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Abstract

Blowup algebras realize as rings of tunctions the process of blowing—up a variety along a subvariety.
These lectures will focus on Rees rings of ideals, the most ubiguitous of those algebras. They
will look at the numerical invadants, special divisors and attached algebras whose interplay assists
in understanding the Cohen-Macaulay property. Emphasis will be placed on determining these
invariants and propertics from a description of the ring and ideals by generators and relations. Open
problems and hasic techniques will be stressed at the expense of individual results.
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1 Introduction

The class of rings, called blowup algebras, appear in many constructions in Commutative Algebra
and Algebraic Geometry. They represent fibrations of a variety with fibers which are often affine
spaces; a polynomial ring R[Ty, ..., T,,] is the notorious example of such algebras. Its uses include
counterexamples to Hilbert's 14" Problem, the determination of the minimal number of equations
needed to define algebraic varieties, the computation of some invariants of Lie groups, and several
others. An impetus for their systematic study has been the long list of beautiful Cohen-Macaulay
algebras produced by the various processes. Finally, they provide a testing ground for several com-
1 atational methods in Commutative Algebra.

Filtrations and Rees algebras

A filtration of aring R is a family F of subgroups F; of R indexcd by some set §. The most useful
kinds are indexed by an ordered monoid S, are multiplicative,

F-F; CFyy,i,j¢ 8,

and are either increasing or decreasing, that F; © Fj if 1 < 7 or conversely.
The Rees algebra of F is the graded ring

R(Fy:=F,
icS
with natural addition and multiplication. 1f the filtration is decreasing, there is another algebra
attached to it, the associated graded ring
gr;(R) = @ E/F-ii'
€S

with Fo; = |J;; Fj. If the filtration is increasing, the associated graded ring is defined similarly
by changing the sign of z.

T-adic filtrations

The algebras we will study arise from special filtrations of a commutative ring. multiplicative
decreasing M-filtrations F {R,,, n € N} of R where each R,, is an ideal of R.

Rtn ' Rn C R1r1.+n-
Its Rees algebra can be coded as a subring of the polynomial ring

R(F)= ) R.t" C R[t].

e M



In addition to the associated graded ring as above, we also have the extended Rees algebra

R(F)= R(F)t™" 1= Rut™ C Rt,t7].

nea

These representations are useful when computing Krull dimensions. Very important is the iso-
morphism

(P = grp(R) = @) B/ R

n=0

It provides 4 mechanism to pass properties from gre(R) to R itsell (but we leave this statement
purposely obscure for the reader to puzzie it out).

A major example is the [-adic filtration of an ideat I: R, = I, n > 0. Its Rees algebra,
which will be denoted by R[It] or B(I), has its significance centered on the fact that it provides
an algebraic realization for the classical notion of blowing—up a varicty along a subvariety, and
plays an important role in the birational study of algebraic vareties, particularly in the study of
desingulanization.

Symmetric algebras

The ancestors of these rings, symmetric algebras, have several other interesting descendants. Given
1commutative ring R and an R—module E, e symmetric algebra of E is an R—algebra S( E) which
together with a R-module homomorphism

7. E - S(E)
solves the following universal problem. For a commutative R-algebra B and any B—module homo-

morphism ¢ : E — B, there exists a unique R—algebra homomorphism € : S{(E)} — B that makes
the diagram

E ¥ B
] J®
S(E)

commutative. Thus, if F is a free module, S{ E) is a potynomial ring R[Ty, ..., T,], one variable
fer each element in a given basis of E. More generally, when £ is given by the presentation

™ __"‘L} R — E (), ¢ = (a'ij)u

its symmetric algebra is the quotient of the polynomial ring R[T;, - - -, T,,] by the ideal J(E) gen-
crated by the 1-forms

fj:ale3+"‘+aﬂjT7l*j: Loy



Conversely, any quotient ring of a polynomial ring R[TY, ..., T,]/J, with J generated by 1-forms
inthe T}’s, is the symmetric algebra of a module. Like the classical blowup, the morphism

Spec(S(E)) — Spec(R)

is a fibration of Spec( R) by a family of hyperplanes. The case of a vector bundle, when E is a
projective module, already warrants interest.

The other algebras arc derived from S( E) by effecting modifications on its components, some
rather mild but others brutal. To show how this comes about, consider the case of ideals. For an
‘deal / C R, there is a canonical surjection

a : S(I) - R(I).

If, further, R is an integral domain, the kemel of a is just the R-torsion submodule of S(I). This
suggests the definition of the Rees algebra (B( E) of an R-module as S(E)/T, with T the (prime)
ideal of the R—torsion elements of S(E).

Another filtration is that associated to the symbolic powers of the ideal 1. If T is a prime ideal,

its nth symbolic power is the /-primary component of I™. (There is a more general definition if J
is not prime.) lts Rees algebra

Ry(I):= Y 1™,

n>0

the symbolic Rees algebra of 7, which also represents a blowup, inherits more readily the divisorial
properties of R, but has its usefulness limited because it is not always Noetherian. The presence
of Noetherianess in &,(7) is loosely linked to the number of equations necessary to define set—
theoretically the subvariety V'(I) ([12]). In tum, the lack of Noetherianess of certain cases has been
used to construct counterexamples to Hilbert's 14® Problem.

A common thread of the algebras derived from S( E') is that each is obtained by the same process
of taking the ring of global sections of Spec(5(E)} on an appropriate affine open set (see [83] for
details).

Aims

Within the realm of these algebras, let us chart up the territory to be covered here. Let (R, m) be
a Cohen—Macaulay local ring of dimension d, let I = (fi,..., f,,) be an ideal of positive height
and denote by (@ = R[It] and & = gr,(R) its Rees algebra and associated graded ring. The main
theme is the search for Cohen-Macaulay algebras. This provides a certain unity of purpose and a
framework for techniques that may be used in other problem areas.

There are at least three main issues regarding the Cohen-Macaulay properties of the algebras
(& and . First, for which classes of ideals are the conditions achieved? It seems 1o occur in more



varied ways than one seems able to catalog. Another area of interest is the study of the relation

between £ and . Here one has been able to pursue a more focused approach. Finally, there are

rich connections to other problems, such as the theory of Hilbert—-Samuel characteristic functions.
One of our purposes here is Lo examine the rich tableaa on which the retationships between the

Cohen-Macaulayness of (8 and of & are played out. More precisely, we will look at the hierarchy
of conditions,

& is Cohen—Macaulay

4
& is Cohen-Macaulay

4 (1)
Proj & is Cohen—Macaulay

i

Proj (@ is Cohen-Macaulay

looking for instances of equivalence,

From a computational perspective, the path to decide that a Rees algebra &2 is Cohen—Macaulay
hardly ever goes by first checking that property in ¥, Mixing the generators of an ideal and their
relations may ask for gridlock in a computation. Nevertheless the interplay between (£ and &

provides a rich set of guideposts in highlighting the significant numerical invariants of the algebras.
These, in tum, may be addressed by more direct means.

The other main goal (time permitting) is to discuss methods for the construction of Coheni—
Macaulay Rees algebras. This is really an open—ended area which we are just beginning to enter.

