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Lecture |

What are concentration fluctuations and why are they important?

§1.1 TURBULENCE AND ATMOSPHERIC DISPERSION

Turbulence is very important in practical problems, but it is also still impossible to
explain it properly in terms of mathematics and physics. By "properly” is meant the
accurate quantification that is the goal of any serious scientific investigation. For these
reasons, there are still lots of different approaches heing pursued to try to model
phenomena invelving turbulence; many of these are interesting and appear potentially
useful. In these lectures I am not going to attempt a comprehensive review: for one
thing there is not enough time. Rather my focus will be on what [ believe to be a
promising approach towards increased scientific understanding of how fluids in wrbulem
motion {and, in particular, the atmosphere) transport and mix pollutants. This approach
is one that Nils Mole, Paul Sullivan and [ have heen developing with our coworkers over
several years at Brunel University (until the end of 1990), the University of Sheffield

(from the beginning of 1991} and the University of Western Ontario (for ever - or so it

seems!)

The Earth’s atmosphere is always in turbulent mation. This means that the air velocity
Y(x.,1) at every point x and every time ¢ is a random variable. This fact is a matter of
everyday experience. However, I want to emphasize first that it is not in contradiction
with the further fact that the evolution of ¥(x.) with x and ¢ is governed by the laws
of mechanics including, in particular, mass conservation and Newton's laws. The first of
these is almost always adequately approximated in the atmosphere by the continuity

equation

V.Y-=0, (n

and the second by the Navier-Stokes equations, often in a form like

£+(Y_V)Y=-—1-VP+F*VW, @)
a P

where p,p,v and F are the pressure, density, kinematic viscosity and body force (e.g.
Coriolis force and/or gravity) respectively. I shall not need to use (2) in detail in these
lectures, so I shall not discuss the relative importance of the various terms in different
circumstances. But what 1 do want to emphasize is that much work in atmospheric
turbulence focusses, sometimes exclusively, on the mean velocity, which I shall denote
by Ulx,0), and the mean velocity does not satisfy (2). Rather, U(x,f) satisfies Reynolds

equations, which are derived from (2) by a process like that often used to derive the

equation for the mean concentration.

As a consequence of the randomness of the velocity field, the concentration T'(x,t) of a
pollutant dispersing in the atmosphere is also random. The pollutants considered in
these lectures will be those, a substantial proportion in practice (if not a vast majority),
whose concentrations are determined by two processes, namely the random transport
(advection) by the air, and molecular diffusion. 1 shall net, in particular, consider

chemical processes. The equation governing I'(x,£) is then

% + (Y9 - x VI, 3)

where x is the molecular diffusivity. Associated with (3) in each application will be

boundary and initial conditions {in general).

Some typical data records of concentrations are given in Figure /. While there are

interesting and important differences between these records, some of which will be

discussed later, each of them clearly indicates the randomness of I'(x,f} caused by the
|

term invalving Y in (3). Given that the concentration of a pollutant in the atmosphere
is random, i.e. unpredictable, non-deterministic, it is necessary to consider whether the

randomness is important, both scientifically and practically, and, if so, how it can be dealt
with.



§ 1.2 MATHEMATICAL FRAMEWOQRK

Whether or not the randomness of I'(x,) is important, the use of probabilistic concepts
is obviously essential in any satisfactory quantitative description. Such concepts can be
applied only in relation to an underlying population, or ensemble. For the situation of
atmospheric dispersion that we are considering, the ensemble is a precisely defined set
of releases or "experiments”. The definition serves only to determine unambiguously
whether or not any particular release is within the ensemble. From the scliemific point
of view, what the definition is does not matter; from the practical point of view, it is
crucial. In the latter case the definition will specify obvious points like the source
location(s). relevant local geography erc. but it must also make clear whether, for
example, the population includes releases at night time, w~~ 't is raining etc. Further

discussion of the ensemble concept is given by Chatwin (1982) and Carn and Chatwin
{1985).

For a given ensembie, there is a probability density function (pdf) for T'(x,»). The pdf
will be denoted by p(8;x,1), where the variable 8 ranges over all the values that T can

take. In the standard manner p(8;x,0) is defined by

PO - %{pmb[r‘(x.nsen. @

and it follows that p(Bx,N&@ is, for 30 small and positive, the probability that

0<T(x,H<6+38. There are some obvious properties that p(B;x,f) must satisfy. Since

concentrations are non-negative:

pO;x,0) = 0 vB<0, (5

and, since p is a pdf (i.e. since I'(x,Y) must have some value):

f POx0d0 = 1. (6)
1]

In fact there is, of course, for each ensemble and for each x and t, a maximum possible

value © that T' can take, and the upper limit in (6) can be replaced by ©. But this is
not usually useful since ® is unknown. (However, note that for a given ensemble,
©=8(x,0) is determined by (3) and its boundary conditions and by the statistical

properties of Y, the problem is that, like all other statistical properties of T, it is not

known how to determine it.)

In these lectures {unlike the corresponding ones I gave here in Trieste in 1990j, I shall
use standard statistical symbols for the most important properties of the concentration.
This is unconventional, as yet, in turbutence and turbulent diffusion but is justified for
many reasons, including ¢legance; see p356 of Chatwin and Sullivan (1994). Thus the

mean concentration will be denoted by p = p(x,f) and, by definition, is related to p by
r T
p(ry = f Bp(0:x.1)d0. )
0

The concentration fluctuation c(x,f) is then defined by
e(xg) = T(xp) -plxg). #)

The variance of T{x,0) wili be denoted by o®=0’(x,n), and is the mean square of ¢(x,1).

Thus
0%xd) = 18- w(x 0P p(Bxd6 = (0260, - (e, @
[ 0

{More conventional symbois for T,u and o in research papers on turbulent diffusion

are, for example, C, € and 't respeciively.)

