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Chapter 14

OBSERVING AND MODELLING THE
PLANETARY BOUNDARY LAYER

Seren E. Larsen

Department of Meteorology and Wind Frergy
Riss National Laboratory

Denmark

14.% Introduction

Characteristics of the atmospheric planetary boundary layer (PBL) are impertant for the atmospheric
energy and water cycles because the fluxes of momentum, heat, and water vapour between the
atmosphere and the surfaces of the earth all pass through the PBL, being carried and modified by
mixing processes here. Since these mixing processes mostly owe their efficiency to the mechanisms
of boundary layer turbulence, a proper quantitative description of the turbulence processes becomes
essential for a satisfying description of the fluxes between the surface and the atmosphere.

Estimating the water and energy fluxes through the atmospheric boundary layers necessitates that
almost all types of the flows, that occur there, must be considered There are very few combinations
of characteristic boundary layer conditions that are not of significant importance for the flux of

energy and water between the surface and the atmosphere, at least for some parts of the globe.

14.2 Simple pictures and some basic statistical tools

Fluxes across the planetary boundary layer, PBL, are dominated by turbulent motion. Many pages
have been filled in an effort to define turbulence. Here we thall just notice that motions of systems,
that can be described by the nonlinear fluid equations, tend to show strongly varying stochastic
components, the turbulence, as well as more smooth ard predictabuc wuaracteristics. In the PBL
the wind speed as well as temperature and humidity show this stochastic bebavior on all spatial and
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‘ 100 days 8 hours

10 minutes

Figure 14.1: Wind speed measured 30 m above flat homogeneous terrain in Denmark from Troen and
FPetersen (1989). The data were obtained from a one-year time series recorded with 16-Hz resolution.
Each greph shows the measured wind speed over the time period indicated. The number of data points
in cach greph is 1200, each averaged over 1/1200 of the time period indicated. The vertical azis is
wind speed, 0-20 ms™'.

temporal scales of variation. In Figure 14.1 this is illustrated by a measured time series of the wind
speed observed through different time windows.

We shall mostly consider fluctuations on time scales of the order of and less than one hour, becauss

the turbulence processes here carry most of the vertical fluxes, we will try to estimate.

On these time scales the main mechanism for producing turbulence is the vertical gradient of the mean
wind. In Figure 14.2 we show typical vertical variations of wind speed, humidity, and temperature
between their surface values and values at the top and above the PBL. Temperature and humidity
can both increase and decrease with height depending on whether their surface valuss or values
in the free atmosphere are the larger. However, the wind speed will always increase with height
from zero at the ground to its value in the free atmosphere just above the PBL. This vertical wind
shear gives rise to overturning of the air, producing the turbulence (Tennekes and Lumley,1982).
This provides a formidable merhanism for carrying the vertical fluxes compared to the molecujar
transport mechanism that would have been an alternative. For example, a temperature gradient of
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2 K between the surface and 10 meter height with a wind speed at § ms-
of about 0.5 mKs=' If for the same situation the flux had to be carried b
the result would be 4x 10~ mK s~ only.

L .
gives rise 1o a heat flux

y molecutar diffusion only,

The temperature structure of the PBL strongly inhuences the
influenc- on the density of the air. If the air is warmer and th
will enhance the production;

turbulence production through its
. ereby lighter close to the ground, it
if it is cooler at the ground the 1 i ,

¢ 0n; production will be reduced. To a lesser
extent the humidity has simnilar, although smaller effects because also admixture of t

) he wat
changes the density of the air. © Water vapour

Inz

G 4

»
—

0.7,4

Figure 14.2: Characteristic height variation (profiles] of the mean values of the wind speed, 4

temperature, T, and humidity , q from the ground to the top of the PBL. indicated by h. Also shoun
by the arrows on the u-profile is the overturning of the flow induced by the vertical velocity gradient
The profiles are shown for the following characteristic stuations: {a} thermally unstable '
sunay day, (b) thermally stable, o
overcast situgtion.

a
€.9. a clear sky night, and, {e) thermally neutral, e.g. a high-unnd

Based on r.h.e above discussion we can now specify the planetary boundary layer as being the layer
through which the atmospheric variables change between their

values in th
their values at the surface, in the free atmosphete and

the transition being mostly controlled by turbulent motion and mixing.
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in Figure 14.2 the turbulence production is envisioned as a swirling motion induced by the shear.
This whorl constitutes a volume of localized vorticity which we shall denote an eddy. This picture
of turbulence, as a soup of intertwining spaghetti-like eddies, has been very useful in the study of
turbulence in spite of its extreme simplicity. Each eddy can be associated with a size, or spatial
scale, and a liletime. When the eddies have been produced they will remain coherent for some time,
crealing their own smaller shear regions. By the same process a3 for the mean shear these both
erode the larger eddies. due to the associated mixing, and create smaller eddies. This mechanism
repeats itsel{ transferring energy to smaller and smaller eddies until they become small enough for

the molecular viscosity to dissipale their motion into heat.

In view of the above discussion we shall next censider a few of the statistical Lools used 1o describe

the turbulence

As the simplest we break down the signal into its mean value and its fluctuating part, e.g. for the

variable 1

r=1+Irf (14-1}

where we use an overbar 1o signify the mean value while the symbol ’ indicates the fiuctuating part.
This expansion 1s called the Revnolds expansion. Note that it implies 7' = 0. The averaging procesaes
used to obtain 7 depend on the type of signal available and the purpose of averaging. In statistics
one often talks about ensemble average over an ensemble of realizations of the signal z. This is
the type of averaging used for most theoretical mamipulations. In practice one will often use time
or space averages. either because the signais available are a function of these parameters as e.g for
measutements of time series [rom melecrological Lowers, or because of the objectives of the study as
for example to obtain the area averages often being the goal of hydrological studies. The averaging
procedures employed are limited by the signals available but are also a matter of choice. As an
example, we can take the signal in Figure 14.1 that would lend itself to time averaging, since it is a

time signal, but also to ensemble averaging using ensembles of data from similar days or hours.

Typical height variation of mean quantities as u.§, and T is illustrated in Figure 14.2 and the

associated discussion. To furthe study the behavior of ', the simplest measures applicable are:

the variance = 77

the covariance = 7'y (14.2)
where y is another signal similar Lo 7

The variance is used to describe the fluctuation intensity of z, while T can be used to study the
relation between the two signals. Having considered the variances and covariances one can consider
higher-order moments, and the distribution functions of the signals to study different aspects of their
behavior, However, since it will not be much used here, we shall proceed to the tools used to identify

the scales of variation.

Here the Fourier transform is often used to reveal the relevant scales. To analyse a time series like

the one used in Figure 14.1, it is convenient to use the following Fourier expansion:
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o) = f dZ, (w) expliwt) (14.3)

where z'(t) is assumed o be a statistically stationary function of time.
applied in Eq. 14.3 is the Fourier-Stieitje expansion that cag be
Fourier expanded in the standard sense, sinee it is not integrable (Lumley and Panofsky, 1964). The
Fourier modes are here denated dZ({w) and are stochastic functions as weil, being a function of the
frequency w(rad./sec]. Squaring and averaging, one finds from Eq. 14.3 that

The Fourier expansion

used even when z{t) cannot be

= f So(wide (14.4)

where 5.(w) is denoted the power density spectrum, or shorter simply the power spectrum of the

z(t}, and it is seen to describe the contribution from 1he different frequeniies 1o the vaciance of it

This illustrates how the Fourier transform can be used Lo identily

o anportant scales of vaniation,
in this case the frequency scales. We present in Figure 14.3 the pawer specttum of the one-year wind
speed record used in Figure 14.1. In Figure i4.3 the spectrum is plotted versus the logarithm of

the frequency because of the many decades of {requency scales of

To obtain a proper impression of the contributions of the different frequency decades to the total
variance, the spectrum is multiplied by the frequency, f|H 2] because

interest in geophysical time series,

wSwid(In{w)) = fS(Ndn{ )} = Siwide (14.5)

The strong intensity of the spectrum between the annual and the diurnal frequencies comes from

the motion of the weather systems ac-oss Denmark. Therefore, it is different in other parts of the

earth with different climatology as are of course the intensities of the diurnal and annual cycles.
The contribution from the boundary layer turbulence described
bump from about 1 hour and out. Around 1 hour js the farmuus gap between what in relation to the
boundary layer turbulence can be considered as Lhe mean flow and the turbulence. This is mainly

produced by the vertical shear in the mean flow. as discussed above.

above is represented by the small

There have been some discussion about the existence of this gap. This is because some convection
clouds actually create eddies with about the time scale of the gap. see Fig. 144, and also since the

spectra so far used to illustrate its existence often have been composited from different time series
used to compute different decades of the total spectrum. From the point of view of modelling it is
advantageous to use grid sizes with frequency and spatial scales

within the spectral gap, because
the absence of intensity here shows that only few independent p

focesses create varability in this
scale region. This in turn means that it becomes simpler to decide if a particular process must be
parameterized or resolved explicitely by the model.

As stated above the spatial variability is most important for the .. .-ture of the boundary layer
turbulence. Therefore, we shall finish this section by considering the wave-number spectrum and the
quite general insight that can be drawn [rom the form of this spectrui ;.

370 S. Larsen

Month  Day Minute

Year Hour Second

Figure 14.3  The power specirum of the one-year trme series of wind speed versus the logarithm of
the frequency. presented as the corresponding time periods {Courtney and Troen, 1990; Troen and
Prtersen. 1989

For a signal z{1,1), being a stochast:c statistically stationary and homogenous function of both time
and the three spatial coordinates, r. the spatial Fourier transform correspending to Eq. 14.3 can be

written:

-

Sy = // /dZ,{z,k)exp(ikrr) (14.6)

where k is now the wave-number veetar  As previousiy we square the equation to obtain
S:(k)dk (14.7)

o o

]

IAZ/‘/
b

which shows how the variance distributes in the three-dimensional wave number space. Note that

8

the time dependency disappears due to the stationarity assumption. For boundary-layer turbulence,
strict use of Eq. 14.7 1s not possible because even for the most homogeneous of all boundary layers
there must be inhomogeneity in the vertical direction by the definition of a boundary l.ayer. However,
recall the picture of the eddies being created by mean shear and cascading the energy to smaller and
smaller scales. We now assume that the spectral intensity at wave number k is an expression of
the contribution to the total variance from eddies with linear size scale, £ ~ k~'. Furthermore, we
assume that a range in k (or £) exists where eddies have lost their mernory about the otientation of
the mean shear, being important only for the largest eddies, but still do not directly feel the effect of
dissipation. For these scales the flow can be considered not only homogeneous in all directions, but
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also isotropic. The latter means that the spectrum is only a function of the scalar wave number. k&
and the final dissipation of the variance of z. From this very siiniple idea one obtain the well known
-5/3-law spectra (e.g. Tennekes and Lumley, 1982):

Su(k) = a, 6?33 (14.8)

for velocity where ¢ symbolizes the dissipation of velacity Ructuations by mo

tecular viscocity. For
any of the scalars, z, like temperature, T, humidity, ¢ and others, the expressi :

ons become

So(k) = a,e7 AN g8 i14.9)

where N is the dissipation of scalar z, and the appearance of ¢ reflec. . the dominating importance
of the velocity turbulence. The Auctuations of Lhe scalars are vonsidered to be the result of this
carrying along as passive tracers by the air motion.

