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Guidelines for Use of Vapor Cloud Dispersion Models

a sufficient time has elapsed that neighboring puffs overlap each other. This
computational problem has been partially solved by Zannetti {1986), who uses
trapezoidal-shaped plume segments rather than puffs under cartain conditions in
his AVACTI model.

While the puff trajectory models are justified from physical arguments,
Lewellen et al. (1985) have found that their predictions do not agree with
observations much better than the predictions of standard straight-line
Gaussian plume models. They used data from the set of experiments at Idaho
National Engineering Laboratory (INEL) from which the example in Figure 5-12
was drawn. It is suspectad that the uncertainties due to stochastic

variability in atmospheric concentrations are responsible for the lack of a
significant difference among the models.

5.1.6 Concentration Fluctuations; Averaging and Sampling Time

Discussions of averaging and sampling times {(see Figure 2-1} or
concentration fluctuations are either non-existent or very minimal. in the
research reviewed to this point. Same models grossly parameterize this effect
by assuming that the ratio of the peak (fluctuating) concentration to the model
predicted mean concentration is about two. Chatwin (1982) pointed out that in
manv cases involving accidental releases of hs~ardous gases, the maximum short
term ("1 sec) concentration is the most important variable to predict. Lung
damage from H,S can occur with one breath if the concentration is sufficiently
high, and an explosion of gas from an LNG accident can occur if a spark is
struck in a small volume of gas at the flammability limit. According to
Chatwin the mean concentration predicted by the model can be irrelevant in
these cases, since the probability distribution function (pdf) of concentration
fluctuations in the atmosphere is characterized by a standard deviation at
least as large as the mean. The relative magnitude of concentration
fluctuations (crc/(f) is the same order as the relative magnitude of velocity
fluctuations (o'u/U) in the atmosphere. The parameters 0. and g, are the
standard deviations of turbulent fluctuations in concentration and wind speed,
respectively. Thus it is important to predict the upper end of the pdf for the
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5. Transport and Dispersion Models

H;S and LNG incidents described above. Since Chatwin's article was published,
a few other researchers have studied this problem, although we are far from
having a comprehensive operational model.

Predictions of models such as DEGADIS or FEM3 can be thought of as
ensemble means for certain averaging times. An ensemble mean is defined as the
mean over an infinite number of realizations of a given experiment. The
averaging time is usually implicit in the data used by the model and in its
formulations for treating the input data - for example, if hourly-averaged wind
and turbulence observations are used, then the predictions represent a one hour
average. If the Pasquill-Gifford-Turner dispersion curves are used, then the
predictions represent a 19 minute average, since data from 16 minute periods
were used to derive the curves. In the case of instantaneous (puff) models,
the predictions represent an ensemble mean only to the extent that a large
enough set of experiments (20 or more} was used to derive the modei. These
experiments should be conducted under the same external conditions (i.e., wind
speed, stability, source term). For example, if it were possible to run the
Thorney Island experiments long enough that 18@ independent time periods {e.q.,
of temminute duration) could be found which all satisfy the following

conditions:
4.8 < u < 5.2 ws, 65% < RH < 78%
o fo] o 0,
18 <Ta<12C, 18 <Tsurface<12c

-2 < net radiation flux < 2 watts/m?
(op-oa)/aa = 2, h=16m, R=10m,

then the observed concentration field averaged over these 188 experiments would
approach an ensemble average. The reader quickly sees that it is difficult
operationally and financially to generate ensemble averages from atmospheric
field experiments. A true ensemble would contain an infinite number of
individual data points!

