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Abstract
This paper demonstrates that in the range of high return periocds

different extreme wind speed distributions tend to agree or to diverge due
to the parameters of the parent distribution. General criteria are there-
fore established to select a priori the most reliable or prudential model.
Approximate relationships are also derived, for evaluating the parameters
of a given model assuming as known the parameters of another.

1. INTRODUCTION

The statistical analysis of wind speed in well behaved climates is
traditionally carried out in two subsequent steps. In the first step the
probability distribution of the parent population is determined. In the
second step the statistical analysis of extreme wind speeds is performed
usually applying three different methods herein referred to as process
analysis, population analysis and asymptotic analysis; this last method
does not require the preliminary evaluation of the parent distribution.

The practical comparison of these methods reveals that, when correctly
applied, they furnish almost coincident results in the range of the return
periocds not largely excrading the number of years for which measurements
are available. However, they often lead to increasing divergencies when
considering return pericds well above this range. This situation becomes
important whenever exceptional structures are of concern. In these cases it
ig difficult and often impossible to establish, in general terms, which of
these methods is the most reliable. In fact, from a theoretical point of
view, every kind of approach has merits and defects; on the other hand,
experimental judgements cannot be given, since no data base is at present
large enough to allow such evaluations.

Starting from these considerations, the reciprocal limit behaviour of
extreme wind speed distributions is analyzed. In this way it is demonstrat-
ed that different models tend to agree or to diverge due to the parameters
of the parent distribution; general criteria are therefore established to
select a priori the most reliable or prudential method. Furthermore,
several approximate but conceptually consistent relationships are derived,
for evaluating the parameters of a given model assuming as known the
parameterse of another; some formulae previously proposed in the technical
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literature are in this way obtained again, other formulae are judged on the
contrary to be too approximate or, in some cases, definitely unjustified.

Numeric examples are developed by means of a computer program implemented
by the Buthors. The data used relates to wind speeds, averaged over 10
minutes, measured by ITAV (Ispettorato delle Telecomunicazioni ed Assisten-
za al Velo) in the meteorological stations of the Italian Air Force. Model
parameters are evaluated, for every case, according to the most efficient
estimation criterion among those discussed in Refs. 11,2).

2. PARENT DISTRIBUTION

The use of Weibull's distribution [3] as a probabilistic model of the
mean wind speed arises from pure empiricism but is by now accepted by all
the sectors interested in wind phenomena [4,5,6,7). It is defined by:

k’ k-1 k*
£,(v) = 7 (07 exp(~(;)}" ] (vZ0) (1)
kl
Fy(v) =1 - exp(-(5;)" 1 (v20) (2)

Egs. (1,2) coincide with the exponential digstribution for k‘=1, with the
Raileigh’s distribution for k‘=2.

It must be observed that Weibull's distribution imposes ceonditions £ _(0)=
F _(0)=0. The anemometric recordings, on the other hand, give, according to
the site examined, more or less long periods of wind calms. This incongru-
ence can be eliminated by applying the censured technique [8] or the hybrid
technique [9]. The former considers velocities v below the lower threshold
v _of the anemometric instrument as not reliable, modifies the values in
interval [O,v ) attributing an appropriately varied distribution to them;
the model parameters k’,c’ are regressed to modified data. The latter
accepts the instrument response substituting Eqs. {1,2) by the formulae:

k" v_ k"-1 v k"
= - el -(— 3
Fyv) = (1-A) &(v) + & 0 () exp[-(_7) | (vZ0) 3
=1 - ke > 4
F tvy =1 A exp| o A {vZ0) (4)
in which A is the probability that V>0, 6( ) is the Dirac's operator;

parameters k",c" are estimated on the basis of the only values v>0.

It is demonstrated [2] that k"2k’ and c"2¢’; furthermore the smaller A,
the higher k"/k’ and c¢"/c’; naturally k’=k" and c¢’=¢" for A=1; in this case
Egs. (3,4) coincide with Egs. (1,2). The application of Eqs. (1-4) to the
Italian anemometric data shows that the hybrid technique is definitely
better than the censored technique since it gathers, more confidently, even
the values in the tails of distributions (Figs. 1).

3. EXTREME DISTRIBUTIONS

The probability distribution of the maximum wind speed, M, over a time
period T assumed as unitary, is usually calculated on the basis of three
alternative methods defined in order as process analysis, population
analysis and asymptotic analysis.