The spectral formulations in Eqs. 14.3 and 14.9 are call

ed the inertial forms, and the empirical
coefficients in front, a, and a,,

the Kolmogorov constants for velocity and scalars,
There are strong arguments and some empirical evidence that ar is the same for all

(Hill, 1989).

respectively.

passive scalars

When the spectral forms above apply, it is seen that the turbylence intensity for a given scale is

characterised by its scale ({ ~ k=*) and the dissipations only

The relation between the spatial structure of the turbulence and the time vanation of signals measured

by stationary sensors are usuaily handied by appeal to Taylor's hypothesis of frozen turbulence. This

hypothesis states that the temporal evolution seen by the sensor in average is due to the spatial

variation of the turbulence field which is advected past the sensor by the mean wind, while the

spatial field itsell shows comparatively little variatian. This means U 1 an eddy of size £ will give

rise to a variation in the time signal of a stationary probe over a tine cqual to £/% where 4 is the

mean speed. Translated to the language of spectra this transforms to the following:

w=2rf = ik
kiSi(k)

]

wSlw) = fS() (14.10}

where the transformation characteristics of the spectral density function have been utilized and where

k, is the component of the k-vector along the mean wind direction. The Si-spectrum is found by
integrating S{k) over the other two k-components:

Sy(ky) = [ [ S(k)dkqdks (14.11)

—a0 —oc
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SCALES OF ATMOSPHERIC MOTIONS.
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Figure 14.4. Time and spatial scales for the processes wnfluencing the flow in the atmespheric
boundary loyer (Busch et ol 1579).

The spectral formuiations and the Taylors hypothesis are based on quite simple ideas mainly of
statistical nature and have been found to be so broadly valid that they are extremely useful in both
experimental and modelting work. The practical limitations to the use of Taylor's hypothesis show
wher there is 100 much vanation in the velocity relative to the mean flow, either due to turbulence
or due to large vertical wind shear. This can influence the very low frequency, large-scale turbulence
{Powell and Elderkin, 1974}, and small-scale high frequency measurements (Wyngaard and Clifford,
1977, Mizuno and Panofsky, 1575). The limitation to the validity of the inertial subrange forms of
the spectra is found when the assumption behind their validity breaks down, in the high-frequency
end by the direct influence of the dissipation and in the low-frequency end through the direct showing
of the production scales and the nearness of the surface

Figure 14.4 presents a more general, but also more qualitative description of the spatial and temporal
scales for the different processes influencing the flow in the atmospheric boundary layer. The figure
directly shows the scale regions for the inertial subrange, while Taylor’s hypothesis usually is used
for time scales between 0.01 s and 1 h if the wind speed is not too small.
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14.3 Basic equations, problems, and closures

The equation of state is described by the Ideal Gas Law-

p=p(Ro/M)T (1412)

where T is the temperature, p the density, M the molecular weight of the air and Ry the universal
gas constant. The atmosphere is a mixture of many different constituents. We shall concentrate o
the most important gases, the dry air and the vater vapor. The water vapour and the dry air each
exerts their partial pressure according to Eq. 14.12, thus:

P = pa(Ro/MA)T + p.( Ro/Mw)T (14.13)

where py and p,, are the densities for the dry air and the water vapour, respectively.

Rearranging Eq. 14.13 we obtain

p=pR4T, (14.14)

where Ry is the gas constant for dry air, Ry = 287 JK‘kg™' and Tuisa {the) virtual temperature,
i.e. the temperature to be used in connection with the £33 law to mumic the influence of water vapour
if one wants {0 use the gas constant for dry air. It 1a defined by

T, =T(1 +0.61¢) (14.15)

where ¢ = p,,/p is the mixing ratio of water vapour in the aic. The numerical coefficient derives from
the ratio between the mole weights of dry air and waler vapour.

Note that we have neglected the influence of the liquid water on the air density. This means that
we cannot handle saturated air and thereby the boundary layer clouds that for some conditions can
be quite important. Our excuse is that inclusion of the iquid water does complicate the equations
quite a bit and that the role of the clouds is treated elsewhere in this book.

Having considered the influence of humidity we now turn to the height vanation of the pressure,
and introduce the potential temperature, 4, defined as the temperature an air parcel would attain
if brought {rom its height, z, to some reference level usually taken at the sea surface. To a good
approximation the vertical pressure distribution is controlled by the hydrostatic equation:

Bpjdz = - pg (14.16)

where g is the acceleration due to gravity. Since the pressure decreases with height, rising air
patcels expand and sinking parcels compress. If the resulling vertical mixing takes place without

Tr o —— e e a L
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heat exchange, this equation can be combined with the first law of thermodynamics for adiabatic
processes, dp/dT = pc, Lo yield the vertical temperature varistion that would be in equilibrium with
such a mixing. This gradient is normally called the adiabatic lapse rate for dry air and is denoted T

and is found to be

- 8T/3z =T = g/c, ~ 0.01K/m (14.17)

Combining with the gas law, Equation 14.13, we can now solve the potential temperature at reference

pressure, py

6/T = (po/p)"/r (14.18)

and

86)0: = (879 + T)8/T (1419

If we use the surface as the reference level, then within the boundary layer p ~ pp and 8 ~ T. The

vertical variation of @ is therefore given by

8z)=Ti(z)+ Tz {14.20)

Note that humidity has not been mentioned in this discussion meaning that R and ¢, both depend on
the water vapour mixing ratio, g and its height variation. Strictly speaking, therefore, the integration
for humid air leading to Eq. 14.18 cannot be carried out. However, since R and ¢, roughly vary the
same way with g, their ratio is not very sensitive and one tends to use Eq. 14.20 for most boundary
layer work except of course when clouds become involved. Strictly speaking however, I is seen to

depend on g, compare Eq. 14.17 also for non-saturated air.

Neglecting the humidity influence on R/c, in Eq. 14 18, we can define a virtual potential temperature
as

.= 81+ 061q) {14.21)

corresponding to equation Eq 14.15.

Next we proceed to the continuity equation:

=+ E;pu,:() (14.22)

where summation over repeated indices is understood here and throughout the text. The coordinate
system will be Cartesian with z,, Z3,23 as the coordinates with the corresponding velocities u;, ua, u3.
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Within boundary layer meteorology the continuity equation is normally used in the incompressible
form:

&
a—u’ =0 (14.23)
T,

As seen this form corresponds to Lhe assumption that the relative variations in density are much
smaller than the variations in velocity and actually take some profound arguments about the relevant
scales of variations for the variables (Businger, 1982). This will mainty be true for flows in the

atmospheric boundary tayer with scale lengths less than 10 km.

The conservation of momentum is normally used in the following form for the velocity component ¢
in the atmospheric boundary layer:

32

%ﬁ-u,%:—lj,‘*f(.(.,lu‘,—}l—)t%}:‘FV‘;—;l (14.24)
where f. is the Coriolis parameter acconutiug for the motion to take place on a rotating planet. It is
given as f. = 20 sin ¢ where Q@ is the angular frequency of the earth's rotation and @ is the latitude.
At middle latitude f. s of the order 10757, 4, is zero for 1 # 3 and equal ta the acceleration of
gravity for i = 3. ¢, is the socalled alternating unit tensor bemng +1 if the subscripts are cyclic,
-1 if not, and zero if two subscripts are equal. The kinematic viscocity is denoted v, and as before
p is pressure and g is the density, The equation shown in 14.24 has already been fairly strongly
simplified from the basic Navier-Stokes equation in a rotating coordinate system. Equation 14.23
has been used repeatedly, we have neglected the effect of the rotation i the vertical component as
well as other simplifications. [t is easily recognized as Newton's second law for an air parcel: the
right-hand side is the acceleration, while the left-hand side in the order of appearance 1s the forcing
due to gravity, the effect of the rotaling coordinate system, the forcing due to the pressure gradient,
and the friction due to molecular forces.

At the same level of approximation as in Eq. 14.24 we can write the conservation of heat as

iMi o a8

mﬁ—rl,E:kTé;?—LEfpr_p {14.23]
where 8 is the potential temperature defined in Eq. 14.20. k7 is the thermal diffusivity, £ is the
production of water vapour from water drops in the air, and L is the heat of evaporation. Helative
to Eq. 14.24, Eq. 14.25 is seen Lo be vastly simpler, missing both the pressure and the Coriolis
term. It does, however, couple Lo the budget for liquid water and humidity through the last term,
both through £ and through the fact that g and ¢, pertain to the humid air. To further illustrate
this coupling, we present below the budgets for the mixing ratios of Tiquid water, q,, and for water
vapour, q:

By dg &g
o g _ 98
ot i dz, * g} +El»
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dqr . Bq _ - 14.26
—a—t—-i-u,azJ = Sule—Elp (14.26)

where k, is the diffusivity of water vapour, £ is the vapour production from evaporation, and 5, is
additional local sources of liquid water by convergence of, e.g. spray produced from a water surface
of rain drops falling down through the volume.

Al of the equalions are seen to possess one basic complication: they are nonlinear due io the
advection term on the Jeft-hand side. This nonlinearity is 2 general feature of fluid equation and is

the origin of most of the complications one faces when trying to use these equations.

In section 14.2 the meaning of average values were discussed. As pointed out there, the ensemble
averages were casiesl to use when manipulating the equations. Based on the governing equations
established above, we shall now establish the equations for the mean quantities. This is done by
expanding all the variables in Eq. 14.23 through Eq. 14.26 into their mean values and fluctuating
part, corresponding to Fq. 14.1. Inserting these expansions into the equation, averaging yields the
equations for the mean quantities. When averaging the equations, all the fluctuasing parameters
will disappear except when entening nonhnear. The two important types of nonlinearity are the
ad-ection term on the nght-hand side of all the equabions and those invoiving the air density, p.
Before generating the mean equations we shall therefore apply the Boussinesq approximation to
remove the last of these nonlinearities. This approximation means letting p//p =~ 0, except for the
vertical component of the momentum equation, because here the mean pressure gradient and the
mean density Limes gravity approximately cancel each other through the hydrostatic equation 14.16.

From Eq. 14.24 with : = 3, we isolate the pressure and the gravity term and multiply 7 as:

‘o é ; . ap
nll g — ~—— ~ - — .
Ml + e fpje arg[w—pj A v (14.27)

The equation of state (14.14} can be expanded for small variations in the parameters as:

P: l'" Tl paTl
Lo 2 x 14.
Foo# * T. " Fi (14.28)

Considerations of the order of magnitude of the different terms, e.g. Businger (1982) and Stull (1988),

yield:
o T, & ¥
w;:?:gng (14.29)

where the last step uses the approximative relations between between 8, and T, within the boundary
layer, compare Eq. 14.19 through Eq. 14.21.

Based on this discussion, we can now replace p by 5 everywhere in Eq. 14.24 through Eq. 14.26 and
rewrite the momentum equation as
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B, dup 8\ 19p P,
E--i—u,-g’ = =g, (I—F'-) —"_-'-a?i—q,';f,u,‘-‘-va—:} (14.30)

Establishing the conditions for the validity of the approximations used above is not straightforward. It
takes some pretty profound discussions of the scale of variability for the various termain the equation.
It is usually described as the shallow motion approximation or a somewhat more restrictictive shallow
convection approximation (Mahrt,1986). It will mastly be fulfilled for scales of variability contained
vertically within the boundary layer and horizontally within 15 km.