Thus the results of a single experiment, or even three or four experiments
will likely differ (perhaps by as much as an order of magnitude} from the
ensemble mean predictions of the model. If this happens, it is not an
indictment of the model but may be a manifestation of the inherent s*ochastic
variability of the atmosphere.
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Guidelines for Use of Vapor Cloud Dispersion Models

Wind tunnel experiments can be used to study variability, since it is
easier to insure repeatability of experiments and thus create a large ensemble
of data. On the negative side, the wind tunnel cannot simulate larger scale
eddies and other phencmena that contribute to variability in the atmosphere.
Furthermore, the laboratory Reynolds number is not high enough to permit the
establishment of an inertial subrange like there is in the atmosphere. Meroney
and Lohmeyer (1984) conducted extensive studies of dense gas clouds released jn
a wind tunnel and calculated the concentration fluctuation intensity, G‘C/C, foz
various source volumes, wind speeds and downwind distances. These results are
plotted in Figure 5-14, showing that the average d’c/c is about 4.3 in this wmd .
tunnel. In contrast, Hanna (1984) reports cbserved values of c"c/C of 1.5 on '
the plume centerline and G./C of 5.2 on the plume edges for a smoke plume
released in the atmospheric boundary layer.

The probability distribution function (pdf} of concentration fluctuations
in the atmosphere has been studied by several persons (e.g. Wilson, 1382; '
Hanna, 1984; Lewellen and Sykes, 1985), and all agree that the distribution is
non-Gaussian and is skewed towards higher concentrations. For hazardous gas
analysis, we are usually interested in the probability P(C>Cp) that the
concentration is higher than some limiting value, CL:

0

P{CCy) =j p(C) dC
<

It has been suggested that the probability distribution function, p(C), can be
approx imated by a log-normal, clipped normal, or Gamma function. The
exponential function is a special case of the Gamma function, and is quite gocd
for intermittent clouds or plumes. The intermittency, I, is defined as the

fraction of time that non-zero concentrations are observed at a monitor. For
the exponential distribution, crc/(T equals one. In this case, the pdf is given S
by the formula: ‘

p(C} = (12/C)expl~1C/C)+(1-1) 6(8) (5-57)

o
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Figure 5-14. Concentration variance ratio, O'C/C, versus downwind distance,

observed by Meroney and Lohmeyer (1984)

source is an instantantecus dense gas cloud.
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Guidetines for Use of Vapor Cloud Dispersion Models

where the Dirac delta function & {#) equals 1.9 at C equal to 6 and equals .0
elsewhere. This can be substituted into egquation (5-56) to give:

P(CXCy) = 1 exp{-IC/C) {5-58)

Thus if the dispersion model predicts an ensemble mean, C, of 2.1¢;, , where C
is the threshold concentration for some health effect, and the intermittency I
equals 9.5, then the probability that the instantanecus C will exceed G, is

#.3%. If the ensemble mean prediction is B.SCL, then this probability is 18%.

The formulas given above are for nearly-instantaneous averaging times., It
is clear that the standard deviation of concentration fluctuations, O will
decrease as averaging time T increases. If the integral time scale of the
concentration fluctuations is T; and the autocorrelogram is assumed to be
exponential, then the following formulas apply:

R(t') = CT(6IC" (vt} /0% = exp(-t'/T)) (5-59)
Then
02 (M /0 2(8) = 2(Ty/T) (1~ (T,/T) (L-exp(-1/T))) (5-68)

where UEZ(O) refers to the variance for instantanecus averaging time. If T
has a typical value for the surface layer (about 18 sec), then the ratio of
variances for an averaging time of T equal to 68 sec is $.28. 1If the averaging
time is one hour, the ratio c&(36695}/cb(0) is #.875. It can be concluded that
the fluctuation intensity cb/c for one hour averages in the atmosphere is about

#.1 even if the integral time scale is only a few seconds.

If it is assumed that the equations in the first part of this section
produce predictions of ensemble mean concentrations, C, then the probability of
the concentration exceeding any threshold limit, CL’ can be estimated using

equations (5-56) through (5-6@) for any averaging time and integral time scale.

Equation (5-68) can be used to assess the effects of averaging over
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5. Transport and Dispersion Models

distances as well as time. Observed concentrations and health effects always
involve some averaging distance. For example, if tbe integral distance scale
of the turbulence is 5m and the averaging distance is m, then the ratio

5% (1m) /3.2 (0) equals 8.94.

