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Summary

The aims of the lectures are;

(i) to explain what concentration fluctuations are:

(ii} to illustrate their importance in environmental impact assessment;

(ifi) to discuss some factors relevant to the quantitative description
of concentration fluctuations;

(iv) to describe a framework for this description.

It will be clear from the lectures, and from others later in the Workshop, that there is
rapidly increasing awareness of the importance of concentration fluctuations and,
consequently, much research activity into their properties. Not surprisingly there are still
many unsolved problems, and a by-product of the lectures will be to highlight one or two

of the most important.



Lecture 1. Concentration Fluctuations in the Atmosphere

1. TURBULENCE AND ATMOSPHERIC DISPERSION

The Earth's atmosphere is in turbulent motion. This means that the velocity T(x,t) of the
air at every point x and every time t is a random variable. This fact is a matter of
common experience, and there is no contradiction between it and the further fact that the
evolution of T(x,t) with x and t is governed by the laws of mechanics. For the

atmosphere the most important of these laws are those of conservation of mass almost
always adequately represented by

T =0 (1)

in the atmosphere (equation of continuity), and Newton's Second Law (which becomes the
Navier-Stokes equations for fluids like air).

In these two lectures it will not

be necessary to use the Navier-Stokes equations. (But
note that they are necessar

y in a full description of an air poliution problem.) From our
point of view, it is necessary only to recognise that the randomness of the velocity field
Causes the concentration M{x,t) of a potlutant in the atmosphere to be random also. Tl?e
pollutants  considered jn these lectures will be those — the wvast majority in
practice - whose concentrations are determined by two processes, namely the ram{om
transport (advection) by the air that has already been mentioned, and molecular diffusion.

I do not, in particular, consider processes like chemical reactions. The equation governing
F(x,t) is then

gg + (T.9)F = ko’ | (2)

where « is the molecular diffusivity. In addition there are boundary and initial conditions.

A selection of some typical data records of concentrations is given in Figures 1(a} to I(f).
While there are interesting and important differences between these records, of which

some will be discussed later, each of them clearly indicates the randomness of [I(x,t).
‘This randomness is driven by the term involving T in (2).

Given that the concentration of a pollutant in the atumosphere is not predictable, it IS
necessary to consider (a) whether the unpredictability is important and, if so, (b) how it
can be incorporated into quantitative work on environmental impact assessment.

Before considering these questions it will be useful to introduce some notation and to
make some fundamental points.

2. BASIC CONCEPTS AND NOTATION

Whether or not the unpredictability of [(x,t) is practically important, its quant.itfmve
scientific description clearly requires the use of statistics. Statistical ideas and techniques
are applicable only in relation to an underlying population, or ensembl-e. For_ the
situation of atmospheric dispersion that we are considering, the ensemble is a p_rcc:sely
defined set of “experiments®. The definition serves only to determine unambiguously
whether, or not, any particular release is a realisation within the enscmble.(and therefore
covered by the statistical description).  From the scientific point of view, 'what the
definition is does not matter; from the practical point of view it is Cfuc:al. The
definition is then likely to include, apart from obvious points like the location(s) of the
sources and the relevant tocal geography, details of the releases (nature, duratlo.n et'c.) and
the meteorological conditions. Further discussion of the ensemble concept is given by

Chatwin (1982) [J. Haz. Ma:. 8, 213-230] and Carn and Chatwin (1985) [/. Haz. Mat.
11, 281-300].



Given the ensemble, there is a definite (albeit unknown) probability distribution describing

the possible values of F(x,t); in particular there is a probability density function (pdf),
denoted by p(#;x,t), and defined for each ¢ > 0 by

P(OixX,t) = g;{prob[r(x,t)éﬂj} . (3)

Another, perhaps more useful, interpretation of p(é;x,t) is obtained by noting that
P(8;x,t}66 is the probability that ¢ < F(x,t) < ¢ + 54 (for 46 small and positive), I
shall discuss many aspects of the pdf in my second lecture, and it is only necessary to

note some obvious properties and definitions here. Since concentrations cannot be
negative
p(8;x,t) = 0 For all 6 <0 ; (4)

since pld:x,t) is a pdf

J p(o;x,t)de = 1 . (5)
0

In practice there will be a4 maximum possible concentration 6. .(x,t) but, because
equation (2) cannot be solved for general T(x,t), its precise value is unknown, Clearly
P(6ix,t) = 0 for all ¢ > fmax SO the upper limit in (5) can be replaced by Omax if
required, but this is not usually  useful. The ensemble mean {or simply mean)
cancentration willi be denoted by C(x,t) and is obtained from p(6:x,t) in the standard way:

x

Ci{x,t) = I 8p(6;x,t)dy . (6)

o]