§ 1.3 REMARKS ON TIME AVERAGES ETC.

It requires emphasis first that, as the notation demonstrates, p(B:x,f) does depend
explicitly on x and ¢ for most ensembles; so therefore do statistical properties like
pix.0) and o’(xy). This is true, for instance, when the ensemble is concerned with
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dispersion following the sudden release (caused, for example, by an accident) of a finite

quantity of pollutant into the atmosphere. In such a case the pollutant cloud spreads
(but randomly!) and therefore difutes as the time since release increases. This is evident
from Figures 2 (a) & 2 (h).

Estimates of statistical properties like p(x,) and o(x,) must in general be made by
taking appropriate averages of the results of many repeal experiments, and this is how
the graphs in Figures 2 (¢} & 2 (d) were obtined. It is clear that hoth p and o are

strongly dependent on ¢ (for a fixed x).

Nevertheless there are some ensembies where pi8,x,1 does 1o uepend explicitly on ¢ |
or where this is a reasonable practical approximation. This has to be regarded us an
exceptional circumstance, but may bhe appropriate, for example, in considering the
environmental consequences of a continuous release of material like smoke from o
factory chimney. Clearly the weather characteristics and the rate of release of material
must noi, on average, change with time during the dispersion period that is of interest.

Such ensembles are called statistically stationary. Although statistical praperties like
P, b and o can still be estimated by averages over repeat experiments, it is much more
convenient (and much cheaper) 1o obtain such estimates then hy exploiting a property
that holds for statistically stationary ensembles, namely that meuns can be estimated from
the results of one experiment by appropriate (ime averaging. For then,
pOx) = p(B:x), plx,) = plx) ete, and w{x). for example, can be estimated by @(x;.T).
where

T
. 1
)= = | T . (10)
R(x;T) ) (x,5)ds

Because statistically stationary ensembles are the simplest type conceptually, and because
they are the cheapest to investigate experimentally, there has been undue emphasis on
their properties. For example, all the data records in Figure I are from such ensembles.

Partly for this reason, it is often assumed that atl means considered in turbulence and

turbulent diffusion are time averages. Such an assumption is wrong, and potentially

dangerous.

The points above were dealt with at greater length in my earlier lectures here at Trieste

(Chatwin 1990, p3); see also pp 356-7 of Chatwin and Sullivan (1994).

§ 1.4 THE IMPORTANCE OF CONCENTRATION FLUCTUATIONS
All experimental evidence known to me shows that the degree of unpredictability in T’

is not small. Onc measure of unpredictability is the intensity f(x,f), where

Hxf) < olxip(x, (1)

and p & o are defined above in (7) & (9) respectively. Values of I are typically of
order unity and greater. Some typical results from experiments were shown in Figures

3. 4 & 5 of my previous lectures here (Chatwin 1990), and Figure 3 of the present

lectures shows estimates of [ for the experiments leading to Figure 2.

Another way of recognizing that the degree of unpredictability in ' is significant is to
look al estimates of p(8;x.f). Were the process purely deterministic, I' would always

equal p, o would be zero and p would have the form

poxn = 5[0 - u(x,n (12)

ie. p would have an (infinite) spike at 8=p and would be zero everywhere else.
Experimental estimates of p known to me never have anything like this form and, in

particutar, they are spread out over a substantial range of values of 8. Examples are

given in Figyres 4, 5 & 6.

It follows that, scientifically, the study of concentration fluctuations is interesting and
important.



More relevant for present purposes, perhaps, is that concentration fluctuations are
practically important. The evidence both for flammable gases and for toxic gases given
here in 1990 (Chatwin 1990, pp 4 - 5) will not be repeated. Reference may also be
made to Mole, Chatwin and Sullivan (1993, pp 318 - 322) and to Chatwin and Sullivan
(1994, pp 358 - 364) for more recent discussions. There is, in summary, no doubt that
a scientifically satisfactory assessment of any hazard involving a dangerous gas dispersing
in the atmosphere should involve proper consideration of concentration fluctuations.
Conversely, 1 believe strongly that there is no hazard for which satisfactory assessments
of danger can be made on the basis of the mean concentration plx,) alone.

Unfortunately this does not yet seem to be understood, especially by governmens and
their agents!

1t also seems, however, that not enough is known about what measure or measures of

the dispersing gas concentration determine the degree of harm in any particular case,_

For toxic gases, for example, a conventional measure is the dosage D(x,n), defined by

D(xp) - f T(x,5)ds. (13

Yet there appears to be little hard medical evidence that this is the correct measure.
See p320 of Mole, Chatwin and Sullivan (1993) for further discussion of this point, and
consideration of other related measures, (In view of the earlicr part of the lecture, it is
relevant to note that D is itself a random variable. This is illustrated in Figure 7, derived

from the data shown earlier in Figures 2 & 3.)

§ L5 FURTHER READING
Many of the themes in this lecture are developed further in Mole, Chatwin and Sullivan
(1993), and Chatwin and Sullivan (1994). The former review discuss several other

approaches to modelling concentration fluctuations than that which will be emphasized
here.

Lecture 2
How should we quantify air pollution?

$ 2.1 INTRODUCTION

By now it will perhaps be clear that | believe that eventually atmospheric dispersion
(and, more generally, all phenomena invelving turbulence and turbulent diffusion) will
be described in terms of probabilities since not 10 do so would be scientifically
misleading, if not wrong. This implies that, one day, regulatory models will be estimating
probabilities (not concentrations) in response to questions like "What is the probability

that following an accidental release of CH, {say), the gas-air mixture is ignitable at 50m

(say) downwind?" In order for such a view to be acceptable, there is obviously a need
for re-education of involved professions like politicians and lawyers and of the general
public, but this would he no bad thing since we live in a stochastic world, not a

deterministic one.

