A |
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
L.CT.P, P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

@ UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

c/o INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS M0 TRIESTE (TTALY) VIA GRIGNANO, § (ADRIATICO PALACE} P.O. BOX $36 TELEPHONE OA0-XM45T1  TELEFAX ON-24575  TELEX 460449 APH [

SMR/760-25

‘College on Atmospheric Boundary Layer
and Air Pollution Modelling"
16 May - 3 June 1994

“Mass-Consistent Models for Wind Fields nver
Complex Terrain: the State-of-the-Art”

C. RATTO
Department of Physics
University of Genoa
Genoa, Italy

Please note: These notes are intended for internal distribution only.

AN BUILDING Swada Comiers, 11 Tel. 22401 Telefax Z24163 /24559 Telex 460392 ADRIATIOO GUEST HOUSE

Via Grignano_ 9 Tel, 224241 Tolefax 22453 Telox 460349
ALLKOPROCESSOR LAD. Vi Beirug, 1 Tel. 224471 Teiefax 24600

GALILEQ GUEST HOUSE Via Beirut, 7 Tel. 22401






MASS-CONSISTENT MODELS FOR WIND FIELDS
OVER COMPLEX TERRAIN: THE STATE OF THE ART* e

C.F. Ratto, R. Festa, C. Romeo

Department of Physics, University of Genoa, Genoa, [taly

and
O.A. Frumento!, M. Galluzzi
ITA.12, Genoa, [taly

ABSTRACT

Among the diagnostic models for wind field simulation, mass—consistent models ~lay an important role, thanks to the
simplicity of the physics involved and their capacity to accept several measurem nts of wind at different points of the
domain. The general procedure and mathematical supports for this kind of simu. .tion, with particular reference to the
approximations that characterise .ae different models developed, are analyzed. Evidently, a large number of simulations

is required if one needs to know the average wind over a region, with a consequent long calculation time. Some methods
reducing this time, without losing fundamental information, are described.
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INTRODUCTION

The knowledge of the three—dimensional wind field
over a region is often required for a large number
of applications: evaluation of energy obtainable from
Wind Energy Converter Systems (WECS), sirnulation
of wind action on structures (buildings, bridges, etc.),
transport and diffusion of pollutanis and development
of forest fires. Correctly modelled 3-D wind fields
could also be useful for formulating initial and bound-

ary conditions required by mesoscale dynamical mod-
els.

Furthermore, as noted by Kitada et al. [1], it is ex-
tremely important to know the vertical wind field in
order to reliably predict the transport of air pollu-
tants. Limited horizontal wind mesurements are usu-
ally available, and these are affected by intrinsic errors
which make estimation of the vertical velocity diffi-
cult. Similarly, Chino and Ishikawa [2] observe that
the mass—consistency of the used wind field is essen-
tial for avoiding unrealistic source/sink effects in the
calculation of transport and diffusion processes. Nu-
merical models can solve all these problems,

Models simulating wind flows over rough terrain can
be divided into two types: “prognostic”, “predictive”,
“dynamic” or “primitive equation” models and “diag-
nostic” or “kinematic” models.

*This study has been supported by the CNR-ENEL project
“Interactions of encrgy systems with human health and envi-
ronment”, Rome, [taly.
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Prognostic models are based on the solution of time-
dependent hydrodynamic snd thermodynamic equa-
tions (called primitive equations as they are derived
straight from the original conservation principles), ap-
propriately modified to apply into the atmosphere.
These models are also called dynamic (for instance by
[3]) to indicate the explicit inclusion of the dynamic
equations. Models of this nature generally include the
effects of advection, stratification, Coriolis force, ra-
diation and turbulent fluxes of momentum, heat and
moisture. The solution of the full set of equations,
however, still remains a laborious and expensive task.
Furthermore, the more elaborate the model, the more
reliable the input data should be in ozder to exploit
the advantages offered by the model; often these data
are not available. Furthermore, due to their complex-
ity and cost, these models are generally run for a few
cases only, usually corresponding to the most signifi-

cant meteorological events that affect the considered
arca.

Lalas [3] includes among dynamic codes a few mod-
els which introduce strong approximations into the
primitive equations, while neglecting their time-
dependence. These codes, we call JH models, are
based on a Jackson and Hunt {4] proposal.

Diagnostic codes merit this name since, as observed
by Pielke 5], they are not used to forecast forward-
in-time through the integration of the conservation re-
lationships. For this same reason, they are also called
(again by [3]) kinematic models. These models gen-
erate a wind field by satisfying some physical con-
straints. If, for example, only the continunity equation




— which assures mass conservation - is imposed, the
wind model is defined mass—comeistent. These models
are based on the numerical solution of the steady state
three~-dimensional continuity equation for the mean
wind components. The momenium and energy equa-
tions are, as observed by Dinar [6], not solved explic-
itly but considered indirectly using parametric rela-
tions and/or wind data.

The relative simplicity of diagnostic wind models
makes them attractive for many practical purposes,
in that they do not require much input data and are
easy and economical to operate. In fact, these models
quickly and efficiently utilize available data to generate
a wind field which satisfies some physi~=l constraints.

Furthermore, Pennel (7] found that in some cases
the “improved mass—consistent models” outperformed
the more complicated and expensive dynamic models.
Similarly, Burch and Ravenscroft (8] claim that these
simple models work considerably better than the oth-
ers in normal situations where crucial data needed to
run the more sophisticated models are not available.

On the other hand, diagnostic (hoth JH and mass—
consistent) models do not take into account thermal
cffects and effects due to changing pressure gradients.
As a consequence, flows such as ses brceses, slope
winds, heat island effecis, etc. as well as downwind
scparation cffecis cannot be simulated, unless embed-
ded in the initial wind data from observations at the
appropriate location: see for example [9] for separation
effects and [1, 10, 11] for land/sea breese. Diagnostic
models are thus specifically designed to predict the
effects of orography on steady mean wind flows (i.e.
flows averaged over time intervals that vary between
10 min and 1 hour).

According to Troen [12], the JH approach has to be
preferred to the mass—consistent method, due to the
fact that it uses more physical constraints than just
the continuity equation. On the other hand, the mass—
consistent models do have the advantage of easily tak-
ing into consideration observed values of the wind field
at several different points and/or distances from the
ground, while JH models usually, but not necessarily,
describe the modifications of an “unperturbed flow™
produced by the orography under consideration. Fur-
thermore, steep slopes affect JH models more critically
than mass-consisient models.

The aim of this work is to highlight the fundamental
aspects of, and differences between, mass—consistent
models developed over the last fifteen years.

Xitada et al. [1] have classified objective analysis of
wind field data into four types of models, all of which
use tne continuity equation as the constraint equation,
while differing in the manner in which this result is
obtained. .. this paper we only examine the methods
belonging to Kitada's “variational calculus method”

class.

Our analysis is essentially based on the following mod-
els: MASCON [13], MATHEW [14], NOABL [15-17), coM-
PLEX [18-20], wiNDO4 [21, 2], ATMOS] {22], ROLOS®
[23, 26], REDBL and conDoR [10, 11, 27], MINERVE
(28], NUATMOS [29-31], Mc-3 [32], WIN'DS [33] and
LSWIND (34]. For the meaning of the acronyms, see
Appendix A.

1. THE GENERAL APPROACH

1.1. The Iinizialization and the adjustment
steps

Mass—consistent m-dels describe the wind flow over
terrain with complex orography. Following Moussafir
[35], we call the domain of application of the model £}
and assume we know the value of the wind vector (m-
tensity and direction) in N points of f1: VI, V;g, vreny Vn.
The aim is to construct a flow field over the entire
domain which assumes the known values at the con-
sidered points, while at the same time satisfying the
continuity equation. The solutions possible are infi-
nite. In order to obtain the final solution two steps
are required

i) An initialisation step R which transforms, through
interpolation/extrapolation, the N given wind vectors
in a wind field over all 2, according to the following
schema

(Vl,VQ, ..... ,‘?N) —Ri f""(:n,y,z)

The V° field is called “initial”, “firat guess”, “initial
guess” or “observed” field and does not normally sat-
isfy the continuity equation.

ii) An adjustment step or minimisation procedure
which minimally adjusts the V' field to construct the
“adjusted”, “final” or “reconstructed” field V that sat-
isfies the mass conservation according to the following
schema

Vo(z,p2) > V(= (z,v,2) .

It should be emphasised that the final solution de-
pends both on the adopted R and ¥, The < process is
nearly the same for aimost all the models considered
(see section 2), although the numerical solutions of the
governing equations can differ (see section 8). The R
process varies substantfially from one code to another
(see section 5).

A comparison between the output of & mass—consistent
model and one or more reference sites (obviously not
included in the input data set) generally shows that
there may be a poor agreement with measurements
at single points. Agreement, however, is much bet-
ter if the average wind over the region is considered.

*Called NOABL* in (23] and [24] and A10LOS in [25].




In other words, the model cannot provide wind values
close to the measured data at evegyy point, but does
give satisfactory values for the general flow over the
region. This is not surprising, since many of the phys-
ical processes affecting the flow over terrain are not
simulated in mass—congistent models. For a further
discussion relating to these problems see sections 5.1
and 5.2.

1.2. Continuity equation

The continuity equation in its general form is

ap - ~
5{4-‘7-(,0‘/)—0 . (1)

If we assume that the air density is constant, equation
(1) becomes

V.V=0 . (2)

This equation is used by most of the models and
is called the “uncompressible form of the continuity
equation”, distinguishing it from the “anelastic form”

v. (pf/.') =0 ' (3)

considered by Mathur and Peters in [36]. Equation (3)
has the advantage of taking into account variations in
density. These variations can occur, for example, if
very large domains ate considered, or if there are large
heat sources or sinks in the domain - such as lakes,
towns or valleys non-uniformly exposed to the sun -
that can induce strong differences in temperature even
between relatively close regions.