We now revert to the equations of the mean flow to obtain {Busch, 1973):

a) the continuity equation:

i o
%= {14.31)
b) the momentum equation:
aa; 1 9p
L3t + 8 — = —qi — f e
o,/ +u,311 ¢ — foeyy 53z
FE 8
Fraby (uiw) (14.32)
c) the heat or temperature equation:
5 i 0 LE a8
8/ ot F— = = ~— ~ —{u'& .
98/o H‘-"ax,- haz} Pt (w#) (14.33)
d) the equation for the water vapour mixing ratio:
8§ &3 E a8 —
gk B S B AL A b g 4.34
Oq¢/0t + T; Bz, J BIE + i oz, (u,q) { )

Equations 3.2] through 3.23 show the socalled closure problem, i.e. the equations to derive the mean
flow contain terma involving the statistics of the fluctuating components as well. Here %m, 3‘1—,;3?
and 3%‘-;:? Physically these terms are gradients of turbulent fluxes of the different parameters. The
covariance terms involving a velocity component describe Aluxes as can be seeq by considering the
consequences for the flux of the z-parameter in the j-direction, of w2 having a positive, negative or
zero value. To close the set of equations, one must cither prescribe the higher-order terms or relate

them to the mean parameters already in the equations. One taiks about closures of different order.

In zero-order closure the terms are prescribed by appeal to physical hypotheses. An exampie is the
different similarity formulationa to be described later.
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ln first-order closure the flux terms are characterized through the local gradient and a furbulent
diffusion coefficient, normally dencted A'. For example:

pr] .3
W = Kag
o~ K L Wil 14.35
uiug K, (63, + 831) (14.35)

The K-diffusion concept is borrowed from the molecular gas theory Lthat has given inspiration to how
le determine K as well. 1n the molecular theory the diffusivity, k is found from expressions like (e.g.
Chapman and Cowling, 1970):

k ~ { mean speed of the molecules ) - { {ree path between molecular encounters).

Foliowing Lhis 1dea we need a length and velocity scale for the turbulence to build a diffusivity.
This is normally done by some combination of physical hypotheses and additional equations that
can be used to determine these scales. The first eflorts concentrated on the physical hyphotheses
to prescribe K throughout the boundary laver. As an example of this approach can be mentioned
the work of Businger and Araya (1974}, When additional equations are carried to determine K,
the simplest method used is to delermine the equation for the variance of the turbulence velocity,
Normally, this is called the energy equation hecause of the relation between the turbulence velocity
and the turbulent kinetic energy. The standard deviation is then used as the velocity scale, and the
length scale is derived using this velocity scale and the dissipation of turbulence energy, see Eq. 14.8,
derived from a specially derived equation, see e.g. Arpaci and Larsen, 1984. This type of closure is
normally called the A" — ¢ closure and has been exiensively used in connection with fluid modelling.

Strictly speaking, the I — ¢ closure is a type of higher-order closure because an equation for a second-
order moment, the turbulence energy, is introduced to determine the diffusivity used to relate the
covatiance terms (second-arder moments} in Eq. 14.32 througl: Eq. 14.34. The K - ¢ closure is often
referred to as one and a half-order closure. A more strict type of higher-order closure is obtained by
deriving equations for the covariaices E’JT:, W and u'q.

The equations for the fluctuating quantities can be generated by subtracting the equations for the
mean flow, Eq. 14 32 through Eq. 14.34 from the hasic equations, Eq. 14.24 through Eq. 14.26.
To generate the equation for for a covariance say, R, we produce the equation for each of the
fluxtuating quantities and note that

7 ;| ]
é—;u:u; = u -‘-3-!-1:: +u Eu; (14.36)

When producing the equations for the second-order moments so as to solve the equations for the
mean flow, one will note that the tquations generated contain third-order moments meaning that

the closure problem will not go away. For these third order moments one can continue and generate
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equations for the higher order moments as previously, or one can close with a diffusivity hypothesis,
e.g.

J— : JENE S
F = K (5; T+ Eu'ﬂ') (14.37)

Solving the equations for both the mean values and the second-arder moments has become quite a
well-established technique, while including also the third-order equations is more rarely done. This
is because of the difficulty in handling the number of equation, but also because many of the terms
that appear in the higher-order equations are very difficuit to relate to conceptually and even more
uncertain to measure, see e.g. Wyngaard (1973, 1982).

We can summarize the disadvantages and advantages by the trying to close the equations by gener-
ating equations for the higher-order moments.

Disadvantages:

1. An ever increasing number of equations with associated bound v and initial conditions.

2. Eventually, one falls back on using the local K-diflusivity closure at the final order of equations.

As stated above, the K-diffusivity for turbulence is an useful hyphothesis that is known not
always to work, and it does not become more valid by being applied rather to higher.order
moments than to second-order moments. Discussions and tests of validity just become more

intransparent and difficult.

Advantages:

1. As results, one often wants the higher-order moments, e.g. all of the turbulence fluxes of

momentum, heat, and water vapour are second-order moments.

2. By applying the K-diffusivity closure at ever higher-order maments, one might hope for larger
generality because the higher-order moments get more and more determined by the structure
of the small scale turbulence. Recall the simple picture in section ? where the eddies gradually
lose the memory of how they are produced when moving Lo smatler scales.

3. In spite of the principal criticisms that can be raised against the higher-order closure, it is a
rational approach to solving the equations of mation that in extensive literature on the method

and its results has shown its value.

Some of the shortcomings of the local closures have long been well-known: during the afterncon
unstable boundary layer, the potential temperature can often be constant with beight aver the major
part of the boundary layer. Under such conditions the verticai iiear flux can be very strong, and
therefore ubviously does not follow a parameterization like Eq. 14.35. Correspondingly, it is well-
known within air pollution meteorology that in its inital phase, the dispersion of a plume from a
point source ia inconsistent with the assumption of a diffusivity L. g o function of flow conditions
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only. It would have to be a function of the distance from the source as well (Troen et al, 1980).
This knowledge has led to efforts of repairing or replacing the local closure. In one approach, i.e.
the transient turbulence theory (Stull,1988), the locality of the closure is given up, and the system
simply specifies an exchange between non-neighbour air parcels according to certain rules. Another
approach postulates that the diffusivity should be defined in Fourier space so that a diffusivity, K(k),
corresponds to each eddy-size or wave number, see Berkowicz and Prahm (1979), Troen et al (1980).
Both systems work quite well with numerical codes and can be used when mean profiles of parameters
are such that local closure gives wrong results. As the only caution one could say that they do not
obviously give correct answers under all conditions. There is less empirical knowledge on how they

perform in different situations than for the other closure systems that have been used much more
extensively.

Finally, we turn to a modelling principle thal is denoted Large Eddy Simulation or LES. Here the
ensemble average, being the basic Lype of average when manipulating the equations above, is dropped
for & spatial average more precisely defined. This has some advantages and some disadvantages as
will be seen below.

The decomposition of signals is formally defined in the same way as in Eq. 14.1:

I = {1} -+ I’ (1438)

where, however, the average value {r} is now defined through some kind of spatial average over a

volume that will typical correspond to a grid size, see e.g. Wyngaard (1982) :

o oo oo

(2] = j / /G(r-r')z(r')dr’ (14.39)

—-0g —o0 —no

The equations for the average, {-]. fiew look very much like those of Eq. 14.31 through Eq. 14.34,
but the second-order moments are now defined by:

v ) = {lr = {z} )y - {y})} {14.40}

with 2 closure equation of {uy’'} = K,, %ifi

The main advantage of the LES modelling is that the scales of motion involved in {z} and 2’ are
much better defined than the normal Reynolds decomposition, where in principle all scales influence
2. The LES has a number of mathematical complexities, however. Both {z} and z' are now
stochastic functions, meaning that also K., 1s stochastic. A further estimation of {z'y'} is more
complex because {z} and 7' are now correlated through Eq. 14.36. In spite of these difficulties the
techniques is becoming more and more used. This is because this model type can directly output
the time and spatial variation of the larger eddies, those that are resolved by the model, while the

models operating with ensemble averages by their nature can produce only ensemble averages of the
different moments.
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14.4 Simple Boundary Layers

In the former sessions we have generally used the coordinate system z,, 2y, zy with associated wind
speeds ui,uy, uy. The only specifications of these coordinate systems have been that the 3-axis has
been vertical. As we move down into simple boundary layers we shall more and more switch to a
z,y, 7 coordinate system with associated wind speeds u, v, w. Here, z is along the mean wind close
to the surface, meaning that u is the only wind component with a mean value; z is vertical and y is
the other horizontal direction perpendicular to .

To simplify the equations for the mean flow, Eq, 14.31 through Eq. 14.34, we define the geostrophic
wind.

1 dp L dp
= mam — Vo o Z
'y 75 3y f) +fc15 E (14.41)

Note that U, is the component of the g~ostrophic wind along the mean wind direction at the surface.
Inserting Eq. 14.5 into Eq. 14.29 through Eq. 1432 and recalling that in this approximation
B¢ 2= 3p/3z, the equations for the mean flow come out as:

w = {

da  __da . o

W 3 - —f{Vy - 0) - F

I au g —

;3-1- +U_"'a? = fc(Uy —ﬁ) - g“;t" (1442)
r pl

a6 _ % N3 —

a*—u,-az = —LE,/pc,—a—I)u)ﬂ

g5 0 o
A =i E/P-g;u,q

whete we have neglected the molecular terms.

Equation Eq. 14.43 shows that if the left-hand sides are constant, then the two scalars will vary
linearly with height, provided of course that we can neglect the £-termus.

The next step in simplifications comes when the left-hand side of Eq. 14.43 is assumed to be
zero. In physical terms this corresponds to calling the flow statistically stationary and horizontally
homogeneous. Eq. 14.43 now takes the form:

W = const. W = const.
o G
—fe(Vy-¥) - v =0 (14.43)

- 0—— _
_f,(U,-u)——EEvuf =0
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Figure 14.5: The variation of the wind with height, taken from Tennckes (1982).

The two equations in Eq. 14.44 can be closed with the type of K-diffusivity already discussed above,
and one obtains = spiral-like variation of the wind with height as shown in Figure 14.5. It is often
calied the Ekman spiral, after the first proposer of this solution (Ekman, 1905).

The exact form of the spiral in Figure 14.5 will depend of course on the details of the closure used,
iy practice, however, one will often/mostly see a large deviation from the figure because the real
world does not satisfy the stationanty and horizontal homogeneity assumption. Often one will find
that horizontal temperature gradients induce vertical changes in the geostrophic wind, because under
such condition. the hydrostatic equation (14.16) can not in generally be fulfilied with one constant
A. Also the curvatute of the isobars. instationarity, and inhomogensity wil] introduce changes in the
equations, see e.g. Hasse {1976).

For the height, z, approaching zero, v goes Lo zero {because by definition only u can have a mean
component close to the ground). From Eq. 14 .44 we therefore conclude that:

o = — [V, o wut = v - [, V2
v j8z = f (U, - ulz)} (14.44)

where subscript 0 indicates surface value.

A closer inspection of the scales involved and the fact that the friction very close to the surface must

be in the opposite direction of the mean speed implies that close to the surface we have:

s 0 (14.45)

where we have defined the surface stress, 75, and the associated scale velocity u,.

