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1.1 Vertical Structure and Energy Transfer
Under Neutral and Stable Conditions

Similarity theory has been used in studies of PBL since the early 1960s (Kazan-
skil, Monin 1960). Examples of real results obtained in this way are the resistance
ind heat/mass transfer laws. For the steady-state regime with neutral stratification
{Kazanskdi, Monin 1961), steady-state stratified regime (Zilitinkevich, Laikhe-
man, Monin, 1967; Zilitinkevich 1967) nonequilibrium regimes (Zilitinkevich,
Deargorff 1974; Zilitinkevich 1975a). Establishment of these laws created new

.problems. It became necessary to determine, first, the universal functions of the

stratification parameter (the so-called 4, B, C and D functions) included therein,

_and second, the PBL depth h.

" Under unstable stratification in a fluid penetrative convection develops, so
that a steady-state dynamic regime is practically impossible. In this case, the
behavior of h as a function of time or of the horizontal coordinate is governed
by an equation derived in the theory of penetrative convection {Sect. 1.2 and in
more detail, Zilitinkevich 1987, 1991},

In contrast, in cases of neutral and stable stratification, a stationary, or at
least qunsi-stationary regime is not only possible theoretically, but is even usu-
ally obs.rved. Indeed. in evening and night hours, with the increase of hydrostatic
stability the atmospheric PBL collapses: its upper boundary falls, while turbu-
lence in the overlying region degenerates. In the same way, the depth of the upper
mixed layer in a water body is reduced during daytime warming. The process of
turbulence degeneration at the outer boundary of a collapsing PBL occurs rather
quickly. Its charateristic perind does not exceed tens of minutes. In compari-
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son, changes in the PBL (having a typical period of several hours) proceed very
slowly. That is why it can be considered as quasi-stationary. This means that the
PBL structure at each moment of time can be determined by parameters char-
acterizing an instantaneous situation. The analysis of the momentum equations,
together with similarity and dimensionality considerations, allowed defining the
explicit form of the dependence of the depth of the stably stratified PBL on some
governing parameters (Zilitinkevich 1972).

The papers presented below (Zilitinkevich 1989a, b) are devoted in particular
to the steady-state regime under neutral und stable conditions. In this case, on the
basis of the similarity theory asymptotic formulas have been derived for the A4,
B and C functions corresponding to the regime of strong stability (Zilitinkevich
1975a), and a series of empirical approximations of these functions have been
constructed based on atmospheric dara (Zilitinkevich, Chalikov 1968b; Clarke
1970, 1973; Clarke et al. 1971; Clarke, Hess 1974; Wippermann 1972a,b,¢;
Soloviev 1973, 1974; Deacon 1973; Melgarejo, Deardorff 1974, 1975; Arya
1975, 1977; Yamada 1976; Hess et al. 1981; Nieuwstadt 1981; Greenhut, Brook
1983). There are also several expressions for 4, B and C functions obtained
after Zilitinkevich (1975a) in the framework of certain theoretical PBL models.
Nevertheless, the resistance problem under stable conditions cannot be consid-
ered as being solved, primarily because of the very wide spread in the existing
empirical evaluations of the A, B and C functions. There are two main causes
for this wide range of values: (a) the approximate character of the theory which
does not take into account the non-stationarity of horizontal inhomogeneity of
real meteorological ficlds; (b) errors in processing of experimental data due to
uncertainty in determining the PBL depth. The first cause can be climinated to
a certain degree on the basis of the approach suggested by Zilitinkevich and
Qeardorﬁ' (1974) and Zilitinkevich (1975a). However, this does not lead to a
significant reduction in the spread of empirical data on the universal functions
and in the resistance and heat/mass transfer laws. Quite probably, the second
cause is more important. If so, the current position ¢can be improved by joint de-
termination of the universal functions A, B and C and of the universal function
characterizing the dimensionless depth of the PBL. The main objective of the
discussed papers is to provide a theoretical approach to such a procedure. The
second aiw is to determine velocity and temperature profiles in a stratified PBL.
Until now, the second problem has been solved almost exclusively on the basis
of turbulent viscosity models or second-order closure models, i.e., on the basis of
more or less arbitrary closure hypotheses, the solutions being cumbersome and
sometimes detached from experiments.