At the other end of the scale the sampling time or sampling volume can
also influence observations. Figure 2-2 illustrates a typical time series,
showing that the sampling time, T4, can be thought of as the total length of
time that the instrument is turned on. It is intuitively obvious that the
likelihood of more extreme concentrations being observed is increased if the
sampling time increases (e.g. notice how several new "record" high and low
temperatures are observed at any given weather station each year). The usual
definition of any ensemble assumes that the sampling time is infinity. In
practice this requirement is considerably relaxed, such that a set of ten dense
gas experiments conducted during s.milar external conditions is assumed to
comprise an ensemble. Equation (5-6@) can also be used to calculate the
variance "missed" by an instrument because it is turned on for a finite

sampling time Tg:
0:2(0, Tg) /9 2(0, =) = 1-2(Ty/Tg) (1~ (T1/Tg) ((1-exp(-Tg/T;))) (5-61)

where the first variable inside the parentheses after 6c2 is the averaging time
and the second variable is the sampling time. Any eddies with time scales much
larger than T; are not detected by the instrument. For example, if Ty is ten
times the integral scale T;, then only 82% of the total possible variance is
seen. If both the sampling time Tg and the averaging time T are finite {(as
they are in any experiment) then the fraction of the total possible variance
can be calculated by multiplying equations (5-6@) and (5-61) together. Aan
example is given in Figure 5-15 for the special case T4/T = 188 (for example,
averaging time could be one minute and sampling time could be 148 minutes).
This function clearly defines a "window", with high and low frequency
fluctuations filtered out by the finite sampling and averaging times.
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Figure 5-15. Fraction of total possible concentration fluctuation variance

from Egs (5-60) and (5-61), as a function of samplmg time Tg
averaging time T and integral time scale T

It is assumed
that T /TI 168.
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Algorithms for Concentration Fluctuations and Variations
of Concentrations with Averaging Time

(First Draft - Jan. 5, 1994, Second Draft - March 23, 1994}
by S.R. Hanna

I) Predictions of Plume Centerline Concentrations at a Given Downwind Distance

Hazardous gas models such as HGSYSTEM can predict the crosswind concentration
distribution at distance x from the source for a certain averaging time, T,. The basic model
predictions of the dense gas modules are appropriate for averaging times of about two minutes,
which correspond to the field data on which the dense gas algorithms are based. The
predictions of the passive gas models generally refer to an averaging time of about 10 or 20
minutes, which is the averaging time for the passive gas field data used in deriving the Pasquill-
Gifford-Turner o, and o, curves. Also, the HGSYSTEM prediction is for an ensemble average--
that is, the average of millions of independent realizations of that particular experiment for
those specific initial and boundary conditions and other input parameters. Those millions of
individual realizations would themseives have a distribution about the ensemble average.

The model predictions of the ensemble average plume centerline concentration,
C4(x,T,), are not keyed to any particular geographic point-the only restriction is that the
downwind distance must be x. But because natural plumes meander or swing back and forth,
the ensembie average centerline concentration will drop as averaging time increases, and the
position of the centerline may also shift as T, varies. The effects of averaging time on plumes
are thoroughly discussed in the review report by Wilson and Simms (1985).

Consider an ensemble of concentration observations under certain initial and boundary
conditions. Then the variation of the distribution of C_, with T, at a fixed x would be as shown
in Figure 1. The box plots indicate key points on the distribution function at each T,. The
dashed line on the figure passes througi the mean or median (whichever you prefer) of the
distributions. If the model predictions are corrected for averaging time, T, the corrected
ensemble average concentrations should fall along this dashed line. As averaging time, T,
approaches 0.0 (i.e. an instantaneous snapshot of the plume), the concentration C_, shouid
approach a value representative of the instantaneous plume.