To determine the effect of the variable density on the
model output, Endlich et al. [19] ran their model ei-
ther with constant or with variable density, decreasing
with height according to standard atmospheric values,
all other conditions in the run being identical. They
found that the differences in the results were barely
detectable.

Dickezson [13], in the two—dimensional model MASCON,

utilizes a direct consequence of the mass conservation
law, which is

Ozy  BO(uzy)  O(vaw)
5 =0
at + Jz + dy tw

where z;, is the height of the inversion base above orog-
raphy, assumned variable in time; u and v are the com-
ponents of the wind vector in the z and y directions,
averaged within the sub—inversion layer (see section
5.3.1), and w is the vertical outflow velocity through
the inversion base.

2. THE VARIATIONAL TECHNIQUE

2.1. Sasaki’s method

All the models examined in this paper use Sasaki’s
method [37, 38] to obtain the adjusted field. The ad-
justment procedure of the wind field V°, defined in
section L.1, can be performed using variational calcu-
lus. The general variational analysis formaliam defines
an integral function, the extremal solution of which
minimiges the variance of the difference between the
observed and the adjusted variable values subject to
physical constraints which have to be satisfied, exactly
or approximately, by the adjusted values. 1t should be
remembered that ‘he subsidiary conditions to be sat-
isfied exactly are k 1own as “strong consiraints”, while
conditions imaposed approximately are called “weak
constraints”. A “minimal solution” exists when the
number of strong constraints is less than the number
of variables.

To obtain such a sojution, mass—consistent models
minimize the variance of the difference between the
adjusted values and the observed values

E(u,v,w) = fn [a¥(e — u°)? + ad(v - v°)?
+ ad(w-w)?]dv (4)

under the strong consiraint of mass conservation, In
this equation (u°, v°,w°) and (u,v,w) are the com-
ponents of VeeV respectively, and f1 is the domain
defined in section 1.1.

Note that since measurements of the vertical veloc-
ity component are seldom available, the initial vertical
velocity w? is usually set to zerc at each grid point.
Barnard et al. (39, 40] set w° equal to xero at all grid
points, except at the lower boundary where w® is cal-
culated so that the initial wind is paraliel to the terrain
surface (see also section 2.2).

The problem of minimising the expression of equation
(4) under the strong constraint (2} is equivalent to
minimizing the following functional

J(u,v,w; A} = .[n[af(u_ w)? + ad(v — v°)?

aj(w - w)? (5)
du v Bw

(a-‘-'a—yi"g)]dV

+

where A = A(z,y, z) is the Lagrange multiplier (which
represents, physically speaking, the perturbation ve-
locity potential) and the values of a; (i = 1,2,3) are
the Gauss precision moduli.

Identical Gauss precision moduli are always assumed
for the horisontal directions!, while distinctions be-

‘For this reason both &, and oz are usually called oy, while our
a3 appears as aj.



tween horisontal and vertical directions are apparent
(see section 3).e

Dickerson |ls), Sherman [14] and Mathur and Peters
[36] assume that

2 I
' 202

a

where the values of oy represent the variances relative
to the observation errors and/or the deviations of the
observed field from the adjusted field. For the conse-
quences of this assumption refer to section 3.

The Euler-Lagrange equations, the solution of which
minimizes equation (5}, are

e 1 8a
u = u+m£
. 1 8

v o= v+~2~;~§~5~§ (6)
w = u}"+—lnt—'ii
2al 9z

Note that Bhumralkar et al. (18], Endlich et al. [19]
and Erdlich {20] use the notations a? = a? = Wy
and a} = Wy; Guo and Palutikof [32] set 1/(2a?) =
1/(2a3) = m, and 1/(2a3) = 1, and call 7, (r,) “hori-
sontal {vertical) transmissivity”, while Troen (41] sim-
ply calls (ay/a3)? = 7,/m, = T “transmissivity”.

In the coMPLEX approach {18-20] A is eliminated from
equations (8) obtaining three uncoupled equations for
the wind components

Pu 4 9%y o ? 5%
oz? ay? az/) 822
B o\’ 3%
= 3y tT\a) oz
3 [ Sw°
- +
dz \ dy dz
o | o (ar)} o
Ox? Sy as) 0z2
8lyo ay 2 glye
= Bl +(a_3) 822 (7)
4 (v Odw®
— —————n _+—m
Oy \ o=z 8z
Fu | Ow (a) P
dz3 day? az] 022
_ w®  Pwe
T B2 Ay

|

(31)2 8 (Fu &
az] 0z \ 3=z 8y
Assuming that @) = a3 and a3 are constant through-
out the domain, all other models using the variational

approach derive the elliptic equation for A
L S ) 2922
823 8y  \az/ 822

du® S®  dw?
= Lo 8
B 2“‘(31+3y+6z) (8)

by differentiating equations (6) and substituting the
results into continuity equation (2).

Ross et al. [29] explicitly pointed out that if the right
hand side of this equation vanishes (for instance, if Ve
represents a uniform background wind) and if o =
@y = a3, then A represents a velocity potential. Thus
the resulting sclution to the problem, subject to non-
normal flow through the terrain boundary, will be the
potenital flow.

Mathur and Peters [36] impose a second strong con-
straint which represents the conservation of the z com-
ponent of vorticity

dv  du

ng*gg

in the transformation from the V° to the V field. This
constiraint emerges from the fact that these authors
want the adjusted field to maintain the most impor-
tant physical properties of the observed field {and vor-
ticity is one of them). Since vertical components of the
wind velocity are not routinely measured, Mathur and
Peters claim that it is desired to preserve the vertical
component of vorticity. With the above approach, the
functional (5) contains an additional term anrd thus
becomes

Ju,v,w) = /ﬂ [021(“ —u°)? ¢ al(v — uo)ﬂ

2

+ ai(w- w’)?
oo (B 0y Ow
"\ 8z dy Oz
v du
— - v
* Ag(aw ay)]d

with the corresponding Euler-Lagrange equations be-
coming

el e L 1on
B 2al 9z 203 By
e, Lo 1ok
vE +2a§ dy = 2a3 Oz
w = w°+—1—a)‘1
h 2a} 8z

On the other hand, Ross and Smith [42] correctly point
out that it can be easily shown from equations (8) that,
on the assumption that a; ~ a3 and as are indepen-
dent of z and y and that ) is well-behaved, the verti-
cal component of vorticity is automatically conserved.



Thus, the inclusion of this additional constraint is un-
necessary and adds g considerable computation bur-
den. Furthermore, note that, if a; = ag = a3 is inde-
pendent of z, y and z and X is well-behaved, the three
components of vorticity are conserved.

2.2. Boundary conditions

From the development of the variational problem, the
following boundary conditions can be obtained

A6V .i=0 on T (9)

wljere ' is the surface of the domain. Here the notation
8V denotes the first variations of the velocity and 7 is
the outward unit vector normal to the surface of the
domain.

As either A or the normal velocity component variation
must be gero at a boundary, and as we cannot impose
both of them (the solution would no longer be unique),
the following choice is adopted by Sherman [14] and
almost all other authors

A =0 or “natural boundary conditions” for open or
“flow-through” boundaries. This condition im-
plies that the normal derivative of A is, in gen-
eral, different from sero. Thus, a non-gero ad-
Justment of the observed velocity component
normal to the boundary may occur. As results
from equations (8), a change in the amount of
mass entering or leaving the volume can occur.

% = 0 i.e. Neumann boundary conditions, for closed
or “no—flow-through” boundaries. Again from
equations (6), this implies, at least with Carte-
sian coordinates (see section 4.2}, that there is no
adjustment in the normal velocity component,
ie. §V - & = 0. If the observed normal velocity
component through the boundary is sero, the ad-
justed flow of mass across the boundary is also
xero, and the condition is then appropriate for
closed boundaties, as are the terrain and possi-
bly the top of the domain when assumed to be
an inversion base.

Models using conformal coordinates (see section 4.3)
replace the last condition with V - & = 0 at the solid
boundaries.

Barnard et al. [39, 40] and Ross et al. [29] explicitely
pointed out that the closed boundary condition has
to be used along with the requirement that the initial
surface flow is parallel to the surface in order to satisfy
the impeneirability constraint.

Sherman [14] noted, even though not using this possi-
bility, that the Neumann boundary condition can also
be used to specify known transport of mass across
an open boundary. [shikawa (21} investigated both
boundary conditions for open boundaries, simulating

a two—dimensional triangular hill, and found that im- ,
posing a sero adjustment of the normal velocity com- .
ponent over all the boundary gives a better agreement
with observations. The principal effect of this choice
is that the ill boundary effects present in such simula- |
tions completely disappear.

This same approach was used by Ishikawa [34] in his
simulation of the Chernobyl incident and by Takeuch
and Adachi [43] in their study of the Kansai area,
Japan. Nevertheless, it has to be remembered that,
when imposing Neumann boundary conditions to all
boundaries with an elliptic equation, singularity prob-
lems can arise as scon as the first guess does not have
zero mass flow thro 'gh the boundaries of the simulated
volume.