The concentration fluctuation c(x,t) is defined (following the classical definitions of
Reynolds for the turbulent velocity field) by:

F(x,t) = C(x,¢) + c(x,t) . 7

The mean square flyctuation will be denoted by ?f(x,t) and is obtained from p(8;x,t) by
the equation

—_— ax

cl(x,t) = J

[8-C{x,t)]°p(o:x,t)dp = J 8°p(8;:x,t)ds - ci(x, ) . (8)

a 4]

Of course E_;(x,t) is the variance of (x,t) and J{.C_;(X,t)} — the rms concentration - is its
standard deviation, The ordinary statistical symbols for C and c? would be y and ¢?

respectively; unfortunately this usage is not yet conventional in work on turbulent
diffusion, including atmospheric dispersion.

It requires emphasis that, as the notation suggests, p(d;x,t) does depend explicitly on x
and t for most ensembles; so therefore do statistical properties of I(x,t) like C(x,t) and
c(x,t}.  This is true, for example, when the ensemble is concerned with dispersion
following sudden release of a finite quantity of pollutant into the atmosphere.
Consideration of this type of ensemble is relevant in assessing the environmental
consequences of the accidental release of flammable materials (like liquid natural gas) from
either a fixed container (like a storage tank) or a mobile one (like a ship or a lorry). In

such a case the pollutant cloud tends to spread, and therefore dilute, as it is dispersed by



the atmospheric turbulence and the pdf must change with t at each point x (and with x
at each time time t). Figure 2 shows estimates of C(x,,t) and c?(x,,t ) at one location
x, for Thorney Island; the fact that the estimates depend on t illustrates the comments
above. For such an ensemble estimates of statistical properties like C and c¢? can be
obtained only by taking appropriate averages of the results of many repeat experiments;
in essence this was the method used to obtain the estimates shown in Figure 2.

Tnere are some ensembles where p(8;x,t) does not depend explicitly on t, or where this is
a reasonable practical approximation, This has to be regarded as an exceptional
circumstance, but it is sometimes appropriate in considering the environmental consequences
of a continuous release of material like smoke from a factory chimney. Clearly the
weather characteristics, and the rate of release of material, must, on average, not change
with t during the dispersion period of interest; the technical term for such an ensemble
is statistically stationary.  Although statistical properties like p, C and ©? can still be
estimated by averages over repeat experiments, it is much more convenient (and much
cheaper) to obtain such estimates by exploiting a mathem: tical property that holds for
such ensembles, namely that ensemble means can be estim ted from the results of one
experiment by appropsiate time averaging. For statisti.ally stationary ensembles, the
statistical properties do not depend on t; thus, for example, C{(x,t) = C(x), and it can be
estimated by C(x;T), where

N t+4T
C(x,T) = 5 M(x,s)ds , (9
t-iT

where the integrand I(x,s) is obtained from the record of a single experiment.

Because statistically stationary ensembles are the simplest type conceptually, and because
they are the cheapest to investigate experimentally, there has been undue emphasis on
their properties. (For example, all the data records in Figure 1 are from such
ensembles!) Partly for this reason, it is very often assumed that all averages (or means)
considered in studies of phenomena like atmospheric dispersion that involve turbulence are
time averages. Such an assumption is wrong and potentially dangerous.

I want to make one further comment on this important point. Not only is the simplest
(and most natural) theory of atmospheric dispersion not concerned with time-averaged
quantities, but these quantities are themselves random variables with their own statistical
theory (which is not simply related to that given above). It is still, unfortunately,
common to see the word "concentration®” used without qualification in papers dealing with
safety standards or, inexcusably, papers reporting original research, and only careful perusal
makes it clear that what is meant is a “time-averaged concentration”. Moreover the
period over which the time average is taken is often not stated, or difficult to discover.
(I have seen periods ranging from 10s to 1hr!) However, as noted, the time—-averaged
concentration is a random variable, whose statistical properties depend explicitly on the
period of integration, i.e. on T in equation (9). This is illustrated by Figure 3. Hanna
(1984) [Atmos. Envir., 18, 1091-1106] quotes evidence that, even when T is as large as 1
hr, the time-averaged concentrations can exhibit a factor of two variability even for a
fixed hourly average wind velocity. If time-averaged concentrations are to be considered,
it should be because they are what is relevant to the assessmeat of a particular
environmental hazard and then the choice of T should be determined by the same

considerations. The subject of the last few paragraphs is discussed further by Chatwin and
Allen (1985) [Tellus, 37B, 46-49].

