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1.2 The Entrainment Equation for Convection

Geophysical exampies of penetrative convection are the growth of a mixed layer
in the atrosphere as a resyit of warming of a land surface on sunny summer
days, deveiopment of cumuli and stratus-cumuli, de epening of the upper mixed
layer in the ocean or in a lake under the action of cooiing of the water surface or
its salinization, for instance, due to evaporation. In all these cases, increase of the
depth & of the convectively mixed boundary layer takes place on a background of
stable stratification in undisturbed fluid: temperature inversion in the amosphere;
thermo- and halocline in water bodies. In the process, the growth of 4 is strongly
influenced by the transmission of kinetic energy to the outer boundary of the
convective boundary layer which is expended to overcome the forces of negative
buoyancy in the entrained fluid, i.e., for penetration of turbulence into the stably
saatified layer.

The most reliable sources of data on penetrative convection are laboratory
expeniments. Most of these are devoted to the study of convection in water whose
inital stratification is linear or two-layer. For simplicity, we shall consider these
regimes.

We shall use the linearized equation of state for water:

Ow = owoll +a,(3 — sp) —ar(T - Ty)] , (1.49)

where T is temperature, s is salinity, o, is density, p.q is its value at T = To and
5= 59, a, and «ar are expansion coefficients related 10 salinity and temperature,
respectively. Let us introduce the buoyancy

b=g(owo — ow)/owo = BT - Tp) — als — sg) , (L.50)

where g is the acceleration due 1o gravity, 5 = gar and @ = ga, are buoyancy
parameters. We will assume one of two initial stratifications: two-layer

b={bo at 0<z<hy, b+ Abg  at ho <z < D}, (1.51a)
linear
h=bo+N%: at 0<z<p. (1.51b)
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Here z is the height above the vessel bottom, D is the total depth of the water
layer in the vessel, b,0 i3 buoyancy at the bottom, hg and Abp the initial height
of the interface and the initial buoyancy increment in the two-layer system, N is
the initial buoyancy frequency in the linear system: N? = —g,g;J (dow/dz})ie0.

Heating water from below generates convection. Due to the convective mo-
tions, a well-mixed layer forms and grows in the lower part of the vessel. This
layer appears to be homogeneous, or at least nearly homogeneous, so that tem-
perature, salinity and buoyancy can be considered as constant with respect to
the height, T = T, s = 3, b = b, except in a thin layer near the bottom, of a
thickness é, ~ 1cm, where the temperature drops sharply with height from a
near-bottom value 7; down to a value near 7. In the case of two-layer initial
stratification, convection first spreads very quickly through the lower homoge-
neous layer 0 < z < hp. Then entrainment begins involving the less dense water
lying above hg, which is accompanied by a slow increase of the thickness A of
the mixed layer and decrease of the buoyancy increment Ab at its upper bound-
ary (z = h). In addition, the buoyancy increment is gradually smeared out along
the vertical direction, thus, instead of a stepped vertical profile, a smoothed one
appears. This can be devided into four main parts: near-bottom, well-mixed, in-
termediate and non-turbulized layers. In the case when the initial stratification is
linear, continuous growth of the mixed layer due to entrainment is followed by
the appearence of a buoyancy increment at its outer boundary. Thus, the vertical
buoyancy profile is devided into the four parts with the only difference that the
non-turbulized layer is now not homogeneous but linearly stratified.

In both systems, between the mixed layer and non-turbulized layer one should
observe a turbulent entrainment layer (TEL) where the process of entrainment
of the fluid from above occurs by turbulence. This process generates a buoyancy
flux opposite to the near-bottom one.

Parameterization of the Buoyvancy Profile, Let us assume that with the de-
velopment of convection, i.e., with the upward displacement of the mixed Iayer
upper boundary z = A, the buoyancy profile changes, keeping a self-similarity of
the following form:

b at z<h—6/2
b= 5+6b¢(z—_—}-%t-§-/3) at h-6/2<z<h+6/2 (1.52)

b+ Aby(a) or bo+N2z(b) at h+48/2<:<D,

where ¢ is the depth of the thermo- or halocline, ¢ is a universal function (Kitaig-
orodskii, Miropolsky 1970; Linden 1975; Wyat 1978) satisfying the conditions
#(0) =0 and #(1) = 1, 8b is the buoyancy difference across the thermocline:

6b={bo+Ab—b(a) or b+ Nih+6/2)~b(b)}.