3. PARAMETRIZATION OF STABILITY

All the simulations performed with mass—consistent
models showed that these codes are very sensitive to
the values chosen for a; = a; and a3 in the equations
of section 2.1. Therefore, particular attention must be
given to this problem. Barnard et al. [39, 40] point out
that the difficulty in determining the correct values to
give to these parameters has limited the possible wide
use of mass-consistent models for quantitative predic-
tions of windiness in compiex terrain.

As the functional (5) has to be minimised, dividing
it by a constant value, i.e. a2, makes no difference
except for numerical effects. A unique parameter is
thus introduced

(12:

=T

8.2
pon g 8 R Y

Te
Th

where 7, 7, and v are the transmissivities defined in
section 2.1. Barnard et al. (39, 40] prefer to consider
the logarithm of this quantity

T = log —5 = 2loga .

This parameter T is called the “empirical stability pa-
rameter”.

Note that the coefficients a? = a3 and a3 are the
weights of the horisontal and vertical adjustments of
the velocity components. Thus, for & >> 1, flow
adjustment in the vertical direction predominates, so
that air is more likely to go over a terrain barrier rather
than around it, while for & << 1, flow adjustment oc-
curs primarily in the horisontal plane, so that air is
more likely to go around a terrain barrier rather than
over it. In particular, @ — oo signifies pure vertical
adjustments, while a -+ 0 signifies pure horisontal ad-
Jjustments.

Sherman [i4], followed by Kitada et al. [1], by Mathur
and Peters [36] and by Davis [22], suggested that the



value of a, being equal to o3/0) (see section 2.1)
should be proportional to the magnitude of the ex-
pected w/u, and thus should be taken as equal to 102
if one wants to correctly weigh horizontal and vertical
adjustments.

Kitada et al. [1] simulated a two—dimensional land/sea
breese circulation with strong vertical motions. They
evaluated w/u ~ 0.22:-0.50 and thus made simulations
with & ~ 0.10 and 0.32, finding that the larger value
gives a slightly preferable wind flow.

The same authors, in their simulation of the three—
dimensional wind flow in the Mikawa Bay area, allowed
a to vary from .01 to 0.22, finding a minimum total
divergence at & = 0.10. On the other .and, smaller
values of a increasingly smoothed out, in the adjusted
wind field, the substantial irregularities shown by the
initial wind field.

As a conclusion, Kitada et al. observed that data avail-
able on the magnitude of w/u are very helpful for es-
tablishing an appropriate value of a. The best value
of a should be determined by considering the total
residual divergence, the flow pattern and the expected
value of w/u.

Davis {22] suggests that a ~ 0.01 is suitable for a
stable aimosphere, while under unstable conditions o
would tead toward infinity.

Endlich et al. [19] state that, in their simulations, val-
ues of Wy /Wy = (ai/a3)? in the range 10719 to
10~ ! give suitable results. On the other hand, as ex-
plained by Endlich [19], stability effects aze produced,
in this approach, by changing the height of the com-
putational domain (see section 4.4).

Guo and Palutikof [32], in their validation of NOABL,
used a values equal to 1.0 for neutral conditions, down
to 0.1 for a very stable atmosphere and up to 5.0
for very unstable conditions. In predicting high wind
speeds 5, they found a less than 8% wind speed change
as the a value moved from 1.0 to 0.1, and a less than
2% wind speed change as the o value moved from 1.0
to 5.0.

Lshikawa {34] ~ in the development of the wSPEEDI -
found the values of a in the range 0.005 to 0.010 suit-
able in the model LSWIND, when used for simulating
synoptic wind fields (see section 4.7).

Barnard et al. [39, 40, in their tuning of the NoABL
model through the use of an optimisation technique,
which will be discussed in section 7, found values of
T = 2loga between —0.98 to 0.06, corresponding to
7 between 0.62 to 1.03, excluding cases where winds
were light to moderate (in these cases r could be as
small as —1.85, corresponding to a ~ 0.44).

Barnard et al. proposed a procedure for accurately de-

5Thc wind was predicted on a site from the data recorded in
a atation 4.6 kilometres away and with an elevation 250 metres
lenn.

termining the stability parameter for each mdnndnnl 4
modelsapplication. If several observed wind speédl'ﬁ‘re
available, some ate not used to calculate the wind field
but are kept as a reference. Several simulations are
then performed using the remaining observations and
different values of o. The final value is the one that
gives the best agreement with the reference observa-
tions, It should be noted that this method provides
values of & that are only reliable for the particular
case under analysis. As a consequence, this method
cannot provide ar a priors value that can be used for
other simulations, but must be applied entirely to each
simulation.

Some authors me ke the o coefficient vary in the do-
main. Lalas [23, 26] applied this idea introducing a
transmissivity coefficient variable in the vertical di-
rection. The MINERVE code [28] allows the use of a
vertical profile or of a 3D distribution of a.

Other authors claim that « should depend not only on
stability, but also on the characteristics of orography.

Some authors (such as Troen {41], Ross et al. [29], -
Moussiopoulos et al. [11, 27] and Georgieva [44]) have
attempted to relate a to the Froude number, which is
defined as

U
NH
where U is the velocity scale or the characteristic wind

speed, M is the characteristic height difference and A
is the buoyancy frequency or Brunt—Vaisila frequency

Fr=

gds
N = 0dx

& being the potential temperature. A simple physi-
cal interpretation of the Froude number is the ratio
between the kinetic and the buoyant energy of an air
parcel. The Froude number is considered as a suitable
parameter since it depends both on stability, through
the buoyancy frequency, and on orography, through
the height difference.

Troen [41] has developed a mass—consistent model
based on the Fourier transform of equation (8) in
which the transmissivity r is treated as wavenumber
dependent. This author assumes that near the surface

g = 14 (g — 1) exp[—0.3zy(k? + 17)1/%]

where k and ! are the wavenumbers in the z and y
directions, zy is the Planetary Boundary Layer (PBL,
in the following) ht.lght and 7y ; is the transmissivity
above the PBL. It is assumed that

1",! = Prl= u—-——-—ck; vcl

!
fk" = 1

if Fr<1
if Fr>1

where uc, vg are the components of the velocity above
the PBL,



Ross and Smith [29] found that, for neutral and stable
flows over a hill, it is more suitable to use the function

al = 1- if z>H,

a
vFr
al = 0

if 2<H,

where a ~ 0.7 and H, is the upsiream height of the
streamline dividing the air flowing above the hill frem
the air flowing round it. The determination of the
value of H, is quite difficult; for stable and neutral
flows, Hunt and Snyder [45] propose

H.> W1 - Fr)

‘where h is the height of the hill.

Subsequently, Ross [30, 42], having used additional
laboratory data, suggested the relationship

3
2 _
a—l+m (10)

where 5 is the “speedup” over the terrain. In 1993,
the same research group (see [31]) claimed that further
testing using field data for complex terrain is needed

before expreasion (10) can be routinely used within an
opetrational version of NUATMOS.

Moussiopoulos et al. {11, 27] partially followed the
Ross and Smith approach, preferring to use the inverse
of the Froude number, the Strouhal number which, in
neutral and stable conditions (df/dz > 0), is defined
as

NH
Str = -U—

where A is the already defined buoyancy frequency,
and, in unstable conditions (d9/dz < 8), is defined as

M
Str = ——
TTTU

where £ is the buoyancy time scale

After a comparison of the numerical results with ex-
perimental data, Moussiopoulos et al. suggested that
& good parametrization for a in stable flows should be

a2:1—%ﬁ(m—1)

if Str > 0.
If Str < 0 the relationship

1< a’ < [o?(—5tr) !

is proposed. Nevertheless, Moussiopoulos et al. ob-
serve that thegparametrisation for unstable stratifica-

tion has no significant influence on the resulting wind
field.

These relationships give o varying between 1 and 0
with Str passing from 0 to 3, and « rising from 1 to
~ 2.6 with Str passing from 0 to ~1.

The value of Str and thus of a is calculated [11, 27]
at every grid point through the following procedure

1) the characteristic height difference H

Zi,j;tk,l Ah-’j[/"?j
E.;#k,: I/T?j

Hir =

where Ah;, and r,; are the orographic height differ-
ence and the horizontal distance respectively between
points (i, j) and (k,1). Note that this equation gives
high values of A at locations close to steep slopes of
the terrain;

ii) the Brunt-Vaisala frequency N or the buoyancy
time scale £ are deduced from vertical temperature pro-
files from upper air soundings;

iit) the characteristic wind speed U is set equal either
to 0.2m/s or to the local first—guess wind velocity,
provided that this exceeds 0.2 m/s;

iv) for convergence reasons, the local values of a; ;.
are usually not allowed to be less than 1/4/30 and
greater than /30.

4. DISCRETIZATION OF THE DOMAIN

4.1. The 3-D grid

For the application of any mass—consistent model it is
necessary to discretize the {1 region by introducing a
three—dimensional grid.

First of all, the terrain elevation for each node of a
horizontal rectangular grid, usually with square cells,
has to be specified. This elevation can represent an
average value relative to the cell containing the node
or the elevation of the grid point.

Two of the wind models considered here, ROLOS [23,
26) and WIN'DS [33], also need a discretisation of the
terrain roughness relative to the same grid points used
for the orography.

In mass—consistent wind models, two kinds of dis-
cretisation of the volume above ground are used:
Cartesian and conformal coordinates.

4.2. The Cartesian coordinate system

The Cartesian system of coordinates is used in the
MASCON [13], MATHEW [14] and LsWIND [34] models
and can be used optionally in NoABL [15-17]. Fur-
thermore, the Cartesian coordinates are nsed in mod-
els simulating flow between buildings, as in [46).