3. THE IMPORTANCE OF CONCENTRATION FLUCTUATIONS

All experimental evidence known to me shows that the degree of unpredictability in [ is
not small. One measure of unpredictability is the intensity I(x,t), where



I(x,t) = 7 {?(x,t)}/C(x,t) : (10)

Typically values of I are of order unity, as evidenced for example by the 0.07s data in
Figure 3. = The variation of I with x in statistically stationary ensembles is interesting.
Consider, as a specific example, the plume downwind of a factory chimney. At a fixed
distance x downwind, experiments show that I has a minimum vilue on the centre-line
whose value depends on factors like the chimney diameter and is usually of order 1. As
distance from the centre-line increases, so do the values of I; some typical profiles are
shown in Figures 4 and 5. The wvariation of I with downwind distance x along the
centre-line is a problem that has generated some controversy; that controversy will not

be discussed here since it is difficult to understand why some researchers regard it as so
important.

There is therefore no doubt nowadays that the magnitude of the statistical variability in
any measurement of [(x,t) is (at least) comparable with the value of the measurement
itself. There is therefore very much purely scientific interest in gaining a deeper
understanding of the quantitauve behaviour of properties like ¢ (a,t) and p(8;x.t).

But is it necessary to take account of variability in assessing the environmental impact of
air pollution? Or is it adequate for practical purposes to continue to use, and to refine,
models - like Gaussian plume models — that consider only the mean concentration (or
time~averaged concentrations) and take no account of fluctuations? To some extent the
answers to these important questions depend on the particular pollutant and on the
particulir hazards that are of concern. But I am in 210 doubt that, in general,
fluctuations ought to be an integral part of air quality modeis, and 1 shall devote the
remainder of this lecture to discussing two particular examples.

4. FLAMMABLE GASES

A mixture of a flammable gas like methane (CH,) and air will support a flame in the
presence of an ignition source only if the concentration by volume of the flammable gas

lies between the appropriate flammable limits (or stoichiometric limits) for that gas, i.e.
only if

6 < T(x,t) < 6. . (11)

where 6, and 8, are properties of the gas. For CH, 8, = 0.05 and 6, = 015 With
the statistical viewpoint considered in these lectures, it follows that the probability P(x,t)
that flammable conditions (i.e. potential danger) exist at point x at time t in a gas—air
mixture is given by

¢
2

P(x,t) = p(o;x,t)de . (12)
8

1

Thus P(x,t) is equal to the area between that part of the curve of p(#:;x,t) agaionst 8,
and the 0-axis, that is bounded by the lines 8 = 6, and 0 = 0.

This definition is illustrated in Figure 6, taken from Birch, Brown and Dodson 1980 [18th
International Symposium of the Combustion Institute, Waterloo, Canada; also Report No.
MRS E 374 (June 1980), Midlands Research Station, British Gas]. This section of the
lecture is based on that work, The shaded area in two of the diagrams in Figure 6 is
equal to P(x,t) defined in equation (12). By means of a series of experimental
measurements of p(#;x,t), Birch, Brown and Dodson were able to evaluate P{x,t) by
integration, and the solid curves in Figures 7(a) and 7(b) show some of their results.
(1he methane jets used in these experiments were statistically stationary so, in fact, p and



P are independent of t. Also the curves are smooth because numerical interpolation and
smoothing techniques were applied to the values of P determined through use of (12).)

Birch, Brown and Dodson also made direct measurements of P(x) by counting the
proportion of 400 repetitions in which a spark of fixed duration and energy {100ml) led
to flame formation or ignition. The results are shown by the solid points (and associated
error bars) in Figures 7(a) and 7(b). It can be seen that there is very pood agreement
between the two independent sets of measurements of P(x). This is strong experimental

confirmation for the validity of the statistical description of the dispersion process that led
to equation (12).