We sketch the content of these notes. We begin by introducing in Section 2 a large set of mea-
sures of size or behaviour of ideals and whose dependencies express arithmetical properties of Rees
algebras. Section 3 describes some auxiliary structures useful to look and build ideals of low re-
duction numbers. The fruitful relationship between the Cohen-Macaulayness of & and & is then
examined, first cohomologically by comparing the local cohomelogy of these two algebras mediated
by that of R, and tandem by studying some divisors attached to 8. While the method of divisors
is basically a mirror image of the former, some manipulations are more explicit in the language of
divisors. Some applications to old and new results are then given. Next we introduce the approxima-
tion complexes and d—sequences: they provide for many new ways to build Cohen—Macaulay Rees
algebras. Finally, we discuss how reductions inherit good properties from ideals with rich Koszul
homology and in turn are used to obtain properties of the Rees algebras of the ideals themselves.



A word about the references

The extensive bibliography listed at end, even when not mentioned in the body of the lectures,
is a source for related results and gives an indication of the activities in the area. An additional
listing will be collected from the participants. An effort will be made to collect open problems and
distribute.

These notes were prepared for the Workshop on Commutative Algebra, in May 1994 at the ICTP.
Its preliminary, open character, reflects the need to await the interaction with other rasearchers at the
Workshop before a maore definitive set is written. Corrections in matters of attribution are especially
welcomed.

2 Numerical invariants of a Rees algebra

We begin by recalling various integers associated to the Rees algebra of an ideal. We will seck
to understand what information about the depth of & these numbers contain. At first glance, the
invariants tend to give measures of how far is an ideal from being generated by analytically inde-
pendent elements and reflect nuanced versions of this notion. These are best set in a local ring, so
that throughout we assume (R, m} is a local ring of dimension d. and at places, that the residuc ficld
of R is infinite.

There are two general approaches to describing properties of the Rees algebra ® = R[It] of an
ideal [.

s Through a presentation of the algebra as a quotient of a polynomial
0—=J— R[T,...,Ty] — R - 0, T; — fit,
by looking at the structure of the ideal J.

¢ Through the study of the reductions of the ideal I, a far flung method that imitates Noether
normalization.

These approaches emphasize the structure of the polynomial relations amongst the elements of
a generating set of 1 and tend to mimic one another.

The equations of the Rees algebra

The first approach is greatly focused on the degrees of a generating set for the presentation ideal J
and seeks to obtain those equations from the syzygies of I. The ideal J, which we refer to as the
equations of R{It], is graded

J:JI+JZ+"'=



where J; isthe R-module of linear forms 3~ a; T} suchthat 3 a; f; = 0. J, is the module of syzygies
of the s—products of the f;. The challenge is, from a given presentation of [,

R™ LR — T 0,
to describe J. As a start, we have

Ji=[Ty,..., T, v = (ai;).

The J, arise by elimination from these equations of the “parameters” describing the f; (but how?).
The module Jy generates the ideal of definition of the symmetric algebra § (I} of I, and we have
a canonical surjections

0= (J1) — R[Th,..., T, — S(I) =0,

0—-4 — S{I) — R[It] — 0,

where

.]/(JO:A:Az%»Ag—{-n-.

In particular the degrees of the generators of J are independent of the chosen generators of .
When 4 # 0, some emphasis has been put ' determining the first non -vanishing component o
and on predicting its structure ([77], [67]).

Noteworthy is the meaning of the condition 4 = nilpotent: Let R be a local ring, of maximal
ideal m. The elements ay, ..., a,, € R are said to be analytically independent if any homogeneous
polynomial f(X,,..., X,) for which f(a),...,a,) = O has all of its coefficients in m. If I =
(@i, ..., a,). this means that the ring R[It] ® (R/m) is a polynomial ring in n indeterminates over
R/m.

Definition 2.1 The ideal [ is said to be of linear type it J = (J1). More generally, [ is said to be
of relation type r it J can be generated by forms of degree < ».

If I is of linear type, then [ is locally generated by analytically independent elements, in partic-
ular (1) < dim R, for any prime ideal p that contains I. There is no general theory describing the
ideals of hinear type. although many well circumscribed classes are known. If [ is not of lincar type,
there is a beginning of a theory for ideals of quadratic type and for certain families of ideals whose
equations arc obtained from elimination and are concentrated in degrees 1 and another degree.



Example 2.2 If the ideal [ is generated by a regular sequence fi, ..., f,. the equations of (£ =
R[It] are nice:

fl fn

In other words, J is generated by the Koszul relations of the f;'s. Knowing this description of &
leads immediately to its canonical module,

® ~ R[Tl,...,T,L]/Iz( o T )

wp = wprt(1, t)g—ZOB,

and, when the need arises, gives the means to test normality and other properties.

Reduction of an ideal

The other method of studying R[It] is less straightforward but considerably more general. Let us
recall the notion on which it is based on.

Definition 2.3 Anideal J C I is a reduction of Iif JI” = I"*! for some integer r; the least such
integer, r7{I), is the reduction number of I with respect 1o J.

Phrased otherwise, J is a reduction of T means that
RIJt] — R[It]

is a finite morphism of graded algebras, and r7( 7} is the infimum of the top degree of any homoge-
neous set of generators of R[It] as a module over R[Jt]. The reduction number of I, rn(I}, is the
infimum of all »;{I). (If there is no confusion, it is denoted »({)).

There are several equivalent ways to describe the notion of a reduction. We recall one of these.
If L isan ideal of R, its integral closure L consists of the elements z € R that satisty an equation

1

M+ a1 2+ -+ a, =0, with a; € L.

It tumns out then that J is a reduction of I precisely when I < J. Yet another way to express this is
L=Rn(L-V,
where V' runs over all the valuation rings of R (R 18 assumed a domain).

Example 2.4 The simplest example of a reduction is probably the case J = (2,9} ¢ I =
(z*,y*, zy). when I* = JI. A significant process to produce ideals and some of its proper re-
ductions is the following (see [66]). Let f € R, where R is cither a ring of polynomials or a power
scries ring in the indelerminates z, . . ., z,, over a field k of characteristic zero. Let

of  of

T= (g )




Then J is a reduction of I = (J, f} (with some provisos, such as if f is a power series then it should
not be a unit).

Analytic spread and reduction number

The ideal I and any of its reductions J share several properties, among which they have the same
radical. One of the advantages of J is that it may have a great deal tewer generators. We indicate
how this may come about, with the notion of minimal reduction.

Definition 2.5 Let (R, m) be a Noctherian focal ring and let I be an ideal. The special fiber of the
Rees algebra R[[1t] is the ring

F(I)= R[It]®g R/m = D I'/mI".
221

Its Krull dimension is called the analytic spread of I, and is denoted ¢(I). If I = m, F(m) is the
Zariski's tangent cone of R. F(I) s also called the fiber cone of 1.

Suppose the residue field of B, k = R/m, is infinite. We may then pick a Noether normalization
of F(I),
A = klz1,..., 2z — F(I),
where £ = £(I), and the z; can be chosen in degree 1. Let further by, ..., b, be a minimal set of
homogeneous module generators of F(I) over the algebra A:

F(I)= 3 Ab;, deg(bi) = ;.

[<i<s

Proposition 2.6 Let ay, ..., a, be elements of I that are lifts of z(, ..., zs. Then J = (ay,...,a)
is a reduction of I and

ry(I) = sup{deg{b;) | < i< s}.