In this case, the computational domain consists of a
rectangular box, with the bottom of the box located
at the lowest topographic point in the area. Within
the computational domain, the volume is subdivided
into rectangular cells with dimensions Az, Ay, Az in
the z, y, z directions respectively. Usually Az = Ay.

The orography is represented by “obstacle cells”. An
obstacle cell is defined as a computational cell whose
faces are treated as impermeable boundaries. Qbstacle
cells are created whenever the terrain surface passes
above or through the upper half of a computational
cell.

It should be noted that the degree to which the ter-
rain surface is represented by obstacle cells is strongly
dependent on the chosen cell resolution. This can be
a drawback to the efficient computation of windfields
over complex terrain. Furthermore, the coordinate
system makes boundary conditions near the ground
difficult to satisfy. As a consequence, as Lowellen et
al. [47] showed, this surface representation leads to
large velocity errors near the surface.

4.3. Terrain conformal coordinate system

For regions in which the terrain varies substantially,
it is advisable t¢ choose “terrain conformal” coordi-
nates, also called “conformal”, “terrain-following” or
“sigma” coordinates by many authors. In this case,
the orography determines the coordinate mesh. The
use of the conformal transformation has several advan-
tages:

i) the terrain surface is more accurately represented,
due to the characteristics of the transformation itself;

ii) conformal coordinates also imply simpler boundary
conditions (see the end of this section); and

iii) conformal coordinates make the use of variable ver-
tical soning easier, allowing higher resolution near the
terrain surface without penalising efficiency.

Finazdi et al. [9], in their testing of MATHEW and MIN-
ERVE, underline the effectiveness of terrain—following
coordinates compared to the Cartesian ones.

The coordinate transformation is

§ = =
n =y (11)
_ z—hiz,y)
o(z,y) = H(z,y) — h(z,y)

where Az, y) is the height of the terrain above a refer-
ence level (not necessarily sea level), and H(z, y) is the
corresponding height of the top of the domain, which
is usually assumed to be rigid and impermeable. H is
often assumed equal to the height zy; of the elevated
temperature inversion base, the presence of which pre-
vents the outflow of air: for more details see section
4.4. The transformation (11) is purely geometric. It
is evident from definition (11) that o is constant both

at the bottom (¢ = 0) and at the top (¢ = 1) of the
domain.

The MINERVE code [28] uses s = o H instead of o,
with H assumed constant. The codes NoABL [15-17],
ATMoOS1 [22], EOLOS (23, 26], NUATMOS [29-31], REDBL
and the first version of cONDOR [10) and WINDS [33)
use, instead of o, the quantity o’

o =1-0 (12)

so that ¢/ = 0 at the top of the domain and ¢/ = 1
at the terrain surface. The CONDOR code {11] uses
s=d H.

The components of the velocities (&%, 9,0) in the
terrain—following coordinates are easily obtained by
differentiating expressions {11) or (12) with respect to
time.

Note that the “no-flow—through” condition at the ter-
rain surface and at the top of the domain (see section
2.2) simply becomes, in conformal coordinates, o = 0
or &’ =0.

Kitada et al. [1, 48], Bhumralkar ¢. al. [18] and Endlich
et al. [19] introduce the variables u* = AH &, v* =
AHV and w* = AHé, where AH = H ~ h. This
allows expressions in conformal coordinates to be ob-
tained equal to those given by equations (2), (5), (8),
(7) and (8), provided that coordinates z, y and z are
replaced by {, n and o respectively and speeds u, v
and w are replaced by quantities u*, v* and w* re-
spectively. This result is obtained by minimising the
functional (5) written in conformal coordinates with
respect to the new variables u*, v* and w*, Ross et al.
(29} claim that this approach does not readily lead to
the correct flow in the simple test cases examined by
them.

While Kitada et al. work with equations {8) and (8)
rewritten as just stated, in the COMPLEX model (18,
19], equation (7), with z replaced by ¢ and u replaced
by »* and so on, is used: for more information about
this approach, see section 6.

The other authors working with conformal coordinates
transform equations (2), (5), (6) and (8) in conformal
coordinates. In other words, they minimise fanctional
(5) with respect to variables u, v and w and not with
respect to @, ¥ and .

4.4. Height of the domain

Most of the mass—consistent models assume H = const
in equation (11). With this choice, the conformal sur-
faces are terrain—following near the terrain itself, while
becoming flatter with increasing z.

Kitada et al. [1, 48] assume, in equation (11), H —
h ~ 1000m constant in all the domain. With this

choice the conformal surfaces are terrain-following at
all elevations.




Endlich et a6l. (19, 20] assume
H(z,y) = Ha + kh(z,y) + (1 — k)h, (13)

where h, is the terrain height at a site of interest,
H, is the average thickness of the PBL at the same
sitc and k is & “slope factor”. If & = 0 the top of the
boundary layer is flat, if k = 1 the top is parallel to the
terrain. Values greater than 1 give slopes steeper than
the terrain slope; negative values give slopes opposite
to the terrain slope. The parameters H, and k can be
treated as functions of time of day and season. Endlich
suggests that their typical values are H, = 500 m and
k = 0.2, for the nighttime case, and H; = 1500 m
and k = 0.8 for the daytime case. Endlich et al. [19]
point on . that they assume a sudden transition in the
depth of the boundary layer from daytime to nighttime
values, and vice versa, which is only an approximation
to reality. Furthermore, these authors observe that
equation (13) can give unrealistically low values of the
PBL top over the highest terrain unless an iterative
procedure is adopted, compelling the minimum PBL
thickness to be greater than 200 m.

Guo and Palutikof [32] suggested selecting the PBL
height with the following procedure. First they select
a station as the “tuning station” for the area. Then
the PBL height is decided by comparing predicted and
observed wind speeds at the tuning station for different
PBL heights. The PBL height which gives the best
prediction is selected (see also section 7).

The top of the domain must always be above the high-
est terrain. In fact, Sherman [14} observed that the
orography may protrude through the top of the grid,
potentially producing unconnected regions within the
grid volume, but we could not find any such applica-
tion in the literature on these models.

On the other hand, Moussafir {49) suggests that H —
Amin should, in any case, be greater than twice the
marximum orographic height difference, i.e.

H - hrm'n > 2(hmur - hmin)

Amnax a0d Ay,in being the highest and the lowest grid
point levels respectively.

4.5. Horisontal spacing

In almost all the modeis using Cartesian coordinates,
a constant grid spacing is used for both the horizontal
directions.

Bhumralkar et al. [18], Endlich et al. [19] and Tombru
and Lalas [26] optimise the (accuracy/computational
time) ratio with a procedure that uses the output of
the simulation carried out with a coarse grid as an
input for a new simulation carried out with a finer
grid, defining orography and possibly roughness with
greater detail. The new grid is chosen in such a way
that all the nodes of the coarse grid remain nodes of the

fine grid; the input value is thus known for all these .
ngdes. For the other nodes, the input wind yalue is -
obtained through interpolation of the coarse grid wind
values.

Tombru and Lalas point out that this procedure can
be repeated with an even finer grid until the required
accuracy is reached. An effect of this iteration is that
the code “zooms” into the area of interest; thus the
method is called a “telescoping procedure” by its an-
thors.

The relatively small increase in computational effort,
compared to the appreciable results that have been
obtained [26], shows that this approach is a good so-
lution if simulations in gones with complex orography
are requested.

4.8. Vertical spacing

The models that use Cartesian coordinates usually im-
pose Az = const. Only Takeuchi and Adachi [43] use
vertically streiched coordinates with higher resolutions
at low levels. On the contrary, as we have already
stated, variable vertical zoning is common with ter-
rain conformal coordinates.

If a disczetisation in o given by equation (11) is per-
formed in order to have N levels (including o = 0 and
o = 1), the distance between two consecutive levels in
real space is

Azx(z,y) = [H(z,y) — h{z, ¥)] Aoy (14)

subjected to the condition

N-1
Y An = H(z,y) - h(z,y) . (15)

k=1

A more general transformation between z and o is used
in the Mc—3 model {32] which assumes, as does com-
PLEX [20], no flow through the terrain-following coor-
dinates (see also considerations on this topic in section
6}. This transformation produces the following spac-
ing

Am(z,y) = [Hc.+c(1_%)q (16)

x (H(z,9)— h(z,y) - H..)] Aoy

where H, is the PBL thickness over the test region
and C is determined from equation (16).

The parameter g, which is positive and smaller than
1, is assumed to be linked to the atmospheric stratifi-
cation. Note that if ¢ = 0 then C = 1 due to equation
(15): thus equation (18) becomes the same as equa-
tion (14). As the value of ¢ increases from 0 to 1, near
surface wind flow tends to be restricted to a smaller
(greater) vertical height above high (fow) ground. The
value for ¢ can be chosen in order {o obtain the best
agreement with the observations.



As k increases, the difference between Azi(z,y) and
H, Ady, i.e. the average Inyer thickness for that partic-
ular layer, decreases. When k reaches the value of N,
this difference is reduced to nothing, i.e. Az = const.

Once the algorithm converting z into & has been de-
fined, the problem of choosing the spacing in this new
space still exists. The simplest choice consists of the
constant vertical spacing option used by references
[1, 48], i.e. Aoy = const.