By contrast, Birch, Brown and Dodson asserted that the mean concentration C(x) is "of
little value in assessing flammability®, and this remark, that invalidates many conventional
methods, is based on comparisons like that shown in Figure 7(b) where the dashed curve,
which is the profile of C(x), bears no relation to the data.

5. TOXIC GASES

This section summarizes some results in three papers [Griffiths and Megson 1984 Atmos.

Envir. 18, 1195-1206; Ride 1984 J. Haz. Mat. 9, 235-240; Griffiths and Harper 1985
J. Haz. Mat. 11, 369-372].

Early models of the degree of harm produced in a population by exposure to a toxic gas
were based on the dosage, defined as the product of the “concentration® and the time of
exposure. Use of this definition presumed — wrangly — that the concentration was a
constant, but it was for other reasons that such models were replaced. In particular
limited experimental data indicated that it was necessary to account for the different
physiological response to high concentrations by weighting the concentration in the
definition of dosage. This led to the consideration of a new dosage (which Ride calls

“dosement” to distinguish it from the earlier usage) D where, for a time of exposure T to
a concentration [,

T
D= | r"ar

(13)
Q

and the index n is greater than 1 and depends on the gas. Understandably (and
fortunately) there is little experimental evidence to fix values of n, but Griffiths and

Megson suggest 2.00-2.75 for NH, and 2.75 for Cl,, while Ride quotes a value of 1.8
for HCN.

In practice, use of D continued to assume that " in equation (13) was constant in time so
that D was replaced by [MT. As is obvious from Figures 1{a) to 1(f) this assumption is
manifestly incorrect. The papers quoted above showed by very simple (and still
unrealistic) modelling that inclusion of the fluctuations in I" would give greatly enhanced
mortality rates. Figure 8, taken from Griffiths and Harper, shows the type of argument
that was used. It was based on comparing the effects of the two different exposure
patterns shown in the top diagram, and the remarkable change in mortality rates is shown
in the bottom diagram. In technical terms, the differences in the exposure patterns

illustrate the phenomenon of intermittency, to be considered in some detail in my second
lecture,



Lecture 2. Air Pollution Probability Density Functions

1. SOME THEORETICAL CONSIDERATIONS

Given that it is important for practical, as well as scientific, reasons to know more about
the statistical properties of T(x,t), this lecture will consider some of the problems involved
in this, and some recent theoretical and experimental research. Although I have not, and
shall not, put primary emphasis on complicated mathematics, I do want at the beginning

of this lecture to discuss briefly some theory because it provides a clear context for the
remainder of the lecture.

Manipulation of equation (2), using equation (1) and (in some situations) the Navier-Stokes
equations, establishes equations for the statistical properties that are of concern. In the
same way that C and ¢ denote - see equation (7) — the mean and fluctuating components
of ', I use U and u to denote, respectively, the mean and fluctuating components of the
velocity field T, so that T = U + u. Both U and u are functions of x and t, and both
can be shown to have zero divergence, i.e. they saticfy the equation of continuity
- equation (1). Then equation (2) is the same as

% + git:- + 9. {UC+Uc+uC+uc} = xv°C + xo’c . (14)

The mean of equation (14) - and I emphasize again that the term “mean" signifies a

probability average like those in equations (6) and (8) and mnot a time-average (or a
space—average) — is

%CE + v . (K) + v.{uc) = xv°C , (15)

where the overbar denotes an ensemble mean (or probability average) as is still
(unfortunately) the conventional notation — see the remarks after equation (8).

Equation (15) is perhaps the simplest equation in the whole of turbulence that exhibits the
closure problem which bedeviis all theoretical research into the subject. Even if it can be
assumed ' that the mean velocity field U(x,t) is known, or if it can be modeiled with
sufficient accuracy, the term involving uc has introduced a new unknown field that is
important (for otherwise there would be no effect of turbulence) and is not closely related
to C(x,t). It is easy to obtain an equation for uc but that introduces new unknowns that
are important. There is no known way of terminating the process that is theoretically
satisfactory in the sense, particularly, that the termination process {or closure hypothesis)
that may be chosen for equation (15) does not lead to any scientifically well-based
termination process for equations - see equations (16) and (17) below - for other
statistical properties of [Y(x,t), equations that also exhibit - but more severely — the
closure problem. This serious objection applies to the concept of eddy diffusivity that is
frequently used - and with some success — to close equation (15). T will therefore make

no further reference to eddy diffusivities in these lectures, although I expect other
Workshop lecturers to do so!