From the above we conclude that for stationary and horizontally homogeneous situations these exist
close to the surface a layer, where also the turning of the wind and the change of stress with height can
be neglected. The charactestics of this layer can be further illuminated by considering the equations



OBSERVING AND MODELLING THE PLANETARY BOUNDARY LAYER 383

fordtl; variances of the turbulent variations. Specificaily the turbulent kinetic energy, & = 1u'%, 7
an . i i ances T

c:d In- section J we have already discussed how to prodyce equations for the covarianc;s 'The
procedure is the same for the variances, just a bit simpler, because more terms can be contracted:

For & we start with (3.19), and obtain after some manipulation:

J¢ e —_ —_
b= — +u, — = o Fa i ! ,
Gt 7z, w'w' 0a/dz + §:w9u -3 (w’ (e+ p_:p;) —e (14.46)

7 and 77 equati : -
The 67 and ¢7 equations derive more easily from Fgs. 14.25 and 14.26, neglecting the £-terms

W _am o,
= ‘E + 4 6_1‘, = —-2w'ddid: — *_W — 2Ny
997 __ag7 — 3
= — 4 U, — = =aw'a/d- rys Y.
TR Sqeda[ds — gt 2N, 14471

Here, ¢, ¥y and N, are the dissipations we have already met 10 section 4.2
define from the equations as:

. and which we can now

E LA g\
= 20} N =k T TN i)
€ V(BI)) , Ve “T(?:J) cVp = ‘w(al) {14.48)

In Eqa. 14.46 and 14.47 the terms on the right-hand side reflect the different sources and sinks for the
turbulence. The first terms deacribe the production, P, of turbulent fluctuations through interaction
between the turbulence and the shear of the mean flow. Dependent an

tts sign, the second term, B,

in the equation for the kinetic energy describes the production or destruction of turbulent kinetic

energy due to buoyancy. The last term in all of the equations has already been described in Eq

14.48 as the dissipation of turbulent variations by malecular forces. Likewise, in all of the equations

the last but one terms are called the divergence terms, D. They can be shown to redistribute the

energy between different components of u, as weil as hetween different points in space

Considerations of Eq. 14.45 through Eq. 14.47 have led to the idea that to describe rhe flow in th
near-surface layer, one need.v: only to know the stress, heat flux, and water vapour flux together wit.;
the l.moymcy parameter g/f. and measuring height. = Here, the latter is to account for the vertical
gradients appearing in the equations. In the Monin-Obukhov scaling system these quantities have

been combined to a number of scales that together describe the flow in the surface layer They are:

— 12 —_
s = (—wp) 8. = —Fuwp/u.
4 = ~qup/u.  g/d, and : (14.49)

Note, that w’af,.: & + 0.610wF, according to Eq. 14.21, 8,. is defined accordingly, Some of these
scales are combined to the stability scale, the Manin-Obuckov stability length, given by:

184 S. Larsen

L= +fiu3f6.,. {14.50)
gK

where « is the socalled von Karman constant that will jater be introduced more rationally. As seen
from Eq. 14.46 L can be considered as a ratio between the mechanical turbulence production and
the buoyancy force. If the heat flux is positive. as on & sunny day with a warm suface, L is negative,
and the situation is called unstable. On the o'her hand, if the heat flux is downward, as on a clear
sky night with radiational cooling of the ground, L is positive. For both situations L increases with
wind speed. [ becomes largest, when the heat flux is very small, i.e. when the air and the ground
are of roughly the same temperature This situation is calied thermally neutral and can be imagined
as a situation with reasonabity high wind and overcast sky, compare Figure 14.2. The arguments
hehind this scaling approach were onginally introduced by Obukhov in 1943 in 2 paper that has
been translated later on {Obukhov, 19711 The rule is that if any local turbulence statistics is non-
dimensionalized with the paraeters in Eg 14.50, then the resulting non-dimensional groups will be
functions of z/L only. Below this iw illustiated on Eqs. 14.46 and 14.47 where the nondimensional
functions are traditionally denoted ¢ and wheie the terms on the right-hand side appear in the same

orders as in the o igmal equations. By 14.46 is multiplied by xzfud to give:

_) — édz/L) (14.51)

a
0= g i2ibi—z/f - :,"Lﬁtﬁn (L

Correspondingly. the two equations 1 Lig. 1447 are muitiplied by £xf{u.0?) and xz/(u.q?}, respec-

uvely. to vield:

=g Ly —ziL “if [3o7) (i} —2énalz/L)
= de,icid) *:."‘Lﬁf}r' D, (i) —2¢n,iz/L) (14.52)

The von RKarman constant, a. 1s defined sucl: that ¢.m(2/L), the non-dimensional profile function,

equals 1 for 2/ =0 o, o and &, e defiied as

wrodu ;z x: 08 z xz 0
iz s — — | =) = e — -] = - _— .
PP [\L) e % (L) 7. bz (14.53)
The vor Kkarman cousiant st b experuneutally determined and is found to be between 0.33 and

0.43 in different experiments. The athes similavity functions defined in Eqs. 14.52 and 14.53 are the

divergence functions, ¢p aud the dissipation functions, é,, én.

Equation Eq. 14.52 illustrates how the buoyancy forces will produce turbulence for unstable situa-

tions, when L is negative, and destroy turbulence for stable conditions when L is positive.

The hypothesis about the sutlace- boundary layer have been experimentally studied through a number
of field experiments, starting with Lhe wellknown Kansas 1968 experiment, from which the measuring

sel-up is shown in Figure 14.0.
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Figure 14.8: Schematic presentation of the core instrumentation during the Kansas [968 field
experiment (Busch et al., 1979).

Although first of its kind, the Kansas experiment is probably also the most complete surface-layer
experiment cacried out until today. [n the context of the equations discussed above, the important
missing parameters in the measuring program were humidily and pressure. As seen frem the discus-
sion above, the surface layer hyphoteses predict characteristics of the vertical variation of the mean
values, fluxes, and their relation. Therefore the experiment was set up to measure mean values and
turbulence at a number of heighta with the turbulence (the most complicaied) at three heights, the

minimum number to measure the height variation of the divergence terms in the equations above,

From the Kansas experiment and its successors information has come on the behaviour of the different
similarity funtions, some consensus both on the behaviour of the surface layer and on the limitation
to its applicability, and some controversy that are still not properiy resolved. Although controversy
about the functions still exist, good qualitative agreement has been found between the different
experiments (Businger et al, 1972, Wyngaard and Coté, 1972: Dyer, 1974; Hogstrom, 1999). In
Figure 14.7 is illustrated the results from such experiments

The surface layer is only a small part of the total boundary layer. [ts height is about 0.1 times
the boundary layer height. Both because of this and because the surface layer studies showed that,
even here the parameters refiecting the total boundary layer were important for some quantities, the
number of studies of all of the boundary layers increased since the early seventies.

The development in the description of simple boundary layers is best conducted seperately for the
unstable, the neutral, and the stable boundary layer, with the stability being defined as in connection
with the Eq. 14.49 through Eq. 14.52, and referring to Figure 14.2 for a qualitative picture.

As indicated by the name, the neutral boundary layer is controlled by mechanically produced turbu-
lence, and the wind up through the boundary layer is described by Eq. 14.44, the height dependent
balance between pressure force, Coriois force, and the turbulent stress. The buoyancy term is unim-
portant. In its classical form the neutral boundary layer can be be very elegantly described by a
similarity description, adding only the surface roughness to u., because the boundary layer height
is considered to be given by the surface scale u, and Coriolis parameter, see Tennekes (1973, 1982)
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Figure 14.7: Results from surface layer experiments. (o} shows the behaviour of Pm versus { =
:/L from Busmger et al [971). (b) shews the relalive importance of the different terms in Ey.
14.51 according to measurements by Hogsirom (1990) and plotted versus (z — d)/L, where d is the
displacement height to be defined later. In this Figure ¢p has been expanded into its turbulence T,

and its pressure T, component.

and Tennekes and Lumley {1982). In practice, however. also the neutral boundary layer height very
often is controlled by the height of the first elevated inversion, at least at mid latitude. It must be
emphasized that although the neutral boundary layer carries rather little sensible heat flux, it can be
responsible for large water vapour fluxes, since the neutral boundary layer is often associated with

large wind speed and thereby high turbulence mixing.

linstable boundary layers are characterized by a sirong positive heat flux and often a well developed
capping inversion. They are fairly conveniently described by the strong vertical fluxes because the
vertical mixing is of dominating importance. At the top of the unstable surface layer the production
of turbulence from the mean shear becomes unimportant compared to the buoyancy production,
rompare Figure 14 2(a) and Eq. 14.51. This jeads Lo the idea that the dominating velocity scale for
the turbulence in the middle of the unstable boundary laver must be constructed from the surface
heat flux and the the height of the boundary layer that constitute an upper limit for the size of the
eddies carrving the fluxes. In the literature this height is called either zy or A for unstable conditions.
These ideas were supported by tield. labaratory, and numerical experiments (Kaimal et al., 1976;
Deardorfl, 1970). and led to successful efforts to describe the turbulence in large parts of the unstable

Loundary laver by the {ollowing scales:

w, = (:;u"ﬂ:ﬂg/é)]” = u.(-:;/nL]”:’

T.= —whju.. Q. = —qupfw. (14.54)

hor z;

Tle scales in Eq. 14.55 are usually denoted the mixed layer scales. Note that the fiuxes used have to
be evaluated at the surface, just as for the Monin-Obukhov scales. The mixed layer scales can be used
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Figure 14.8: The different scaling regions n the unstable boundary layer according to to Hoitslag
and Nicuwstadt (1986).

1o scale the equation of motion, just as the Monin-Obukhov scales were used in Eq. 14.51 through
Eq. 14.53. The similarity functions are often called ¥ and are functions of (z/h} corresponding to ¢
in the surface layer, and as an aesthetic advantage the mixed layer scales do not involve an emperical
constant like the von Kirman constant in the surface layer scales. A systematic description of the
turbulence equations in the mixed layer is given in Stull (1988).

In between the mixed layer and the surface layer is a matching layer where both the surface layer
and the rmixed layer scalings are supposed to work. This is called the matching layer ur the free
convection layer. It is a layer where the velocity shear is unimportant as in the mixed layer, but
where also the height of the boundary layer is unimportant as in the surface layer. Based on these
considerations, a number of rules can be derived for the behaviour of the turbulence statistics in the
stronly unstabie surface layer (Wyngaard and Coté 1971). Given the prohiferation of scaling regimes
in the boundary layer, several authors have tried to present systematic descriptions as to when and
where the different scaling regimes apply (Nicholls and Readings, 1979; Olesen et al., 1984; Holtslag

and Nieuwstadt, 1986). Figure 14.8 shows the organization of il scaling regimes n the unstable
boundary layer from the latter authors.

Apart from the scaling regions discussed above, Figure 14.8 shows two new regions. The near-neutral
upper layer that cannot easily be simplified. This i1s because here all scales retain their importance.
The entrainment layer around the top of the boundary layer, through which the boundary layer
interacts with and entrains air from the free atmosphere above (Zilitinkevich, 1991).