Unfortunately there is also a need for re-educating some scientists and engineers who,
it must be said, should know better. One problem is that the massive and continual
inctease in computing power has enabled many hitherto intractable problems to be
solved; it is my contention that, unfortunately, many of the problems being solved have
little scientific or practical value. A second problem is, perhaps, deeper (even cultural),
and this is that some scientists and engineers appear incapable of accepting the stochastic
nature of atmaspheric dispersion; perhaps this is due to faults in their training in terms,
exclusively, of deterministic models. But there certainly seems to be a mental block in
the minds of such people in that they cannot conceive that science is other than
deterministic and that (therefore) anything involving probability or statistics must be
unscientific. Iam going to spend much of this lecture demonstrating that this view is,

quite simply, wrong.

§ 22 THE EQUATION FOR p(8.x,1) AND SOME CONSEQUENCES

It is necessary, first, to introduce the concept of expected value which generalises the



idea of a mean. Let fI'(x.9] be any function of I(x,H). Then the expected value of f,
denoted by Eif) = Ef[T'(x,0)]), is defined by

Eiff = [fdp@nde, (19)
o

where p(¢;x.f} is the pdf of I'(x.) introduced in Lecrure 1 (and the use of ¢ rather than®

is for later mathematical convenience). 11 follows directly from (14) that the mean

concentration w(x,f) and its variance o’(x,2), defined in (7) and (9) respectively, satisfy

BD = ETEn) o’y = E{[Nxn) - pen)) (15)

Moreover, the choice of fAIT(x,0] = 3[I'(x.H) - 9] in {14} shows that

pOx0) = EB[D(xy) - 0)). (16)

Equation (16) provides my starting-point in abtaining the equation satisfied by p{8;x.)
From {16)

P gl g _
g E{al 3'[T(x,0) e]}, (17

so that, from {3),

(18)

4 ar ., afar
Z - - EY,Z 8ren -6l + Ex2| 2 |a -
a { ! &, [F(x.2) ]} {K Bx][ax ]6 [Ix.0) 9]]~
(It is worth noting, for clarity, that the expected values on the right hand side of (18) are
defined by equations like {14} but involving pdfs other than p; for example, the first term

involves the joint pdf of Y and T') After integration by parts, (18) becomes

% - - E{rj% a'[r(x.r)-e]} + E{xv28[D(x.0- 01}~ Efc(VIY8/(C(xs-6])  (19)
/

Use of (1) and (16) then gives

%t’i + VE{YS[[(x,)-0)} = xVQp-x-a%E{(Vl")‘bﬂ‘(x;)—B]}. (20)

This equation may also be written in terms of conditional probabilities {Mole, Chatwin
and Sullivan 1993). Partly because p is a non-linear function of 8, and partly because
of the term (Y.9I" in (3) involving the product of two random variables, (20} exhibits
the notorious closure preblem, namely that this equation for p{8;x.f) invoives higher-

order unknowns (such as the joint pdf of Y and I'), and that the equations for these

involve further unknowns, and so on.

But this formidable complication is a familiar one to all who work with phenomena

involving turbulence. It does not weaken the fact that (2), and its derivation, show that
p(B;x7} is determined by the basic physics (i.e. equations (1), (2) and (3}, and the

associated boundary conditions) just as surely as p(x,f) and o¥(x,0) are.

it is therefore instructive to note that the familiar equations for p{x,f) and o’(x,f) can

be derived direcily from (20, using (7) and {9) and some algebra. The results are

%:‘ + UV + V.Euc = vV, @n
and
2
BT:: + (U)o + V.EucY + 2Vp.Elug) =xV2a? - 2xE(Ve, (22)

where ¢ is the concentration fluctuation defined in (8), U = Ux,n = Ef¥(x,)} is the
mean velocity, and u(x,) = Y(x,)) - U(x,) is the velocity fluctvation. (The standard

derivation of (21) and (22) uses Reynolds decomposition, viz. =y +¢, Y=U+u, directly

10



in (3).)

In large measure, the history of atmospheric dispersion research consists of attempts to

"resolve” the closure problem by developing acceptably accurate models of the "difficult”
terms in (21) and (22}, viz. those involving Eluct, Etuc™t and E{(Vc)’). By far the most

attention has been on Elucl, and I am sure that other lecturers will discuss some of these
models, beginning with eddy diffusivity concepts and progressing to more complicated

ideas involving high-order closures. So I am not going to follow this route any further

for reasons given at the beginning of §2.4 helow,

§2.3 DIRECT METHODS

At some time in the future, the closure problem will be circumvented because it will be
possible to solve the governing equations (1). (2} and (3} directly {(DNS = direct
numerical simulation) using powerful computers. Because the flow is turbulent, each
solution will be (significantly) different, the differences being generated for example by
minute differences in input data or by rounding errors in the computer arithmetic.
Enough solutions will have 10 be obtained to allow reliahle statistical estimates to he

obtained, and experience suggest that acceptable estimates of p(Bix,f) may require

several hundred solutions. Moreover, each solution must resolve length scales extending

from O(10°*m) — the scale of the conduction cut-off length and the Kolmogoroff

microscale — 10 0(10*m) — the scale of the energy - containing eddies. As well as spatial

resolution in all three dimensions, each solution must pravide adequate temporal

resolution.  Estimates suggest that economically feasible DNS will require computers

many orders of magnitude (greater than 107) faster than the most powerful computers
available today (Mole, Chatwin and Sullivan 1993, p323), and it seems unlikely that such
computers will be available within the lifetime of anyone here. In addition, the outcomes
of such massive computing power will not, in themselves, constitute understanding. This

will require a further massive use of resources both for interpretation and for

presentation in "digestible” form.