The Ekman Boundary Layer. Under stationary and horizontally homogencous
cor;dmons, the velocity components u and v along the horizontal axes z and y
satisfy the Ekman equations

. dr dr
- . 2= — - - - .
flo = Ugsina,) + 5 0, —f(u--Ugcosa.)+ = 0, (1.1

where z is beight, f is the Coriolis parameter, Uy cos a, and Uy sin o, arc com-
ponents of the geostrophic wind vector (U is the modulus of this vector, a, is
the angle between it and the z-axis, r, and r, arc components of the vertical
turbulent flux of momentum per unit mass). Their near-surface values 7, and
Tys (components of friction stress on the underlying surface) appear to be the
main characteristics of the dynamic interaction between the atmosphere and the
underlying surface. '

Let us direct the r-axis along the surface friction vector. Then r, reduces to
zero, while a, represents the angle through the wind direction tums in the PBL.
Surface friction will be characterized by the angle . and the fricdon velocity
Uy = /Tos.

We shall take the PBL 1o be the layer 0 < z < h, at whose upper boundary
the wrbulence dies out so that the vertical turbulent momentum fluxes reduce to
zero;

()=, (h) =0 (1.2)
and the velocity components become the geostrophic ones:
u(h)=U;cosa., v(h)=Usina. . (1.3)

Integrating (1.1) over z from O to h according to the boundary conditions
(1.2,3), we obtain

h A
/ udz = hu(h) , / vdz = hu(h) +ul/f . (1.4)
0 0

Another simple integral relation is obtained for the dissipation rate of the
mean flow kinetic energy (i.c., for the rate of its ransformation into turbulent
cnergy) determined according to the formula

£ =rpdufdz +rydv/dz . (1.5)

Integrating (1.5) over z from O to h and taking into account (1.1-4), we
obtain

h
/ edz=Ugulcosa, . (1.6)
9

Equations (1.4, 6) follow only from (1.1) and the natural boundary conditions,
i.c., they do not depend on any similarity hypotheses, nor on the presence or
absence of buoyancy forces influencing the turbulent structure of the PBL.

If the source of buoyancy forces is at the underlying surface (say it is caused
by cooling or heating of the surface), the effect of these forces in the PBL is
characterized by the near-surface value of the vertical buoyancy flux B! or

! In the atmosphere By = fy Ha/cp 00 +0.608 gFu [ ou, where H, and E, are vertical rbulent Auxes
of sensible heat and water vapor, g is air density, ¢, is the specific heat capacity of air ar constant
pressure, g is the acceleration due 10 gravity, fy = g/7s is the temperature buoyancy parameter,
T: is the absolute emperature (index s indicates the near-surface value).



Dy some parameter based on it, e.g.. the Monin-Obukhov length scale L or
dimensionless stratification parameter Mo

3 2
—-u —k* B,
= * = — s 1.7

where k is the von Karman constant whose conventional value is £ = 04
(Hogstrom 1985),

Strictly speaking, at B, #0 a steady-state regime is impossible in the PBL
because of the accumulation or loss of buoyancy (warming or cooling), which is
descnibed first of all by the non-stationary heat transfer equation. However, due
to the action of the Coriolis force, the wind field can follow this transient process
in a quasi-stationary fashion, as if forgetting the previous history of its evolution
at each stage. That is why the assumption of steady-stawe flow is justified in the
PBL even with non-stationary changes of the buoyancy field.

With neutral siratification (B, = 0), buoyancy forces are absent; with stable
stratification (B, < 0), they suppress turbulence, so the only mechanism in both
cases for producing turbulence is the wind shear. In the neutral case, the depth
of the steady state PBL is expressed by the Rossby-Montgomery (1935) formula:

h= Apu. /if], (1.8)

where A is a dimensionless universal constant which is usually assumed o be
equal to 0.3. An idea of the range of its empirical evaluations is given in Table
I.L It is worth noting that (1.8) is virally the inital point of the Kazanskii
and Monin (1960) similarity theory according to which the only length scale
characterizing the steady-state barotropic neutrally stratified PBL is the Ekman
scale u, /| f| and the stratification effect in PBL is characterized by B;, L or 4.