Studies have shown that in many ways the top of the boundary layer appears as a surface layer turned
upside down, e.g. the scale of turbulence decreases when one approaches the entrainment zone, much
in the same way as it decreases when approachindg the surface. This led Wyngaard and Brost (1984)
to suggest that through the unstable boundary layer the vertical diffusion of passive scalars can be
computed as a superposition of top-down and bottom-up components driven by the scalar fiuxes at
the bottom of the boundary layer and at the mixed layer top, respectively. For example the vertical
concentration gradients and fluxes of z can be represented by:

S. Larsen
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I = I'5+f|
oz _ 0% 9% {14.55)
o B 8z
Tw = rw,-zfh+ (1 -z/h)T'

The gradients of £, and £ each scale with their version of the mixed layer scaling:

af; — :'I"' (Z) afg _ w’:L (i) (14.56)
Bz wh AR/ Bz w.hg’ h

where the two functions must be constructed taking into account the similarities and differences

between the turbulence processcs at the surface and at the top of the boundary layer, see Wyngaard

and Brost {1984).

Recall the discussion in section 14.3 about use of K-diffusivity and local closure in the unstable
boundary layer when the vertical gradient was zero. It is seen that this problem has been avoided
with this superposition. because each of the gradient 83,82 and 8x,/ 8z are non-zero. The approach

has been used with some succes, exactly in situations where the gradient was zero {Fairall, 1987).

Finally, we turn to the stable planetary boundary layer. It is characterized by negative heat flux,
often low velocity, and reduced turbulence activity, both due to buoyancy damping and low velocity.
As opposed to the unstable boundary layer, real stable boundary layers are not easy to model, because
the vertical fluxes are small, and other processes, like radiation balances and advection, therefore
important. In terms of Eq. 14.51 we see that as stabilty increases, z/L will eventually become 80
large that the loss terms in the equation will overcome the production term, $., and the turbulence
will cease. This argument can be further illustrated by the behaviour of the Richardson numbers.
The flux Richardson nutmber is buill as the ratic between the two first Lerms on the right hand-side
of Eq. 14.46

u’

P

Ry

(14.57)

u'w’

2=
|
>

[

w

1

From Eq. 14.46 is seen that turbulence is unlikely to exist when Rf becomes of the order of or
exceeds one. Since Rf contains a mixture of turbulence and mean value gradient terms it was earlier

fairly difficult 1o estimate experimentally this quantity. Therefore, gradient Richardson number, Ri,
was formulated:

_ g aé, au\’
Ri = -9-; . / (52-) (14.58)

The relation between the two Richardson nutnbers is obvious, but as seen Ri can be determined from
measurements of profiles of mean values only. In both theoretical and experimental studies Ri has
been found to have a critical value, Ri,, above which continuous turbulence cannot exist. The value
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Figure 14.9: The relation between the Richardson number and { = z/L from | Businger et al.,
1971).

for Ri, is generally found to be be.ween 0.15 and 0.3 in most studies. From a theoretical point of
view the value will depend on both how one relates R: to Af and on how the other two terms in
Eq. 14.46 are estimated, From the experimental studies we preseut tne refation between Ri and z/1
from the Kansas experiment where the data seem to show a critical value around 0.2

As the stability increases, the surface layer scaling laws take a special form, called the z-less. This
can be illustrated from the behaviour of the ¢, function reported in Figure 14.7(a). On the stable
side it ia seen to vary linearly with x/L, say as 1+ 5 z/L (Dyer, 1974). From the definition of ¢,
the consequence of this form is that for large =/ L, 4/z becomes independent of z. Many of the other
lacal turbulence characteristics show this behaviour, hence the name (Wyngaard, 1973).
These characteristica of the stable boundary layer led Nieuwstadt (1984) to suggest a similarity model
for the stable boundary layer based on the assumption that #f = Ri = Ri. and that the turbulence
would scale with the local fluxes, not the surface values of the fluxes as in the the Monin-Obukhov
and mixed layer similarity but the local values. This necessitated estimates of the height variation
of stress and heat fux relative to the surface values, such that the Aow in the entire boundary layer
could be computed. The local scaling parameters are normaily related to the surface values from

expressions like:

)y,

AJL

(1= z/h@ w8 wly = (1 — /)™

(1—z/h}™ (14.59)

9 —
A= Ly
g

As seen A is a Monin-Obukhov length determined from the local Auxes. As A — L for z — 0, the
local scaling and the surface layer scaling overlap for small 2. The a-values can be estimated from
meagsurements or closure hypotheses. Although complete consensus is missing, they ate all o the
order one (Caughey, 1982).
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Figure 14.10. Scaling regimes in the stable boundary layer according to Holtslag and Nievwstad!
{1986) based on the scaling parameters discussed in this section. The dashed line is given byzfL =
1.

Corresponding 1o Figure 14.8 for the unstable boundary layer, we finally present a figure of the
different scaling regions for the stable boundary layer in Figure 14 10, also taken from Holtslag and
Nieuwstadt (1486).

Figure 14.10 shows a region denoted 1nfermuitency. In this parameter region the Richardson number
15 close Lo or larger than a crtical value for which reasen continuous turbulence cannot exist. The
fluxes in this region are believed Lo be carried by intermittet turbulence events, either induced by

shear instability or internal gravity waves.

In the next sections we shall discuss the upper and lower boundary condition for the boundary layers.
Here we just note that use of the z/h parameter in Figures 14.8 and 14.10 camouflages the large
variability of the boundary laver height for the difierent situations with typical values of A = 1000 m

for the unstable to neutral cases, and & = 100 m for stable cases and, as said, with huge variations.

14.5 Conditions at the surface

The similarity expressions in Eq. 14 53 can be integrated to the profiles of wind speed, temperature,
and hum lity

W) = wie (ln(:;d)-wm (a%‘f))
B(x) =8, = 6.jx (m (’;Td) — (’ > d)) (14.60)
o (o 59)

where the d is a zero plane height called the displacement height, the y-functions are related to the
¢-functions through:

§(z) — 9o
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Figure 14.11. Eztrapolation of the wind profile to rero wind speed to oblain zy. The lower height of
validity for the neutral logarithmic law is denoted

{e=d)/L
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: L d
lf)(m[_"-)= [ a-en (14.61)

]

All of the functions in Eq. 14.61 approach zero for {2 —d}/L — 0 so that Ey. 14,61 shows the profiie
approach to the logarithmic form for neutral conditions. Note that the :/{ formulation of stability
means that a boundary layer always tends towards neutral close to the surface, and that a boundary
layer that appears neutral at the surface can turn more and more non-neutral as = and thereby z/'L
grow. Here, the different roughness lengths, 2o, 207 and 54, are introduced formally as the heights
where the surface layer forms attain the true surface values. As seen this gives a simple way of
estimating zo as illustrated in Figure 14.11 where the measured wind profile is extrapolated down to
the height 25 where the wind speed is zero. It is worth pointing out that this method does nat work
%0 easily for the temperature and humidity profiles because surface viiues of these parameters are
not 50 well-known as those for the wind speed where it 1s zero

In Eq. 14.61 we have introduced the displacement height as weil. [f the the zere level is obvicusly
well defined, d is of no use. But for many studies of very rough terrain like woeds and built-up
areas, the zero level is not weil defined and it is an advantage to have d as a semi-lree parameter
when fitting profiles. Theoretically, the displacement height can be defined as the level at which the
mean drag on the surface appears to act, and formulas for d can e worked out for specified surfaces
{Jackson, 1981).

The lower height of validity for the turbulence surface layer profiles, 1z, is usually determined em-
perically as 10 — 30 times z; or for canopies 3 ~ 6 times the height of the vegetation (Garrat, 1978;
Raupach, 1979).

The method in Figure 14.11 is often not available, and 25 must be otherwise estimated, usually based
on physical considerations on, e.g. what the surface actually does to the flow, combined with the
available data on the roughnesses from different measurements. As we get close to the surface we
leave the surface layer as defined in section 4, and the turbulence reduces too much to carry all the
momentum nessecary to brake the low to zero velocity at the ground. Equation Eq. 14.32 shows
that the braking must be done by the molecular friction ot by the pressure term due to form drag
on the individual obstacles constituting the surface, i.e. the roughness elements. For surfaces where

the roughness elements appear as individual distinct elements, the formula of Lettau (1969):

392 S. Larsen

20 = 0.5H5/A (14.62)

Here a roughness element is characterized by its height, H and the cross wind area, 5. The density
of roughness elements are des...L.cd by the average area available to each element, A. The equation
gives reasonable estimates of zp when A is much larger than S, but tends to overestimate zq when A
s of the order of S. This is because the roughness elements also contribute to a displacement height

not ineluded in the equation (Troen and Petersen, 1989). For water surfaces one will often use the

Charnock (1955) relation:

25 = cul/g (14.63)

where ¢ is a consfent of the order of 0.012:0.02. Equation 14.63, however, is found to describe the

roughness over sand surfaces as well

Extensive work has been done for crop covered fields, to relate d and zo to the vegetation charac-
teristics and to describe the fiow and fux conditions above and within the canopy {Thom, 1971;
Brutsaert, 1975, Brutsaert, 1982). The relations between vegetation height, displacement length,

and roughness are often presented as:

o= MH - d) (14.64)

with d of the order 2/3 H and A of the order of 1/3.

Ia the literature many of the roughness studies finally end up in figures that could be called the
accumulated conventional wisdom methed for determining the roughness for a given terrain. In

Figure 14.12 we present one of the latest of such figures.

Roughness estimates from figures like Figure 14.12 have been found to work quite well when used to
estimate the local wind speeds for the purpose of wind energy production (Troen and Petersen, 1989).
Although the figure does indicate the existence of seasonal variation of zg, it is worth emphazising that
for vepetated surfaces the roughness must be vxpecied to show some variation with the vegetation
growth cycle. This s ihustrated in Figure 14,13 that shows the average seasonal variation in zp from

thiree nearby fields in Denmark.

Sofar we have discussed mostly the aerodynamic roughness. Similar to zy, the scalar roughnesses,
207 and Zg, are associated again with a logarithmic profile and the fluxes for a given vertical mean
gradients. Hence, the magnitude of the different z's is controlied by transport mechanisms very close
to the surface where molecular processes are important. Since the processes driving the scalar fluxes
lack the mechanism of form drag around the roughness elements, that is available for the transfer of

momentum, the scalar 20's are generally less than zp.
As an example, consider the two-layer heat flux model in Figure 14.14.

The Figure shows an upper turbulent surface jayer (I) and a lower interfacial layer (I1} where the
heat flux is carried by molecular transport. Equating the flux in the two layers:
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Figure 14.14: A two-layer heat fluz model 1o relate 21 to 2, (Jensen, 1997 ) The height A is the
tnlersection height between the twe layers.
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(1) - H = xu.(fs —60) /1 (&/zer)
(i — = ky (8 = 6o) /O {14.65)

which leads 10 In(ze/ zor) = s X, with X givenby X = Afu.- In(A/z). X is usually presented as
a function of the roughness Reynelds number, Rep = u.zo/v and the Prandl number, Pr = v/kr for

temperature, of the Scmidt number for humidity, Sc = v/k,.