Proof. Both assertions follow easily by lifting the equality F{I) = ¥, Ab; to R[It] and using the
Nakayama Lemma. a

Proposition 2.7 Let R be a local ring and let I be an ideal. The following inequalities hold
height I < £(I) < dim R,

Proof. The second inequality arises from the formuta for the Krull dimension of R[It] ([79]). The
other assertion follows since any minimal prime of J is also minimal over I, but the former have,
by Krull principal ideal theorem, codimension at most £. O



Example 2.8 Suppose [ is an ideal of k[2,,...,«,] generated by forms f,..., f,, of the same
degree. Withm = (zy,...,z,), we have

R[It] = k[fit, ..., fmt] @D mR[11],

so that the fiber cone F(I) >~ k[f|,..., fm]. Suppose that each f; is a monomial x¥ (where v; =
(a1, - - ., ayn) is a vector of exponents). In this case, it is easy to see that

(1) = rank [v,...,Vm].

What is still missing are methods to find the reduction numbers of these ideals.

When the manomials f; are guadratic and square—free, Villarreal ([84]) attaches to this set a
graph (and conversely). Their interplay (see [70]} is useful in determining the reduction numbers.
For example, if the attached graph is bipartite then the reduction number of the ideal is less than the
number of indeterminates.

It is a lot more challenging to find the analytic spread of ideals generated by binomials. A
tantalizing question is how toric (e.g. prime) ideals should be dealt with in these matiers. Progress
on this question has already been made in [16].

Question 2.9 There is one case in which it is straightforward to determine the reduction number
of an ideal-when F(I) is a Cohen—Macaulay. The number r{I} can then be read off the Hilbert
function of F(I'), which obviates the need to use Noether normalization. What can be done, if we
only have depth F(I) > dim F(I) — 1?

Exercise 2.10 Let p be a prime ideal of a regular local ring R. Suppose that the ordinary and
symbolic powers of p coincide, that is p{®) = p™ forn > 1. Prove that £(p) < dim R.

Reduction number one

If one wants to use ideals with low reduction as building blocks, it is of interest to catalog them.

Determinantal ideals

Let ¢ the an m x n generic matrix. Its determinantal ideals exhibit some of the best reduction low
numbers one could expect. Here are some distinguished cases:

e Ifm=mn+ 1, then ] = I,(¢) is of linear type.
o Ifm =mn,thenl = I,_;(s) is of lincar type ([42]).

IT ¢ is the generic. symmetric n x n matrix, then I = I, () is of linear type ([46]).

s ifm > n+ 2 then I = I.(¢) has reduction number one.

10



Links of prime ideals

Let us indicate a method that produces plenty of ideals of reduction number 1. Let R be a Cohen-—
Macaulay ring and let p be a prime ideal of codimension g. Let J be generated by a regular sequence
of g elements contained in J and set I = J: p. Consider the following very general settings:

(Ly) R, isnotaregularlocal ring;

(L2) R, isa regular local ring of dimension at least 2 and two elements in the sequence z lic in the
symbolic square p(?),

We then have (see [11], [10]):

Theorem 2.11 Let B be a Cohen—-Macaulay ring, p a prime ideal of codimension g, and let 7 =
(2t,-..,2g) C pbearegular sequence. Set J = (z)and I = J:p. Suppose that R, is a Gorenstein
ring. Then I is an equimultiple ideal with reduction number one, more precisely,

I* = JI,

if either condition Ly or Ly holds,

More actors

There are several measures of ‘irregularity’ for ideals in local rings. The following notions will play
a role in the sequel.

s The deviation of I is the non-negative integer v(I) — height 1.
¢ Huckaba and Huneke [35] have defined the analytic deviation of I as ad(I) = £(I) —height I.
e The difference between these two numbers, v(I) — £(I} is the second deviation of I.

s The ideals of analytic deviation zero are called equimultiple (sce [25] for a wealth of infor-
mation about these ideals).

Among all measures of I defined, none play a role more central than that of the reduction number
rn(1) indeciding when [ is explosively Cohen—Macaulay. It should come as no surprise therefore
that this integer is the hardes one 1o determine. That we know, there are no explicit process to
compute rn(J) unless one resorts to ‘very’ generic methods a la Bertini's.

A pressing question here is, if rn(7) is so significant, how do the other invariants of I relate to it?
There are some intriguing relationships that however non-general occur repeatedly, For example, a
basic guess for rn(f) is

r(I) < £(I) — height T + 1,

11



a value often called the expected reduction number. (Attend Bemd Ulrich lectures!)

Most other relationships among the actors depend on special circumstances. Here is a special

one ([82]):

Theorem 2.12 Let R be a Gorenstein local ring and let I be a Cohen—Macaulay ideal of codimen-
sion g that is of linear type in codimension < g + 1. Then {(I) > ¢ + 2.

Problem 2.13 Devise an algorithmic approach to compute the integral closure of an ideal of a poly-
nomial ring. (Prizes are given!)

3 Mixing up

R be a local ring, and let  be an ideal with a reduction J. To be able to use the known properties of
the Rees algebra of J as a tool to obtain properties of the Rees algebra of 1. it is necessary to build
structures in which the two algebras intermingle.

We are going to mention only two such structures, one introduced in [82] and another of an older
vintage [73].

The Sally module

Consider the exact sequence of finitely generated R[Jt]-modules:
o0

0— I R[Jt] — I-RIt] — ST} = @ "' /1" — 0. )

n=0

Definition 3.1 The Saily module of I with respect to J is §;(I) viewed as an R[Jt|-module.

A motivation for this definition is the work of Sally, particularly in [62], [63], [64], and [65] in
the case of m—primary ideals.

To be useful, this sequence requires information about I - R[Jt]—which is readily available in
many cases—and finer properties of 5;{I). Its main feature is the relationship it bears with the ning
R[Jt], a ring that often is simpler to study than R{I¢], such as in the case of equimultiple ideals.

Let us begin by pointing out a simple but critical property of S ;(1}):
Proposition 3.2 Let (R, m) be a Cohen—Macaulay local ring of dimension d, let I be am—primary

ideal and let J be a minimal reduction of I. If S (1) # O its associated prime ideals have codimen-
sion 1, in particular its Krull dimension as an R[Jtl-module is d.

I2



Proof. We first argue that I- R[Jt] is a maximal Cohen—-Macaulay R[Jt]-module. For this it suffices
to consider the exact sequence

0 — I-R{Jt] — R[Jt] — R[Jt] ®r (R/I) — O, 3)

and observe that the module on the right is a polynomial ring in d variables over 2/1, and therefore
Cohen-Macaulay of dimension d. Since R{Jt] is a Cohen-Macaulay ring, 7 - R[Jf] has depth d +- 1.
We may assume d > 1, and that 57(f) # 0. Let P C A = R[Jt] be an associated prime of
Sy(I);itisclearthatm C P. [f mA # P, P has grade at least two.
Consider the homology sequence of the functor Hom4( A/ P, -) on the sequence (3.1): we get

0 — Homa(A/P, S;(I)) — Exty(A/P, I R[Jt]).

Note that I - R[Jt] is a maximal Cohen—Macaulay module, hence the Ext module must vanish since
P contains a regular sequence of two elements on it a

Hilbert functions

We will indicate the usefulness of the setting of reduction modules to prove several known inequal-
ities on the coetficients of the Hilbert polynomial of a primary ideal.