Process analysis treats the wind velocity acceording to a stochastic
stationary process ({10]. The average number N of the up-crossings of the
threshold v in the unit time T is given by the equation [11,12]:
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Figures 1. Examples of parent probability distributions.
L
N(v}) = v £ a(v,V) Q¥ (5)
(v} Io V@( V)

in which V is the derivative process of V; f .(v,¥v} is the joint density
function of V and V; v and v are the state variables of the distribution.
Eq. (5) takes a particularly simple expression assuming V and V as stati-
stically independent (2,10]; in this case £ _.(v,Vv) = f_(v) £.(¥), f{r(\?)
being the density function of V. Eq. (5} for this reason becomes [1,2]):

N(v) = A £ (V) (6)
o

A= Jo v fv(i) av (7)

Introducing the further hypothesis that v is a sufficiently high threshold,
its up-crossings can be considered as rare and independent events and
treated therefore as a Poissonian process. The cumulative distribution of
maximum, Fu(v), is in this case:

Fya(¥) = exp[-A £,(v)] (8)

Population analysis considers data bases composed of N* values from which
N samples formed by n=N*/N values corresponding to time T are extracted
according to a principle eguivalent to casuality. Assuming these samples as
statistically independent, the cumulative distribution of maximum, F_(v),
is equal to the cumulative parent distribution, F_(v), raised to the n-th
power. In reality, the hypothesis of statistical independence is wholly
unacceptable. It can be removed by expressing FH(V) through formula (4,5]:

nl
Frun: (V) = {F,(v}} (9)

n’ being the number of data effectively independent in the course of T.
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Asymptotic analysis is the best known and most used procedure. It is
demonstrated [13] that, for n’ tending to infinity, the extreme
distribution (9) tends, in accordance with rules associated to the tail of
the parent distribution (14], to limit distributions, sc called asymptotic.
Assuming that the parent distribution is expressed by Weibull's model (Eqs.
1-4) it comes into the class of the exponential tail distributions whose
extreme distribution tends towards the type I asymptotic distribution:

Fy_p (V) = exp{-exp(-a(v-u)]} (10)

u being the mocde and l/a the dispersion. However, since Eg. (10) is
unlimited, it is not completely adequate conceptually to represent the wind
apeed (v20). To this one can add that applying the asymptotic treatment to
samples composed by a finite number of independent data, errors increase on
increasing the return period of the estimates concerned.

Comparing the results given by Egs. (8,9,10) it is clear that these
expressions, if correctly applied, give estimates of the maximum wind speed
which are more or less coincident in the domain of the mean return period R
not much greater than the time period for which records are available. Cn
the other hand they often tend to diverge with the increase of R (Figs. 2}.
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Figures 2. Examples of extreme probability distributions.

Figs. 3 show Gumbel non-dimensional probability papers in which diagrams
of functions v TV (R}, R = 1/[1-F,_ _(v)], x = A,n’,I, are constructed
based upon the criterion formulated in’&Sﬁ and therein applied limitedly to
Egs. (9,10) with k=1,2; obgerve that the extension of these diagrams to Eq.
(8) makes them explicitly dependent on ¢; A is assumed to be unitary. These
diagrams fully confirm the divergent character of the estimates of v in the
range of the high values of R, emphasizing the strict dependence of their
tendencies upon k. It seems qualitatively clear, in particular, that (10)
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underestimates v with reference to (8,9) if k<1, while (8,9) furnish lower
estimates of v compared to those given by {10) if k>1; no judgement can be
expreased according to the relative tendencies of (8,9). However, it is
noteworthy to make an important specification. These diagrams do not give,
as seems to emerge from some of their interpretations {15], the rate of
convergence, with the increase of A and n’, of Eqs. (8,9) to Eg. (10), but
rather the tendency of Egs. (8,9) to become straight lines as Eq. {10}
rigorously is. In fact, in Gumbel real probability papers, when increasing
A and n’, VA(R) and vn_(R) respectively move in parallel to theirselves.
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Figures 3. Theoretical extreme probability distributions.

4. LIMIT TENDENCIES

A generic cumulative distribution is monotone, not decreasing, and
tending to 1 with the tending to infinity of the state variable. F _A(v),

FM—n'(v)' FM_I(V) thus admit the same unitary limit for v tending to
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infinity. Transforming Egs. (8,9,10) into equations v =v (R), R=1/{1-
{(v)], x=A,n’,I, it is apparent that for R tending to iAfinity, v_ tends
to-ﬁnfinity. The first objective of the present paper is to establish
whether for v tending to infinity, F (v} is greater, equal or less than
F (v), %x,y=A,n’,I, x¥y; these three conditions clearly correspond in the
ordgk, for R tending to infinity, to v_(R) less, equal or greater than
(R). The analysis is initially made by studying the reciprocal tendencies
of all couplings of the three extreme distributions herein examined.
Comparing Egs. {9) and (10) one sees that F —n’(v) is less, equal or
greater than F (v), and therefore v_,{(R) is greater, egual or less than
v (R), if G* is greater, equal or less than G(v), being:

exan?u (1 1)

k
-1n{1 - A exp(-(Z) 1}

G =

{12)

