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MOMENTUM AND ENERGY BUDGETS
FOR ATMOSPHERIC BOUNDARY LAYERS

A.P. van Ulden
KNMI

L. INTRODUCTION

In this note we consider horizontally homogeneous atmospheric boundary layers in steady
state. From the vertically integrated equations for momentum and kinetic energy of the mean flow
and for turbulence kinetic energy we deduce a number of important characteristics of boundary
layers. Many of these characteristics are also relevant for oceanic boundary layers.

Horizontal homogeneity is assumed in the sense that horizontal gradients of mean dynamic
variables vanish except for the pressure gradient terms. Moreover, it is assumed that horizontal
pressure gradients do not vary with height and that the mean flow is hydrostatic.

2. MOMENTUM BUDGET
Since
ow/dz = -0u/dx - ov/dy =0 (1)

it follows that

W= Wourface — 0. @

Thus there are two momentum equations:

du 1 9P, _ 2u'w

— 0 - . ..._......_._._9... - ———

at p, Ox S = ©2)

F oo L3P o FW

ot p oy Yoz (36)
First we consider laminar flow for whichu'w' = v'w' = 0

For such flow (3a), (3b) yield:
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These equations define the two components ug, v Of the geostrophic wind. Thus horizontally
homogeneous steady flow without friction is geostrophic. There is a balance between the pressure
force and the Coriolis force. The wind blows parallel with isobars.

Next we consider a boundary layer with depth h. For convenience we choose the x-axis
parallel with the shear-stress at the surface. Then the surface boundary conditions for the shear
stress are:

-(W) =u?, (W =0 az=z_, (5a)
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where u, is the friction velocity and z, the surface roughness length. At the top of the boundary
layer both stress components vanish. Thus
(ww) =-(vWw) =0 atz=h. (5b)
h h

With these boundary conditions we integrate the momentum equations over the boundary layer
depth and obtain directly:
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Here uand v v are the vertically averaged components of the mean wind and v v, the vertically
averaged agcostrophlc wind which is defined as:

v =4

2
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It thus follows, that - in this coordinate system - the average u component is in geostrophic
balance, while the average v component shows a balance between the vertically averaged pressure

acceleration, Coriolis acceleration and the acceleration by the mean vertical stress gradient. Thus

v has both a geostropic and an ageostrophic component. In figure 1 we illustrate this in a vector

diagram. Note that vand v, are negative in this coordinate system. In figure 2 we show typical
profiles of u and v.



3. KINETIC ENERGY OF MEAN FLOW

The kinetic energy equation for the mean flow is easily obtained by multiplying (32) and
(3b) with u and V respectively. This yields:

3f1-2 12 9P 0P _duw -ov'w
m‘(iu +-—2— ):0 -E- ay -u 3z i % (8)

In this equation the first two terms on the right hand side give the production of mean kinetic
energy and the last two terms energy losses due to the interaction between the mean flow and the
vertical stress gradients. These losses are connected with the production of turbulence kinetic
energy, as we will discuss later. Note that the mean kinetic energy equation does not contain terms
related to the Coriolis acceleration. The reason for this is that the Coriolis force is always at a right
angle with the wind vector and therefore cannot produce or destroy energy.

Next we average (8) over the boundary Jayer depth. This gives:

=3P =P 1/ 5 v
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Note that we have used that - 1 U w/dz = - 3u UW/9z + u'w'’ du/dz and that u u'w' vanishes
both at the surface and at the top of the boundary layer. The v component is treated in a similar
manner. The last term in (8) is the vertically averaged production of turbulence by the interaction
between the shear stress and vertical gradients of the mean wind (see also next section). The first
two terms give the production of mean kinetic energy. We see that only wind components in the
direction of the pressure gradient produce kinetic energy. Since by definition these wind compo-
nents are the ageostrophic components of the wind, it follows that only the ageostrophic wind is
involved in the production of kinetic energy. We can clarify this by choosing the coordinate system
as in the previous section, thus with the x-axis in the direction of the surface stress. Using (6a) and
(6b) we find that in this coordinate system:

=3P, =3P v, 9P,
a_° v =2 . (10)
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As expected, the geostrophic components vanish. With help of (6b) and (7) we may also write this
as:
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The right hand side of this interesting result can be interpreted as follows. It gives the work done

by the mean wind against the vertically averaged stress gradient, which is equal to the work done
by the stress on a characteristic vertical velocity gradient. Thsu the right hand side of (11) gives the
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production of turbulence kinetic energy. Thus (11) simply states that the production of mean
kinetic energy by the pressure gradient and the ageostrophic wind equals the production of turbu-
lence kinetic energy by the surface stress and the mean wind in the direction of the surface stress.