Let (R, m) be a Noetherian local ring of Krull dimension d and I an m—primary ideal. The
Hilbert function of I is the assignment

HF :n~» MR/T?).

For n >> O (but often not much greater than zero!) H F(n) is equal o a polynomial H(n) of
degree d, the Hilbert—Samuel polynomial of 1.

To study either of these functions, without loss of generality, it is convenient to assume that the
residue field of R is infinite. Here we limit ourselves mostly to Hilbert polynomials leaving aside
the rich area of irregularities, to wit the detailed comparison between the two functions.

We shall further assume that R is a Cohen—Macaulay ring. In such cases, if I is generated by a
system of parameters the functions are given simply by

HF(n) = H(n) = A(R/T)- (’Hj_ 1), V.

It suggests that the Hilbert function of an arbitrary ideal I be approached through the Hilbert function
of one of its minimal reductions J.
We look at two exact sequences as the vehicle for this comparison:

OﬂI‘]nml/Jn ——iIn/J”-—HIn/IJ"-E 0

13



and
0— 1gvtygn — go-tygn — gr-typgn-t oo,

The function A(J™/J™) is our center of interest since it equals A(R/J™) — A(R/I™), the first
term being very well behaved. Using the other sequence we have the following expression for the
Hilbert function H F(n) of I':

HF(n) AR/T™Y = AT YTy — a1y
= AR/TY) = ATV I 4 ALY - (I 1T

= MR/ ALYy - agry 1,

the first 2 terms of which can be collected since the ring @(J"~' /IJ"~!) is a polynomial ring in d
variahles with coefficients in B/I. We obtain

HF(n) = AR/J)- (” * j - 2) + A(R/T)- (”‘;‘fl 2) — MY 1Y,

This expression turns the focus on A(J™/IJ"*~!). We note that both I™/J" and I"/IJ" are
components of modules over the Rees algebra R[Jt]: the first comes from the quotient R[It]/ R[.Jt],
the other being a component of the Sally module 5;(J). The latter has many advantages over the
former, a key one being that it vanishes in cases of considerable interest.

Sometimes it will be convenient to write 4 (-} for the Hilbert tunction of I; the reader is also
wamed about shifts in the arguments arising from the grading of the modules. For example, the
degree 1 component of §;(I)is I*/1J.

Proposition 3.3 Let (R, m) be a Cohen—Macaulay local ring of dimension d, with infinite residue
field, and let I be an wm—primary ideal. Denote by Hi(n) = M R/I™) the Hilbert function of I, and

let
d-1 d-2
eo(”d ) —el(”;_ 1 ) ot (=) e (’l‘) + (= 1)eq @

be its normalized Hitbert polynomial. Suppose J is a minimal reduction of I and let 5 = S{I) be
the corresponding Sally module. Then forn > 0

Hi(n) = o (" rer ‘) L (AR/T) - e0) (" . 2) A(Sas). (5)

Proof. The proof is a straightforward calculation that takes into account the cquality ey = AR/ J).
4

14



Corollary 3.4 If S;(I) # O, the function A(S,,} has the growth of a polynomial of degree d — 1.
Proof. By Proposition 3.2, if $;(I) # 0 then its Krull dimension is d. 0

The following formulas can be used to establish several vanishing results on the coefficients of
Hilbert functions.

Theorem 3.5 Let 50,51, .., 8q4_1 be the coefficients of the Hilbert polynomial of Sy(I). Then

S0 €] —80+/\(R/I)

8¢ eit1, for ¢ 2> 1.

Il

Corollary 3.6 The following hold:
(a) AM(R/I)> eo — €1 ([5T]).
(b) If equality above holds then S;(I) = 0 ([43, Theorem 2.1}, {59]).

Proof. (a) This is clear since €1 will be obtained by adding to eq — A(R/I) the contribution from
the leading term in the Hilbert polynomial of Sy(I).

{b) For equality to hold there must be no contribution from S (), which means that $;(1)is a
modute of Krull dimension < d — 1. From Proposition 3.2 this implies S;(I) = 0. a

Remark 3.7 Another result that can be denved from the formulas above is Narita’s inequality
([55D: ez > 0. This results from an interpretation of ez (1) as so( L) for some appropriate L.

Some structure

Here is an example of the use the Sally modules (see [60]; for other approaches (o this kind of
problem, see [241]):

Proposition 3.8 Ler (R, m) be a Cohen—-Macaulay of dimension d and let I be an m—primary with
a minimal reduction J such that I® = JI*. If the trivial submodule of I*/JI is irreducible, then
depthd > d — 1.

The Valabrega-Valla module

Consider the exact sequence of finitely generated R|Jt]-modules:

0 J - R[It] — J - R} - R{It] — VV;(I) = éu nIYy I o,

n=0



Definition 3.9 The Valabrega—Valla module of I with respect to J is VV;(I) viewed it an R-
module.

V'V;(I) is actually a module over R[Jt]-module, but since it vanishes in high degrees it is

more convenient to view an an R—module. Its components appear in some filtrations of Sy(I). Its
significance lies in the following Cohen—Macaulay criterion of [78]:

Theorem 3.10 Let (R, m) be a Cohen—Macaulay local ring and let I be an m-primary ideal with
infinite residue field. Suppose J is a minimal reduction of I. Then gri(R) is Cohen-Macaulay if
and only if VV;(I) = 0.

This is, in fact, a special case of a very general assertion ([78, Theorem 2.3}):

Theorem 3.11 Ler R bea Noetherianring, I anideal of R, andletzy, . . .,z bea regular sequence

in R. Then the leading forms of the z; form a regular sequence in gr;(R) if and only if for i =
I,...,nandalim > 1,

(wl, . ..,.T,,') nim= ZI’“—dfa'.j,
j=1
where d; is the least integer s such thatz; € I* \ I°t1.

Cascading reductions
The simplest reduction J C I to examine is when [ 2 = JI. We then have that
I-R[Jt] =1I-R[It],
and
0—I-R[Jt] — R[Jt] — gr;{R)Q R/T - 0. (6)

If J is a regular sequence, and [ is a Cohen-Macaulay ideal, it foiiows that I - R[[t] is a maximal
Cohen-Macaulay. Taken into the sequences (14) and (15) it leads to the fact that gr ( R) is Cohen-
Macaulay.

When the reduction r (1) is 2, the structure of 57(f) has to be taken into consideration (sce
[60] for several cases). Let us try to bridge these reductions through simpler ones ([51]).

Let { R, m) be a Cohen—Macaulay local ring of dimension d, let I be an m—primary ideal, let J be
a minimal reduction and suppose r (1) = 2. Let us assume that the equality I’ = JI? is achieved
in two steps as follows; There exist J < L < I with I* = LT and L* = JL. These conditions
mean that the associated Sally modules S7(L} and Sp(I) vanish so that we have

L - R[Jt] L - R{Lt), N
1-R[Lt] = I-R[IH. (8)
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The exact sequence (6), when applied to the pair (J, L) implies that L - R[Lt] is a maximal
Cohen-Macaulay. It would be interesting to have a similar assertion for I - R[It], but to use (6) we
would need to have that gr; (R) ® R/I is Cohen-Macaulay.