G(v) = S
A exp[- g {ac)]

It is demonstrated that G* = G(v) for any value of v and R, if and only if
k=1, ac=1, A0, exp{au)/(An')~1l. Table 1 summarizes the different
situations arising for v and R tending to infinity. Figs. 4 show the
diagrams corresponding to G* = G{v) in the domain of the values of most
practical interest; they can be used to evaluate the values of v and R
above which the limit tendencies listed in Table 1 are satisfied; it is
apparent the marginal rcle of A especially for high values of v and R.

Comparing Eqs. (8) and {(10) one sees that F (v) is legs, equal or
greater than F (v), and therefore v_ (R) is gre;%er, egqual or less than
VI(R), if H* is greater, equal or less than H{v), being:

expiau
H* -
) Aah (13}
k-1 k
X (D) T expl-(D))
H(v) = (14)

(ac) exp(- 7 (ac))

It is demonstrated that H* = H(v) for any value of v and R, if and only if
k=1, ac=l, exp(au)/(AaA)=1. Table 2 summarizes the different situations
arising for v and R tending to infinity. Figse. 5 show the diagrams
corresponding toe H* = H(v); they can be used to evaluate the values of v
and R above which the limit tendencies listed in Table 2 are satisfied.

Comparing finally Egs. (8) and (9) one sees that FM_A(V) is less, equal
or greater than F ,(v), and therefore v, (R) is greater, egqual or less
than v_, (R}, if J* Is greater, equal or less than J{(v), being:

J* = —— (15)

k
-1n{1 - A exp(-(1) 1}

Jivy = (16)
k-1 k
Ak (57 exp(-(D) ")

It ie demonstrated that J* = J(v) for any value of v and R, if and only if
k=1, A0, A/(n’c)=1. Takle 3 summarizes the different situations arising
for v and R tending to infinity. Fig. 6 showe the diagrame corresponding to
J* = J{v); they can be used to evaluate the values of v and R above which
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Tabie 1. Limit reciprocal tendencies of population and asymptotic analyses.

k<1 k=1 k>1
G(v) >+ ac > 1§ ac = 1 ac < 1 G(v)+ 0
G(v)=++w G{v) +1 G(v)» 0
sxp{au) explau) - | exp(av)
Funl¥)< Fiu-1¥) — < — =" Furn(¥)> Fa-1(v)
:- (R)> ) (IR) Fun{v)<Fu-1(v) - = - P (V) Pt () vo(R) <v1 (R)
n ki 'n
T ) g Ry [Pt P (=R ¥ Pt | (@) < vy R)
V(R >vi(R) | ¥R =vi (R} | veelR) <v1 (R)

100 L L 100 1

50 | - 50 1.0 F
20 ] L 20 =1 L
10 s 10 =0 1

exp(au)/(An")

exp(au)/{An")

» o
Lt

o -~ Q

o
o
L

0.2
0.1

= 0.1
0.05 - 0.05
0.0z - 0.02
0 01 0.01

k=3
v =25 k-2.k 1. v/c V/C

exp{au)/(An")
exp{ou)/(An"}

i

Figures 4. Parametric diagrams of G* = G(v).
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Table 2. Limit reciprocal tendencies of process and asymptotic analyses.

va(R)>vr (R)

Fua(W)<Fy1(v)

o (R)>v (R}

Fua(v}<Fu.1{v)

ww(R)>vi(R)

Fua(v)=Fy.1(v)

va(R)=v{ (R}

¥ wR

Fualv)> Fyr(v)

n(R)<v(R)

k <1 k =1 k > 1
H(v) » +oo ac > t ac = 1 ac < 1 H{v}~ 0
H(V)—i+ﬂ’ H(V)=1 H(V)—DO

expiau) 1 explou) exp{au}
Fua{v)< Fy.1(v) VYR a o [T ! FualV)> Py g (v)

Faa(¥)> Fur{v)

va{R)<v(R)

wiR)<vi(R)
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Figures 5. Parametric diagrams of H* = H(v).
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Table 3. Limit reciprocal tendencies of process and population analyses.

k <1 k=1 k>1
J (v}t J () =1 4 (v)=0
A
< Jo= 2>
Fa-alv}> Fuee(v) FuaW) <Fun(v)
v (R) <vRY | Fuea{¥)> P ()| (V) = Frteme () P () < Pl e(v)| a(R)> vw(R)
va (R) <Vn'(R) Y (R)-Vn‘(R} va (R)>Vn'(R)

\.
i

»/(n'c

v/c

Figure 6. Parametric diagrams of J* = J(v).

the limit tendencies listed in Table 3 are satisfied; it is apparent, as in

Figs. 4, the marginal role of A especially for high values of v and R.