The representation (1.52) is evidently inaccurate in a near-bottom layer of
thickness 6, ~ | cm. However, if 6, « h, in deriving the total buoyancy budget
equation for the whole layer 0 < z < h the contribution of the near-bottom part
into integrals can be neglected.

Evolution of the profile (1.52) should satisfy the buoyancy transfer equation:

UbjOt = —3B )3z , (1.53)

where ¢ is time, B = J() — S is the vertical buoyancy flux, Q and S are the
hinematic heat flux and the salinity Hux.

We shall represent the buoyancy difference in the TEL by the formula 4b =
b+ .N25/2 where b is the difference between the value of the buoyancy which
is obtained by linear extrapolaton from the nondisturbed region down 1o the level
== h and the mean value of buoyancy in the mixed layer (Fig. 1.7). Neglecting
molecular heat and mass transfer {i.e., adopting I = 0 at : > A +4/2) and using
the representation (1.52), termwise integration of (1.53) over = from 0 to D and
from 0 to A, after proceeding in the obtained equations to the limit at & — 0
gives the foilowing total buoyancy budget equation:

dt \ 2

ST
— (2N —hab) =B, , (1.54)

where B; = B/, is the buoyancy flux through the bottom (the prescribed pa-
rameter), and the following expression for the verical buoyancy flux through the
outer boundary of the mixed layer:

By = Bliaheo = ~Abdh/dt . {1.55)

Thus, a continuous approximation of the buoyancy profile is replaced by a dis-
crete one:

Sfh={bot b — () or bo+Nh-b(b)} a z<h,
{boo+Abg(a) or b+ N2 (b)) at > h,
(1.56)

Fig. 1.7. Vertical profiles of buoyancy b and

vertical buoyancy flux B with non-stalionary

penetrative convection. Real profiles are shown

by dotted curves: soiid line: correspond 1o pa-
g  rameterization via (1.56,57)
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and the buoyancy flux profile, in accordance with (1.53), takes the form

*

B {(1 —z/h)Bs+(z:/h)By at z<h, (1.57)
0 a :z>h.

Since B, > 0 and B, < 0, it follows from (1.57) that the buoyancy Hux
changes sign at the level = = h — I, where [ is expressed by un apparent “geo-
metric” formula (Stull 1976b):

I/h—0=-B,/D;, (1.58)

It is understood that the real profiles b(:) and B(:) are continuous. Acrording
to laboratory experiments (¢.g. Deardorff et al. 1980), B(:) is a linear function
almost in the entire region where B > ( and in the region where B < C, B(:)
is practically symmetric relative to the extremum point z = k. Ther:tore, the
region & —1 < z < h should be interpreted as a halved turbulent entrainment
layer (TEL), the value of !, as a half-thickness of TEL, the value of 3, as a
conditional parameter characterizing our schematized B(:z) profile, viz., as the
value of B obtained by linear extrapolation from the mixed layer up to the ievel

Thus, the approach based on the approximation of the buoyancy profile by
a discontinuous function, i.e., on reducing the thermocline or halocline 0 the
surface » = h, does not at all mean that the turbulent entrainment layer is also
reduced to a surface. The TEL schematization consists only in that the real
continuous B(z) profile, negative in the region h — | < z < h+1 and having an
extremum at : = A is replaced by a discontinuous profile as ir (1.57).

Simple Theoretical Models. The main parameter characterizii g penetrative con-
vection is the entrainment coefficient Ag = — By /B,. According 0 (1.55) the
following equaton holds:

dh/dt = Ag B,/ Ab | (1.59)

which at known Ag forms, together with (1.54), a closed system for determining
h and Ab using the prescribed By(t) and N. A number of theoretical models
of wrbulent penetrative convection can be formulated in terms of the parameter
Ag. One of the acceptable hypotheses was suggested by Ball (1960), namely that
By = —B;, ie. Ag = 1. Such a regime comresponds to the maximum possible
degree of entrainment,

The other extreme case, corresponding to the minimum degree of entrainment,
will be referred o as a marginal convection when the buoyar-y change at the
outer boundary of the mixed layer is not formed, so that Ab = (G and A =0, and
hence, the growth of the layer depth is described by a reduced form of (1.54);
dh/dt = B;/(N*h). This regime was first discussed by Zubor (1945).