With stable stratification the list of parameters determining the structure of
the steady-state PBL is supplemented by the near-surface value of the buoyancy

Table 1.1. Dimensionless constant Ag in the Rossby and Montgomery formula (1.8) for the depth of
2 neutrally stratifield PBL

Reference Ao

Measurements in the ocean
Rossby and Montgomery (1935) 0.2

Kitaigorodskii (1973) 0.1-0.3
Measurements in the atmosphere

Gill (1967) 0.1
Clarke (1970) 0.2
Deardortf (1972) 0.35
Tennekes (1973b) 0.3
Yamada (1976) 0.3
Arya (1978) 0.3
Laboratory Experiments

Caldwelt et al. (1972) 0.3
6

Table 1.2, Dimensionless consiant C, in the Zititinkevich expression (1.9) for e depih of the stably
stratified PBL

Reference Ci
Zilitinkevich (1972)* (1)
Businger and Arya (1974) 114
Arya (1971 1.58
Caughey et al. (1979) L1
Nieuwstadt (1981) 0.63
Garrat (1982) 0.55
Caughey (1982) 1.10
Nieuwstadt (1984) 0.55

Zilitinkevich, Rumyanisev (1990) i

flux B,. This means that the PBL depth 4 can be represented by a formula sur
ilar to (1.8), as before, but the dimensionless cocfﬁcicx.n on the ng.ht-haqd sige
will no longer be a constant A, but a universal function ‘?f the dimensionless
stratification parameter A(u). As was already mcntionefd, in the_: casc qf suffi-
ciendy strong stability (u 3 1), the asymptotic behavior of this funch-n can
be dewrmined by analysis of the momentum equations togc'tl'lgr wnp similarity
considerations. This gives the following expression for A (Zilitinkevich 1972);

h=Cyl|fB|"12, (1.9)

where C), is a dimensionless universal constant of the order of unity. A summary
of empirical evaluations of this constant is presented in Tabh': 1.2. .

All of them are based on meteorological measurements with the exception of
the first theoretical evaluation (Zilitinkevich 1972) marked with an asterisk and
the last limnological evaluation (Zilitinkevich, Rumyantsev 1990),

The simplest interpolation formula combining (1.8) and (1.9) has the form

-1

fla_ . (1 Ef_) (1.10)
—;‘-‘——A(F)-(Ao.'-kci *

Of course, it is desirable to have an empirically based expression for the funcftion
A(g) in the transition region 0 < u < 10. However, (1.10) can serve as quite a
good meteorological approximation because the stable suati.ficati.on, which tz.lkcs
place in the atmospheric PBL during a great part of the night, is characterized
by values of u of the order of tens or even hundreds. .

As 10 the oceanic and lacustrine PBL, values of 4 of the order of nnity or
several units are typical with stable stratification. It is quite possible that (1.10)
will be found to be too crude in these cases (for example, see the empirical data
in Fig.4 of Felzenbaum, 1980). It should be mentioned that following Zili:in.ke-
vick (1972), a number of papers appeared where expressions for the function
A(u) satisfying the asymptotic formula (1.9) are obtained in the framework of
theoretical PBL models. However, such expressions, until they are verified by
experimental data, can hardly be considered to be more reliable than interpolation
formulas as simple as (1.10).



Neutf-al Stratiﬁcation. In this case, the velocity profile satisfies the near-surface
logarithmic law at > < A: ;

_ U z
u(z) = * m;-.: v w(z)=0, (1.11)

where zo, is the roughness parameter relative to wind; and the velocity defect
law at 2 » 2, is

Ua . Uy
Ug cosan —u(z) = T %O, Ugsina, ~u(z) = —:—m(o sign £, (1.12)
where ( is a dimensionless height:
(= z/h , b (1.13)
Sy and ¢, are universal functons satisfying, in accordance with (1.3), the con-
ditions ¢,(1) = ?.,(1)=0.