§ 2.4 MODELS OF p(&x.1)
In line with the philosophy that I have tried to explain, the rest of these lectures are

going to deal with models of p(8,x.f). 1 shall be considering p(x,!) and o%(x,2) because

they are two of the most important properties of p, and not because they have
independent significance. In this connection, it is worth pointing out that the mean
concentration p{x,p) satisfies (21), but not (3) - it is not a concentration distribution that

can ever be observed.

Other lecturers are likely to discuss some of the closure hypotheses adopted for (21) and
(22), particularly the former. Some similar approaches have been usea for equation (20}
for p(O;x,f) i1self; see eg. Pope (1985). 1 do not believe that anyone would claim that
these have been totally successful (or even moderately successful for (20) and (22)).

Moreover the use of such hypotheses leads to heavy computing and/or rather

complicated algebra.

The rapid and continual increase in computing power tends to encourage the
development of mathematically complicated models. Recent emphasis on the problems
associated with assessing the performance of mathematical models is therefore timely
and welcome. Notable contributions have been made by two of next week’s lecturers,
Steve Hanna (Hanna e af 1991, Hanna et af 1992, Hanna 1993) and Rex Britter (Britter
1991}, 1 hope they will refer to this work but, in case they don’t, I cannot resist including
some quotes which indicate a degree of scepticism about some models of atmospheric

dispersion (and in many other research fields) which I share.

(1) "In a broad sense, there is ;generahj: an over-confidence in the ability of
mathematical models to provide accurate prediction. In particular, there &7 significant
over-confidence in the ability of very large numerical models to provide accurate
prediction” (Britter 1991);

(2) The performance of a model is "not related to its cost or complexity” (Hanna
1993);

12



(3) "It is very difficult to demonstrate improved model performance as enhancements
in madel physics are added” (Hanna 1993).

§ 2.5 SIMPLE PHYSICAL MODELS OF p(8;x,t).

1 am therefore going to consider simple models in the remainder of these lectures based

not on (20) but on elementary physics. Before describing these madels, it is worth noting
1

that simple models are quick models - an important consideration for practical response

to real accidents.

For clarity and simplicity, suppose that the sounrce concentration is wniform (the same
at all places in the source) and equal to 8. If the release is not instantaneous it will
also be assumed that the source concentration is 8, for all times. This is nearly always

a good approximation in practice; moreover the results below can be generalised fairly
easily for non-uniform sources (Chatwin and Sullivan 1989, Suwford and Sullivan 1994).

In these circumstances, the concentration within an element of fluid {air) immediately
following release is either 8, (source fluid} or 0 (ambient fluid). Subsequently advection
- the term (¥.9T in (3) - transports and distorts each fluid etement but does not change
the concentration within it. Changes in concentration occur only through melecular

diffusion - the term xV°T in {3).

However molecular diffusion is, in some respects, 4 weak process and a slow proeess; for
example the order of magnitude of the term xV2y in (213 is nearly everywhere much less
than that of the term V.Efwcl it is therefore of interest to consider the hypothetical
situation in which there is no molecular diffusion i.e. k=0 in (3). It can be anticipated
that the results obtained wiil be relevant in real sitwations sufficiently close to the source,
even, perhaps, elsewhere. When x =0, the concentration in a flyid element is {{or afl x

and t) either 8, or 0. Hence p(8;x,8) is equai to Po(8:x,0, where

13

Po(O5x.0) = my(x,0) 8(0 -8,) +{1 - m(x,)) (8). 23

(In {23), and the sequel, the zero subscript always denotes the case of zero molecular

diffusivity.) The function xy(x.t) is determined by the statistical properties of the velocity
field Y and by factors like geometry. Cvidently

R o(x.1) = prob [Ty(x,0) > 0}, 24
(where T, is the value of T, in accordance with the convention noted above) and s0 =,

is the intermittency factor in this hypothetical situation.

it follows from (23}, us., g (7) and (9}, that

25
Bo=0, 7y , 0g=6]my(1- 7)), (25)
and hence that (Chatwin and Sullivan 1990}
2 {1 2 _ ! 2 (26)
5= o(0, “l‘a}‘(gel) (“o 591) :

Figure & illustrates some of the consequences of these formulae schematically. They will
be developed further in the next two lectures, and it will be shown in particular that,

when generalised, (26) has wide relevance.

§ 26 FURTHER READING
1 think it is important to read either Britter (1991) or Hanna (1993) to appreciate the
difficulties involved in evaluating models of atmospheric dispersion, and the strength of

the evidence for the quotations given above at the end of § 2.4. For more detail on the
mathematics in § 2.2, see Pope (1983).
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Lecture 3
Mathematical models and data

§ 3.1 THE EFFECTS OF MOLECULAR DIFFUSION: | BASIC PHYSICS

Molecular diffusion has several interrelated effects that invalidate the resuits in § 2.5.
Most obviously it reduces the concentration in a fluid element originatinglin the source
from 8, to a value that is (a) random (since different fluid elements are distorted
differently by the turbulent velocity field and this distortion affects the magnitude of
xVI'), and (b) tends to decrease with time and with distance from the source. This
process increases the concentration in fluid elements not originating in the source from
zero to positive values. Also molecular diffu.ion dissipates concentration fluctuations,
by which is meant that o® decreases with ¢ because the term -2kE{VE)Y on the right

hand side of (22) is essentially negative.

It is known (Batchelor 1959) that the characteristic length scale on which these processes
take place is of order (ve’/e)'™, where e is the tocal rate of dissipation of mechanical
cnergy per unit mass into heat. This length scale is known as the conduction cut-off

length and is very small, of 0(107*m) in the atmusphere.