It is straightforward to derive equations for other statistical properties. Those for ::—2(1,0
and p{8;x,t) are:

gf_* + @.(Uc?y + V-{ucz} + 2uc.oC - ""'Z(CZ) - 2k (vec)? (16)

and



2
gg + o (Up) + v (WS[T(xX,t)-0]) = xv’p - x—@—z{(vrﬁ[r(x.t)wl: .an
36

In equation (17), the symbol 5 denots the Dirac delta function.

The left-hand sides of both equations (16) and (17) exhibit the closure problem in the
same way that equation (15) does, namely by the appearance of new unknown terms
involving combinations of the velocity and concentration fields. But in those equations
there are also new closure problems with the last term on the right-hand side of each
equation. The term in equation (16) represents the dissipation of ¢? through the action
of molecular diffusion; this is an essential process in understanding the behaviour of
¢*(x,t). Except for the mean concentration C(x,t) — the term involving « in equation
(15) can probably be neglected for all practical purposes - molecular processes are
important to the proper understanding of all statistical properties of I'(x,t). Unfortunately

such understanding is not yet available (except for special circumstances not relevant to
atmospheric dispersion).

Further discussion of the points summarized above, and more mathematical details, are
given in Pope (1985) [Prog. Energy Combust. Sci. 11, 119-192] and Chatwin (1989)
(Lecture Series 1989 —03, Turbulent Shear Flows, von Karman Institute for Fluid

Dynamics, Rhode-St—Genese, Belgium; aiso Brunel University Department of Mathematics
and Statistics Technical Report TR/02/891.

2. THE EXPERIMENTAL DETERMINATION OF p(8:x.t)

Given that the theoretical difficulties associated with the full equations governing p(#;x,t)
and the other statistical properties of I'(x,t) have so far proved insuperable, progress must
be made in other ways. This section deals with experimental methods.

Laboratory determinations of p(@;x,t) for statistically stationary ensembles have been
commonly made for about 15 years. Some examples have already been seen in Figur: 6,
and others are shown in Figures 9 and 10. These graphs show many interesting features.
In the first place, it is obvious from Figure 6 that the shape of the graph of p against ¢
varies substantially from place to place in the flow. On the centre-line, the graph has a
single maximum (is unimodal) at a non-zero value of 6, and has approximately the shape
associated with the familiar Normal distribution. (Since concentrations cannot be negative
the distribution cannot be exactly Normal, and the graph has indeed a slight negative
skewness with a tail towards low values of 0.) As one moves away from the centre—line,
the value of p that is measured at ¢ = 0 first becomes non-zero and then increases.
Also the position of the maximum moves towards ¢ = 0, the value of p at this maximum
decreases, and two of the curves have as a consequence two maxima (are bimodal), one
at # = 0. The explanation of these facts is easy to understand, at least qualitatively, and
applies to all pdfs of concentration including those in Figures 9 and 10, and all those that
apply to atmospheric dispersion. As dispersion progresses following release, the turbulent
motion causes more and more clean fluid {i.e. ambient air in atmospheric dispersion) to
mix with the pollutant. This mixing is more “advanced™ at the edges of a cloud or
plume (because the ambient fluid is "nearer"); hence the probability of encountering
clean fluid (corresponding to 0 = 0) is greater at the edges than in the ceatre. This
explanation does not predict that bimodal distributions are inevitable in some parts of the
cloud or plume and, indeed, there are many investigations in which the experimentally
determined curves of p against ¢ are everywhere unimodal. The maximum is at ¢ = 0
near the edges and, in some cases, at all points. In other cases the position of the
maximum switches to a non-zero value of @ at points near enough to the ceatre, and this
value of @ increases as the centre is approached.

Most experimental determinations of p are made by smoothing histograms like those shown
in Figure 10, but other methods have been used. The curves in Figure 6, for example,
were obtained by determining the first eight central momeants of I'(x,t) as functions of x,



and then applying a2 maximum likelihood procedure. Given the enormous number of
readings of I that can now be handled with modern computing techniques, there is a
need for more research into the most efficient way of estimating p, and into the statistical
errors associated with the chosen method.