The intermediate hypothesis Ag = C\ < 1 was suggested simultanecusly by
Benrs (1973), Carson (1973) and Tennekes (1973a). The comesponding equation



for the dimensionless entrainment rate £ = w]dh/dt can be written as
E =R, (1.60)

where Rij = hb/w? is the Richardson number based on the buoyancy incre-
ment b and the conv. ctive velocity scale w, = (Byh)/?. Many papers, based
on laboratory experiments and airmosphenc or hydrospheric measurements, are
devoted to determining the dimensioniess constant Cj, i.e., to determining the
parameter dg. Various empincal estimates of Ag lying between 0 and 1 have
been obtained, but most of them are around 0.2 (Stult 1976a).

The vanation of Ag at small Ri; is explained by Ziliinkevich {1975b) where
a nonstationary turbulence energy batance in the TEL was considered and the
tollowing corrected equation was derived:

E=C(Cy+Rin™, {(1.61)

At very small Riy this expression becomes E = C)/C; =const corresponding
t0 penetration of the convective zone into a homogeneous fluid, and at big Ri,
1t 18 reduced to (1.60). In this model we have the following expression: g =
C R {C; + Ri;)~ . Such behavior of Ag agrees with experimental data at small
Riy, but not always at large Ri;. According to some laboratory experiments (for
instance Deardorff et al. 1969: Kantha 1979), 4g does not come to a plateau with
increasing Riy, but after reaching a maximum, starts to decrease. In addition, in
the experiments by Turner (1968) at very big Ri;, the entrainment was found to
follow E x Ri, /2, contradicting both (1,60) and (1.61). Below a new theoretical
model explaining these ¢ radictions is suggested (Zilitinkevich 1987, 1991).

Entrainment Rate Equation. We shall use the energy balance equation of the
turbulence kinetic energ - e:

Je
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where [ and P are vertical turbulent fluxes of kinetic energy and pressure fluc-
tuations, respectively, ¢ .s the viscous dissipation rate of kinetic energy. Then we
integrate (1.62) over z from 0 to £ — 0, L.e., over the entire depth of the mixed
layer including the TEL. Considering that F + P =0 at z = 0 (due to the appar-
ent impossibility of wrbulence transfer through the solid wall) and expressing

the vertical buoyancy flux B by means of (1.55,57), we obtain (Kitaigorodskii,
Kozhelupova 1978):

d [* h dh A
EE-/; edi,':—z—(B,—.ﬂbE) —(F+P)h--f Edz‘ (1.63)
0

According to similarity theory for turbulent boundary layers of time-dependent
height (Zilitinkevich, D -ardorff 1974) in the convection regime considered, di-
mensionless turbulence parameters, normalized by the scales of length h, velocity

)
=Bf#(F+P)—E, (1.62)

w, = {B,h)'/? and buoyancy b, = B,/w, (or ttmperature T, = Q,/w,), appear
tosbe universal functions of the dimensionless height z/h. This means that the
vertical profiles of kinetic energy e and its dissipation rate ¢ are given by

e=woée(z/h), E=B;¢5¢(Z/h) y (164)

where ¢, and ¢, are universal functions. The correctness of these representations
over most of the height of the convectively mixed layer is confirmed by laboratory
experiments (Willis, Deardorff 1974; Deardorff, Willis 1985) and atmospheric
measurements (Caughey 1982),

Escape of energy outside the limits of a convectively mixed layer is evidently
due to a single mechanism, the radiation or gravitational intemal waves into the
adjoining stratified fluid layer. The maximum value of the vertical energy flux
which can be caused by propagation of internal waves with amplitude § and
length ; is expressed by (Thorpe 1973):

F=0Grv3)" N . {1.65}

In this case internal waves are generated by disturbances in the TEL. That
is why the typical wave amplitude [ can be considered as being proportional to
the typical amplitude of these disturbances which is equal to a half-depth of the
TEL [, §; = Cyl, where C; =const.

Similarly it is natural to relate the characteristic length of radiated waves A
to the horizontal length of disturbances in the TEL ACh). At first glance, it is
tempting to use for determining the latter an expression of the type of (1.64),
A(z)/h = ¢a(z/R), from which follows A(h) x h. However, this would be a
mistake. The point is that such expressions are true in the major part of the con-
vective mixed layer {and therefore are quite suitable for calculation of integrals),
but not near z = h where the Zilitinkevich and Deardorff (1974) similarity theory
is not applicable. This breach of similarity in TEL is manifested in the increase
of the range of the values of empirical estimates of the function ¢,(:/h) as one
approaches the z = h level (Fig. 4.7 in Caughey 1982). The relation A(h) o h has
also not been experimentally confirmed. Confirmation would have been achieved
by the shape of an interface between turbulized and non-turbulized fluid on pho-
tographs of a convectively mixed layer (e.g. Deardorff et al. 1969). Judging by
such visualization experiments, the relation of the horizontal dimensions of dis-
turbances in TEL to the vertical ones is not very variable. This means that a
half-depth ! of TEL can serve as a scale of not only vertical but also of hor-
izontal disturbances and hence, as a typical length of radiating internal waves:
A; = Cyl where C, =const.