A 1331\algonthm 1



Concentration on Plume Centerline for Given Averaging Time
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Figure 1.
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Typical distributions of centerline concentration. C_, at a given x, for various
averaging times, T,. The dashed line goes through the means at each T,, and the
dotted line goes through the 99th percentile of each distribution. The dashed-
dotted line goes through the maximum at that T, assuming the sampiing ¢ime is
60 min.
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It should be mentioned that some models such as TRACE are designed to be
conservative--i.e., to predict concentrations, C,, higher than the mean. The descriptions of
these models do not specify the quantitative percentile (e.g. the 99th percentile) of the
distribution that they are aiming for. However, if a model were designed to predict the 99th
percentile at each T,, the concentration predictions would follow the dotted line in Figure 1. If
a model were designed to give the maximum at a given T, for a given total sampling time (60
min, in this case) the concentration predictions would follow the dash-dot line. In this latter
example, the percentile associated with the single maximum concentration would increase as T,
decreases, since the total number of concentration values equals (60 min/T,).

Parameterizations

Most hazardous gas models that correct for averaging time are attempting to follow the
dashed line in Figure 1, even though they do not articulate these conditions. In addition, most
models accomplish this correction by applying a T,"/> power law to the lateral dispersion
coefficient, o, due to ambient turbulence.

0, (Tall 0y{Tu) = (Tl Tl | M

In order to prevent o, from dropping below its known value for instantaneous conditions, which
would inevitably happen with equation (1) as T,, - 0, a "minimum T,," criterion is usually
applied. This is the T,, which would result in o, equalling the following values given by Slade
(1968) for instantaneous plumes or puffs:

Unsmble o, = 0.14 x @)
Neutral a, = 006 x °* (3)
Very Stable 9y = 0.02 x ¥ (4)

For neutral conditions, this criterion is satisfied at T,, equal to about 20 seconds, where it is
assumed that o, for continuous plumes is given by the Briggs-EPA formuias. However this
minimum T, is dependent on what is assumed for (1) distance ¥, and (2) representative
averaging time for the Briggs-EPA formulas. Furthermore, equations (2)-(4) themselves are
based on limited data and would have significant uncertainties (say = 50%).

As a defauit parameterization, it is recommended that the formulas used by DEGADIS,
HGSYSTEM, SLAB, and other models be retained, with the following assumptions:

(VY]
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. The o, Briggs-EPA formulas are valid for an averaging time of 20 minutes.
. The "minimum T," criterion is 20 seconds.
L Equation (1) is valid foc o, corrections for T,.

The models mentioned above assume that the lateral distribution in a dense gas plume is made
up of a densc gas core of width W and Gaussian edges with standard deviation, a,. The '
averaging time correction is then applied only to the Gaussian edges. We depart from these
models by assuming that the averaging time correlation applies to the entire plume width:

Ccs(Tu)/ C:I(Taz) = (Taz/ Tu)w (5)

Our analysis (Section 6.1 of Hanna et al, 1993) of field data from the Burro, Coyote, and
Desert Tortoise experiments showed that C,, = T,** for many types of dense gas plumes,
despite the fact that the DEGADIS, HGSYSTEM, and SLLAB models were predicting that the
dependency be much smaller {in all cases, the models were predicting that the size of the dense
gas core of the plume was relatively large compared to ,).

If we were interested in the centerline concentration at a given averaging time at a given
percentile as the distribution (see the dotted line on Figure 1), we would need to make an
assumption for the form of the distribution. For in-plume fluctuations, a log-normal distribution
is applicable (see Hanna, 1984):

P(tnC) = f p(inC?) d(tnC") (6)

-

(e’ - 'Y 120t
plinc) = L ¢ T

;
o (7

where P is the cumulative distribution function (ranges from 0.0 to 1.0) and p is the probability

distribution function.