Another factor in such experimental work is the types of instrument response that can
contaminate experimental readings of I One type is instrument smoothing, occurring
because the input concentration signal is averaged, sometimes over time, sometimes over
volume (and sometimes both). Such averaging is also inevitable because there is very
fine—scale spatial (and temporal} structure within dispersing distributions of pollutant, down
to scales of order 107*m, and no existing instrument can yet resolve such scales with
guaranteed accuracy. The records in Figures 1{c) to 1(f) are, of course, output signals of
concentration that have resulted from such smoothing; even if, as is likely, these records
do not reproduce the input signals with total integrity, they do indicate the presence of
the fine-scale structure. A second type of instrument response is noise arising from a
variety of sources including physical vibrations and electr inics. Such noise is itself
random, and has its own pdf. Even if there were no ins ument smoothing the output
pdf would be the convolution of the input pdf (which is what is required) and the noise
pdf. It is therefore necessary to consider methods of deconvolution; any such method
obviously requires independent knowledge of the noise pdf which can be obtained by
operating the measurement system in the absence of pollutant. The histograms in
Figure 10 are believed to be significantly affected by noise. Unfortunately many
experimenters account for noise in an unsatisfactory way by choosing a threshold value 61
of concentration and assuming that all measured values of concentration below 81 are
really zero.  Leaving aside doubts about the precise choice of 61, which sometimes
appears to be very arbitrary, the whole procedure cannot be acceptaole since it does not
distinguish between true =zero values of concentration (if any - see discussion of
intermittency later) and small non—zero values below 6. This objection has added weight
in those frequent situations where the maximum of the graph of p against 6 is observed
to be at 8 = O (but see the discussion below}. Moreover it allows the inclusion of
measured values of [ above 6y that, because of contamination by noise, are really below
6. All the questions in this paragraph have been investigated for several years by a
teamn at Brunel that includes myself and Dr. Nils Mole. A paper by Mole is to appear
soon in Atmospheric Environment and earlier papers can be obtained by writing to me.

For reasons of cost and convenience, much experimental work whose results are intended
to be relevant to atmospheric dispersion is carried out in wind tunnels, Clearly the value
of the resuits for atmospheric dispersion depends on the accuracy with which salicat
features of the real situation are modelled. Nowadays there is little fundamental difficulty
with reproducing terrain or topography or source characteristics, although each requires
great care and effort by the experimental team. But it is difficult, perhaps impossible, to
mode! certain features of the air flow in the atmosphere especiaily those that involve large
scales of the order of tens of metres, or even kilometres. Such features include the deep
convective mixing associated with unstable atmospheres and, above all, the meandering of
a plume or cloud caused by relatively large-scale horizontal eddies. In a wind tunnel
such motions are inevitably inhibited by the presence of the roof and the side walls. (By
meandering is meant the motion of the plume (or cloud) as a whole, and this
phenomenon is normally responsible for a substantial fraction of the intensity of the
concentration fluctuations, the remainder being due to within-plume structure. See, for
example, Ride (1988) [/. Haz. Mat. 19, 131-137].)

3. INTERMITTENCY

All the concentration records in Figures 1(a) to 1(f) have a characteristic feature, namely
that there are periods of high "activity™ separated by periods of quiescence. This feature

is invariably described as intermittency and measured by the intermittency factor +y(x.t),
defined by

v(x,t) = prob[T(x,t) > 0} . (18)



{This definition is consistent with the use of the symbol 5 in Figure 8.) As will be seen
briefly in the next section, the concepts of intermittency and intermittency factor are
widely used in models of p(#;x,t) for the assessment of air quality.

However Chatwin and Sullivan (1989a) [Phys. Fluids Al, 761-763) and (1989b) [7th
Symposium on Turbulent Shear Flows, Stanford Univ., 29.4.1 ~ 29.4.6] have recently cast
doubt on the validity of the definition in (18). I believe the points we made there are
conceptually so important that I would like to indulge myself by summarising them here.
First of all, for reasons discussed above, the presence of noise and fine—scale spatial

structure has led many experimenters to use a concentration threshold 61, so that they
replace (18) in practice by

¥(x,,t) = prob[["{x,t) > BT] ; (19)

For reasons discussed in the second of our papers cited above, use of (19) gives measured
values of y that must depend significantly on the choice of é1. This is not satisfactory
since 61 is not connected with the real concentrations of the poliutant.