Substituting the derived expressions for [; and J); into (1.65) for F] and then
substituting (F' + P)y oc F} and (1.64) into {1.63), after identical transformations
we have

. 3
Ry E 2
(C+RiNE+ CjRigfz (l*lﬁ) =} - ECQDC | (1.66)




where Riz = (Nh/w.) ;2 1s the Ruchardson number based on the buoyancy
frequency, De = h(Byw,) 'dB,/dt is the nonstationarity parameter introduced
in Deardorff et al. (1980) (we shall call it the Deardorff number), and C;, C;
and 4 are dimensionless constants,

212¢,C,\
33
The sign < in the expression for C3 reflects the fact that F is the maximum

energy flux which can be provided by the internal waves propagation, so that
(F+ P)h < E

1 10 I
Cr=1- 2/ ¢(Q)dg, Cz= T/ ¢, Cy < .(1.67)
0 0

Evaluation of Universal Constants and Asymptotic Forms of the Entrain-
ment Equation. Using the data of the functions ¢, and ¢, from the laboratory
experiments of Deardorff and Willis (1985), we calculate the integrals for C; and
€', which yields ) = 0.2 and ¢; = 1.7, The same estimates are obtained from
the atmospheric data of Caughey (1982).

These direct estimaies are in quite satisfactory agreement with indirect ones.
For | the agreement is ideal: ) = 0.2 is the commonly accepted value of
the constant in the entrainment equations {1.60,61) which are particular cases of
(1.66); the same value was obtained by Zilitinkevich (1987) by analysis of the
experimental results of Deardorff et al. (1980) from measurements of convective
entrainment in linearly stratified and rwo-layer fluid systems (Figs. 1.8, 9).

For 7, the direct estimate C; = 1.7 lies within the range of indirect ones. It is
twice the experimental value of C; = 0.83 obtained by Deardorff et al. (1980) for
convective entrainment in a homogencous fluid as well as the Zilitinkevich (1987)
value of C; = (.8, based on an analysis of Deardorff data on a linearly stratified
fluid (Fig. 1.8). However, it is very close to the Driedonks and Tennekes (1984)
estimate of Cp = 1.5, and 1.5 tmes Tennekes’ (1975) earlier esdmate Cy = 2.6.

Assuming in the third formula of (1.67) that Cy ~ 7 ~ 1, we obtain the
inequality 5 < 0.35, which is in agreement with the estimate C; = 0.1 obtained
from the experimental data of Deardorff and Willis (1980), Fig. 1.8.
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Fig. 1.8. Dependence of the TEL dimensionless depth Ahjth — Ahf2) = 2Ag on Richardson
number Riz = (Nh/w,)?/2 based on the buoyancy frequency . Data points are aken from the
experiments of Deardorff et al. (1980). Open circles - linearly siratified fluid, filled circles - two-layer
fluid, crosses — those of two-layer fluid when Rij is not well defined. The curve is plotted by using
(168) at ¢y =02 and Cy =01
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A Fig. 1.9, Dependence of Lhe dimensioniess enuaunment
rawe £ = w;'dh/dt on the Richardson number Ri; =
hab/u? based on the buoyancy increment Ab. Daa
points are tken from the experiments of Deardorff et al.
* {1980) for a two-layer fluid system. The curve is calculated
using {1.61)at Cy =02 and C2 =08
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In the case of a two-layer fluid (when N = 0) at constant heating from
below (dB,/dt = 0, i.e. De = 0), our entrainment equation (1.66) is reduced
to the form of (1.61). The main objections to the latter are that at large Ry,
(1.61) gives asymptotes E x Rif1 and 4g = —By/B, = Ri1 E =const which are
not always satisfied. Thus, in the experiments by Turner (1968) together with
the foregoing expression E o Riy ! the alternative F x Riy 7 was obtained;
in many other experiments decrease of Ag with increase of Ri; was observed.
At the same time, at Ri; values of the order of tens, typical fr atmospheric and
oceanic convectively mixed layers, calcuiations of h by means of {1.61) or even
(1.60) as well as the relation 4g =const are in fairly good agreement with the
experimental data.