While these processes are fundamental, the facts thai the conduction cut-off length is
much less than the length scales of the energy - containing eddies which, of course.
dominate the changes in concentration at a fixed point, and that molecular diffusion is
(as already noted in § 2.5) a slow weak process. suggest that the structure of (23), (25)

and (26) may well be applicable even in real situations when x*0. Cansider (26), viz.
2
o= 5g(8, - py)- (26)

The reduction in the source concentration suggests replacing 8, by a(r,Hp®, where p®

is a local scale for the mean concentration - see § 3.2 for an example of how it can be

precisely defined in particular cases. The natural way to model the dissipation process

15

is by multiplying the right hand side of (26) by p(x,f). The result is the proposal:

27)
o? = pArAu{a(xnp® -p},

where p=p{x,f) and o’ =g¥(x2) are the real (x=0) mean and variance of the
concentration. (27) is a generalisation of the result in Chatwin and Sullivan (1990) for

the situations that will be considered further in § 3.2 (but note that, for algebraic

convenience, 1 now use B instead of the original B ).

To be sure, (27) can he vseful only if the dimensionless functions « and B are "simple".
Although they were introduced to model the effects of molecular diffusion, it is not
expected {for the norn. il reasons) that they wilk depend significantly on x for the high
Reynolds numbers and Peclet numbers that characterise atmospheric turbulence.  Finally,
I want o note that measurements of T' tend to lead to underestimates of o® because of
instrument smoothing, and it is reasonable to conceive that this effect, where present,

can also be modelled in the size of B

§ 32 THE EFFECTS OF MOLECULAR DIFFUSION: 1 SELF-SIMILAR REGIMES.
Asl noted in § 1.3, most turbulent diffusion data are taken in statistically steady
conditions, usually achieved through steady continuous releases in wind (or water)
tunnels. Sometimes the experiments of this type are specifically designed to simulate
atmospheric dispersion (eg Fackrell and Robins 1982). In these circumstances, p ando
are independent of . Moreaver, in the datasets (o be examined here, p and o are self-
similar functions of position, ie. if x denotes downwind distance from the source, and

@2

p@ = u®zy is the maximum value of p in the cross-section at a distance x downwind,

there is a function £ such that
() = pOx) f(n) (28)

where n is 2 non-dimensjonal transverse coordinate; there is an analogous expression

for o> In practice (see e.g Figure 9), the function £ in (28) is close to Gaussian,

16



whereas the corresponding function for o* has its maximum not at the place in the cross-
section where u =p but at an offset position. If (27) holds, elementary algebra as in

(26) shows that o? has its maximum where u =—;a p®, Qe wher: f in (28) is equal to%a.

Thus, since 0<f(n) <1, an offset maximum in the profile of o? oceurs if 1<a<2. (Note

that e>1 is necessary in {27) when (28) holds 10 ensure that a*>0 for all x)

For such data, e and B in (27) must be independent of £ Although the ohserved self-
similar structure, exemplified by (28). requires only that o - al(n), p =P VM),

Chatwin and Sullivan (1990) took the more drastic step of proposing that & and p were
both constant. Remarkably, it was found that within experimental error all nine datasets
examined were consistent with this proposal.  Figure 10 indicates the degree of

consistency, and the accompanying table shows the wide variety of flows. potlutants and
measuting technigues covered in the different experiments.  Although the values of &

and B differed from experiment to experiment, they all satisfied

l<a<2; 0<p<l. (29)

The minimum value of § was about 1435 (for (5) in Figure /0y und the maximum value
was about 0.85 (for (8) in Figure 10). Figure 11 shows, for one particular expeninent ((8)
in Figure 10), that the use of (27) with «,p constant gave a better fit to the measured
profile of a® than a complicated formula (with three adjustable constants) obtained by

curve-fitting this specific dataset. The formula is Jdue to Wilsen, Robins and Fackre!l
(1982).

Subsequent examination of other datasets has confirmed the applieability of (27) with
a,B constant. Data on the dispersion of dye in grid-generated water turbulence taken
with a light absorption probe by Nakamura, Sakai and Miyata (1987) were particularly

interesting in that the observed values were a@=3 and =1 The value of o is
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particularly interesting since (a) it is greater than any of the values for the experiments

in Figure 10 — see (29) — and (b} as noted above, 2 value of «>2 means that the

maximum in the o? profile is not offset, but occurs where p=p®. In this context, it is
of interest 1o note that these experiments were very similar (except that dye replaced
smoke particles as the pollutant) to those of Gad-el-Hak and Morton (shown as (7) in
Figure 10). The difference in the results was attributed by Nakamura et al to the fact
that theit measured fluctuating concentration field was everywhere highly intermittent
anlike that recorded by Gad-el-Hak and Morton. It seems unlikely that this difference
coutd be due to the differences in the ambient fluid (water for Nakamura er af; air for
Gad-el-Hak and Morton} or even to the different pollutants, The most likely cause is

differences in the degree of instrument smoothing. .

A further indication of the likely importance of instrument smoothing is provided by the
data in Figre 72 taken in a turbulent water jet by Sakai er af (1989) using probes of four

different sizes, Although the values of a were the same (within normal experimental

tolerances) for the four different probes, the value of P increased as the probe size

decreased. This ohservation is consistent with remarks in the last paragraph of § 3.1

earlier in this lecture.

§ 33 THE EFFECTS OF MOLECULAR DIFFUSION: Il EXTENSIONS.
Given the simplicity of (27), and its agreement with data from self-similar flows withe,
constant, several further avenues of research are obvious. Some of these are being

actively investigated by us, so most of what follows is necessarily rather speculative
(though up-to-date!).

Several datasets from steady sources 1aken at distances x downwind of the source where
the profiles of p and o® are not self-similar have been examined. In these cases too,
the data has been consistent with (27) with, naturally, « and B being functions of

downwind distance x. Figure I3 shows some results from a comprehensive set of

experiments for a line source (of heat) in grid-generated turbulence in a wind tunnel
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(Sawford and Tivendale 1994). The analysis is from Sawford and Suilivan (1994). The
data for the o® versus n (=zfa,) profiles for the three cases shown is consistent with (27),
as indeed it is at all twenty-one downwind positions at which measurements were made.