.Over.lapping of (1.11) and (1.12) in the region zo, < z < h (where both are
valid} with due regard for (1.8) leads to the resistance law:

In(CyR0) ~ By = \/(k/CP — R, sina, = =206, signs (1.14)

where Ro is the near-surface Rossb ber . . _
cient, Yy number, Cy is the geostrophic drag coeffi-

Ro= UE/IfIZOU ’ Cg = u-/Ug N (1.15)

and A4 a{:d By are dimensionless universal constants. The first farmula in (1.14)
was obtained by Kasanskii and Monin (1961), the second one, almost simulta-

According 1o (1.11~15) and (1.8), the veloci i :
z < h allows the representation ? ocity profile in the whole region

_E_.. z —Uy .
u(z) = [lnz—;ﬁ.(oJ ) U= == £ (Qsignf (1.16)

:h.crc f} and f, are universal functions of ¢ expressed by the functions ¢, and
Pv! fa = —By - In(Ag() - ¢us fo = Ag — ¢, and obeying the conditions

ful) = f,0) =0 (1.17)

full)=—Bo —In 4, , folly = 4g . (L1

Table 1.3, Dimensionless consuants Ay and By in the Rossby-number similanty theory resistance
law (1.14) for & nenmally stratified PBL

Reference Ag Bg
Kazanskii snd Monin (1961)* 18 1.7
Zilitinkevich, Laikhiman, Monin (1967) 53 1.5

Gill (1967) 47 1T
Csanady (1967) 48 1.7
Zilitinkevich and Chalikov (1968h) 5 2

Clarke (1970) 45 09
Wippermann (1970) 45 0.9
Clarke et al. (1971) [ 1

Plate (1971) 43 17
Caldwell et al. (1972) 25 2.2
Deacon (1973) 474015 191035
Clarke (1973} 49, 6.1 47
Clarke and Hess (1974) 43+07 1.1+05
Yamada (1976} 3.020 1.855
Nicuwstadi (1981) 19 23
Hess et af. (1981) 43+07 11105

Taking into account conditions (1.17), we shall approximate the functions f,
and f, by the following quadratic polynomials:?

Fo Q=0+ 8, fulO) =l +agc?. (1.19)

For the determination of the coefficients by, 53, ap and ag, we shall use first of
all the conditions (1.4). Then substituting « and v from (1.16, 19) and taking into
account (1.8) we obtain

3 3 3k 3
o e e S O 1.20
bg 2 4bo L Rk e (1.20)
Further, after substituting (1.19,20) into (1.18) we obtain
bp=6-4By—4Indp, ag=44p—6k/Ag. (1.21)

In this way, in the adopted log-polynomial approximation, the velocity profiles
for a neutrally stratified PBL are obtained. They are determined by four dimen-
sionless constants: k, Ag, Ag and By, If we adopt the values

k=04, A=03, A=45, By=17 (Ay

recommended above for the atmospheric PBL, then from (1.20,21) we obtain
a9 =10, a5 = =55, by =4, b = —4.5.
From the laboratory values

k=04 Ap=03, Ap=25, By=22 (Lab)

2 A representation of this Lype was suggested by Long (1974) where, in conmrast to (1.19), f, is
assumed (0 be an even function while £, is an odd function.



we obtain an =2, af =05, b =2, b5 = -3.

Now it is not difficult 1o derive expressions for profiles of vertical momentum
fluxes. For this it is sufficient to substitute [y cos ., Uy sina, after (1.3), and
w, v after (1.16, 19) into (1.1) and then integrate over =. The components of the
dimensionless velocity defect and dimensionless veruical momenum fux calcu-
lated in this way versus dimensionless height are shown in Figs. 1.1, 2 together
with Caldwell et al. (1972) collection of atmospheric measurements and labo-
ratory data as well as daia obtained by Deardorff (1970) in three-dimensional
nurnericat simulations.

"

\; -—s
-
_#11141-2 . I N I | i \!lllll
51070 10 0! ! 10°
?-zf/u*

Fig. 1.1. Dimensionless profiles of velocity defects in a neutrally stratified PBL. (a) Component along
the friction stress direction at the surface; (b) component perpendicular to this dirsction. Empirical
data (1 -~ atmospheric measyrements, 2 - laboratory experiments) and results of the Deardorff (1970)

numerical experiments (3) are taken from Caldweil et al. (1972). Heavy curves 4 (“At" and “Lab™)
are theoretical
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Fig, 1.2, Dimensionless profiles of verical momentum fluxes in a neutrally stratified PBL. (a) Com-

ponent along the direction of friction stress at the surface; (b) component perpendicular to this
direction. Curves and symbols are defined as in Fig. 1.1