Many formulations are proposed in literature. We present the following from Brusaert (1982):

X(Reo. Pr/Sc) = T3Rey 5c'? (14.66)

where [r is nsed for zor and Se for zo,. For a fairly wide range of atmospheric conditions this yield
that the scalar roughnesses are about 0.1 7. The formulation used here is not applicable for fibtious
surfaces. but also here the scalat roughuesses are found to be about 0.4 zo. It would be nice to finish
this section by specifying how to estimate g and go. in Eq. 14.61. From a modelling point of view
this will obviously take estimates of the heai and moisture flux both above the surface and below in
the vegetation and the scil. Also direct measurements are difficuit, among others reasons because
the surface in the sense of Eq. 14.61 is not necessarily very well physically defined. [n spite of this,
the surface radiation temperature for different surfaces has been used to test the zgy expressions
discussed above. In principle the surface parameters can be estimated from mesured profiles of §(z)
and §{:) by extrapojating these down to o7 and zoq, if one believes in the methods for determining

these parameters and the displacement height,

14.6 The upper boundary

In the three former sections the characteristics of the boundary layer flows and fluxes have been
considered in terms of scales and relations defined with'n the boundary layer itself. One of the
ohjectives is to describe Auxes through the boundary layer for givea conditions at the surface and in
the free atmosphere. Therefore we need to relate the boundary layer scales to the conditions in the
free atmosphere above the boundary layer.

As a reasonable starting point we choose Eq. 14.44 because this equation contains the geostrophic
wind, i.e. the wind above the boundary laver. For ideal neutral boundary layers cthese equation can
be shown to lead to { Tennekes, 1982}

cUgfuc = (In(hfz) — A). xVfu, = -8B,
ho= ulf, A and B constants (14.67)

[t has been found from data that A ~ 2, while B ~ 5,
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Equation Eq. 14.67 is called the Resistance Law for the neutral boundary layer because it describes
the friction measured as u., excrted from the surface on the free stream flow, Substantial theoretical
and experimental efforts have gone into generalizing Eq. 14.67, both to more general conditions and
to scalar fluxes as well (Zilitinkevich, 1972 and 1975; Clarke and Hess, 1974; Melgarejo and Deardorfl,
1974; Hasse, 1976; Araya, 1978);

H

wl/yfu.
0, -6,

lulhfzp) — A(g). &Vajuo = - Biy)
O.(In(k/zor) — Clu}) (14.68)
# = uffloru=hil

In principle, the corresponding equation from humidity can easily be constructed from the tempera-
ture equation.

The stability parameter 4 is Ui rattn Intaween the Loundary layer height and the Monin-Obukhov
length.

Often the velocity resistauce law is scen formulated in terms of the geostrophic wind speed and the
angle between the surface wind amd the geostrophic wind, G2 = 24V From Eq. 14.69 the relation
for G becomes:

G = ((Inlh/z) = AGDY + Bip))/? (14.69)

In Figure 14.15 the stabilty fuuctions A{g) and Blu) are presented.  The scatier is seen to be
substantial and characteristic for tiese types of plots. The scatler is not only in the data, also the
model varies considerably among autliors, some prefer # based on the aclual boundary layer height,
some that it is based on u./f,. Some authiors prefer to use the surface geostrophic wind while others
use the actual wind for z = k. Also severa! methods have been suggested on how to include the
effects of instationarity, advection, Laroclinity, ete. (Zilitinkevich, 1975: Hasse. 1976, Araya, 1978).

Not neglecting the uncertainty and scatter wsocinted with the resistance laws, the neutral versions
have been found to work very well lor the mederate 1o high wind rejevant for wind energy purposes
{Trozn and Petersen, 1989). Ilere data from 120 meteorological stations in Northwestern Europe
were predicted from each otiier using Eq. 14.67 as the description of the wind above the boundary
layer.

As discussed above, the nitial estimale for the height of the boundary layer was formulated as:

b~ cuf ). (14.70)

where c is normally choosen betwsen (1.1 and ¢ = x. This expression does describe the data, although
not overwhelmingly good. Also neutral boundary layer height is cc.:. ' xd, not only by u./J.. but
alsc by the strength and position of the lowest elevated inversion.
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Such an expression can be found from the oceanographic modeiling of the inverse problem, the depth
of the mixed layer (Pollard et al., 1973)

12

h= 2 {fracul [.N) (14.71)

where N is the Brunt-Vaisala frequency, here used to describe the temperature stratification just
outside the boundary layer.

G\ 1/7
g 08
=3 14.72

N (8@2) ( )
As a typical value of N in the free atmosphere is about 0.025 s=!, Eq. 14.71 implies a value of
€~ 0.151n Eq. 14.70 at midlatitude with f, ~ 1.5- 10~4s~%.

Formulas for the height of the stable boundary layer have been worked out as well {Zilitinkevich
1972) with:

t

h=Clu L/ f 317 {14.73)

with C around 0.7 (Caughey, 1982). The formulation simply suggests that the boundary layer height
is the geometric mean between the neutral beigh, u./f. and the Monin-Obukhov length.
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] A
Figure 14.16: [llustration of how the boundary layer height, z; = h. grows when at sunrise the
atmosphere is heated from belowe. The AB-curve represents the temperature profile at sunvise, CDB
the profile after surfoce heating end entraining from alofr has warmed the lower layer {Panofsky and
Dutton, 198{).

Fer the unstable boundary layer it became obvious that formulis as the ahove could not be made

to function. Therefore, quite soon it was proposed to determine ihe unstable 4
equation {Deardorff, 1972 Zilitinkevich, 1975). Consider Figure 14.16

{roun a progrostic

In Figure 14.16 we denote the temperature gradient at suurise, line AD. as — 7. the gradient within
the heated layer as ~v,. « is noramlly denoted the lapse rate. The night time gradient is likely 1o

correspond to some type of stable situation. while the day time gradient will be close to adiabatic,
Geometry then yields:

e~ = (T - Thifh {14.79)

The conservation of heat yields, inciuding both the heal flux from the surfa e and from the top:

W, — w8, = (T - Tyy/h (14.75)
Combining these two equations and differentiating. we obtam

oh _—
b = w8 {1+ A}/ 7 = 7n) (14.76)
where we have included the heat delivered to the boundary laver from the free atmosphere as a
fraction, A, of the surface heat flux, usually taken as approximateiy 20 per cent. The equations are
solved to yield:

f
h(t) = (2/1—179_'.(1 + Ajdt{ve — 2a))'? {14.77)
o

The rate equation for the unstable boundary layer gives quite satisfactory results. 1 has been much
further developed and yielded a very satisfactory comparison with data on the growth of the unstabie
bounday layer, e.g. Gryning and Batchvarova (1990}.
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The developraent within the field is concentrated around improved description of the entrainment at
the top of the boundary layer and the associated flux. The parameterization involves the structure
of the entrainment zone that is as wide or wider than the boundary layer. The entrainment zone is
physically described as a region where plumes and billows raise through a stable background air, with
different types of turbulence and waves being generated on the interfaces (Tennekes and Driedorks,
1980; Zillitinkevich. 1991). The entrainment is often described in terms of an entrainment velocity

w,, defined by:

T = wAHEZ) (14.78)

where AB{EZ) is the temperature gradient across the entrainment zone that is between the free
atmosphere and the boundary layer. A general equation for the boundary layer height is often

formulated as-

Ghiit = —u,Ohi0r, +w, + w, + wy, (14.79)

where also advection of boundary layers with generated heights other than the local. w, and w, are
the rise induced by the local tuxes as given by Eq. 14.76, while wy, reflects larger scale movement
of the atmosphere as, e g subsidence. Note that Eq. 14.79 allows for stationary unstable boundary

layer heights.

At least [or scalars the entrainment constitutes an alternative to the resistance laws to relate the
conditions within the boundary layer to the conditions outside, compare Eq. 14.78 where the condi-
tions in the free atmosphere enter through M £Z). For any scalar z, we can of course generate an
equation like Ey. 14.78. Also note that the top-down part of the bottom-up/top-down description

of the unstable boundary layer in Eqs. 14.56 and 14.56 inciudes the entrainment.

Finally, it should be mentioned that the success of the rate equations for the height of the unstable
boundary layer has let to similar but less successful efforts for the stable boundary layer. This is due

mainly to the absence of strong dominating verical Auxes here.

14.7 Demands to measurements

The plans for a measuring campaign in the atmospheric boundary layer can be organized in many
ways. Below we shall try to organize the relevant points, as:

1. temporal and spatial scales that should be resolved

2. statistical demands to the data

3. instrumentation technology, calibration problems, and flow distortion.
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For a simple homogeneous boundary layer average flow changes takes place only in the vertical
dimension. If one can use several measuring heights, the levels should be more close at the bottom
than heigher up due to the form of the profile functions as discussed in sections 4 and 5. If possible
one should try to measure fluxes directly from turbulence measurements. Fluxes can be estimated
from profile measurements, as can be seen from Eq. 14.61. However, both measuring uncertainties
and the uncertainty about the value of the von Kirmin constent point towards a direct measuring
«f the turbulence fluxes.

In the surface layer, it follows from Eq. 14.61 and the discussion about the behaviour of the ¢-
functions that profiles for a fairly large stability interval around neutral can be written as:

z{z)=a+bln{z) + ez {14.80)

where the , b, and ¢ coefficients contain all profile parameters other than = 1{ measurements of Eq.
14.80 are conducted in the two heights, z; and z;, the measured grav.u. will correspond 1o 93/8:
at the height z = (z; — 2;)/In(z2/2,} as can be seen by comparing the two expressions. If flux-profile
relations are measured, this height is therefore the best height for the flux instrumentation.

Next we turn to the temporal and spatial scale in the fiuctuations. As mentionned in section 2, they
are best described in terms of spectra. Here we want to emphazise the aspect that:

7 =T Sk = [ Swido
TE = ] Coylki)dk, =/Co(,~)d..- (14.81)

which states that the contribution to the variances and covariances from different wave-number or
frequency scales are described by the spectra and the co-spectra. As discussed in section 2 the
relation between the wave number and the frequency is given as 2 good approximation by Taylor’s
hyphotesis, equation Eq. 14.10. Note that the co-spectra between a velocity signal and another
signal describes the turbulence fiux in the direction of the velocity component as discussed in section

3

In section 2 is shown how the inertial subrange of the spectra scales with the relevant dissipations.
Since the dissipations can be described as universal nondimensional functions of the relevant param-
eters in the different scaling regimes, this leads to the idea Lo describe the spectra in terms of the
scaling laws considered in section 4. As an example we take the velocity spectrum in Eq. 14.8. We
now substitute the Monin-Obukhov similarity function ¢,{z/L) = kz¢/u? from Eq. 14.5] to obtain:

kS (k) = a 6™ = a g2/ L) (k)" (14.82)
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Figure 14.17: Normalized surface-layer spectra for neutrai condilions together with the variation of
the peak frequency n., with :fL for the vind spectra (Kaimal et al., 1978).

Comparing with Eq 14.10 we expect that after proper normalization, at least the inertial subrange

forms of the spectra and co-spectra can be written as universal functions of /L and a normalized
frequency, n:

n=fzfu=kz/2r=z/A {14.83)

where A is the wave length corresponding to &,.{ NB. In micrometecrological literature, there has
been a confusing change in notation. Eaclier f was denoted n and vice versa).

One of the results of the Kansas experiment was that the relevant spectra could indeed be universaily
described over most of the frequency range according to Eqs. 14.82 and 14.83. From Kaimal et al.
{1972} we present the important surface layer spectra.
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Since all instruments or combinations of insiruments can be characterized by a spatial and frequency

resolution, the spectra in Figure 14.17 can be used to estimate the amount, of variability that remains

with & certain averaging time and how large a fraction of a given {cojvariance a given sensar system

can resolve. For example if one uses an averaging time, T, and a time resolutuion, ¢, one can resolve
¢

not the whole of W}z’ in Eq. 14.81 but only u)z!, given by:

kLN
7

vz, =2 f colw)dw, {14.84)
/T

where we have used that co-spectra are even functions of frequency.