4. TURBULENCE KINETIC ENERGY

4.1 Introduction

The turbulence kinetic energy equation reads (e.g. Stull, 5.1a)
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Here

- 1 .
c=5(u'u' + vV + w'w ) ,

is the mean trbulent kinetic energy, while e' denotes the fluctuations from this mean value.
€ represents the viscous dissipation and @, the virtual potential temperature. The vertical average of
(12) is:
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Here the first term at the right hand side gives the shear production (SP), the second term the
buoyant production (BP), which can be negative, and the last term the average dissipation (D)
which is always a loss term.

The average shear production has been evaluated in the previous section. It is given by

(14)

The other two terms will be modelled in the following for neutral, stable and unstable boundary
layers. It should be noted that (14) does not depend on the stability of the boundary layer.

4.2 The neutral boundary layer

First we consider the neutral boundary layer in which by definition the buoyant production
1s absent, We thus have:

SP_ =D (15)

n n



where the subscript stands for neutral. The dissipation is modelled by using the concept of the
energy cascade. Thus the local dissipation at the height z is taken equal to the energy cascade rate at
this height:
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where
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is the variance at the height z and I, the length scale of the largest eddies at this height. Since 1 <
z close to the ground and Iy, e h-z close to the boundary layer height we model 1, as:

I 1 1 an
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This is equivalent to:
= é 18
1= z(l - F) . (18)

Near the surface, we may use surface layer similarity theory to evaluate (16). For a coordinate
system with the x-axis parallel with the surface stress, the surface layer energy budget reads:
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Using that close to the ground - u'w' = uf and du/@z = u /kz, we find that in a neutral surface-
layer

3
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In the boundary layer o, decreases with height, until it vanishes atz =h. Observations show that
approximately

u3 P
e § B (20)
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where p = 2 is an empirical coefficient. Using this and (18) we find that
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This is one form of the well known geostrophic drag law (Stull, 9.8 a).
4.3 The stable boundary layer

In the stable boundary layer the virtial potential temperature increases with height and
vertical motions are affected by buoyant decellerations. This reduces the size of the largest eddies
in comparison with the neutral case. This effect is usually modelled with the following empirical
relation:

lit
|
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Here 1, is the buoyancy length scale, which is the vertical distance over which air parcels can be
displaced by eddies with scale I, and energy G.2.
The buoyancy length scale can be computed as follows:

An air parcel which is displaced upward over a distance 1, has a difference in virtual potential
ternperature

AB ] %, (24)
v b

with respect to its environment. This corresponds with a potential energy difference

APE~-- % 29 1 . (25)
29 v'b

v

This potential energy is created at the cost of the turbulent kinetic energy of the transporting eddy:

1 2
ATKE~=G, . (26)

Taking A PE = A TKE gives:

o,=-L 10,1, | @n
0
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and
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where ¢y, is an empirical constant. Using (16), (20), (23) and (28) we obtain our model for the
dissipation in stable conditions:

3 2
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We see that in comparison with the neutral case (21) the dissipation is enhanced since w'ev' is
negative, To estimate the empirical constant cp we use surface layer similarity. For the stable case
surface layer similarity tells us that:
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where L is the Obukhov length. (30) applies when z <<h. Since

L=-u*/iw'9 " (31)

We may rewrite (30) as

uz 4 g |e '
_E- B—'W _ (32)
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Equating (29) and (32) for z << h we see that

" .

c,=4. (33)

We are now ready for our boundary layer budget. Experience learns that generally w'd ' varies
smoothly with height: Y

we, =(we,) (1 %)q , (34)

where q = 1 is an empirical coefficient. Using (14), (29) and (34) we obtain now for our energy
budget:
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Using
0 = SP + BP; - Dg
we find
=_ U h g( . )
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This is the geostrophic drag law for stable boundary layers derived ¢.g. by Nieuwstadt (1984).

4.4. The unstable boundary layer

We consider an unstable boundary layer capped by a temperature inversion near z = h. We
consider the special case with no mean wind. Thus SP = 0. All turbulence is produced by

buoyancy: BP > 0. Again we approximate w'6 ' by a smooth profile:

w ' = (w'ev')o (1 %)q | (36)

with g = 1. This is a good assumption except for a limited region near the top of the boundary
layer, where w'6, ' usually is slightly negative. Thus we get

pp=p-L(we,) 37

v
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with B ~ 1/2.

Turbulence is produced in the bulk of the boundary layer by large eddies, with the greatest
production near the ground. At the same time the produced turbulent energy is transported away
from the ground such that the resulting o, profile is given by:
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where w, is a velocity scale for convective turbulence and r = 2 an empirical coefficient.
The length scale of turbulence is Jimited both by the distance from the ground and by the
distance to the capping inversion; thus like in the neutral case we use:

1 1 1 z
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For the dissipation we thus obtain:

| h03 w3 1 r-1
w1 ., (39)
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Thus
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T (40)
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where the subscript ¢ stands for convective. Using
BP =D _, 41)
[+ [~
we find that
1/3
w, - -E—(w'ev') h| . (42)
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which is the well-known velocity scale for convective turbulence (Stull, 4.2a).
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