Figure 14 (solid symbols) shows the downwind evolution of a and B, together with

values from two other sets of experiments (open symbols). 1t will he seen that the values
of @ and B in the “far-field" (Figure /3 (c): x =2.6m, xfx, =8.39) are consistent with those

for the self-similar data shown in Figure 10 (although self-similarity was not "clearly

reached” for the data shown in Figure 73). Near the source (Figure 13 f{a):
x=0.002m, x/x,~6.45x107% the vakue of ¢ approaches unity, consistent with the theory
in § 2.5 (and shown schematically in Figure 8) fur the cne ~ n molecular diffusion has

not had time to have a significant effect. (Note that (26) i (27) with p@=8 and

e=P=1,and that (26) gives o®-0 at the source.) The highest value of a is
indistinguishable from 2 (Figure 713 (b): x=0.1m, xfx,=0.323), and @ =2 gives the

maximum of o? at the same location as that of .

All data that have heen examined are consistent with (27), with & and P being slowly-
varying functions of downwind distance x, and with « rising from a value of 1 at the

source to a maximum of 2 (Figure 13 (h)) or greater {open symhols in Figure 14;

Nakamura et af 1987), before gradually reducing 10 an asymptotic value between | and
2. Work is in hand to develop simple evolution equations for e and B, and this appears
likely to be successful. The values of & and B wiil, of course, depend on the source

geometry (theory: Chatwin and Sullivan 1979; experiments: Fackrell and Robins 1982,
Nakamura et al 1987).

Figure I5 shows data from a more complicated flow in which again the offset maximum
of o? is present near the source (=1<a<2), disappears in mid-field («>2) and then
reappears in the far-field. Figure 16 is more ambitious in that it shows two plots of o

versus i for the instantanecus release data illustrated in Figure 2; thus here p and o?
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are both explicit functions of ¢, and the closed curves are traversed as t increases (and
behaves as a parameter). It is less clear how (27) can be used in such cases but some

progress has been made (Zimmerman and Chatwin 1994).

§ 3.4 IMPORTANT INTERLUDE: DATA ANALYSIS
The phenomenon of instrument smoothing has been mentioned above, and was also
considered in my earlier lectures here (Chatwin 1990, p8). This important problem has

been considered theoretically by Mole (1990z, 1990b). See also Mole and Jones {1993).

Here. before going on to consider modeis of the pdf, 1 want to discuss briefly two other
problems connected with the interpretation of concentration measurements that are often

ignored. These are {(a) the treatment of noise, and (b} the shortcomings of thresholding.

It is inevitable that concentration measurements are contaminated by noise from a
variety of sources (mechanical vibration, electronic efc.) If no attempt is made to remove
the noise the resulting histogram of concentration frequencies will inevitably contain
spurious negative concentrations as in Figure 17. These arise because genuine positive

{but small} concentrations are corrupted by negative noise of larger amplitude.

A common, but crude. method of dealing with noise is to specify a threshold

concentration 8,, with 8,:0, and to set arbitrarily to zero all concentration readings less

than 8,. This procedure is unsatisfactory because, as in Figure /7, many histograms are
dominated by low concentrations and it ought to be important to try to assess the
behaviour of p(B,x,1) for small  as accurately as possible, and certainly not to let such
assessment depend (and rather critically so) on the choice of 8, which has nothing to do

with real concentrations.

Mole was the first to consider this problem from a fundamental viewpoint. Recently his
work has been taken substantially further by my colleague David Lewis (Lewis and
Chatwin 1994). Lewis has successfully adapted the method of "maximum entropy

inversion” (MEI) from other branches of signal processing to datasets like that shown in
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Figure 17. This method ensures that all estimated concentrations are non-negative and
has much theoretical support. Its application (o the data shown in Figure 17 results in
Figure 6 earlier. We are confident that this method is the best presently available for
dealing with real noisy datasets. By contrast, Table / (adapted from Robinson, Lewis

and Chatwin 1994) illustrates, for two other datasets, the significant errors that can be

caused by thresholding. (For the data in Tahle /. 6,-0.)

UvIC1 UNIC 2
Parameter MEI Thrcsh. Y. error Parameter hFL Thresh, % Crror
Wil 39.4 w7 7 p/10 *¥ 272 KN + 164
o/107%V | 989 863 2.7 o/l0SY | 7 654 R
S 54 31 -42.0 A fall 33 -829
K 53.0 £5.0 -7 K ql.2 170 Klg

Table 1 Comparison of estimates obtained for two datasets by (i) maximum entropy
inversion (MEI). and (ii) thresholding (Thresh.) Here p.o are as in text {(NB: The
readings are taken in microvolts and have not been converted to units of ), and$

{skewness) and K (kurtosis) are other parameters of the pdf to be discussed further in
Lecture 4.

In case anyone is still not convinced of the importance of accurate data analysis and
interpretation, a glance back at Figure I (u) should suffice. The four graphs are the
results of four different attempts (using three instrumenis) to measure the same

concentration field!

$ 3.5 FURTHER READING

Some material in this lecture is a summary of that in Chatwin and Sullivan (1990). It
would also be profitable to read some of the papers describing the experimental work,
especially perhaps Fackrell and Robins (1982). since their investigation was concerned

with simulating atmospheric dispersion.

21

Lecture 4
Simple probabilistic models and recent development

§ 4.1 INTRODUCTION

As noted at the beginning of § 2.4, my principal theme is modelling p(8;x,). The work
described in Lecture 3 on p and a?, particularly (27), will be of interest to those whose
main concern is only with these parameters (and their evolution), but I want mainly to
understand how that work constrains and influences the form of p(8;x,2). In pursuit of

that aim, I shall first present work which gives a representation that p(6;x,f) must have,
and then I shail consider some extensions of the work of Lecture 3 that are quite
remarkable. Then 1 shall give a speculative discussion of how these results may be
linked; again, I shall be describing work in progress which is motivated by the reasonable
hope that there are simple models of p(8x,0) that are both scientifically sensible and

practically accurate.