Resistance with Stable Stratification. In this case, the number of parameters
characterizing the PBL. is supplemented by the buoyancy flux B, and hence by
the length scale L or the stmatification parameter x determined by (1.7). Near
the surface, as before, the logarithmic velocity profile (1.11) is used; however,
the region where it is valid is limited not only to z < h, butalsoto z < L. A
velocity defect law similar to (1.12) similar holds true, but now ¢, and ¢, arc
functions of not one argument ¢ but of two: ¢ and y. In addition, as was already
mentioned, the PBL depth h depends not only on u, and f, but also on B,, ie.,
it is expressed in the form |flh/u, = A(u).

With due regard to these properties, combining the velocity defect law with
the near-surface logarithmic velocity profile leads to the resistance law:;

In(CgRo) — B{u) = 1 /(k/Cy)* — A¥p), sine, = _‘1(#)0, signf , (1.22)
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which differs from (1.14) by replacement of the universal constants Ag and B
by the universal functions A(u) and B(y). This law was derived by Zilifinkevich,
Laikhtman, Monin (1967), while the functions A and B were first determined
from experimental data by Zilitinkevich and Chalikov (1968b). Following these
works, several empirical evaluations of A and B functions were carried out.

It is worth mentioning that a cause for confusion is that a designation of the
universal functions in the resistance law different from those adopted in (1.22)
is often used: A instzad of B and B instead of A.

If in deriving the resistance law, we use a more definits form of the velocity
dcfco:.:t law with due regard to the specific features of the PBL at strongly-stable
stratification established in Zilitinkevich (1972), overlapping occurs not with the
logarithmic near-surface law but with the linear law following from the similarity
theory of Monin and Obukhov (1954) for the height region L < 7 < k. Then

we obtain the following asymptotic expressions for the functions A and B at
# > 1 (Zilicnkevich 1975a):

Al) — N!0 Blu) — —Nyp!/? | (1.23)

where .Vy and .V, are dimensionless universal constants.

Further, the function A and B have been determined by many authors within
the framework of the wrbulent viscosity or second-order closure models of the
PBL.- It is understood that in cases when these models agree with the similarity
t_h-concs of Monin and Obukhov (1954), Kazanskii and Monin (1960) and Zil-
tinkevich and Deardorff (1974), the resulting expressions for A(y) and B(y) ar
# > 1 satisfy the asymptotic relations (1.23): A « ~B o pul/2.

More important is the fact that these relations have been verified by experi-
mental data (Table 1.4),

Detelfminal.ion of Velocity Profiles and Universal Functions A{u) and B(u).
As with neutral stratification, by using the resistance law and velocity defect law,

;he u and v profiles for the entire PBL region z < h can be represented in the
orm

u(z)=yl ln—z—+f(( ) ( =T i {
k Z0u ull, p y U 2) = Tfu((:ﬂ)mgnf ' \124)

WhCI‘C fu = _B(ﬂ') - ID[A(}I)C] - ¢u and fv = A(F‘) - ¢u arc functions Of thC
two arguments satisfying the conditions

fu@p) = £,(0,0) =0 (1.25)

ull,p) = ~B(u) —InAG) ,  £u(1, 1) = AQw) . (1.26)

th_ us determine these functions. Taking into account conditions (1.25), we
approximate them by the following quadratic polynomials:

Full ) = BMu) +0* ()¢, £o(C, 1) = alu) + a"(u)(? (127
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Tabke £.4. Empirical approximations of the universal functions A{u) and B{(y) in the resistance law
{1.22) for a stably stratified PBL at » » 1 based on the main Lerm in the Zilitinkevich asymplotic
relations (1.23)

Raference Alp) B(u}

Zilitinkevich (1975a) 4,472 Iny—4ulf?