All these facts can be explained within the proposed model. For atmosphernic
and oceanic convectively mixed layers the values of De ~ 102 and Ri; ~ 1 are
rather typical, so (1.66) is reduced ro (1.61), and if Ri; 3 C3, then it is reduced
to (1.60). In the case of laboratory experiments with very well defined initial
sratification, when Ri; and Ri; are big, under the condition De < 1, (1.66)
written in terms of Ag = Ri; E becomes

3
32 ( A
y Ri _— = )
4g + CaRi, (1+“1E) (I {1.68)

whence at Ri » 1 there follow asymptotic formulas:
Ae = (C/CD'PRi;V | E =(Ci/C)VPRiTIRI;VE (1.69)

The expression for Ag, due to the self-evident correlation between Ri) and Ri,,
explains the observed decrease of Ag with increase of Riy in penetrative con-
vection experiments. The expression for E gives exactly the Tumner equation

E x Rij *? Indeed in Turner’s experiments mixing was induced by oscillations
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of a grid immersed into water instead of by convection so that the following
conditions were observed: B, = 0 and, according t~ 1.54), Ab = N24/2, ie.,
Ri; = Riz.

Experimental Verification. We shall use the results of the laboratory experi-
ments of Deardorff et al. (1980). Unfortunately, the data from this paper allow
one to calculate Ri; only to low accuracy. Therefore it is not feasible 1o deter-
mine the dependence of £ on Riy, Ri; and De by using these daia, i.e., to verify
(1.66} directly. However, because in most of the experiments under discussion
Riy » | and De < 1, according to the suggested theory, the entrainment equa-
tion should have the form of (1.68), i.e., the enrainment coefficient Ag should
be expressed by a universal function of Riy only. The determination of such a
function using empirical data is quite feasible. Moreover, since in the experni-
ments under consideraticn the TEL depth Ah is very precisely known, we can
use its value to calculate Ag by using an expression equivalent to (1.58), i.e.,
Ah/(h — Ah/2) = 24g. This allows us to avoid the use of Ag = Rii E which is
undesirable due to the above-mentioned large errors in the determination of Ri;.

The results of this analysis, which verifies the entrainment equation (1.68)
are shown in Fig. 1.8. The data of two experiments in a linearly stratified fluid
(E1, E3, E4, E6-EIll and El14) and in a two-layer fluid (runs 2, 3 and 4 in
experiments E2 and ES, run 4 in experiment E15, runs 2 and 3 in experiment
E16) have been used.

The data points in Fig. 1.8 have a much lesser spread than on the origi-
nal plot of Deardorff et al. (1980) where the dependence of Ahf(h — Ah/2) on
the Richardson number Ri, = h8b/w? is presented. In addition, the data points in
Fig. 1.8 are approximated well by the theoretical curve corresponding to (1.68)
at €y = 0.2 and C3 = 0.1. The remaining scatter in the points of Fig.1.8 is
explained by measurement errors and the dependence of Ag on Rij: quite a few
points correspond to the range of Ri; < 10, when this dependence is considerable.

As was already mentioned, for the case of a two-layer fluid Riz goes to
zero, so at De « | the ‘ntrainment equation is reduced to the form of (1.61).
The venfication of thi. equation using the data of Deardorff et al, (1980) is
shown in Fig. 1.9, In this analysis the data of experiments E2, ES, E12, E13
(with the exception of the first run from which it was impossible to determine
Riy), E15, E16, and experiment E11 for which Ri; is very small are used. The
theoretical curve determined using (1.61) at €, =0.2 and C; = 0.8 in the region
0 < Ri; < 30 agrees quite well with the data points. We would like to emphasize
that the value of Cy = 0.2 coincides with the value of this constant derived from
the experiments in a linearly stratified fluid shown in Fig. 1.8, and the value of
(7 = 0.8 almost coincides with the estimate of C; = C1/0.24 = 0.83 derived from
the comparison of our asymptote E = €| /C; with the empincal result £ =0.24
obtained in penetrative convection experiments of Deardorff et al. (1980) in a
hemogeneous fluid.

Thus the expression for the entrainment in a linearly stratified fluid (1.68)
agrees with the experimental data in Fig. 1.8, and the equation for a two-layer
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fluid (1.61) agrees with the data in Fig. 1.9. The free entrainment relation E =
C'./Cz following from (1.61) agrees with the empirical value of E = (.24, the
final, most appropriate numbers being € =0.2, C; = 0.8, €3 =0.1.