Consider the commutative diagram of exact sequences

0 — R[Jﬂ —_ R[Lt} —_ C - 0

| | |

0 — L.R[Jt] — L-R[Lt] — S§,;{(L}) — 0.
From the snake lemma there is an acyclic complex
0— Ks —gr,(R)® R/L — gr;(R) — K¢ — 0, ©)
where Kg and K¢ are defined through the exact sequence
0= Kg—+ 85;{L)— C — Kg -0 (10)
of natura! inclusions.

Proposition 3.12 If r;{L} = 1 there are exact sequences of Cohen-Macaulay modules of dimen-
siond

0—gr;(R)Y® R/L — gr (R) ~— C - 0, (11)
and
0—-C{+1) — gr;(R) — gr,(R)® R/L - 0. (12)
Proof. Left as exercise.

Since we interested in gry (R)® R/, the place to start is with sequence (11): we need to reduce
it modulo R/I. Tensoring (12) instead with R/I over R/J, we have the exact sequence

0 — Tor}’'(gr,(R)® R/L,R/T) — C @ R/I(+1) —
—gr{R)OR/IT~gr,(RY® R/L® R/T -0,

from which we have

CeR/I

12

Tor?'’(gr/(R) ® R/L, R/I)(-1)
gr,(R) ® Tort ™ (R/L, R/TY(=1).

12

We thus have



Proposition 3.13 C ® R/! is a Cohen-Macaulay module of dimension d.
One way to prove that gr; (R) @ R/ is Cohen—Macaulay is by showing that
O—-gr{R)®R/I — gry(R)QR/I — CO®R/I 0 (13)
is exact, (Tracing the Tor’s carefully one is in condition to use Theorem 3.11.) For example, if
L is a Gorenstein ideal (a situation that [56] often forbids to happen), the sequence (11} splits and
therefore (13) will be exact. What are other more interesting cases?

4 Explosively Cohen—Macaulay ideals

We turmn to one of the most active areas of investigation in the theory of Rees algebras. At the risk
of offending friends and other sensitive listening devices, we propose:

Definition 4.1 Let R be aring and let I be an ideal. We say that [ is explosively Cohen-Macaulay
if its Rees algebra (8 = R[It]is Cohen-Macaulay.

Unlike the ring &, the ring (€ can be Cohen-Macaulay without R itself being Cchen-Macaulay.
This terminology is slightly misleading because (& can also be Cohen-Macaulay when I is far from
sharing this property.

A setting for studying the relationship betw. .n the Cohen—Macaulayness of (€ and gr,( R) are
the following exact sequences (first paired in [38]):

0-1. R{It] — R[It] — ng(R) -0 (14)

0 — It- R[It] — R[It] — R —, (15)
with the naive isomorphism
It- R[It] ~ I - R[I]

playing a pivotal role.
We hegin with the result of Huneke ([38]):

Theorem 4.2 Let B be a Cohen-Macaulay ring and let I be an ideal containing regular elements
such that R[It} is Cohen—-Macaulay. Then gry( R) is Cohen—Macauluy.
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Proof. Since I contains regular elements, dim R[/t] = dim R 4+ 1. We may assume that R is a local
ring. To show that the depth of gr;{ R) (relative to its irrelevant maximal ideal} is at least dim K,
we make use of the two exact sequences {14) and (I5), the second of which, in this case, says that
It - R[It] is a maximal Cohen-Macaulay module. Since it is isomorphic to T - R[It], the associated
graded ring will be Cohen—-Macaulay. a

The following elementary observation is useful here. About terminology: For a local ring the
punctured spectrum has the usual meaning, the set of non-maximal prime ideals. For a graded
algebra we mean the set of homogeneous, non-maximal prime ideals.

Proposition 4.3 Let R be a Noetherian local ring and let I be an ideal of positive grade. § uppose (B
is Cohen—Macaulay on the punctured spectrum of R. If gr;( R) is Cohen—-Macaulay on the punctured
spectrum then (® is also Coben—Macaulay on the punctured spectrum. In particular, if gr(R) is
Cohen-Macaulay then Proj (B is Cohen-Macaulay.

Proof. We may assume that I = (fi,..., fo) with cach f; an R-regular element. Set xR =
R[fit, ..., fut]; it suffices to prove that R, is Cohen-Macaulay for each f;. Note that f; is a
regular clement of (B ,; and there is the canonical isomorphism

Rgie/(fi)ge = gr(R) fe-

The assertion follows since the last ring is Cohen—Macaulay. ol

Remark 4.4 These two results establish the implications in the diagram (1), None of the reverse
implications hold without restrictions. The simplest situation to consider is that of alocal ring ( R, m)
with infinite residue field. Let I be a primary ideal and let a € I generate a minimal reduction. It
follows that a, at is a system of parameters of for the irrelevant maximal ideal of R[I%], which is
obviously a regular sequence only if I = (a). To find examples, it suffices to consider the irrelevant
ideal T = A, of a |1-dimensionat graded ring A, so that gr;(A) = A.

Cohomological criteria

The relationship between the Cohen-Macaulayness of R[It] and gr;( R) was shown by Trung and
Ikeda ([74]) to depend on the degrees of the minimal generators of the canonical module of gr(R).
It provides for a very broad setting in which to ook at (® vis-a-vis b,

a—invariant

Let us recall the notion of the a—invariant of a graded ring introduced by Goto and Watanabe ({201).
We follow the cxposition ot [9].



Definition 4.5 Let
R=Ro+ Ry +---

be a graded ring of Krull dimension d with irrelevant maximal ideal M = (m, R} ). ((Ro,m)is a
local ring.) The integer
o(R) = sup{i| Hiy(R): # 0}, (16)

where Hg;(R) denotes the (graded) d—dimensional local cohomology module of R with respect to
M, is the a—invariant of E. More generally, for any finitely generated graded 2-module F and for
cach integer ¢ > 0, set

a;(M, F)=sup{ j | Hy(F); #0}.

Note that since the module H§,( R) is Artinian, a( R) well defined If wg, is the canonical module
cf R, by local duality, it follows that

a(R) = —inf{il(wr/M wr)#0}. (17

The depth of &

To enhance the comparison between the properties of R[It] and of gr;(R), we give a result of [37]
in a situation where gr;( R) is not Cohen-Macaulay.

Theorem 4.6 Let R be a Noetherian local ring with depth B > d and let [ be an ideal.
If depthgr;(R) < d, thendepth R[It] = depth gr,(R) + I.

Proof. This proof avoids the use of generalized depth employed in [37]. We can compute all
depths with respect to the irrelevant maximal ideal P = (m, ItR[It]) of R[It]. For simplicity put
Q = ItR[It] and Q(+1) = IR[I%].

We are going to determine the depth of R[If] by examining the exact sequences of local coho-

mology modules derived from the sequences (14) and (15). For simplicity of notation we denote
Hj(e) by Hi(e).
Since depth R = d and depth ¥ = r < d, we have

HY(R) = 0,j<d (18)
Hiy) = 0,5<r (19)

The portions of the cohomology sequences that we are interested in are:
HY(R) — HI(Q) — H'(R) — H'(R) (20)
Hi-'(8) — HI(Q(+1)) — HIR) — HI(H). 21
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Taking into these two sequences the conditions in (18) and (19) yield the exact sequences
HY(Q)~ HIR), j<d (22)
0 — HIQ(+1)) — HIR) — H (M), j <r, 23)
from which we claim that H?((R) = 0, for § < ». This will suffice to prove the assertion.