Yamada (1976) 2470 - 1662 1.2-2.55(u — 26.6)'2
Ama (197D 11418242 296+Inu'/2 - 1524172
Long and Gaffey (1977) 255417 232+l - 5284112
Brost and Wyngaard (1978) 221,12 246 +1In utf? = 142,12

whose coefficients are no longer constants as in (1.19), but functions of 4 saus-
fying, according to conditions (1.4), the following relations:

3 3 3k 3

* = —— — = * = —— . (1.28

b* () 3 45(#) ,a”(p) 2408 40(#) )

If the function A(x) is known, determined, for example, by {1.10}, two other
functions remain 1o be determined: b(u) and a(u). In order to do this, let us
use the following information: in the near-surface region at z € h and L < A,
the velocity profile should satisfy the logarithmic + linear law (Monin, Obukhov
1954):

Uy

u@) =2 (lnz.% +ﬁ.%) . wn)=0, (1.29)

where 3, is a dimensionless constant of the order of 10. Numerous papers arc
devoted to its evaluation, summaries being given in Zilitinkevich (1970), Monin
and Yagiom (1971), Tennekes (1982) and Panin (1985). Table 1.5 contains values
of 3, from these summaries (recalculated with the use of the standard value of
the von Karman constant k = 0.4) as well as the value of 3, obtained by
interpretation of the data of laboratory experiments by Chuang and Cermak
(1967) with account of the empirical dependence of the turbulent Prandtl number
on stratification according to Fig. 1.22 of Ziliinkevich (1970). The causes of
variability in the 3, empirical evaluation are discussed in Byzova and Waltseva
(1988).

Table 1.5, Dimensioaless constant J, in the Monin and Obukhov logarithmic + linear law (1.29) for
the wind profile in the near-surface layer

Reference Bu
Swmmaries of meteorological measurements

Z litinkevich (1970) 11
Monin and Yaglom (1971) 10
Tennekes (1982) 47
Panin (1985) 6
Laboratory experiments

Chuang and Cermak (1967) 14

13



Combining the approximation (1.24,27) and the near-surface expression
(1.29) leads to the conclusion that at i — 20, the function h(y) behaves as
follows:

b~ B/~ Cy 3,4, (1.30)

and the function a(i1) should remain finite. The simplest expressions ensuring
such behavior at large . and satisfying the required conditions at ¢ =0 have the
form

Mu)=bo+ Cridupt' | alp) = ap (1.31)

where ap and b are dimensionless constants defined by (1.21).

Expressions (1.10,24,27,28,31) determine the velocity profiles in the log-
polynomial approximation. Knowing these. ¢xactly as in the neutral stratification,
it is not difficult to obtain the vertical profiles of the momentum fux components.
Finally, substituting the resulting expressions of fe and f, into (1.26) and taking
into account (1.10,21) we obtain

_{(ﬂ): _-1_0-1—-._?1.._#1/2 ,

20,
Aw”"") 1 (1.32)

S 1/2
J'cC’;, 4Ch!3u.lu -

The main terms in these expressions for the universal functions 4 and B
agree with the theoretical asymptotes (1.23) and together with equations (1.10, 22)
completely specify the resistance law. They contain six dimensionless universal
constants: k, Ao, Ao, By, Ch, and 4,. The first four can be roughly estimated
from measurements under conditions of neutral stratification. Let us use values
based on armospheric evaluations (At) and determine Ch and 3, by comparing
the results of (1.32) with experimental data on the tunctions A(u) and B(u).
The results of such a comparison are shown in Fig. 1.3. Expression (1.32) for
A does not contain 3,.. Therefore, Fig. 1.3a allows one to obtain an independent
evaluation of Cy. Then 3, is found by means of Fig. 1.3b. Adopting the empirical
approximation of ¥Yarnada (1976) as the most representative and reliable we obtain
the values

Ch=085, B,=12, (At')

B(u)= By +1n (l +

which are within the range of the direct evaluations presented in Tables 1.2 and
1.5.

According to (1.10, 32) and (At), (At'), the universal functions A, Aand B
have the form

AR AN < 3VE
A‘“’"(as*asz) » AW =43+oo
(1.33)

B(y) =1.7+In (1‘“}3\/75) - 2.55/%.