§ 4.2 THE STRUCTURE OF THE PDF & THE INTERMITTENCY FACTOR
When x =0, the exact form of the pdf has been given in (23). It has been fairly common

1o attempt to represent the pdf when x#0 by an extension of this, such as

POxE = n(x0p'(Bx,0) +11 - (x,0} 5(8), (30
where =(x,) has been defined by

r(x,0) = prob| y (x,1)> 0] 31
by analogy with (24), and p'(8;x,2) is the pdf of I’ conditional on I'(x,/)>0. (In practice,
{31) has often been replaced by the probability that I'>8,, where 6, is a threshold

concentration, but this means, as discussed in § 3.4, that =, p and p’ depend critically
on the choice of 8, and, since 8, has no connection with T'(x,) or p(8:x8) but is

determined entirely by the experimenter and the instrumentation, this convention is
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finally disappearing — and not before time.} However, (30) and (31) are unacceptable
also, since they do not represent reality. The simpie point is that when k=0, the
solution of equation (3) for T' has T'{x,)>0 for all x at all times ¢ following release,
and therefore (31) gives =(x,)=1 for all such x and ¢. Then (30) gives

KO:x,)=p'(B;x,¢) and is devoid of interest.

'
This objection to (30) and (31) arises because (3) is itself an approximate equation;
molecular velocities are not infinite. However there is no experimental evidence
whatsoever that (3) is not a totally acceptable model of reality on the continuum scale
for all practical purposes. Given this viewpaint, it is scic.:i5.ally inconsistent to use
(30) and (31), and alternatives should be sought.

The concepts of intermittency and intermittency factor that motivated (23) and (30) are
impertant ones in turbulence and turbulent diffusion since they represent the effects of
the turbulent velocity field. Chatwin and Sullivan (1989} propased thai (24) be adopied
as the definition of intermittency factor even when x=0. This has the merit, unlike (31),
of being meaningful and of depending only on those factors, namely the velocity and

geometry, that are desirable in any definition of intermittency factor. Superficially,
however, this definition, while theoretically sensible. is unacceptable because n (x,1)
cannot be measured since x is never zero (leaving aside the controversial question of

whether (3) with x =0 governs the dispersion of pollutants like smoke that involve solid
particles). However this objection appears to be removable because all available

evidence suggests that the mean concentration p(x.0) is not detectably dependent on the
value of x, and that, therefore, w(x,?) = (x,8), where p(x,) is the mean concentration

in the hypothetical situation when x=0. Use of the first result in (25) then gives

mo(28) = (x50, = p(x2)6,, (32)

where 8, is the source concentration, supposed uniform. (“hatwin and Sullivan {1989)

showed that these ideas could be generalised to cases where the source concentration is
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not uniform.) Thus (32) enables = (x,5) to be estimated by measuring the real

concentration.

An important consequence of this new definition of the intermittency factor is that the
pdf in real Flows {x#0) can be represented exactly in terms of it. Chatwin and Sullivan

(1989) showed that

POx1) = m(x0p(Bix,1) + 11 - my(x,)ip (Bix.0), (33)

where p_, and p,, are the pdfs of T' conditional, respectively, on (x,5) being occupied by
a fiuid element from the source, and not from the source (i.e. from ambient). An
alternative way of stating these conditions is Ty(x,)=8, and [ (x,)=0 respectively.

Equation (33} is an extension of {23) 1o real flows that does not have the flaws of (30).
It should he noted that p, and p_ differ from delta functions only because of the effects

of molecular diffusion.

§$ 43 HIGHER MOMENTS

Define  (x, for nz2 by

1,50 =BT - pxa)) = [ 18 - (=] p(O:x.0d8. (34)
0

Then u, is the nth central moment of p(8;x,5) with p (x5 =g%(x,) by (9) and (15). In
principle, the pdf is determined uniquely by w and by the set of all p (n=2,3,4,.); see
Derksen and Sullivan (1990). In § 3.2, it was seen that the relationship (27), viz
(2,0 = 0@, = Plux.n e p® - pxn)h, 3%
was in good agreement with data from many different types of experiment. This

relationship was derived from the x=0 model for p(@;xf} in § 2.5, and Chatwin and

Sullivan (1990) considered the application of these ideas to the higher moments. They
showed first that (23) gives
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Bou =g [, - "+ - 10, - bW, 6
1

for n=2,3.4,..., where p__ is the nth central moment when k =0. (Note that {36} is the

same as (26) when rn=2.} They further suggested that, when x =0, the ideas leading to
(27) and (35) could be extended to the higher moments 10 give ‘

L
n

o U'(O}

B, = nap® -y e 1 @p® - ppn, (37
where a« is as in § 2.5 and B,=$. This was in reasonable agreement with the limited
datasets examined for n=3,4 and, moreover, it was sugpested that f - B,=PB,-B,=. was

consistent with these data and with theoretical arguments. For n-3,4, this further

suggestion gives, from (37),
By = BRep® - wap® -20); g Btplap® - pla’n®? -3ap®y 3% (38)

{Before proceeding, it is interesting to note that Suwtord and Sullivan (1994) have shown
that a different extension of (36} from that in (37), hut equivalent in its algebraic

simplicity, was in good agreement with the data from Sawtord and Tivendale (1994).)