To improve the resolution near the terrain, in order
to increase the density of the levels where the wind
velocity vertical gradient is higher, most models allow
the user to select a grid with variable spacings. Four
kinds of such spacing are commonly used

i) log-lincar distribution, as used in ATMOS1; this spac-
ing is generated by the following equation

o =or_1 + 0.204_; log{c + op_y) (17)

where ¢ ~ 0.001 prevents the argument of the loga-
rithm from becoming zero;

ii) geometric distribution, which can be used as an
option in NOABL, E0LGS and WINDS together with
the log-linear; it is given by the following equation

(d‘)m‘" ,Yk—l (18)

O = Oky1 — H

where (dz)min, whose value is decided by the user, is
the smallest spacing between the levels; the valne of ¥
is calculated directly by the code;

iii) exponential distribution, as used in cOMPLEX and
in MC--3; if N is the number of the levels, then

a‘y:eil [exp (H) —1} ; (19}

iv) a distribution obtained through an additional coor-
dinate transformation, as used by Moussiopoulos and

Flassak [10]

E 1 .

— = e _ 1 = o NY 0
¥ =gl D=1 (k=0,1,.,N) (20)
note that with d — 0 the distance between sigma levels
becomes constant and equal to 1/N; a value of d =
100, together with N = 10, was used by [10].

4.7. Typical grid dimensions and spacings

The variational calculus method has generally been
used for simulating winda at the sub-synoptic scale.
Thus, the dimensions of the region of application are
typically from 10 to few hundred kilometres for hori-
sontal extension and 1 + 3 kilometres for vertical ex-
tension.

In any case, in the choice of the exact boundaries of
the area, it has to be remembered that there should

be no terrain features outside the domain which ¢ould
be expected to significantly influence winds within the
domain. o

The study of much larger areas may imply the separate -
simulation of their subareas. For instance, Parkinson
(50] and Burch et al. {8, 51, 52] refer to a work per-
formed to assess the economic wind energy resource
in the UK. The NOABL model was used to calculate
the wind field for 56 overlapping areas, each approx-
imately 120 km x 120 km, covering the whole of the
UK.

More recently, specific applications have been em-
ployed on much smaller and larger scales.

Rockle in hi: doctorui thesis [46] simulates the wind
field around ingle houses, as well as in complex utban
zgones or on industrial estates.

At the other end of the spatial scale, Takenchi and
Adachi [43] have simulated an area of 300 km by 300
km, insttumented with more than 100 anemometers
providing surface wind data.

[shikawa [34] - with LSWIND, a model similar to
MATHEW but including the effect of the carth’s cur-
vature — simulated an area of 3600 km x 3600 km
including most of Europe. The model was initialised
with wind data coming from 171 surface and 101 aero-
logical observaticns.

The maximum number of nodes depends on the char-
acteristics of the computer, but to have a reasonable
computation time it is advisable to avoid exceeding
10° nodes in the three-dimensional computational do-
main. In the more well known applications, as a con-
sequence, the number of horizontal grid points varies
from a minimum of 20 x 20 to a maximum of about
100 x 100. Hence, horisontal spacing usually varies
from a minimum of 50 m, as in [39, 40, to a maxi-
mum of 5 km, as in [53]. In the mentioned calculation
of synoptic wind fields above Europe, the horisontal
spacing is up to 72 km,

The top of the domain is usually placed between 1500
and 3000 m from the lowest height of the terrain; the
number of conformal levels varies from 6 (see for in-
stance [18]) to 20 (see for instance [11]).

6. THE INITIALIZATION PROCESS

b.1. General considerations

The process of initialisation R (see section 1.1) is the
set of operations that have to be performed on the
N values of the wind vector, before imposing mass
conservation. The aim of initialisation is to assign a
value of wind speed and direction to all the grid points.
The codes using Cartesian coordinates, such as
MATHEW (14, 54} and wINDO4 [21, 2], and some of the
models using conformal coordinates, such as COMPLEX



(18, 19] and REDBL and the first version of CONDOR
(10], use a four-step procedure

i) the observed -ind values are vertically extrapolated
in order to obtain values at a reference height above
ground level (e.g. ~ 20 m in [14] and ~ Sm in [10});

if) these values are interpolated at this height, usually
with & 1/r? law, using the nearest adjusted data (see
section 5.4);

iii) another 2D wind field is similarly obtained at the
upper surface of the simulation volume;

iv) finally, a vertical interpolation (see section 5.3) is
performed between these two levels for every grid node.

In ordsr to fill-in the computational mesh with the
in: inl guess, most of the models using conformal co-
orcinates use the following two-step procedure

i) measured or theoretical vertical profiles of the wind
speed and direction ate taken into account, if available;
furthermore, a vertical profile of the wind speed and
direction is obtained, using the extrapolation proce-
dures discussed in section 5.3, at each location where
surface observations exist;

ii) once the vertical profiles are available, the wind
speed and direction is interpolated (see section 5.4)
in every horisontal plane, if Cartesian coordinates aze
adopted, or in every conformal surface.

In the BOLOS (23, 26] and WINDS [33] options using
the geostrophic wind as the only input, a vertical pro-
file is constructed at every grid point: no horisontal
interpolation is then needed.

Chine and Ishikawa {2| observe that the accuracy of
the predicted wind field greatly depends on the inter-
polation method of wind data. On the other hand,
Troen [41] observes that:

i) the density of the observational network is usually
insufficient for resolving variations of the flow above
complex terrain;

ii) the quality of the available data is generally poor.

Therefore the interpolation based on all available data
is meaningfull only if it is done between stations with:

i) minimal influence of local topography;

it) good quality data.

For example, if a station is near an elevation or in
a vailey, the flow will be ckannelled almost indepen-
dently from the flow in other areas. This effect is much
stronger if the lower part of the PBL is stably satrat-
ified. The information from such a station will ad-

versely influence the construction of the general flow
above the area.

Chino and Ishikawa [2] - in the development of their
SPEEDI (sce the list of acronyms) — compared surface
wind measurements performed in complex topography
(one station on the a mountain peak (870 m a.s.l.), one

on a ridge of the same mountain (350 m a.sl.) and
four at the base of the mountain) with upper windg
measured using six pilot balloons. They found that
i) wind direction ard iniensity at the peak coincide
well with wind direction and intensity measured by
the pilot balloons at the same height and thus repre-
sent the average airflow at the same elevation within
a radius of at least 5 km;

ii) a similar agreement is found between direction mea-
surements at the ridge and data from the pilot balloons
at 350 m, except when the top of the mountain creates
& topographic barrier between the surface station and

the balloon;

ili) in many cases data from the peak station agree
well with data from the ridge station;

iv) data recorded at the base of the mountain do rot
agree well with data both at 350 and 870 m, mainly
under light wind or calm conditions during day-break,
sunset or night; the coincidence of data was better
when the mixed layer was fully developped during the
day.

As a consequence of their observations, Chino and
Ishikawa devised an interpolation algorithm as re-
ported in section 5.4.

Guo and Palutikof {32], testing the coMPLEX and
NOABL codes, used wind data at one station (called
the “predictor atation”) to predict wind speeds at the
same station. They found that if the predictor station
was low (high) in altitude relative to the general height
of the test area, the models underpredicted (overpre-
dicted) the wind speed, with differences between pre-
dictions and input data around 5% (20%). In order to
partially overcome this limitation, Guo and Palutikof
observe that if a wind field is mass—consistent, it will
remain mass-consistent if all the wind speed compo-
nents are increased or decreased by the same percent-
age. Thus, they multiply the predicted wind field by a
certain scale factor to make the predicted wind speeds
at the predictor station as close to their input values
as possible. In an area with a number of predictor
stations, Guo and Palutikof choose this scale factor to
be the mean value of the ratios of the predicted to the
observed mean wind speed at each station.

Finardi et al. [9], using MINERVE [28] to simulate the
fiow over two~dimensional hills, obtain a general flow
underestimation when the wind profile used to initial-
ige the code is the orcoming profile, and an overestima-
tion when the profile located on the hilltop is added.

These considerations induced the authors of BOLOS
[23, 26] and WINDS [33] to neglect the existing
ground based measurements and initialise the mod-
els by providing only the geoatrophic wind, in order to
avoid data contamination in complex terrain and/or
to supplement the scarcity of measurements.




We are convinced — and have verified - that it is possi-
ble to conclude that mass-consistent models allow ex-
perimental wind measurements taken simultaneously
in a given area to be verified as follows. The mea-
surements are used to generate a mass—consistent wind
field. If, at a site, the simulated and the measured vec-
tors differ greatly, while agreement is on average good,
that particular measurement is likely to be affected by
errors and/or very local effects.

The procedure, proposed by Boschetti et al. {55], to
select the “exclusion areas”, i.e. the areas unsuitable
for siting anemometric siations, is based on similar
considerations. These areas are selected as follows

i) simulation of the wind field in a complex topog-
raphy, ander different wind directions and intensities
and under different stability conditions, using a mass—
consistent model;

ii) identification of nodes in which, under one or more
simulated conditions, the wind vector differs greatly
from the wind vector which would have resulted, at the
same node and at the same distance from the terrain,
in the case of a flat and homogeneous land.

5.2. Different types of data utilised

Usually mass-consistent wind models accept wind
data from one or more of the following observation
types:

i) surface meteorological stations recording at a single
height (usnally ~ 10 m above ground level);

ii) meteorological towers recording at different heights;

iii) vertical soundings from wind profilers, balloons,
etc.; and .

iv) gradient or geostrofic wind.

Some models use only surface measurements (Mas-
CON [13]), others can also use the geostrophic wind
and one (MATHEW [14]) or more observed wind profiles
when available. NOABL accepts surface measurements
and/or one vertical profile.

Troen [41], as a consequence of his observations about
problems arising when interpolating (see section 5.1),
suggesty that the input data should be cither one
“good” surface observation or an upper air observa-
tion.

As already stated, rOLOS (23, 26] and WIN'DS [33]
have the option of accepting only the geostrophic wind
intensity and direction as an input.