14
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Fig. 13, Universai functions 4 and
B in the resistance law for 1 stably
stratified PBL. Curver 1-5 are em-
pirical: 1 - Garraz (1982), 2 - Ya-
mada (1976), 3 ~ Arya (1977), 4 -
Long and Guffey (1977, 5 - Brost
and Wyngaard (1978). Curves 6 are
calculated according to (1.33), ie.
comesponding 0 €, = 0.85 and
B = 12. Haiched regions are those
most densely filled with emmpirical
points: I - afier Yamada (1975), I
~ after Nieuwsiad: (1981)
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Calculation of Surface Friction and Energy Dissipation. When (a.culating the
friction velocity u, and the angle of wming of the wind a, in the PBL with the
help of the resistance law equations (1.22,33), it should be bomne in mind that
the parameter 4 defined by the second formula in (1.7) depends on u,. Therefore
it is convenient to present it in the form

M _es,
==, Ma—3 : 1.34)
e Fi0Z ‘

where M is an external parameter of stratification which does not include values
that need to be determined.
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The dependences of the geostrophic_ drag coefficient Cy and angle a, on
g«f and another external parameter Ro calculated from (1.22,33) are shown in

ig. 1.4. -

The sharp decrease of u, with increase of M is quite visible. At the same
location and with the same geostrophic wind, say, of f = 10~*s~!, z, =0.1m,
Ug = 10ms™!, ie., Ro = 105, variations of M from 0 (cvening neutral strati-
fication) to 0.012 (distinctly stable stratification at night) are accompanied by a
four-fold decrease of u. from 0.4 to 0.1ms™!.

From the voint of view of energetics, the main characteristic of the PBL is
the total dissipation rate of the kinetic energy of the mean flow. Using (1.6) and
the resistance law (1.22), we obtain

h
;7 /0 edz = Ci\/1 - [AWC/kP , (1.35)

where the right-hand part, according to (1.22,33,34), can be represented as a
function of the external parameters M and Ro. This function is shown in Fig, 1.5,
from which it is seen that the dissipation rate decreases with increasing stability
at an even greater rate -han in the case of u.. In the example discussed above,
where M increases from 0 to 0.012, the value of [ £dz decreases twenty-fold
from 1.4 to 0.07 (ms)°.

Thus, with stable stratification the dynamic interaction of the atmosphere with
_[hc underlying medium is very much weakened. It thercfore seems to follow that
in this case, there is no need to strive for accuracy in determining z. and c..
That assumption is true from the p.wely meteorological point of view which
reduces the pole of the atmospheric PBL in the formation of the surface drag.
Apd it is quite wrong from the viewpoint of the interaction of the atmosphere
with a water reservoir. Actually, in the case of warm air advection, the friction

cf
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Fig. 1.4. Geostrophic drag coefficient Cy = ue /Uy and angle o, of the wind wming in the PBL as

functions of surface Rossby mu::ber Ro = Uy /| f| 20« for different valaes of the external stratification

parameter M = —k?B, /|f[U” (indicated at eacn curve), calculated from (1.22,33,34). The data

points are from Zilitinkevich (1970): 1 - at neutral and 2 - at siable swatification

Fig. LS. Dimensionless dissipation raic of the
kinetic energy of the mean flow in PBL U'" f;

edz as a function of Ro ai different M values
calculated from (1.22,33-35)

velocity u, determines the depth of the upper mixed water layer, and hence the
intensity of its warming, which increases sharply only at very small u,. That is
why the requirements for accuracy in determining u, are not less, but on the
contrary, more stringent,

Temperature Profile and Heat Transfer. According to the similarity theory
(Zilitinkevich 1975a), in the case of a quasi-stationary PBL, the expression for
the temperature defect

Oy — 8(2) = 6.05(¢, ) (1.36)
as well as for the heat transfer
(8 — 6,)/8, =1n(u. /| flzor) — Clu) (1.37)

are valid, where z is height, ( = z/h is a dimensionless height, zor is the
roughness parameter of the underlying surface with respect 10 temperature, 9is
potential emperature, §, and 6, are its valucs at the PBL upper boundary and at
the underlying surface, respectively, 8. = —@s/ku, is the temperature scale,  is
the von Karman constant®, Q, is the near-surface value of the vertical turbulent
kinematic heat flux, (Q, = H,/cp 0, where H, is sensible heat flux), C is universal
function of u, and ¢4 is the universal function of { and .
From (1.10, 36,37) an expression follows for the temperature profile:

6(z) = 6, + 8. [In(z/z07) + fo(C, )] (138)