At small averaging times (T, ~ 20 seconds or less), atmospheric data show that
0,c/ [l = 1.0 (8)

We will assume that this relation is vaiid and that o, decreases as averaging time increases
according to the tollowing approximation to Taylor’s formula:

1:\1331\algorthm 4



2
T (Ta) = 1 (Td > 20 SBC) (9)
ol (20 secy 1+ T/2T;

where T, is the integral scale .ur turbulent fluctuations in concentration. For plumes in the
atmospheric boundary layer, a default assumption would be

Default T, = 300 seconds. (10)

With this value of T), equations (8) and (9) gives

Oy (one hour) = 0.4 0. (20 sec)

2) Predictions of Concentrations at a given Receptor Position

The discussions in the previous section were concerned with predicted concentrations on
the plume centerline or axis, which can shift position with time. For that type of model
application, the analyst is concerned only with the maximum plume impact independent of
location. Another type of model application would be concerned with the plume impact at a
given receptor position, as defined by for exampie a monitoring site or a critical subset of the
surrounding population (say a school or a hospital).

Consider an ensemble of concentration observations from a giver monitoring site. The
data are taken from many independent field studies, all with nearly the same ambient conditions
(ie. release rate, wind speed and direction, stability). These observations would show a
variation of distribution functions with averaging time as suggested in Figure 2. Note that there
are three major differences between Figures 1 and 2:

Figure 1 Figure 2
Centerline C Fixed Receptor C
E—— —  — —— ———— 4
Median C decreases as T, increases Median C is constant with T,
There are no zeros in C There are many zeros in C
. is relatively smail o_ 18 relatively large

wh
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Fixed Monitor Location
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Figure 2. Typical distributions of concentration observed at a given monitor location, for

various averaging times, T,. The dashed line goes through the means at each T,,
and the dotted line goes through the 99th percentile of each distribution. The
dashed-dotted line goes through the maximum at that T, assuming the sanpling
time is 60 min.
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All of these differences are due to the fact that, in the case of Figure 2, the plume can meander
away from the receptor, leading to many C = 0 observations at that receptor. In contrast, by
definition C,, is always greater than zero in Figure 1.

Often the variation of —_,, with T, is calculated from data at fixed receptors. A time
series C(t) is searched in order to identify the various C_,.(T,); for example this was done by us
using the field data from the Burro, Coyote, and Desert Tortoise experiments. The resulting
C_.. values would follow the dot-dashed-curve in Figure 2. In that example, the total length of
the time series is 60 min (the sampling time T,). The percentile of C_,, for each T, is given by:

Percentile{100 = 1 - (T /60 min) (11)

Note that the variation of C_,, with T, is greater than the variation of C (fixed percentile) with
T,. From a theoretical point of view, C (fixed percentile) is preferable, but from a practical
point of view researchers always seem to work with C__. It is clearly important to at least
recognize the difference.

The distribution function that is proposed for the data in Figure 2 must account for the
possibility of many zeros. The exponential cumulative distribution function is recommended by
Hanna (1984):

P(C) = 1 - I exp(~IC/C) (12)

o/C = (@D - 1y* (13)

where [ is the so-called intermittency, or fraction of non-zero observations in the total record
(I = 1.0 if the plume is always impacting the receptor). A typical value of I in the atmosphere
is about 0.2, giving ¢,/C = 3. In the absence of other information, it is recommended that a
default value of I = 0.2 be used for very small averaging times, T,:

P(C) = 1 - 02 exp(-0.2C/C) (142)
asT, -0

a/C =@/h - H¥? =3 (14b)

As averaging time increases to 60 minutes, equation (8) can be used to calculate
6 X(T,)/ o X(0), again assuming that the integral time scale is 300 seconds and that 0/C = 3 at
T, - 0. "I" can be calculated by inverting equation (13):

I'=2)(1 + (o /CP . (1%

I\ 1331\ algorithm 7



The sequence to be followed is given below

Step 1 9Ty 1
tep 1: Calculate =
03(0) 1 + T /600 sec
Step 2: Calculate [ (Ta) = ﬁ;}-
1 +(o,/

Step 3: Calculate P(C) = 1 - I exp(-IC/C)

It is assumed that C is known and that ¢./C (T, - 0) = 3 and hence that I (T, - 0) = 0.2.
Note: These formulas should not be used at T, > 3600 sec, since the intermittency, I, would be

calculated to exceed 1.0, which is impossible. Instead, use I = 1.0 and a./C = 10 at
T, > 3600 sec.

I:\1331\algonthum 3
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