However there is an even more fundamental objection to either (18) or (19). It is
well-known that the presence of molecular diffusion (the term in equation (2) involving x)
ensures that T'(x,t) is everywhere positive, i.e. equation (18) strictly applied gives

y(x,t) =1 (20)
for all x and all t > t, (where t, is the time when dispersion began with a steady
continuous source represented by t, = —w). Thus equation (18) is a meaningless
definition.

These objections are not to the concept of intermittency itself but to the use of the
definition (18) of intermittency factor' to quantify the concept. In fact intermittency is
intended to measure a property of the dispersion of a pollutant that is entirely
independent of the existence of molecular diffusion, but depends only on the statistical
properties of the turbulent velocity field T(x,t) and factors such as the source geometry
and the pollutant release details. In the hypothetical situation in which there is no
molecular diffusion and in which the pollutant has concentration 8, at release, there is no
mechanism for transferring pollutant from one fluid (air) volume to another. This
hypothetical situation is illustrated schematically in Figure 11 and it is clear that then
p(@8;x,t) has the simple form:

P(8IX,t) = ¥ (X,0)8(8-0 ) + [1-y (x,£)]8(8) . (21)

Here +, is the intermittency factor defined by equation (18) — which is sensible when
there is no molecular diffusion — and depends only on the wvelocity field and on source
properties. A consequence of (21) is that the mean concentration C(x,t} is related to 7,
by v,8, = C. But, as already noted, C(x,t) is the one statistical property of the
concentration field unaffected by molecular diffusion. Sullivan and 1 then took the natural
step of proposing a new definition of intermittency factor in real situations with molecular

diffusion that was consistent with this result for the hypothetical situation. This new
definition to replace (18) is:

v(x,t) = C(x,t)/8, . (22)

The practical worth of the ideas in this section awaits further testing.
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4. THE STRUCTURE OF p(0:x,t) IN ATMOSPHERIC DISPERSION

It has been conventional to use the intermittency factor in models for p(é;x,t) for use in
atmospheric dispersion. The model used has been

P(O x,t) = y(x,t)f(8;x,t) + (I-y(x,t)]g(o;x,t) , (23)

where f and g are themselves pdfs with the properties given in equations (4) and (5).
Equation (23) is an obvious generalisation of equation (21) and f is the conditional pdf of
I" when attention is restricted to cases where, using the conveantional (but misguided) ideas
that motivate equation (I18), I'(x,t) is positive; in the same way g(0;x,t) must then be
5(9). ‘

Fortunately, when equation (22) is adopted as a definition oF ¥(x,t), equation (23) is an
€xact representation of p(8:x,t}.  However, while f and g still have the properties in
equations (4) and (5), their interpretations are somewhat different. Thus f(6:x,t) is the
pdf of I'(x,t) conditional on the concentration in the hypotietical situation, identical in all
Tespects except for the absence of moleculzr diffusion, being equal to the source
concentration 9,; it follows, for example, that

0

Colx,t) = I 8f(8;x,t)de |, {24)
0

is the ensemble mean concentration over the fluid (air) particles that emanate from the
source. The function g(0;x,t) is the conditional pdf when the hypothetical concentration is
known to be zero; the presence of molecular diffusion in the real situation means that
it can no longer be exactly s(@).

Irresvective of the invalidity of the definition of ¥ in equation (18), there can be no
doubt of the potential practical utility of equation (23). Much attention has been focussed
on the ability of a simple structural form for f(6;x,t) to model adequately hazards arising
in practice. By the term "simple” is meant a pdf in which only a few parameters need
to be specified, e.g. two or three. Such parameters include, for example, the
(conditional) mean and variance. Among the forms for f that have been, and are being,
investigated are the lognormal, the truncated (or clipped) Normal and the beta. Details
of some recent investigations can be found in many of the references cited in these
lectures but there is no sign yet of a consensus. I would hope to be able to discuss
some of the issues in this research in conjunction with my lectures.

I would like to thank Dr. Tirabassi for inviting me to give these lectures, and ICTP for
arranging financial support. The research of myself and my colleagues in the areas of
turbulent diffusion and atmospheric dispersion has been sponsored by many organisations
and 1 would particularly like to acknowledge the UX Ministry of Defence, the Common
Market, the Natural Science and Engineering Research Council of Canada and NATO.
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