3 According 1o some daia, “the temperature von Karman consian” in the expression for &, is
somewhat bigger than that for wind, 0.48.



where fp = —C" —In((.1) ~ &4 is a universal function of ¢ and u satisfying the
conditions

fi@p) =0, follp) = —=Clp) — In Aw) . (1.39}

Taking the first of these conditions, we approximate f, by a square polyno-
mial of the following form:

folCope) = elu)l + ()t (1.40)

Since density stratification is generated by heat exchange (or heat and moisture
exchange) between the air flow and the underlying surface, it is natural to assume
that when approaching the PBL upper boundary, the vertical gradient of potential
‘emperature tends to zero; ’

dffdz -+ 0 at - o R, (1.41)

Observance of this condition is confirmed, e.g., by the data of the “Wangara”
expertment: see Fig. 3 in Clarke (1974) or Fig. 1 in Yamada (1976). Substituting
the expression for ¢ from (1.38) and (1.40) into (1.41), we have

(= -ty L
et(p) = 2du) 3 (1.42)

Now recall that under strongly stabie stratification, the vertical temperature profile
in the height interval L « :z < A should be expressed by the Monin and Obukhaov
(1954) logarithmic + linear law:

#(z) =6+ 8.[In(z/207) + 352/ L], (1.43)

where Jg ic a dimensionless constant.

For (1.43) to be devided as an approximate result from (1.38) and (1.40) at
L &« r « h, the following relation should be satisfied: cluyz/h ~ Bgz/L, iec.,
at e >» 1, the function c(u) should have the following asymptotic behavior:

e{u) ~ ChBau'’? . (1.44)

The simplest interpolation formula providing for 2 particular non-zero value
of the function () with neutral stratification and the asymptote {1.44) for this
function with strong stability has the form

o) = co + CpBep!/? . (1.45)

Formulas (1.38, 40, 42, 45) completely determine the vertical temperature
file and hence the function C(p) in the heat transfer expression (1.37). According
to (1.39, 40,42, 45), the latter is expressed as

_ 1 1 . _ Aoﬂlfz Chﬁv 172
C(,u)—i—Ec(,u)—ln‘i(u)—Co+ln(I+ Y )— 5 H, (1.46)

h
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where Cy = C(0) is a dimensionless constant related to by Co=1/2 - /2 -
In Ag. We adopt the traditional values of the constants, k = 0.4, Ay = 0.3, and
the estimate C), = 0.85 obtained above. There remains to determine Ca (or ep)
and ;. :

Equation (1.46) agrees with the asymptote C(u) ~ —N3u'? at 4 » 1 derived
in Zilitinkevich (1975a). Resulting from the preliminary empirical estimate N =
6, therefore, we would have 8y ~ 2N3/C), = 14. However, we shall use the
more representative data using the function C(y:) found in Yamada (1976). These
data embrace the interval of positive values of  from zero to several hundreds
and are approximated by Yamada by a particular empirical function. As scen
in Fig. 1.6, within the rather great spread of values observed, equation (1.46)
permits approximation of the same data with the following values of the constants
in which we are interested:

Co=37, 33=9. {147

The recommended value of Cp = 3.7 fully complies with the other available data
on the function C(y) at small 4 [ for instance, with the empirical graph from Zjl-
itinkevich (1975a)], and corresponds to the value of co = —4. The recommended
value of gy = 9 is within the range of estimates of this constant based on the
verification of (1.43) on the basis of measurements in the near-surface air layer:
B = 11 in Zilitinkevich (1970), 8¢ = 9 in Panin ( 1985) and 3, = 4.7 in Tennekes
(1982).
According to (1.46,47), the universal function Clu) is

Clp) =37 +In (1 + %@) -3.825/ii . (1.48)
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The heat transfer expression (137) and (1.48) combined with the equation
for the resistance derived above, namely, with (1.22,33), provides a convenient
way for calculating the paramel(ers of dynamic and thermal interaction between
the armosphere and the underlying medium in terms of external parameters such
as the geostrophic wind velocity and temperature difference across the PBL. Ap-
proximation of the emperatire profile by using (1.38,40,42,45) can be applied
in the constuction of 2 parameterized model of the PBL diurnal cycle.




