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HOW TO DEFORM A GRASSMANNIAN INTO A POLYTOPE

The passage from a projective scheme to its initial scheme with respect to a set of
weights is the main operation of Grobner bases theory. When the weights are sufficiently
generic then the initial ideal is generated by monomials. This note deals with a situation
where the initial ideal is not monomial but toric, that is, prime and generated by binomials.

1. From sagbi bases to Grobner bases. Let R be a finitely-generated graded sub-
algebra. of the polynomial ring k[z),..., ], and let < be a monomial order. The initial
algebra in_(R) is the k-vector space spanned by {in4(f) : f € R}. If we assume that
in <(R) is finitely generated as a k-algebra, then there exists a subset § = {f1, f2,..., fm}
oi R such that

ing(R) = kfinc(fo)inadfo), . in<(fm)] (1)

This condition implies R = k[f1, f2,.- ., fm]. Following Robbiano-Sweedler [RS}, we call
S is a sagbi-basis of the subalgebra R. One of the most important open problems of the
subject is to find conditions which guarantee that in(R) is finitely generated. See RS,
Examples 1.2 and 4.11] for simple examples where in_((R) is not finitely generated.

We now define two ideals in the polynomial ring S = k[y1,¥y2,...,¥m]. Let ¢ denote
the surjective k-algebra homomorphism from § onto R defined by ¢(y,) = fi, and let I
denote the kernel of ¢. Similarly, we let ¢' denote the map from S onto in_((R) defined by
¢(y:) = in<(fi), and we write I' for the kernel of ¢. The ideal I' is the toric ideal associated
with the non-negative integer m X n-matrix = whose i-th column is the exponent vector of
the monomial in(f;). We remark that both ideals I and I' are homogeneous if we define
the degree of y; to be the total degree of f;.

Proposition. The toric ideal I' is an initial ideal of I. More precisely, if w € R" is any
weight vector representing the monomial order < on k[z1,...,2,], then ingy(I) = I'.

Proof. If p lies in the ideal I then p(fi,..., f.) is the zero polynomial in k[zy,...,z,]. In
particular, terms of highest order cancel. This implies

inﬂ'(w)(p)(?:nw(fl )a s ainw(fm)) = 0,

and therefore ing(,)(p) € I'. Thus the inclusion in.)(I) € I' holds even without the
sagbi property. For the converse, let ¢ be any binomial in I'. We consider the polynomial
q(fi,..., fm)in k[z1,...,2,]. By the sagbi property of fi,..., fm, there exists r € § such
g(fi,.. s fm) =7(f1,.. ., fm) and ¢ = tny)(g — r). This proves ¢ € ing,)(I) as desired.

Corollaries.

(1) Every reduced Grébner basis of the I' lifts to a reduced Grébner basis of 1.

(2) Every regular triangulation of the cone 7(R% ) is an initial complex of the ideal I'.
(3} The state polytope of I' is a face of the state polytope of I
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(4) The secondary polytope of #(R%} ) is a face of the Chow polytope of I.

Since the matrix = has non-negative entries, the cone m(R%) is pointed. It can be
identified with a polytope P of one dimension less. Statements (2) and (4) remain valid for
the polytope P. The projective toric variety defined by I’ is identified with the polytope P
itself; this is done in a precise geometric way using the moment map (see [Ful, §4.2]). The
flat deformation from I to I' is therefore a deformation from the projective scheme Proj(R)
into the polytope P. We shall specialize to the case where Proj(R) is the Grassmannian
Ga4(k™) and P is the order polytope of a product of two chains [n — d} x [d].

2. The order polytope and its toric variety. The constructions and results
summarized in the next two paragraphs are well-known in algebraic combinatorics. Most
of them are due to R. Stanley and T. Hibi.

Let P be a finite poset and £ = J(P) the distributive lattice of order ideals in P. The
order polytope P of P is the subset of R” consisting of all order-preserving maps from P
to the interval {0, 1]. The vertices of P are the 0-1-incidence vectors of the order ideals in
P; so there is a natural bijection between the vertices of P and elements of L.

We introduce variables y;,. ..,y for the elements of L. Let I' be the binomial ideal
in S =kly1,...,ym| generated by all relations y; - y; — (yi Ay;) (y: Vy;). (Here “v” and
“A” denote the join and meet of the distributive lattice £.) The ideal I’ is a homogeneous
prime ideal. It is the toric ideal associated with the order polytope. By a well-known result
about algebras with straightening laws, the non-zero relations y; - y; — (i Ay;) - (yi Vy;)
for y; and y; are the reduced Grobner basis with respect to the reverse lexicographic order
induced by any linear extension of £. The regular triangulation of P associated with this
Grobner basis equals the simplicial complex A(L) of chains in £. The complex A(L) is -
shellable and every shelling of A(L) gives a Cohen-Macaulay basis for §/I'. The generating
function for the number of such chains is the Hilbert function of I', or equivalently, the
Hilbert polynomial of I' is the Erhart polynomial of the order polytope P.