Joining together the above listed results, it is apparent the existence
of three distinct behaviours, first of all associated with the value of k:

(a) if k=1, then:
(1) ac=1, exp(auw)=An‘’ imply F

M-n’
v.R;
(2) ac=1l, exp{au)=AaA imply F {(v)= F (v), (R)—v (R), for any v,R;
M-A a Q
{(3) A=n‘c implies F (v)-F {v), v ( )-v L for large v,R;
in all other cases @he 11m{¥ condltlons llsted in Tables 1,2,3 come

(v)=FH_I(v), vn‘(R)=vI(R)' for large

into force, these having, however, a very limited importance, k=1 being

a bifurcation point;
{by if k>»1, this being the case of major interest, then, for large v,R:

V) S Py a(v) <F

(v} (17a)

vq,(R) < VA(R) < v (R} (17b)

for any value of all parameters. In this situation Egq. (10) gives,

relation to the Egs. (8,9) of higher level, more prudential estimates

of v the more k>1; Egq. {8) is more prudential than Eg. (9};
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{c) if k<1, then, for large v,R:

18
Fren (V) S Fy afV) < By (V) (18a)

(R) (18b)

’

v (R) < V,(R) < v

for any value of all parameters. In this situation Eq. (10) gives, in
relation to the Egs. (8,9) of higher level, less conservative estimates
of v the more k<l; Eg. (%) is more prudential than Eq. (B).

These considerations clearly explain Figs. 2.

Remembering that the above limit tendencies are practically invariant
with respect to A, it is clear that the use of the censured model (1,2} in-
stead of the hybrid model (3,4) has no influence on the limit behaviour of
the extreme distributions. What takes on instead an essential role is that
the use of Egs. (1,2) gives rise to k values, k', less than or equal to the
k values, k", given by Egs. (3,4). From this it follows that extreme esti-
mates by Egs. (3,4), apart from being decidedly better, are also lower than
estimates based on Egs. (1,2), independently of using Eq. (8) or (9).

It is relevant to observe that k<1l does not represent a case of pure
theoretical interest. In Italy, for instance, the 15% of data collected by
meteorological stations exhibits k<1 if fitted by the hybrid technique;
this percentage reaches the 35% when using the censured model.

5. APPROXIMATE RELATIONSHIPS

Having established the criteria to select a priori the most reliable or
prudential extreme distribution, the opportunity becomes obvious of
instituting simple but effective approximate relationships which permit the
determination of the parameters of a given model on the basis of the
parameters of another model. The assigning parameters A and n’ (of complex
evaluation (1,2]) is clearly important in terms of parameters A,k,c,u,a
{({easier to be estimated): n’ expresses the number of the independent
repetitions of the mean wind speed during T and thus plays a central role
in the sector of reliability analyses; the knowledge of A, instead, makes
it possible to extend the process analyeis from the study of the wind to
the study of its effects, according to global risk evaluations [16]. Alsoc
the calculation of A from n’, and viceversa, can be relevant [10].

The problem is formulated here comparing couples of different models. The
relationships linking the parameters of one to the parameters of another
are based on three hypotheses: (a) the extreme distributione are more or
less overlaid in the domain of the experimental data; (b) they coincide
exactly for v=u; {c) u is much greater than c.

Comparing Egs. (9) and {10} it follows that:

1 1
n’ = — = {1%9)
TR A expr-(H%)

This same comparison is formulated in [4] with the intention of evaluating
u,a and therefore 7=ua in terme of k,c,n‘ being A=l. Generalizing these
expressions to the case A¥l [17], one obtains:

/k

[1n(n-A))t (20)

[1n(n’A)]1-1/k {21)

G 0
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1= ua = k ln(n‘a) (22)
EqQ. (20) corresponds to imposition F _n,(u}=F _I(u); Eg. (21) reguests the
additional condition £, _ (u)=f___(u)}, f (V)Mbeing the density function of
maximum M. In the light of this cofcept, ghe inversion of Eg. (22) [5,17]:
n' = _____l__;_ (23)
ua
A exp(-7,)

is thoroughly unjustified since it presupposes a criterion definitely up-
rooted from conditions F , (w)=F (u), £ ,(u)y=£ (u); these egquations
are in fact clearly confl;EEing, w?Eﬁ the o§i§ excepgzgn of case k=1, ac=1,
when applied both for determining the single parameter n’.