Denote the modules H7(Q) and H?((R) respectively by M; and N;. The sequences (22) and
{23) then give rise to graded isomorphisms (of degree zero)

M;(+1) Nij<r
M; ~ N; j<d
and the monomeorphism
0 — M, (+1) 2 N,. (24)

Since N, = M. (+!) = M, as (ungraded) modules, ¢ is a monomorphism of isomorphic Artinian
modules, and therefore must be an isomorphism. This means that we have isomorphisms of Artinian
graded modules

MJ; ~ Nj o~ Mj(+l), L,

with mappings of degree zero. As the graded components of these modules are zero in all degrees
sufficiently high, the modules must vanish. a

The next result by Trung and Ikeda [74] is central to our understanding of the relationship be-
tween the depth properties of & and J&. lIts proof is a model of clarity.

Theorem 4.7 (Trung-lkeda) Lez (R, m) be a Cohen—-Macaulay of dimension d and let Ibe an ideal
of positive height. The following equivalence holds:

. . G is Cohen-Macaulay and
R is Cohen-Macaulay +— { a(¥) < 0, (25)

Proof. Suppose & is Cohen-Macaulay and o(#) < 0. For j = d, the equations (20) and (21)
become

0 — HYQ) — HYR) — HR)
0 — HYQ(+1)) — HYR) — HYH).
Because these graded modules vanish in high degrees, taken together the sequences imply that

HYQ); = HHR); = 0, fori > 0. With however a() < 0, it follows that H4(R)o = 0 as well.
We arc then in the position to argue as in the previous proof.

21



Conversely, if & is Cohen—-Macaulay then & is Cohen—Macaulay by Theorem 4.2. To show
that a() < 0, consider the exact sequence

0 HYH) — HIYY-R) —— HM*(R) - 0,

and observe that I - (& is Cohen—Macaulay whose a—invariant must be negative (we come back more
fully to this point in Theorem 5.3). O

5 The fundamental divisor of a Rees algebra

Our main purpose is to introduce a divisorial ideal associated to a Rees algebra and sketch out some
of its applications ([51]). It helps to explain old puzzles while at the same time providing quite
dircct proofs of earlier results. The reader will note that it is a mirror image of local cohomology
modules of Rees algebras. Its Noetherian character however permits a control of computation that
is not always possible with Artinian modules. The properties of this divisor seem to be related to
some sheat cohomology results of Grauert—-Riemenschneider ([21]), but we have not worked out
this (if any) similarity.

Let (R, m) be a Cohen-Macaulay local ring of dimension d, with a canonical module w. Let
I=(fi,-..,fa)be anideal of positive height. Fix a presentation of &, B = R[T\, ..., T} — &.

We setwp = w@®p B(—n) as the canonical module of the polynomial ring B. The canonical module
of R is the module

wp = Extz l(m,wg).
In our study, a related module plays an imporiant role:
Definition 5.1 The fundamental divisor of (€ = R{It] is the module
B(I) = w, p = Exty '(I- R, wg).

In other words, S(1) is just the canonical dual of T - B. It is a rank 1 module over (& that has
the condition (57) of Serre and localizes to the canonical module of K (¢}, where K is the total ring
of fractions of R. This means that () can be written as

B(I)= Wit + Wat® + Wat® + .-,

where each W is an R—submodule of K. We fix this representation of (7)) from a given projective
resofution of I - & and the computation of the cohomology.

Remark 5.2 This divisorial ideal carries more information than the canonical module wp- Indeed,
it will be seen below (see (28)) that

wm:W2t+W3t?’+---.
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The next result {see [51]) recasts aspects of the characterization of the Cohen—-Macaulay property
of & in terms other than the vanishing of local cohomology.

Theorem 5.3 (Arithmetical criterion) Let (R, m) be a Cohen—Macaulay local with a canonical
module w and let I be an ideal of positive height. The following equivalence holds:

& is Cohen-Macaulay and

Wi =~ w. (26)

(& is Cohen—Macaulay <= {

Before we give a proof we consider the case of |-dimensional rings, when the assertions are
stronger.

Theorem 5.4 Let (R, m) be a 1-dimensional Cohen-Macaulay local ring with a canonical module
w and let I be a m—-primary ideal. The following equivalence holds:

(€ is Cohen—-Macaulay <= W, = w. 0X))

Proof. We prove that if W, ~ w, then I is a principal ideal. The other assertions have been
established before or will be proved in the full theorem.

We may assume that the residue field of R is infinite, Let (@) be a reduction of I and suppose
I"t1 = qi". We claim that » = 0. To this end, consider R[at] whose canonical module is atw R]at].
Lo

B(I) = Wit + Wat* + -+ - ~ Hompy (] - R[], atwB[at]).
W) is defined by the relations

Wi-I C aw
Wi - I' ¢ dw
Wi-I' ¢ aw.
The descending chain of fractional ideals of R,
awI"C - Cawl,

implies that
W= Adw=aw I

where A is some element in the total ring of fractions of B. This equality means that

w = Homp(I"a™" A" w),
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and therefore that I'a~"A~' = R, since Homp(-,w) is self-dualizing on the fractional ideals of R.
This means that I” is a principal ideal and I will also be principal, as R is a local ring. a

Proof of Theorem 5.3. We consider the long exact sequences of graded B-modules that result from
applying the functor Hompg(-, wp) to the sequences (14) and (15). We have:

0 —— Exty (R, wp) — Bxty '(It- R, wp) — Extp(R,wp) = w (28)

. —— Exty (R, wg) iN Extg(/t-®,wp) — 0, > n.

0 —— Extly (R, wp) — Exty (I - ®,wp) — Extp(¥,wp) = we (29)
S Ex[};(ﬁe,wg) LR Extg(l-®, wg) — 0,1 > n.
In the first of these sequences, in degree 0, we have the injection
0w S w—0=0 (30)

that is fixed and that we are going to exploit repeatedly. Suppose that & is Cohen—Macaulay and
W, ~ w. In this case,  is an injection of modules with the (52} property that is an isomorphism
in codimension 1. Thus @ is an isomorphism. This implies that the mappings ; are (graded)
isomorphisms for all i > n. In the other sequences meanwhile, the mappings 6; are surjections
for all i > n. In view however that Ext(I - ®,wp) ~ Extig(It - ®,p), as ungraded modules,
8; being surjections of isomorphic Noetherian modules must be isomorphisms. This implies that
Exth(I - B,wp) = Exty(It - ®,wp) as graded modules, which is a contradiction since one is
obtained from the other by a non-trivial shift in the grading.

Conversely, if (8 is Cohen-Macaulay, from (14) we have that & is Cohen-Macaulay, and from
Ext}(®,wp)} = 0, we have an isomorphism Wi = w. o

Veronese subrings

A simple application of Theorem 5.3 is to show that a common device, passing from a graded
algebra to one of its Veronese subrings in order to possibly enhance Cohen—Macaulayness, will not
be helpful in the setting of ideals with associated graded rings which are already Cohen—Macaulay.
(Craig Huneke has informed us that J. Lipman has also observed this.)

Let 8 = R[It] be the Rees algebra of an ideal I, letg > 1 be a positive integer and denote

Ry = Y 1t

§20

the qth Veronese subring of &£. Our purpose here is to prove:
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Theorem 5.5 Let R be a Cohen—Macaulay ring, let I be an ideal of positive height such that the
associated graded ring & = gry( R) is Cohen-Macaulay. Then R is Cohen-Macaulay if and only
if any Veronese subring (R is Cohen-Macaulay.