We now consider the special case P = [n — d] x [d], the product of an (n — d)-chain
and a d-chain. Let P(n,d) denote the order polytope of [n—d} x [d]. The distributive
lattice J([n — d] x [d]) is isomorphic to the natural poset A(n,d) of d-element subsets of
{1,2,...,n}. (This is sometimes called Young’s lattice.) The isomorphism taking d-sets
{ty < ... < 14} € A(n,d) to order ideals in the poset [n — d} x [d] is defined as follows.
We introduce a linear map 3 from R"*? to RI*~4xl4 If 4 = (a;;) is any n x d-matrix,
then ¥(A) is the (n — d) x d-matrix whose (r, s)-entry equals f:}rﬂ ais. Each d-set
{1 < - <14} in A(n.d) is coded by the matrix E;, ,, . ;, with entries 1 in coordinates
(21,1),(22,2),...,{24. d) and zeros elsewhere. Then (E;, i, _ .,)is the 0-1-inzidence vector
of an order ideal in [n — d] x [d], hence it encodes an element of the distributive lattice
J([n — d] x [d]. This construction proves in particular the following statement.

Proposition. The order polytope P(n,d) of the poset [n — d]| x [d} is affinely isomorphic
to the convex hull of the (%) matrices E;_, ., in R**<,
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We shall identify P(n, d) with its affine image in R"*4. We write A,_; for the regular
(n—1)-simplex that is the convex hull of the coordinate points in R™. The followinz lemma
is proved easily by identifying matrix space R"*4 with the d-fold product of R™ with itself.
By a subvolytope of a polytope we mean the convex hull of a subset of the its vertices.

Lemma.

(1) The order polytope P(n,d) is a subpolytope of the product of simplices (An—-1)%.

(2) If (A1,...,Aq4) is a partition of n, then the product of simplices Ay, _1 X +-- x Ax,_1
is a subpolytope of the order polytope P(n,d).

Corollary. The order polytope P(n,2) is totally unimodular for all n. The order polytope
P(6,3) contains the regular 3-cube as subpolytope and hence is not totally unimodular.

3. The Grassmannian. Let R denote the k-algebra generated by the d x d-minors
of an n x d-matrix (z;;) of indeterminates. Thus Proj(R) is the Grassmannian of d-
dimensional linear subspaces in k™. We introduce a variable [iy,...,i4] for each maximal
minor. The polynomial ring in these (:) variables is denoted § and called the bracket ring
(cf. {AIT,83.1]). The kernel I of the natural map from S onto R is the Grassmann-Plicker
tdeal. By Theorem 3.2.9 of [AIT], the d x d-minors are a sagbi basis for the subalgebra R
with respect to the “diagonal term order” on k[z;;].

Weights defining the diagonal term order are given, for instance, by the Vandermonde
matrix (w;;) = (). For the bracket variable [i;,12,...,i4) this induces the weight i; +
122 + .-+ +i4%. We call these the Vandermond. weights on the bracket ring. (They are
denoted m(w) in our general discussion in §1). From our discussion in §1 and §2 we derive
the following result.

Theorem. The initial ideal of the Grassmann-Pliicker ideal I with respect to the
Vandermonde weights equals the toric ideal of the order polytope P(n,d).

Corollaries.

(0) There exists a flat deformation taking the Grassmannian Gq(k™) into (the projective
toric variety associated with) the order polytope P(n,d).

(1) Every reduced Grébner basis of the toric ideal of P(n,d) lifts to a reduced Grébner
basis of the Grassmann-Pliicker ideal I

(2) Every regular triangulation of P(n,d) is an initial complex of the Grassmannian.

(3) The state polytope of P(n,d) is a face of the state polytope of the Grassmannian.

(4) The secondary polytope of P(n,d) is a face of the Chow polytope of the Grassmannian.

The classical straightening algorithms for the Grassmannians are all special cases of
the Groébner bases in (1). However, not all Grobner bases arise in this fashion. To see
this, let as look more closely at the case of rank d = 2. The polytope P(n,2) is totally
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unimodular; it is a subpolytope of A, .1 x A, _;. This implies the following two properties
of the toric ideal I' associated with P(n,2):
(a) The following set of circuits 1s a universal Grébner basis:

(t1g1]{E2g2]) - - - liege) — {2 du](tag2] - - - [Fugels (11,72 < j1,%2,%3 < J2,.- -ty < Jy)-
(b) All initial ideals of I' are square-free.

For d = 2 and n = 6 the Grassmannian has initial ideals which are not square-free.
Example: the weight vector w = (9, 56, 82, 40, 86, 95, 55, 85, 88, 88, 39,46, 10, 26, 62) for the
(%) = 15 brackets [i7] in the usual lexicographic order, we get an initial ideal whose minimal
generators include [15][23]?[46]. By statement (b), this flat deformation of G2(k%) does
not factor through the deformation to the order polytope P(6,2) given in the Theorem.

We also remark that statement (b) does not hold for d > 3; for instance, P(6,3)
contains a regular 3-cube as subpolytope, hence it has a regular triangulation one of whose
simplices does not have unit volume, hence it has an initial ideal that is not square-free.

We close with an open problem: What is the maximum degree F(n,d) appearing in
any reduced Grébner basis for the Grassmannian Gg¢(k") 7 Part (2) of the Lemma in §2
implies exponential lower bounds for F(n,d) as d and n tend to infinity. For d = 2 fixed
we get more precise information from statement (a) above. The maximum degree of any
circuit is n — 2, and therefore we recover the following inequality due to Brian Taylor:

F(n,2) > n-2

For an explicit proof of this inequality we may consider the degree n — 2 circuit
[13](24][35] - - [n — 2, ] — [23][34][45] -- - [1,m]. (%)

To construct an initial ideal of the Grassmannian which has one of the monomials in ()
as minimal generator, simply start with the Vandermonde weights and break ties using
an elimination order for the variables appearing in (x). In light of the general setting
developed here, it would be very interesting to know whether F(n,2) =n — 2.
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