If the sea level pressure is available at three stations
that form a triangle, the centre of which is near the
site, Endlich et al. (19] and Guo and Palutikof [32] cal-
culate the geostrophic wind from this information. If
pressure data are not available, Guo and Palutikof as-
sume an upper-—level wind speed value of 2.8 times the
average surface wind apeed, while the average surface
wind direction with 40° veering is used as the wind

direction at the top of the boundary. The geolctrdphig\ i
speed is applied by Endlich [20] o a height between
500 m (smooth terrain) and 800 m (rough terrmn)
above ground level.

Takeuchi and Adachi [43] deduced the geostrophic’
wind, assumed to be such at above ~ 2000m a.s.l.,
from the sea surface pressure, interpolating between
observations at meteorological stations using the least
squares method with a 10 parameter analytical expres-
sion.

Kitada et al. [48] claim that data from at least three
observation locations are required to reproduce a
land /sea breete circulation. The horizontal wind data
should also be known in the upper layers. Further-
more, one ol servation location should be in the region
of the maximum variation of the horizontal wind field.

Finardi et al. [9], in their simulation of the flow over
two—dimensional hills, find that neither MATHEW nor
MINERVE are able to describe the wind field, mainly in
the wake region, using only 1 or 2 vertical wind pro-
files as input. When 3 vertical wind profiles are used
as input data, the flow is well depicted everywhere ex-
cept in the lee. In the steepest considered hill, where
a stationary separated sone exists, the input of 4 pro-
files {2 in the lee and 2 upwind of the peak) allows
a description to be made of the main features of the
flow. A good result is also obtained, in this case, by
increasing the height of the terrain in the lee up to the
level of zero wind (obtained from data), thus excluding
the counterflow area.

The problem of simulating flow separation is even more
important in the simulation of wind flow around build-
ings. Réckle {46] modifies the initial field around each
building using rules deduced from experimental situa-
tions.

Bocciolone et al. [56] simulate wind fields in the Straits
of Messina, Italy, with a mass—consistent code having
a resolution of ~ 1200 m and initialised with a num-
ber of different geostrophic winds. They then correct
the outputs of the code using a two—dimensional code
which takes into account, in verticl planes, the effect
of roughness changes and small topographic irregulaz-
ities in the vicinity of the anemometers located in the
considered area. Finally, these corrected values of the
wind speed and direction are compared with the actual

anemometric mmeasurements.

5.3. Vertical extrapolation
5.3.1. Constant profiles

Only mascoN [13] utilises a vertically averaged value
of wind speed within the boundary layer. This value
is deduced as the mean value calculated over a power
law profile

w= f (/2,)F dz (21)



where zy; is the height of the inversion base above orog-
raphy, u; and z; are the speed of the measured wind
and the height at which the measurement has been
performed respectively, and p ~ 1/7 ~ 0.14.

The wind profile is usnally assumed - in models using
the power law (se¢ section 5.3.3) within the Surface
Layer (SL from here on) - to be constant from the top
of the SL to the top of the domain.

Usually, the wind in the free atmosphere is assumed
to be constant with height. This assumption is made,
for instance, by Troen [41], by Takeuchi and Adachi
[43] and by Ratto et al. [33].

5.3.2. Linear profiles

The codes MATHEW, NOABL and REDBL and the first
version of CONDOR (see [10]) allow a linear interpo-
lation, to be used above the SL, with the geostrophic
wind, if available, at the top of the planetary boundary
layer.

5.3.3. Power law

One of the wind profiles used in the oldest mass—
consistent models is the power law. This is used: in
MATHEW by Sherman [14] (in the SL), in NOABL [15-
17), by Bhumralkar et al. [18], by Kitada et ol {1] (up
to 500 m), by Kitada et al. [48], by Moussiopoulos and
Flassak [10] and by Ishikawa (21, 34] (below the SL).

Ita form is
2 \?

u(z) = u, (—-) 1< zy (22)
Zy

where p, z, and «,; are the same quantitics as in equa-
tion (21) and z,; is the SL height. In the mentioned
models z,; is assumed to be 180 ~ 200 m. It should
be noted that p depends in a complex way on atmo-
spheric stability (p ~ 0.14 in neutral conditions), on
the ronghness length z, and on wind speed.

Although very widely used, expression (22) has strong
limits, mainly linked to the dependence of p on ihe
quantities mentioned above. Moreover, the power law
is ap empirical law, and its validity is limited to the
lowest 10% of the boundary layer, i.e. to the SL.
Takeuchi and Adachi [43] assume a power law profile
for wind speed and a linear law for wind direction from
50 m above ground level to the top of the boundary
layer.

Troen [41], Lalas {23, 26] (EoL0S model) and Ratto et
al. [33] (WIN'DS model) calculate the wind between

the top of the SL and the bottom of the free layer
through an interpolation scheme

u(z) = u,(z)+ a(z) [ug -~ uu(z)]
v(z) = afz)ue (23)

where u,(2) is the wind speed in the SL, ug and vg
are the z and y components of the geostrophic wind

and a(z) is  third order polynomial such that

AL

a(zo) = a’(zo) = C!'(ZM) L RN

o(zy) = 1

where z is the PBL height. Note that here the z axis
is taken parallel to the wind in the SL.

5.3.4. Logarithmic profiles

When upper wind data are available, Endlich et al.
(19, 20], Ishikawa {21, 34] (above the SL), Kitada et al.
[48] and Georgieva (44] interpolate vertically between
the surface data and the wind at the top of the domain
using the law

u = alogz+b
v = clogz+d

which permits the wind to change both in direction
and in speed with height.

Furthermore, Guo and Palutikof [32] incorporated in
MC-3 a procedure to adjuat the wind speeds assuming
a logarithmic profile and allowing for variable surface
roughness in the environment close to the masts for
30° sectors around the mast itself.

Takeuchi and Adachi [43] assume a logarithmic law
for wind speed and a costant wind direction in the
first 50 m above ground level.

Troen {41], Lalas 23, 26] and Ratto et al. [33] also
introduce logarithmic or log-linear profiles

u(z) = % [logi ~Ym] 2, <2< 20 (24)

where u. is the friction velocity, k is Von Karman’s
constant (its experimental value is about 0.4), z, is
the roughness length and z,; is the height of the SL.
Since these expressions are valid only for the lowest
10% of the PBL, the models using them adopt the
interpolation formula (23) above the SL.

Codes using logarithmic and log-linear profiles have
the advantage of allowing the effect of roughness on
wind intensity and direction to be taken into account.
WINDS (33} allows other formulae to be used that
give the profile for the whole boundary layer and con-
sider the dependence of the profile on stability and
roughness. These were deduced by Zilitinkevich [57]
and have the form

u(z) = %—[logzi+

0

+ g (z ;f") +a (z ::")2] (26)
W) = - [b” (‘—T}-;i) +b (’ *hzo)’]

where the empirical coefficients b,, by a, and ag de-
pend or a stability parameter x related to the Monin




length and are chosen in order to match (25) with (24)
in the SL. .

5.3.5. Observed profiles

If an observed wind profile is available (i.e. several
measurements at different heights above the same ter-
rain point, covering all or a fraction of the height of
the simulation domain}, it can be used in some of the
codes {for instance in NOABL, EOLOS, WINDS and
ATMOS1) to calculate the first guess field.

Hiester and Pennel {58) introduce a linear interpolation
between a rawinsonde sounding, if available, and sur-
face wind data such that the initial field has the same
speed and direction as the surface wind ..car ground,
and the wind aloft at the top of the domain.

Davis {22], with his code ATMO$1, has sometimes used
calculated drainage flow profiles, instead of vertical
profiles deduced from surrounding wind soundings.

5.3.8. Unidimensional model profiles

When more simulations are required at different hours
of the day, but only an observed profile at the initial
time is available, the successive wind profiles can be
calculated, as done by {59), with a hydrodynamic time-
dependent unidimensional model of the PBL. Here,
unidimensional means that the model simulates the
PBL vertical structure, but gives no information at all
about horizontal variation of the wind. The coupling
with a mass—consistent model will produce an account
of the terrain-induced perturbations of the flow.

5.4. Horisontal interpolation

To extend the available vertical profiles to all the grid
points, mass—consistent models usually interpolate the
values at a certain discretization level (z == cost or &
= cost in Cartesian or conformal coordinates respec-
tively), with the rule

Z) ‘l(“ ")J f("})

28
21 1 f(rJ) ( )

(“ot ’o)

Here (4°,v°) and (u,v)’ are the z and y components
of the wind vector to be calculated and the z and y
components of the wind vector along the j-th profile
respectively, r, is the distance between the point of
known value (, v}’ and the point at which (x°,v°) is
being calculated, and f is a weighting factor.

The sum is usually extended either to the nearest (typ-
icelly N = 3) measurements or to the measurements
included in a region surrounding each grid point, with
a limited “radius of influence” R. In the analysis of
a two—dimersional land /sea breege circulation, Kitada
et al. {1] found that a radius R = L/N, where L is
the length of the horizontal region and N is the num-
ber of observations, gave slightly better results than

R = L. The same authors, in the analysis of a three2':
dimensional land/seca breexe circulation, used a radius *-
about twice the average separation dutnnce between
observation points. SR

The most frequently used weighting factors are

fr) = (1/r5)* . (27)

Otherwise
f(‘l'_,') = erp (—-Tj/Ro)z (28)

as used in MASCON [13] and by Chino and Ishikawa [2],
who assume R2 ~ 10 km?. Factor (28), with respect
to factor (27), has the advantage of eliminating the
complete dominance of a measuring station near a grid
point. The model CONDOR [11} can use either of the
weight—functions considered above or a combination of
both.