Proof. Most of the assertions and clear, following from the fact that as an g—module, & is finitely

generated and contains (B as a summand. As for the hypotheses, if # is Cohen—Macaulay, the

extended Rees algebra A = R[It,t~!] will also be Cohen—Macaulay, and the ring A/(¢~¢) with it

Since the associated graded ring #¢ of J? is a direct summand of the latter, & is Cohen—Macaulay.
1t will suffice to show that the fundamental divisors of (£ and Ry,

B(I) = Wit+Wat> + ...
BIY) = Lt 4 Lyt + -

¥

relative to the respective algebras, satisfy Wy o~ L,.
Let wy denote the canonical module of By. Let us calculate 8(I) as

By =~ Homoao(I-UB,wg)

q
= @ Homﬁao(t’g].[’ . 030, wo)
s=1

12

q
@ Homwn(I’ 'wo,wn)(s —1).
s=1

The degrees have been kept track of, permitting us to match the components of degree 1, respec-
tively Wi onthe leftand L, onthe right. The remaining assertion will then follow from Theorem 5.3.
a

Symbolic powers

Proposition 5.6 Let (R, m) be a Cohen—Macaulay local ring with a canonical module w, and let T
be an ideal which is generically a complete intersection. Suppose that for each prime idealp O I,
with height(p/I) > 1, £(1,) < height p. Then W\ ~ w.

Proof. We claim that the mapping labeled ¢ above is an isomorphism:
0-W 2 w—C —0.

We must show that ¢ = 0. By induction on the dimension of £, we may assume that C is amodule
of finite length,

I m is a minimal prime of I, this ideal is a complete intersection. Suppose then that T is not
m—primary. By assumption £(7) < height m, so that height méE > 2. We may thus find a, b € m so
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that height (a, 5)R = 2. Since 8(I) is an ( $2)-module over &, a, b must be a regular sequence on
B(I). In particular, a, b is a regular scquence on W, which is clearly impossible if C is a nonzero
module of finite fength. a

The following is an application to the symbolic powers of a prime ideal (see [82] for the Goren-
stein case, and [4] for the general case):

Corollary 5.7 Let R be a Cohen—Macaulay ring and let p be a prime ideal of positive height such
that R, is a regular local ring. Suppose that pU™) = p™ for n > 1. Then R[pt] is Cohen—Macaulay
if and only if gr (R} is Cohen-Macaulay.

Proof. The condition on the equality of the ordinary and symbolic powers of p implies the condition
on the local analytic spread of p. In tumn, this condition is preserved after we localize R at any prime
ideal and complete. m]

For these ideals one can weaken the hypothesis that & be Cohen-Macaulay in a number of ways.
Here is a result from [53}:

Theorem 5.8 Let R be a Gorenstein local ring of dimension d and let T be an unmixed ideal af
codimension g > 1, that is generically a complete intersection and is such that I'") = I for
n > 1. Then (B is Cohen—-Macaulay if and only if & satisfies (S,) for r = [4417.

A first step in the proof consists in the followt..g calculation ([531]):

Proposition 5.9 Let R be a Gorenstein local ring and let I be an unmixed ideal of codimension
g 2 1, that is generically a complete intersection and is such that I'™ = I" forn > 1. Then the
canonical module of ® = R[It] has the expected form, that is wep = (¢(1, t)9-2).

Question 5.10 Which toric prime ideals p have the property that p(®) = p" for n > 17 Particularty
interesting are those of codimension 2 and dimension 4.
Equimultiple ideals

One landmark result in the relationship between € and gr;( R) was discovered by Goto—Shimoda
[19] (later extended in [22]).

Theorem 5.11 (Goto-Shimoda) Ler (R, m) be a Cohen-Macaulay ring of dimension d > | with
infinite residue field, and let I be an equimultiple ideal of codimension g > 2 Then

& is Cohen-Macaulay and

& is Cohen-Mucaulay +— { 1) < g. 3D
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Proof. We may assume that R is a complete local ring, and therefore there is a canonical module
w. Let J be a minimal reduction of I. Since J is generated by a regular sequence, the Rees algebra
(o = R[Jt] is determinantal and its canonical module is (see [8], [33]):

uﬂ:w't(lyt)giz:w-t+---+w-t9_l+Jw.t9+.,,_
We can calculate 8(7) as
B(I) = Homg, (IR, wo) = Wit + Wat* + - -,

where Wi must satisfy the equations

I'W, ¢ w

¢rlw, oc ow
Ig'Wi C Jow

Note that since w has (S2) and height I > 1, W can be identified to a subideal of w and coincides
with w in codimension 1,

Suppose £ is Cohen-Macaulay, so that W; ~ w. But W; C w and both fractionary ideals
are (57) and thus they must coincide since they are equal in codimension 1. From the equation
I9-w C J-w,it follows that I is contained in the annijhilator of w/J - w. But this is the canonical
module of R/J, and therefore 79 C J. Since # is Cohen-Macaulay, by Theorem 3,11 we must
have [9 = J . [9-1,

For the converse, the equaticns give that W = w, so we may apply Theorem 5.3. |

Conjecture 5.12 If ( R, m) is a regular local ring, for any nonzero ideal I the degree | component
of B(T) is always principal.

If I is an m—primary ideal, the conjecture just rephrases a basic form of the theorem of Briangon—
Skoda (see a discussion of this theorem and its role in the Cohen—Macaulayness Rees algebras in

(3], [4]. It would be a far-reaching generalization of one of the main results of [48]:

Theorem 5.13 Let R be a regular local and let I be anideal. Then R — R[It) is Cohen-Macaulay
ifand only if & = ge (R) is Cohen-Macaulay.

Problem 5.14 Let [ be an ideal of the Cohen—Macaulay ring R, and let z be an indeterminate over
R. Study the relationship between 8(I) and S(1, z).
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6 Approximation complexes

We now introduce a family of extensions of Koszul complexes that lead to many classes of ideals
which are explosively Cohen—Macaulay ([28] has an extensive discussion). They are intimately
related—in the same manner that Koszul complexes are related to regular sequences—to the following
property.

Ideals generated by d—sequences

Definition 6.1 Let x = {z,,...,z,} be a sequence of elements in a ring R generating the ideal
I. xis called a d-sequence if (z1,...,z;):2:012, = {2y,..., ;2 fori = 0,...,n~ 1 and
k>d4+ 1.

Its significance was recognized early ([39], [RO]):
Theorem 6.2 Every ideal generated by a d-sequence is of linear type.

The sequences can also be defined with respect to a module E. The natural habital of these
sequences is a family of differential graded modules whose construction we recall (see [28] and

(29).

Construction of the complexes

Consider a double Koszul complex in the following sense. Let F and G be R-modules and suppose
there are two mappings:

F 4 oq
vl
R
The algebra AF' @ 5(G) is a double complex with differentials
d, = O:ATF @ 51(G) — N 'F @ 5:(G),

Blerh-ne®gy= (-1)"Tpe)(et A AEA-Ne) B g,

which is the Koszul complex associated to the mapping ¢ and coefficients in 5(G), while

dy = & AF @ 5(GY — ATF ® Si41(G),

3!(6]/\--~/\e,®g):Z(fl)"*l(q/’\'v-/\é‘,-/\---/\e,)®¢(e;)-g,
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defines the Koszul mapping of 1. It checks easily that
8-3+9-9=0.
This skew-—-commutativity is nice for the following reason. Each differential will then induce on

the cycles of the other a differential graded structure,

The resulting double complex will be denoted by £ = L{, ). Of significance here is the case

where @: F = R™ — R is the mapping associated to a sequence x = {;,...,z,} of elements of
R.