Comparing Egs. (8) and {10) it follows that:

Ao —1 1

T £ T .k g k-l k (24)
(u} kK u k- 4
v A c (c) exp| (c) ]

Finally, comparing Ege. (8) and (9) it follows that:
A TR oy 25)
n' fv(u) k (c)

Eq. (25) can be rewritten in terms of parameters A,k,C by substituting Egs.
(20,21) into Eg. (25). One has:

A _¢ vy 1/K-1 '
ne = 3 tin(ncA)] (26)

It ie relevant to notice that applying Eqgs. (25,26), if k<1, then F___ (V)<
FM_A(V) and v_, (R)>v, (R) for any v>u; analogously, if k>1, then gL_A(V)<

F_ ', {v) and v, (R)>v ', (R) for any v>u. It is finally interesting to observe
M2l Eqs. (25,%6), thoroughly deny the following formula derived from [10]:
A _ ¢

n Tk (27)

However, it coincides with Eq. (25) when k=1, this being the case in which
all approximate assumptions made in {10] become rigorously exact.

Table 4 summarizes mean values, standard deviations, maxima and minima of
percent errors associated with formulae in this paragraph when applied to
the 40 Italian meteorological stations studied in [18); values between
parentheses correspond to the same data base, having excluded the stations

Table 4. Errors associated to approximate relationships.

EQUATION | (19) (20) (21) {(22) (23) 24) | (2% (26) (27)

MEAN -53% | 08X |-105%|160%X | 366 %X | 23 % { 46 % 4 % 576 X
ERROR [(-5.3 %X)| (0.6 X) |[(-14.0 X)| (192 %) [(—40.5 %)| (-0.9 %X)[ (6.2 %) | (5.0 X} |(590.8 X}

STANDARD | 100 x 12% | 185 % | 205% [351.4%| 7.2 % 161 X | 158 x | 509 X
DEVIATION |(10.4 x} | (1.3 %) [ (1.5 %) | (17.7 ) [(45.8 %) | (8.6 %) | (157 %) | (5.4 X) | (51.9 %)

MAXIMUM | 148 x 31% | 405 % [ 633 % |19257 x| 106 %X | 371 % | 363 X 1760 X
ERROR |(148 x) | (3.1 %} | (7.4 %) |(63.3 %) | (89.3 %) | (10.6 %) | {37.1 %}| (36.3 %) [(176.0 %)}

MINIMUM | 280 x| —2.4 x |-37.7 x| 28,0 x{-94.6 x | —22.0 X| -19.8 X| —19.4 X| -454 %
ERROR |(-28.0 x){ (2.4 %}[(—-37.7 %) (-8.7 X) [(~04.8 X)[(=14.4 %)|(—19.8 XY(~19.4 X){-45.4 X)
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of Cozzo Spadaro, Sanremo and Venice. It is apparent the possibility of di-
viding the above relationships into three groups with different properties:

(a) Egs. (19), (20}, (24), (25}, (26) give excellent approximations being
only based on condition F -x(u)=FM— (a), x,y=A,n",I, x#y;
(b) Egs. (21}, (22) lead to rougheg estimates involving the additional

condition f {u)=f (u), x,y=A,n’,1, x#y;

{c) Eg. (27) ang_gspeci§1¥y Eg. (23) are thoroughly misleading; observe in
particular that Eg. {23) ieads in some cases (the three stations quoted
above)} to exceptionally high errors.

These results are definitely independent of the values assumed by k.

6. CONCLUSIONS AND PROSPECTS

This paper has framed the limit tendencies of the best known models for
representing extreme wind velocities. In particular it has demonstrated
that these tendencies strictly depend on the k parameter of the parent
distribution. If k>1 the asymptotic analysis furnishes results on the safe
side, while the process analysis is, with respect to the population analy-
sis, more prudential. On the other hand, if k<l the asymptotic analysis
becomes unconservative, while the population analysis is, at the same time,
the most prudential and reliable one. A general frame has also been given
of the most suitable approximate relationships aimed at estimating the pa-
rameters of a given model assuming ag known the parameters of ancther. In
light of the results obtained, the opportunity clearly emerges of going
deeper into this subject by further considering the directional and season—
2l effects as well as analyzing the role of statistica. uncertainties.
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