Since the publication of this Figure 14.17, Kaimal et al., (1976); Hejstrup {1982} have documented
that also the spectra in the mixed layer can be scaled with the relevant scales here to give universal
forms. Furthermore, Sorbjan (1986) has shown that also when Lhe local sealing apply, the spectra
adapt to this form as well. In the unstable surface layer it has been shown that the eddies in the
mixed layer give a footprint in the surface layer specira, especially for Lorizontal velocity components
and temperature. The result of this is that the peak of these spectra do not scale with /L but rather
with z; (Hejstrup, 1982). This was actually the reasen for the absence of n,, plots for these spectra
in Figure 14.17. The z/L formulation could not be brought to describe the data. Finally. Hajstrup
et al. (1990) have shown that also for neutral conditions the low frequency companent of the velocity
spectra scale with the boundary layer height, not only with the measuriag height as implied by the
surface !a-yer scaling. Finally, Olesen et al. (1984); Larsen et al (1985, 1990} have demanstrated the
importance of the gravity waves in the spectra for stable conditions These vield spectral components
that scale as:

ES(k) ~ NP (14.85)

where N is the Brunt-Vaisala frequency given by Eq. 14 72

In Figure 14.18, we present examples of spectra of the horizontal velocity components in the surface

layer, including the z;-part for unstable conditions and the gravity 1 we part for stable conditions.

An important issue for all experimental work 1s the statistical confidence of the data and its relation
to the choice of averaging time {or length if spatial data are available). We shall here refer Lo the
discussion in Wyngaard {1973). Consider the variance of 7 around ry where

1 14742
z7(t) = j ot + 1)t {14.86)
=Tf2

We can now compute the variance, 62 | as:

T
8 =70 — 71 (O)F = 223/T f () = €T )ps()dt"
o
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of the mized layer scaled »ddies und the gramty waves, respectively (Heojstrup, 1982, Larsen et al,
1985).

where p.(t') = r{t)z(t + t')/z7. We now assume that T is large enough for the integral to become

equal to the integral of the correlation function.

With the approximation cited above, we can write as:

o = 25T (14.87)

If the accuracy to be achieved is written as a? = §2/2?, we can finally reverse Eq. 14.87 to give the

averaging time, T,, to achieve the relative accuracy of a*

L]
T.=2Xl; {14.38)
a®*

In Eq. [4.88 the integral scale, r,, that can be estimated by the peak frequency for the spectra
presented in figures 7.1 and 7.2 will vary roughly between z/& and h/# for unstable conditions and
somewhere between 2/ and L/ for stable conditions, varying from signal to signal. To estimate
the mean speed for example, equation Eq. 14.88 takes the form:

Tou= "3 — {14.89)
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For the surface layer we take 7, = z/i and u/4? the turbulence intensity as 0.05. We then find
that at z = 5 m we can achieve for u = 5 m/s a 1 per cent accuracy for 15 min averages.

To estimate the necessary averaging time for the variances and covariances, one must substitute these
quantities for T to obtain e.g.

W TAIE = (y% - ) ) = u (w3~ ]

Correspondingly for a covariance:

wy 25 = Wy ey) - )

For the variances the result is seen to be the flatness factor. Since even order moments of turbulence
are not too far from Gaussian, the flatness factor has a value of about 3. For the variances we
therefore find :

TI
Ton=4 = (14.90)

By comparing with Eq. 14.89 this is seen 10 be of the order -:—; = 20-100 tirnes larger than averaging
time necessary to obtain the average wind speed {or the same accuracy a provided the integral scale
is the same for the two processes which is a reasonable assumption. 1t therefore seems inescapable
that estimating the standard deviations with 1 per cent is out of question in the real world where
the stationarity of the turbulence over periods more than a few hours is questionable. Based on data
for the different moments obtained from the Kansas experiments, Wyngaard (1973} furthermore
concludes that for the same accuracy the necessary averaging Lime for the covariances is between 3
and 20 times the averaging time for the variances. This makes it necessary to reduce the demands

to the accuracy for the covariances even further than for the variances

Furthermore, one can study the demands to averaging time for moments of higher order than the
variances and covariances discussed above. One finds that it becomes almost impossible to determine
these higher-order moments in the atmosphere because the averaging time must be limited to time
periods substantially less than the diurnal cycle to avoid the problems with instationarity

Finally, we shall consider the instrumentation problems. Overall the well-known instruments of today
are both accurate and reliable. Most of the problems encountered, therefore, are not fundamental
measuring technological problems, but are more associated with that the experimentator forget Lo
assure himself about certain uncertainties. For velocity measurements calibration and flow distor-
tion remain important problems. Easpecially for anemometers with empirical calibrations like cup
anemometers, careful periodic calibrations must be recommended  Also fiow distortion has been
found to be important for velocity measurements and several models for fiow distortion have now
been developed. Flow distortion originates from the instruments themselves or from the platforms,
and even very slender booms have been shown to give rise to surprisingly large flow distortion.
Generally two different ways of handling flow distortion effects are uscd. One method consists in

OBSERVING AND MODELLING THE PLANETARY BOUNDARY LAYER 405

comprehensive wind tunael calibrations, that ideally allow to compute & time velocity vector for each
measured value of the same vector. This method is e.g. illustrated in Mortensen et al. (1987).

The other method involves estimating the effects on mean values and turbulence statistics, using more
or less sophisticated models fu. L physics of the flow distortion. These models are subsequently
reversed to yield time mean values and turbulence statistics from the measured values. The simplest
mode! iy here just tp rotate the coordinate system along the measured mean flow (Dyer, 1981, 1982,
Wyngaard, 1982). More refined descriptions have been developed by Wyngaard {1981) for situations,
where the distorting body is mauch smaller than the scale of turbulence, as is mostly the case for over
land measurements in the suriace layer. For scalac fluxes the flow distortion is less important generally
than for velocity (Wyngaard, [988). For temperature sensors, the dominating sneaky problem is
the radiation errors, meaning that the temperature of the sensor is influenced by the radiation
balance with the surroundings. Most temperature sensors need calibration, so the need to calibrate
should not be a surprise, but the radiation errors might even for a well screened sensor influence the
measurements systematically through some unsuspected heat bridge in the system without showing
dramatic and easily detectabie errors. Humidity sensors are a larger problem because both for mean
valye and turbulence measurements the humidity sensors are more complicated and/or less accurate
than the temperature and velocity sensors. Here is really a need for sensor development. Finaily
should be mentioned the contamination problem with sait, a problem that of course is largest over
the acean or in the coastal region. Due to the hygroscopic qualities of salt, salt contamination can
be Lotally destructive to the data quality of both temperature and humidity measurements. There

is presently no solution to this problem aside from repeated cleaning of the sensors.

14.8 Uncertainties and unknowns for the simple PBLs

Many of the uncertainties for the simple planetary boundary layers are associated with the assump-
tions behind the descriptions not being sufficiently fulfilled in the real world. The models describing
the total boundary layer are accepted to be more uncertain than the surface layer descriptions, and we
shall defer much of the discussion about the total boundary layers to the next section that concerns

inhomogenous situations.

If one looks closer on the assumptions for a surface layer, one sees that it demanda that zo << 2 << A
(Tennekes, 1973 and 1982). As is obvicus, these constrains are not always fuifilled. Therefore, one
should not be too surprised to find deviations from the pure surface layer theory in the measurements.
Close to very rough surfaces, as over cities and forests, the deviations from the simple surface layer
¢ functions are generally found {Garratt, 1978, Raupach, 1979). Also, if the unequality above is
not well fulfilled one should expect to see processes scaling with z or A show up in the surface
layer. In section 7 we have already seen that h becomes an important scale for describing the spectra
in what is otherwise considered the surface layer. This fact of course must have consequences for
other quantities as well. Indeed, analyses of surface layer data including the pressure part of the
flux divergence terms of Eq. 14.51 conclude (Elliot, 1972; McBean and Ellict, 1975) that the flux
divergence term s does not scale with z/ L alone as assumed in Eqs. 14.51 and 14.52. This means that
one should not be surprised that some authors find some differences for the terms in these equations.
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In the surface layer formalism, the von Karman constant is wn universal constant because in the
analysis it cannol depend on anything If we relax the strict surface layer formulation, then it may

depend on parameters like 2o and 4. Indeed, in recent measurements variations variatior of x with
the roughness Reynolds number, see Fig. 14.19.
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Figure 14.18: Recent data on the vertation of the von Narman constant with roughness Reynolds
number, according to Oncley et al. (1990), —, Mortensen ef ol {I987), & and (Grynimg (1598}, 2.
The values shown are everages over erfensive data sets

For & large fraction of the stable boundary layer situations one encounters in practice thaal the
Richardson number is larger than the critical Hi, simultaneously with that vertical transport still take
place through intermittently occuring turbulence, see section 4. Various ad hoc formulations have
been proposed e.g. by modellers that have noticed that if they use standard flux parametenzation
schemes, their stable boundary layers collapse much faster and mote often than the data show

(Estournel and Guedalia, 1987). However, a consistent theory still has to be formulated.

Overlapping the above, the stable boundary layer is known to include different kinds of wave activities
that are not systematically described, but which have at least beeu shown to contribute to the velocity
spectra in a describable systematic way. Also the stable houndary laver is the boundary layer where
the £/z; ratio in general is smallest because  tends to be small Therefore the concept of surface
layer might get into difficulties here before into n any other conditions Undoubtediy, the future will
see progress within this area, so that last often occurring boundary layer phenomena can be inchyded
in the list of processes, we understand.

14.9 Horizontally inhomogeneous boundary layers

After having discussed the stationary and horizontally homogeneous boundary layers, that are easy
to define and almost non-existing, we turn towards the horizontally inhemogeneous boundary layers,
that are everywhere, but almost impassible to specify because they come in so mapy versions.
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Figure 14.20. Srowth of wn internnl boundary layer from o smooth te rough transition under neutral
conditions. Eventually the miernal houndary layer height, A(z) grows to esiablish a new boundary

layer [Sempreviva et al., j090)

Normally sne disungmishes between the effects of changes in terrain elevation and changes in surface
‘haractenstics like =, zyr and 2,0 g and U5, This is because the former influences the flow through
the pressure term. while changes in surface characteristics diffuse up into the boundary layer by the

tucbulent diffusion.

Basically two ditferent merhuds exist lor handling inhomogeneous surface characteristics, when try-
ing to estimate the lux between the aunosphere and an inhomogeneous area. In one method the
inhomogeteous surface is broken down ito a number of destinct subareas, that are each considered
homogenrous, and with step chauges 10 the surface characteristics in between, In the other method

one estirnates atea averages ol Lhe surlace Jiaracteristics 2o, Zor, 2o, fo and go by a suitable average

across the mhumogeneous tetrath ur question.

Considering the first approach first. we concentrate for starters on a step change in roughness, and
start with neatral stability. A snnple but accurate way of estimating the effect of this is to assume

that the information about the sicace change propagate upwards with u., leading to the following

expression for the growth ol . aiternal boundary layer, A{z) with fetch, z, over the new surface:

dhjde = aul/ulh) (14.91)
where a 15 a constant of order one. Fuventually A will grow uatill it fill out the boundary layer, and
a new boundary layer is establislid T idea is presented in Figure 14.20.