Kitada et al. [1] also used the 1/r weighting function
in their reconstruction of a two—dimensional land/sea
breese circulation, finding an adjusted wind field much
too smooth for a wind field with strong local chnmc—
teristics. :

Chino and Ishikawa (2], following their analysis of wind
measurements performed in complex topography (see
section 5.1), replaced the weighting factor f(r;) with
the product

f = f(r;)f(Az)f(Az)

where r; is the same horisontal distance as in (28),
Az is the vertical distance between the two considered
points and Az is a vertical distance related to the
height of the barrier separating the two points. The
factor f(Az) has a structure such that

i) the weighting of the station on the peak with re-
apect to the lower grid points decreases slightly with
their vertical distance, except for the grid points in the
vicinity of the base of the mountain;

ii} the weighting of the surface stations with respect
to the higher grid points decreases rapidly with their
vertical distance.

The factor f{Az;) has a structure such that: the
weighting of a station in complex terrain with respect

to a grid point decreases when a barrier lepn.ntea
them.

6. NUMERICAL SOLUTION OF DIFFER-
ENTIAL EQUATIONS

Sherman [14], Adell et al. [54] and Ishikawa [21, 34]
solve a discrete formulation of equation (8) written
in Cartesian coordinates with respect to A, with the
boundary conditions discussed in section 2.2. ‘The



equations are solved iteratively using a successive over-
relaxation method (see Apgendix C). The adjusted ve-
locity field is then calculated using a discrete formula-
tion of equations (6).

A difference between these approaches consists of the
fact that Sherman [14] and Adell et al. [54] estimate
all variables at the grid points, while Ishikawa [21, 34]
uses a staggered grid. In this second approach, scalar
quantities such as A are estimated at the centre of the
mesh while components of vectorial quantitics are cal-
culated at the centres of the sides of the same meshes.

Both the COMPLEX model {18-20]and the MC -3 model
(32] assume that the flow is parallel to the terrain—
conformal surfaces, with no flow through them. In
other words, in these models the flow is assumed non-
divergent in any layer defined by conformal surfaces,
independently of the flow in neighbouring layers. At
the same time, a procedure is adopted io preserve the
vertical vorticity in each computational cell. Instead
of applying the variational calculus to the whole do-
main, the layers of the grid can be treated in sequence.
This makes the computations simpler and more effi-
cient than three—dimensional relaxation.

Guo and Palutikof [32] observe that this artifice re-
duces the computing time of a wind pattern by a fac-
tor six. On the other hand, these same anthors also
find that the topographic adjustments introduced by
COMPLEX [18-20] to the wind speeds are insufficient:
the model tends to underestimate (overestimate) wind
speeds over relatively high (low) ground. This does
not necessarily imply that the other code examined
(NOABL) is, in all circumstances consideted by Guo
and Palutikof, superior to COMPLEX in its predictive
capacity.

Endlich et al. {19] and Hiester and Pennel [58] claim
that the terms neglected in COMPLEX model, for the
sake of reducing computation time, may be significant
in areas of steep tecrain.

Almost all other codes numerically solve the discrete
formaulation of equation (8), written in terrain confor-
mal coordinates, by using successive overrelaxation.
Once A is known, a discrete formulation of equations
(8), rewritten in conformal coordinates, yields the ad-
Jjusted velocities at the model grid points.

Moussiopulos and Flassak [10] solve the discrete for-
mufation of the elliptic equation (8) with two different
algorithms, devised to achieve a full vectorisation on
vector computers like the cYBER 205. The first algo-
rithm consists of a fast direct elliptic solver, based on
the use of finite Fourier transforms, applied together
with the block iteration technique {code CONDOR).
The second is the so called Red—Black Successive Over-
relazation Method (code REDBL).

Moussiopulos et al. [11, 80], presenting the refined
version of their code CONDOR, claim the superiority

of substituting a discrete formulation of the Euler—
Lagrange equations (8) into the dmctete Iormulntlon .
of the continuity equation (2) to yield a discrete for- ‘
mulation of the elliptic equation, This approa.ch, usmg
a 25-point—operator instead of a 15-point-operator,
guarantees a better reduction of the wind field diver-
gence, The disc-ete formulation of the elliptic equation
is then solved with an algorithm based on the Fourier
analysis applied in two directions. This algorithm is an
application of Fast-Fourier-Transformation and full
vectorization (see also [61, 27]}.

7. MODEL TESTING

Barnard ef al. [39] observed that a difficulty that has
beset the mass—consistent models is lack of verifica-
tion.

Verification studies using data taken from the island
of Oahu, Hawaii [62] and the Nevada Tesi Site [63]
have shown that the root-mean-square error between
calculated and observed windas is typically 2 to 4m/s.

Barnard et al. [39] applied an optimisation technique
to the mass-consistent model NoABL. Eight sets of
hourly averaged wind data were available for model
tuning and testing.

Within this approach, & very simple initialisation was
performed where only one site (the station with the
highest average wind speed, called the “reference site”)
was used to initialise the model. Subsequently, the
error between the calculated winds and the observed
winds at six to eight “tuning sites” formed a basis
for gauging the model’s performance. The stability
parameter & and the initial wind direction were then
adjusted until this error was minimized. Finally, op-
timum parameters were used to calculate the wind in
the remaining (~ 20) “verification sites”.

When the optimum parameters were used by Barnard

et al, {39, 40] to calculate the winds over the modelled

area, the model produced good results for six out of the

eight datasets. In these cases, the root-mean-square

errors between the calculated and observed wind speed

ratios (the wind speeds are normalised by the reference

site wind speed) were less than 0.08 for verification

sites and less than 0.06 for tuning sites. The two cases

that did not perform well were those involving low
wind speeds.

Guo and Palutikof {32], in their testing of COMPLEX,
NOABL and MC—3 already presented in section 5.1, con-
cluded that the predictions strongly depend on the val-
ues given to parameters such as PBL height and then
on decisions heavily influenced by the judgement of
individual users.

Walmsley et al. {24] tested three JH based mod-
els (Mason-King, MS-Micro and BZ-WASP) and the
mass—consistent model EOLOS using field measure-



ments performed at Blashaval Hill {64]. These authors
found that discrepancies between the different models
were minor, aitnough EO.03S was in somewhat worse
agreement with measurements, especially away from
the summit of Blashaval Hill. For most wind direc-
tions, errors in normalized wind speed at the summit
were 7% or less.

Ross et al. [29] tested the capability of NUATMOS to
simulate analytical solutions for potential flows around
simple objects (s hemisphere, a half cylinder and half
ellipsoids with various aspect ratios) in neutral con-

ditions and with only background wind information
available.

Ros: et al. [31] subjected their code NUATMOS to a
systomatic testing using meteorological data from the
Rocky Flats in Colorado, USA. They simulated a voi-
ume of roughly 150 x 150 x 5.5 km?, including the
Denver metropolitan area and a portion of the Rocky
Mountains, with a 151 x 161 x 9 grid. More precisely,
wind observations from 17 surface meteorological ste-
tions and 300 metecrological cases were provided as
input to the code. These authors evaluated

i) the ability of the code to preserve input wind ob-
servations; model performance was assessed by com-
paring the resulting distribution of wind speed and
wind direction (predicted — observed) differences at
the considered stations, (for a total of 4354 useable
data points);

ii) the ability of the code to predict wind observations;
model performance was assessed by comparing the re-
sulting distribution of wind speed and wind direction
{predicted — observed) differences at 10 additional sur-
face meteorological stations and 6 profilers, each re-
porting at the 200 m, 900 m and 2000 m levels (for a
total of 6918 useable data points).

The ability of NUATMOS to preserve input wind ob-
servations is confirmed by a tendency to adjust input
wind speeds slightly downward, the median wind speed
difference being ~ —0.3 m/s, the mean ~ —0.4 m/2
and the inter quartile range (IQR) ~ 0.6 m/s; the cor-
responding quantities for the wind direction difference
being ~ +1.4 degrees, ~ +2.1 degrees and ~ 11.2 de-
grees,

These figures, in testing the ability of the code to
predict wind observations, become ~ —1.3 m/s, ~
~1.4 mfs and ~ 3.4 m/s and ~ +10.8 degrees,
~ +410.2 degrees and ~ 86.5 degrees respectively.

These results are favourably compared with those ob-
tained with a two—dimensional diagnostic wind field
model called WIKDS, not to be confused with the
WINDS model described in this paper.

Finardi et al. [9], use two mass—consistent codes
(MATHEW [14] and MINERVE [28]) and two dynamic lin-
carised models (MS3pJH/3R and FLOWSTAR) to sim-
ulate the flow over two—dimensional hills of analyti-

cal shape and varying slope.

Different numerical experiments have been performed,
varying the value of the stability parameter o and in-
put data (the complete data set, i.e. 156 wind profiles,
3 profiles, the cacoming wind profile plus two mea-
surements taken near the ground). Their conclusions,
about the ability of a mass—consistent code to describe
the main features of a wind field over complex terrain
depending on the availability of input data, have been
already reported in section 5.2.

8. CONCLUSIONS

The aim of this work was to highlight all the op-
tions and improvements introduced in mass—consistent
models since their conception, their present siate and,
in particular, the solutions provided for each single
problem.

