as a function of the correlation strength U and the temperature T. The finite temperature
first-order metal-to insulator transition is shown by a full line, and the boundaries of the
coexistence fegion hy dashed lines. At T = (0 the metallic solution is lower in energy
thronghout the soexistence region, and so I/ = [V, represents the zero temperature transition

pon 5

Fizure 2 iaphical solution of the equation determining the stability of the insulating

soatym, Fopoo9% A aentrivial solution exists only for {7 > Uy, the value of which depends

moche tarevgee o Py s00 {or she local hopping parameters.

Figare 3 - onianmvty dependence on the correlation strength at finite temperature
i aree anlerony values of the disorder strength A, The combination of thermal
1awaens wnt tsorder eads to a finite value of the effective conductivity exponent gy ~
5 WJuite zenerally. e expect that any small perturbation leads to the rounding of the
T amp foand o she d = 2o mean-field theory. Such small conductivity exponents are

fiffienlt to shtan in other approaches {7), but are readily observed experimentally in doped

sy e brears 10

Figure + 1 Sinae saracie density of states (DOSY as a funcuon of energy {after ana-
Wl omtmateon ten o 5 - oiin the weak rorrelation oome, Uy D =001 The average
DS s sh own by a fuil line. whereas the partial DOSs corresponding to the A and the B sites
cseo vext i pe plotted by dashed and dotted lines. respectively. (b} [ntermediate correlation
7" J> =14 Nowe that the prt'al DOS of the A site (dashed line) has a form characteristic
of A leeal moment. with the uppet and lower Hubbard bands appearing, and a sharp Kondo
tesonance at the Fermi surface. The B sites (dotted line) are still itinerant. (c) DOS close

to the Matt teansition, (77D = 3.2 (strong correlations). In this regime, all the sites are in

L)



the local moment regime, but with different Kondo temperatures T << T?. The system

15 still metallie due to the Kondo delocalization.

Figure 5 Inverse effective masses corresponding to the weakly hybridized A sites (full
line}, and the strongly hybridized B sites {dashed line). Both masses diverge at U/D = 4.1,
signaling the Mott transition. For comparison. we also show the effective mass in absence of

disorder (dotted line): in this limit the Mott transition occurs at shghtly lower correlation.

Figure 8 The specific Lieat for the binary model of hopping randomness, at intermediate
correlation ~orresponding to coexistence of local moments an.d condnction electrons (as in
Fig. 4(h)). Fermi liquid behavior (linear spacific heat) occurs at low temmperatures 7' «
TA ~ 001D, At higher temperatures, the temperature dependence is reminiscent of the

phenomenological two-fluid model [14] of doped semiconduciors 13ee Eq. (64)).

Figure 7 Temperature dependence of the DC nductiviey for the model of Fig. 6.
Note the sharp increase in the conductivity at low temperisares, reflecting the onset of
coherence due to Kondo screening of the local moments. Low temperature enhencements
of the condnctivity have heen observed in nncompensated doped semiconductors [10], but
until now this effect was attributed to hydro * ‘namic interaction effects (2] which are absent

i ot theory



a =X 2 .

TEMPERATURE

0.2
01 |- ]
METAL INSULATOR —
| | | 1
0.00 i \‘
0.00 2.00 Uet e 4.00 6.00 R.00
U

Figure 1, Dobrosavijevic and Kotliar

.1



ﬁn+l

Bn

Figure 2, Dobrosavijevic and Kotliar

53




nE i1

U/D

Figure 3, Dobrosavijevic and Kotliar

<



-Dapt)

re 4, DObr_vll o Kot

(o



m/m*

A N

0.8

04

S

Figure 5, Dobrosavijevic and Kotliar

v

-~ WMWY



Figure 6, Dobrosavljevic and Kotliar



0.3

0.2

T/D

0.1

Pigure 7, Dobromavijevic and Kothar

r ww-® - wW Y

yv

Y

* vY¥% ¥