Integration of Ly, 1491 yvields:

crfry =1 = (In{h/ze) — 1A/ 2 (14.92)

where ¢ is another constant of order unity. Equation 14.92 is seen to describe a growth of the internal
boundary layer that is slightly slower that + to the power of one. To get the change in surface stress

one matches the npstreaim and downsteeum velocity profiles in the A(x) to obtain:
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vaafun = In{h(z)/201)/ In(h(z)/203) = 1 + Inf202/201) (14.93)
Ink/zo;

This equation i3 found to describe data very well and to works even better than second- order closure
models (Larsen et al., 1982). It is seen to describe a variation with z that is strongest in the beginning

when h is small, followed by a very slow change when h has become large. From Eq. 14.93 the ratio
between the wind speeds are found te be:

Ba(2)/iy(z) = :';‘ In(z/209)/ In(2/ 201 (14.94)

which is seen to vary less than the u,-ratio because the two 2o's enter oppaositely in Eq. 14.94 than
in Eq. 14.93. Sempreviva et al. {1990) have modified the profile formulations in Eq. 14.94 and

extended the formulation to include the eflect of a final boundary laver height. Jenscn et al {1984)

have extended it to non-neutral cases showing that the growth rate of the internal boundary

betwesn z'/? and 37 times, dependent on stability conditions a- ' ‘it of A{r). Note that the
equation for the growth of an unstable boundary layer Eq. 14.75 can be used for the growth of an
internal boundary layer, interpreting t as z/t. The second-order modeling of Rao {1974} and Rao
et al. {1974, 1974a) argely confirms the content of the above equations.

varies

The studies of Sempreviva
et al. (1990) seem to indicate that it takes the surface wind speed a fetch of about 10 km before

it has {ully adapted to the new surface. The stability extension of the model Eq. 14.9] through
Eq. 14.93 by Jensen et al. is simplistic in the sense that the same stability is assumed for both

areas. There have never been tested a model systern of this type that includes changes in all the

surface characteristics, zq, zoT, 20y, 8o and go, 6. and ¢, simultaneously. The difficulties shall not be
underestimated, although the roughnesses can probably be related, as described in section 14.6. Also
some of the difficulties are probably not associated with the model concepls. but more associated
with keeping track on the many and different subsurfaces with each their characteristics.

The direct area averaging of the surface characteristics of an inhomogenecus area sounds simpler than

the approach cited above. Taylor (1987} suggests as a practical formula to average the zp valyes:

In{ zpa) =_/A1ﬂ(3e(?})df {14.95)

where the x-integration is carried out over the area in question o obtain the effective zp. To use
this type of averaging of surface characteristics. it is importan| to know its meaning. We can write
the area averaged profile equations, from Wood and Mason (1991 ).corresponding to Eg 14.61 with

d neglected for simplicity:

H /2 -
<ue)> = CE gy vl )
—wd z
0> -<bo> = T (i - D)) (14:56)

L
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where we use <> as area average and try to relate the area averaged surface fluxes to the area
averaged mean values,with the zoe value being determined such that Eq. 14.96 is true. L, is f:he
corresponding Monin-Obukhov length. A concept used much in these considerations is the blending
height, !, a height above v’ ... .he mean values has been blended enough not to vary across the
inhomogenous area. The stress on the other hand is supposed still to vary. This difference between
the mean values and the stress, was seen as well in connection with the step change model Eqs. 14.93
and 14.94, Using the blending height concept one can now derive corrections to Eq. 14.95. Different
authors use different blending heights. Wieringa (1976) and Claussen (1991) prefer a height related
to the height of the roughness element, while Mason (1988) and Wood and Mason (1991) prefer
a height related to the horizontal scale for the roughness chaages, and the same upward diffusion
rate, use in the step change model. Mason {1988} and Wood and Mason (1991) derives estimates
of 2q, and zor. to find that zpe tend to be larger than zg., while zgr, tend to be smailer than zgr,.
However it must be emphazised that the zg, values thus estimated are quite strongly dependent on
which of the parameters in Eq. 14.96 one considers measured, and which one wants to estimate.
They have thus become somewhat removed {rom the physical definition of a roughness length, and
become more like a sub-grid scale process outputting some area averaged parameters, when others
are inserted in the formal profile equations Eq. 14.96. The fact that the atmosphere feels a surface
change through a diffusion process as depicted by Eq. 14.93 can be used when interpreting real data
nto a framework of the homogeneous models, considered in section 4 through 7. The simplistic way
of phrasing the models of internal boundary layers (IBL) after a step change is to say that the IBL
growth as between x/10 and x/200 dependent on which arameter one uses to characterise the IBL.
This can be turned two ways. If ane measures [rom a mast at height z, it means that surface changes
closer than 10z, can not be seen in the data. If on the other hand, one wants to use the resistance
laws in section 6 with a charactenistic roughness together with the wind at z = Llkm, it means that
this roughness must be charactenistic for an area with a width between 10 and 200 km. Next we turn
to the effects of changing surface elevation. The recent advances here start with a study by Jackson
and Hunt (1975) who studied the turbulent flow over a two dimensional low ridge. The result are
illustrated on Figure 14.21.

The result of Jackson and Hunt (1975) and the later research (e.g. Zeman and Jensen, 1987) was
that the pressure field was perturbed out to a distance of L, and the inner height, I, was the level
with the maximum speed perturbation, Below ! the stress achieved equilibrium with the new shear
and speed £ was telated 1o L through an equation similar to Eq. 14.93: ¢In{{/zy) ~ L.

Later the results of Jackson and Hunt (1975) was combined with a linearized flow model, where
the scale L was replaced by the the wave leugth of the Fourier decomposition (Troen and Petersen,

1989). From Eq. 14.32 the linearized equations of motien for neutral stationary flow perturbations
can be written:

Ju, idp @

— et — 4.97
3z,  pdz, NETH (14.97)
where subscript 0 indicates background flow, and where only the important terms have been retained.
The kinematic boundary equations at the surface z = H(z,y) are given by:
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Figure 14.21: o) Characteristic of the flow over a two dimensional low redge accordimg to Jacksan
and Hunt (1975), taken from Troen and Petersen (1989). The scale of the hili, L. and the socalled
inner scale, £, is shown. b) Ezperimental data from Jensen ef al (1984}

w=ug - AH{s y) {14.98)

The equations Eqgs. 14.97 and 14.98 are well suited for solution through the twe dimensional Fourier
transform in the coordinates horizontal coordinates. To connect to the Jackson Hunt theory the hill
scale, L , of Figure 14.21 is related to wavenumber, ie. [ ~ |k|~' . With this relation the Jackson-
Hunt model can now be used to close the vertical parts of the equation. The association of the scale
L with a reciprocal wave number is neat, but it does nol necessary work Fortunately extensive
test of Lthe models again available data and models show it Lo work remakably well (Walmsley et
al,1980). In their program for evaluating the wind potential of a given site Troen and Petersen (1989)
managed to combine a roughness change model of the step change type Eq. 14.91 through Eq. 14.94
with an orographic model, just described, and a sheltering model, not described hiere. Aside irom
meteorological datz from a neighbouring station, the users input to the program 1s three maps, one
showing the location and types of shetters, one showing the terrain elevations, and one showing the
distribution of roughnesses, We illustrate here the last with a roughness map.

The idea of using Fourier transforms of terrain elevation has by Belcher et al (1990) been extended
to the roughness change study, Fourier transforming In{ze1/ 20}, compare Eq. 14.93, from roughness
maps like Figure 14.22. This is combined with an analysis of the flow perturbation adapter from the
hill studies by Jackson and Hunt (1975). An attractive aspect of this Fourier transform approach is
that it could be extended to three dimensions fairly easily, thereby faciliating computation of area

averaged flow fields and fluxes much more than the more rigidly two dimensional formulations in Eq.
14.81 through Eq. 14.94.

It is instructive to compare the maps necessary for the wind energy evalnation with the corresponding
needs if the goal was to compute the fluxes of momentum, heat and moisture {rom the same area.
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Figure 14.22: The figure diustrate an mput map wih roughnesses to the analysis program for wind

energy potential{ Mortensen et al, 1992}

Here we would also need the orography map. and the roughness map. Probably we would not need
the map of sheltering effects. Additionally we would need maps over 8y and g0, zor, and zg, could
probably be related to zp. as discussed in section 5. The major model modification would be, that
while the wind energy model works satisfactorily as a neutral model, because the main interest is
on reasonable high winds then a model describing the fluxes would necessarily have to be be able
to describe non neutral Hows as well. The model should be able to handle quite extrerne thermal
conditions. Extremes in thermally controlled situations are found ind the arctic both associated with
the polynia research and in the marginal ice zone, where the temperature difference between the

water and the ice surfaces can be tens of degrees (Andreas, 1980, Claussen, 1931).

However, also in more tempeiate chimates, large changes in surface temperature and humidity as well
the associated fluxes take place on the border hetween land and water, so also here non neutral models
become essential. [n the stable boundary layer, a description is complicated by that even moderate
stability and moderate terrain variation can set up thermally controiled locat flow (Mahrt and Larsen,
1996). Of these effects the non-homogeneous stable boundary layers are probably most difficult to
handle, because of the weak vertical luxes. This, on the other hand may be iess important, when the
overall objective of the PBL study as here is to estimate the vertical fluxes. The strengly thermally
driven internal boundary layers offer little problems, precisely because of the strong vertical fluxes.
They can be described the same way as a growing strongly unstable boundary layer, substituting
z /i for t.

The discussion above has been concentrated on the response of the boundary fayer to inhomogeneous
surface conditions. As a note of caution it should therefore be pointed out that inhomogeneity in the
boundary layer might be due to other reasons as well. E.g. slowly developing synoptic systems and
cloud systems will influence inhomogeneity that originally is independent of the surface conditions,
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although the surface might be influenced by for example clouds changing the radiation conditions at
the surface.

Finally we should mention the studies spectra in inhomogeneous terrain, basically the low frequency
past of the spectra increase for complex terrain, a fact that as least qualitatively can be associated
with the contributions of the terrain variations to a larger scale roughness (Panafsky et al. 1982). In
studies of spectrum reaponse to step changes in roughness and heatflux Hejstrup (1981) and Hajstrup
et al. (1982) describes how the inertial subrange of the spectra adjust to balance with the local stress

as in Eq. 14.82, while the lower frequency paris have a larger memoty, and more slowly relaxes
towards the new boundary layer conditions.

14.10 Discussion and conclusion

In conclusion to this presentation, | should like to paint out, that while I have discussed many
aspects of the planetary boundary layer, I have not presented any recommendations for which type
of description to use Lo describe the different processes. This is partly 1o save place in an already long
paper, but also because [ believe, that given the uncertainties on the the different descriptions, the
reader will have make the choise between different and competing methods, parameters etc him/her
self. In a quelitative sense most of the acknowleged methods and parameter choises are equaly
good, and to prodceed deeper, one will have to dive into the litierature anyhow. 1 have therefore
only tried to refer to papers and books, where the different expressions are summarized, while here
concentrating on a general description on the current knowledge about the prosesses and parameters
of importance. Finally, I hope that 1 have conveyed the impression of the importance of the simple
ideas in turbulence closures, namely all closure is closure based on K-diffusivity and the smaller the
scale of closure the more general the results.
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