Instead of By and p,, itis common to use non-dimensional 0w ares derived from them,

namely the skewness § and the kurtosis K, where
s- g M (39)

From (35) and (38) it follows that

5- (o -2x) i K:(a2-3¢x+3x2) . e B
[x(e -x)}'? x(a -x) p

(40}

Mole and Clarke (1994) eliminated « from the two equations in (40). The result is

extremely simple:
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K=§+1. “n

Since the equations for § and K in (40) contain w, plots of § and K againstp/p® =x
can be expected to vary with experimental conditions, reflecting changes in «. But (41)
predicts that a plot of K versus § should be independent of experimental conditions.
Figures 18 and [9 largely verify these predictions, although the K versus § plot in Figure
19 shows collapse to a curve lying above that in (41), e the data suggest that there is

a "universal” relationship between K and § but that, for this relationship,

K>8%+ 1. ‘2

Examination of other datasets has confirmed the same remarkable tendency for the

(K,5) plot to collapse. A severe test is provided by the instantaneous release data for

the experiments illustrated in Figure 2, and Figure 20 shows a typical result.

Before discussing the implications of these results for modelling the pdf, I want briefly

10 mention two further points. Mole and Clarke (1994) extended the ideas above to

central moments with n>4. For example, they showed from (38} that

K,-5'28, K- 03, 3)

a3

and the data used in Figures /18 and 19 showed again a collapse, this time for the (K,,$)

plot. But again the collapse was 10 a curve somewhat above that in (43). Perhaps even

more remarkable, but not directly re'zvant to the main theme of these lectures, is that
Mole and Clarke (1994) used the same data to estimate generalised dosagesD,,(x.1),
where (cf(l(i‘) and {13))

T

1
Dpre =57 L{r(x_s)/ﬁl]pds, 49

and Figure 21 shows the extraordinary collapse of the (K,S) plot. Note that Figure 27

26



covers 12 different values of T (for p=1) and 12 different values of p (for T=355); note
also, however, that the theory given above to Justify equations like (41) certainly does not

apply, at least not directly, to the statistical properties of D,

§ 4.4 DISCUSSION

I want to note first a set of results from probability theory that were discyssed hy Mole
and Clarke (1994). Tt can be shown that for any pdf whatsoever

K25%+1, (45)

with corresponding resuits for higher moments. Moreover, equatity in (45) occurs only
when the pdf represents a two-state process, ie. the pdfi " eighted sum of two delta
functions. This result is consistent with the theory presented in these lectures {§§ 3.2,
4.3 especially) which was hased on extending the “two-delta-function® pdf in (23). It is

therefore of particular interest 1o note that the pdf p(8;x.8) that is consistent with (35)
and (41) is {Sultivan and Ye 1993);

POX) =1 80 -p ) +{l - my 188 - ), (46)
where
m, = "m) s b= (1Bl apu® , p =(1-Bip 47)
ap
and
b= moh, + (1=, )

But, as noted at the end of § 4.2, the real pdf has the structure (33). where, because of
molecular diffusion, p, and p, cannot be delta functions. However, the implications of
the theory and the data comparisons shown are {a) tha p, and p_ are, in some sense,
“close” to delta functions, and (b) that because of the collapses of the data like those
shown in Figures 19 and 20, the pdf p(8:;x,0) is determined (at least to a good

approximation) by three parameters only, .g. p.a and § {Conclusion (b) follows from
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the data comparisons independent of any theory.)

How can these conclusions be reconciled with (33)? What are the structural forms of

p, and p,?

These are questions to which I do not yet know the answers, but | am convinced that the
work | have summarized makes their investigation worthwhile in the sense that real

progress can soon be expected. One line of attack that we are currently using can be
summarised as follows. Let pz, oj, §, and K, be the mean, variance, skewness and
kurtosis of p,(8;x,0) in (33), with a corresponding notation for the properties of p (0;x,1).
It is easy to derive expressions from (33) for the overall mean, variance, skewness and

kurtosis. The results for p and o? are

B=p,*Toa, 02=n0(1—no)az*noozf-(l-ﬂo)oaz, (49)
where
. (50)

(The first of (49) is the same as {48), as it must be.) Sufficiently close to the source

B,=0,=0,20,u =6, and the results in § 2.5 are recovered. But this cannot remain true.
As a result of molecular diffusion, o, and o, become non-zero, and both a=p, -, andx,
must approach zero, as  x. and ¢ become large enough. Eventually the dominant term
in the expression for o in (49) will be o). Likewise the dominant terms in the
corresponding expressions to (49) for § and K are §, (unless §,=0) and K,. Hence,

away from the source,

(K-S =(K,-52). (51

To explain the experimental results discussed in Lectures 3 and 4, it therefore seems to
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be necessary to find a family of pdfs p, with the following properties:

(1) 02=p?u (apl - 1) - to satisfy (27) and (35):

(2} X, ~S:) is (approximately} independent of w, — o ensure the collapse of the (K, 5)

plots like those shown in Figures 19 and 20

(3) as the parameters of p, vary, a lurge spread of 8, and K, values must be

generated since such a spread has been found for all datasets examined.

Requirement (3) rules out "simple” distributions (.2 uniform, normal, exponential, ..)
for which §, and K, are universal constants, but there are other candidate distributions
which are now being examined. Provided this exercise is successiul, piOx.n) wilt be
approximately equal to p(Bx,r) except very near the source and, in prictice, the
statistical properties of T' can then be determined in terms of p, — and this is

(relatively) easy ta predict.

§ 45 FURTHER READING
Except for the work in § 4.2 which is in Chatwin and Suliivan (1989), most of the
material in this Lecture is ongoing research which, so far, appears in conference

presentations etc. Be patient!
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flow
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Grid turbulence Smaoke
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boundary layer helium
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a ,37" NOTES
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relationship in paper
117 0.486
116 0.34
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1.24  0.12

1.27  0.14 Data for z/d = 40
1.52  0.37
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Light scatter

Raman scattering of
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