It is our opinion that these models, even though the
physics involved is very simple, can be further devel-
oped and improved. The improvements can be ob-
tained for instance through the parametrisation of sta-
bility (see section 3) or by using the telescoping pro-
cedure {see section 4.5). Furthermore, our research
group is obtaining encouraging results from “nesting”
a mass—consistent model in the output of a prognostic
model operating at a larger scale.

There are, undoubtly, intrinsic limitations that cannot
be eliminated in mass—consistent models, such as the
lack of dynamic properties: the principal weakness of
this approach. These models however provided perfor-
mances at least equal to the more sofisticated models
in several applications. This fact, together with the ef-
forts made by many peopie to obtain the improvements
we mentioned above, shows that research on the mass—
consistent approach and practical use of such codes are
still in course.
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APPENDICES

.
A. LIST OF ACRONYMS

CONDOR  Calculation Of NorDivergent
wind fields Over Rough terrain
MASCON MASs CONsistent wind field
MATHEW Mass—Adjusted THrEe—dimensional
Wind
MC-3 Mass Consistent 3-rd code
NOABL New Objective Analysis of
Boundary Layer {our guess)
REDBL RED-BLack successive overrelaxation
SPEEDI System for Prediction of Environmental
Emergency Dose Information
WINDS Wind field Interp -'ation by
Non Divergent Schemes
WSPEEDI regionally extended/Worldwide version

of SPEEDI

B. STATISTICAL TREATMENT OF THE
DATA

Some researches may be more concerned with the sta-
tistical properties of the wind rather than with wind
flow at a fixed moment. This is evident if we consider
that an important application of these models relates
to the siting of WECS and the evaluation of their po-
tential.

Two procedures can be followed to extract statistical
properties from a time series of wind data

1) calculation of statistical properties of the available
measurements (mean value, frequencies of the data,
etc.) then applying the model with the obtained val-
ues;

ii) application of the model for every measurement and
then extract statistical properties of the time series of
wind flows.

A few methods have been devised thet allow a sav-
ing in computational time without losing fundamen-
tal information. All these methods use the linearity
of the processes involved in the models (interpolation
schemes, numeric solution processes, etc). The follow-
ing paragraphs examine Traci’s method, the eigenvec-
tor method and Lalas’ method.

B.1. Traci’s method

Traci’s methed [15, 58] consists of examining avail-
able data and constructing important categories of
flow conditions and their frequency of occurrence.

This method has been used to analyse the set of mea-
surements collected at Oahu, Hawaili; measurements
were made over a 24-month period. The idea of Traci's
method is that only one day for each month is chosen
as representative of the month itself. The criteria used
to choose represeniative data are strongly subjective

and thus not obvious. B T ,,5.
This method allows the extrachon of some datn from
a large data set. This is sometimes a great advantage,
since it can be impossible to run the model for the en-
tire data set. It should be never forgotten, however,
that the validity of the result depends on the repre- -

sentative nature of the data chosen.

B.2. The eigenvector method

This method is used in COMPLEX [18-20} and was pre-
sented for the first time by Ludwig and Byrd [66].

The model utilizes the linear characteristics of mass-
consistent models by combining solutions from the
eigenvectors o 'the :ovariance matrix of the wind com-
ponent data. This method was demonstrated to be
practical and economic for the applications considered.
Nevertheless, according to Ross et al. [29], it does not
appear to be suitable for dealing with large datasetis,
especially when vertical wind profiles are available, due
to the large number of eigenvectors to be considered.

Let us suppose we want to calculate the wind flow
over a region at a given hour: the input is represented
by m wind data from N stations on the surface. As
the model needs both horisontal components of the
velocity, the number of data is 2N x m. Let v (i =

1,..,2N;k = 1,...,m) be the data matrix. Then
1 wm

Bo= ) v
mk:l

i3 the mean value of the i—th row of this matrix (i.e.
it is the time average of the measurements at a fixed
station and for a fixed component).

Now let 7 (¥) be a vector (with 2N components) repre-
senting the measurements at all the stations at a fixed
time k (i.e. a column of the v;; matrix) and then let

(k)

v &) = al(k)é'l + s + ayp

Gav+ v (29)
be the decomposition of this vector on the base of the
eigenvectors €, ~ é»n of the covariance matrix,

u = Z(Uck

Thanks to the linearity of the model, the decompo-
sitivn (29) allows the model to be run only 2N + 1
times (a number that is usually around ten). If
€%y €)%, 7 *9 is the output of the model cor-
responding to mmput €, ...... ,€an, U, then the output
for the generic input vector ¥ *) is

%i)(vix — %) (4,3=1,2,.,2N)

(k) =+ a0t a0l

= a Mg e
a; ‘e; T + ... +a3Ne,N+

fj'(k) sl _

where the coefficients al(k),...,az‘:}:) are those of the
decomposition (29). Note that the time required for



their calculation is much smaller than the time needed
for & single run. Consequently, once the model has
been applied for the eigenvectors and the time average
vector, the remainder of the simulation is very quick.

B.3. Lalas’ method

Lalas’s method [3] is used when the code can be ini-

tialized with the geostrophic wind only (i.e. EOLOS and
WINTDS).

Wind data are classified according to their speed i, di-
rection j and day/night occurrence k (which gives a
rough estimation of stability conditions): frequencies
of occurrence are thus calculated and stored in the ma-
trix fijx. The model then runs for a fi-- geostrophic
.atensity (usually chosen as equal to 10 m/s), direc-
tion j and condition k. Then, at the grid point (z,y)
a wind speed 4;:(%,y) is obtained. This operation is
repeated for all the j and k values.

Thanks to the linearity of the model, the mean wind
speed can then be calculated as

fuk"_]k(z y)] (30)

k=1 =1 i=1

where G, is the geostrophic wind speed corresponding
to i-th class. Obviously, the average iz annual, sean-
sonal, monthly, etc. depending on the averaging period
used to obtain f.','k.

The energy flux through a unit surface normal to the
flow can also be calculated as

Pijmzu ii [(%)3 fisevii(z, y)] (31)

k=1 y=1 i=1

B2

F(z,y) =

where p is air density.

C. THE OVERRELAXATION METHOD

For investigating iterative solution methods of large
systems of equations, it is convenient to analyse the
problem in its vectorial form

AR =f (32)

A being the coupling matrix of the system, & the vee-
tor whose components are the unknowns and f the
vector which contains, among other terms, the right
hand side of equation (8).

Tn an iterative scheme, the solution for the & vector is
obtained by the calculation of

¢t = @' - 1(A% - f) (33)

where #* is the “old” value of the & vector, which has
been calculated in the preceding iteration, and &*+! is

the “new” value (whlch will take the place 6f Q‘ ﬁ ﬁlé’{
next iteration). Tis a parameter on which p«t of the .
effectiveness and convergence rate of the solution' de-
pends; it may vary with iterations, but is ol'ten&choun
as a constant.

As a result of the aknowledged importance of the r
parameter, great effort has been made to evaluate its
best value. For the general (and simplest) case, this is
found to be

3 being the largest eigenvalue of the A matrix.

In many probl.ms of mathematical physics (including
ours, i.e. the solution to equation (8}) a more efficient
method can be used, i.e. one that converges quicker:
the “overrelaxation method”. This can be used if ihe
A matrix has the tridiagonal form

1 -7, 0 0 .. 0 0
S 1 -T, 0 .. 0 0
6 0 0 0 . -8 1

In this case, the 4 matrix can be written as

A=F-5-T

where
o 7, 0 ... 0 0

T 0 0 T, .. 0 0 '
0 0 it] 0 0

and
0 ¢ 0 ... 0 0

g_| S0 0 .. 0 0 '
0 0 0 .. S5 ¢

and E is the unit matrx.

It can be shown that in this case the optimal value l'or
Tis

e,

(34)

2
T 14+1-p3

B being the largest eigenvalue of the matrix B = S+7T'.

In order to apply the overrelaxation method to mass—
consistent models, equation (8) is solved on a single
“column”® of the domain (i.c. all the cells with fixed
i and j). This process is then repeated for all the
columns and for a certain number of times, until the
desired degree of approximation is reached.

%1n this way the A matrix has the form described above.’



List of most frequently used symbols

- *
Gy @y, 8,, b

E(u, v, w)

Fr

coefficients in Zilitinkevich profiles
functional representing the difference
between initial and adjusted fields
Froude number

height of terrain

height of the domain

characteristic height difference
average thickness of the PBL at a site
height of the critical streamline in
stable flows

procedure of adjustment of the

wind field

functional to be minimized

Von Karman constant

unit vector normal to the surface

of the domain

number of stations

buoyancy frequency

procedure of initialization of the
wind field

exponent in the power law
components of the wind field V
components of the wind field

in conformal coordinates
components of the wind field V°
components of geostrophic wind
velocity scale or characteristic

wind speed

friction velocity

adjusted wind field

initial or “first guess” wind field
measured wind vector at i—th station
Cartesian coordinates

height of the PBI,

height of the SL

roughness length

ratio between weights a; = a3 and a3
polynomial used to interpolate between
geostrophic and S, wind

Gauss precision modulus reiative to
horizontal wind speed adjustments
Gauss precision modulus relative to
vertical wind speed adjustments
surface of the domain 1

first variation of the velocity at a boundary

vertical distance between two points
vertical distance related to the height
of a barrier separating two points
Lagrange multiplier

stability parameter

air density

height above terrain in conformal
coordinates

o variance of the i-th component P
o of the wind vector

8 potential temperature e 1

T transmissivity or empirical stublhty

parameter

™ horizontal transmissivity

To vertical transmissivity

¢ z—component of vorticity

£, n,¢ conformal coordinates

Ym funection in log-linear profiles

fl domain of the simulation
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