Definition 6.3 The complex £ = L£(x) = L(¢p, identity),
identity .
—_
vl
R
will be called the double Koszul complex of x.

The complex £(3) is the Koszul complex associated to the sequence X in the polynomial ring
S = S{R™) = R[T\,...,Ty). £(&). on the other hand, is also an ordin"ry Koszul complex but
constructed over the sequence T = T, ..., T,. Thus we have a grading

L@ =3 £

by subcomplexes of R—modules,

L= Y AR ®5,(RY),

T+a8=¢

and the £, are exact fort > (. Attaching coefficients from an B—-module E extends the construction
to the complex £(x, E) = E @ AR™ ® S(R™). i we denote by Z, = Z.(x: E) the module of
cycles of K(x; E) and by H, = H.(x; E) its homology, the {(skew—) commutativity of 3 and 9’
yield several new complexes among which we single out:

o Z—omplex: Z, = Z,(x; F)={Z.® 5,0}
o M—complex: M, = M(x; E = {H,® 5,0}
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The properties of these complexes, particularly their acyclicity, are treated in detail in [28] and
[29].

The AM—complex, as well as the Z—complex, are graded complexes over the polynomial ring
S = R[T\,...,T,]. The rthhomogeneous component M, of M, isacomplex of finitely generated
R-modules

O“’Hn®5r—-n“'"""’""‘*ﬂi®sr—lHHU@S,-“’O.

For certain uses however we shall view them as defined over §:

0 H,®S(-n) — + — H1 @ §5(-1) — Ho® § — 0. (32)

One key aspect of these complexes lies on the fact that Ho( M (x; £')) maps onto gri,,( E), the
associated graded module of E with respect to (x), often allowing to predict arithmetical properties
of grixy( £} and of its torsion free version.

The modules we want to apply this construction to are either the ideal I (for Z—complex), orits
conormal module I /I (for the M—complex).

The relationship between d-sequences and the acyclicity of M, is ([28, Theorem 1291}

Theorem 6.4 Ler (R, m) be a local ring with infinite residue field. Let I be an ideal of R. The
following conditions are equivalent:

(a) M(I}isacyclic.

(b) Iis generated by a d—sequence.

Strongly Cohen—Macaulay ideals

To be useful these complexes require that its coefficient modules, say H;, have good depth proper-
ties. We shall define two classes of ideals that meet these requiremenits.

Definition 6.5 Let I be an ideal of the ring R of dimension d. Let K be the Koszul complex on the
seta = {aj,...,a,} of generators of I, and let k be a positive integer. [ has sliding depth condition
S Dy, if the homology modules of K satisfy

depth Hi(K) >d —n+ i+ k, forall 4.

The unspecified sliding depth is the case k = 0. There is a more stringent condition on the depth
of the Koszul homology modules ([40], [41]):

Definition 6.6 I is strongly Cohen—-Macaulay if the Koszul homology modules of T with respect to
one (and then to any) generating set are Cohen—-Macaulay,
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Example 6.7 Let I be the ideal generated by the minors of order 2 of the generic symmetric matrix

Ty E2 X3
Ty Ty T§
r3 T3 Th

I satisties sliding depth but it is not strongly Cohen—-Macaulay.

The broadest class of examples of strongly Cohen—Macaulay ideals arises from a theorem of
Huneke ([40]):

Theorem 6.8 Let R be a Cohen—Macaulay local ring and suppose L is an ideal of grade n. Let
X =21,...,2qandy = y1,...,yn be two regular sequences in L and set I = (x): L andJ =
(¥Y: L. If I has sliding depth then J has also sliding depth.

Corollary 6.9 Let I be a Cohen-Macaulay ideal in the linkage cluss of a complete intersection.
Then I is strongly Cohen—Macaulay.

Corollary 6.10 Let R be a regular local ring and let I be either a Cohen—Macaulay ideal of codi-
mension two or @ Gorenstein ideal of codimension three. Then I is strongly Cohen—-Macaulay.

Sumumary of results

Before we collect several results on these complexes, we recall a condition on the Fitting ideals of
a module.

Definition 6.11 Let ¢ be a matrix with entries in R, defining the R—module E. For an integer &, ¢
(or F) satisfies the condition Fy, it:

height I;(p) > rank(g) —t + 1 + k, 1 <t < rank{p).

Remark 6.12 If E is an idea!, F; is the condition G, of |5]. There are constraints as to which
F condition a module may support; for instance, for an ideal the condition F; would contradict
Krull’s principal ideal theorem. More discriminating is the condition G, of [5] requiring F; but
only in codimension at most s — L.

The following statement encapsulates some of the most important aspects of these complexes.
We first record

Theorem 6.13 Let R be a local ring with infinite residue field, and let E be a finitely generated
R-module.



1. The following are equivalent:

(a) Z(E)isacyclic.
(b) Sy is generated by a d—sequence of linear forms of S(E).

2. If Z(E) is acyclic, the Betti numbers of S(E) as a module over B == S(R™) are given by
B(S(E) = X BR(Z: 5(B)).
2

3. If Ris Cohen-Macaulay and E has rank e, th: following conditions are cquivalent.

(a) Z(F)isacyclic and S E} is Cohen-Macaulay.

(b) E satishes Fo and
depth Z;(E) >d~-n+i+e ¢>0.

4. Moreover, if R is Cohen-Macaulay with canonical module wy then
(a)
t "
ws/S ws = PExty*(Z(E), wr).
i=0
(b) S(E)is Gorenstein if and only if Homg(Z,,_.(E),wr) = R and
depth Z(E)>d-n+i+e+l,i<n-e- L
We apply this to the conormal module I/12 of an ideal I:

Corollary 6.14 Let R be a Cohen-Macaulay ring and let I be an ideal generated by a d-~sequence.
The following conditions are equivalent.

(a) The Rees algebra (R is Cohen-Macaulay.
(b) The associated graded ring 8 is Cohen—Macaulay.
(c) [ satisfies sliding depth.

Corollary 6.15 Let R be a Gorenstein ring and let I be an ideal generated by a d—sequence. The
following conditions are equivalent:

(a) The associated graded ring & is Gorenstein.

(by I is strongly Cohen-Macaulay.
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Fundamental divisor

Theorem 6.16 Let R be a Cohen-Macaulay local ring with a canonical module w and let I be an
ideal of height g > 2 that is generated by a d-sequence. Then the first component of the fundamental
divisor of I is w.

We first need:

Proposition 6.17 Ler (R, m) be a Cohen-Macaulay local ring with infinite residue field and let T
be an ideal of height g > 2. If W, = Wa then W\ = w.

Proof. Let a € T be a regular element and choose b € I satisfying the following two requirements:
(i) b is regular on B/(a), and (ii) a is a minimal generator of I and its initial form #* € &1, does not
belong to any minimal prime of &1, We claim that the ideal (a, ) has height 2. If P is a prime
ideal of height 1 containing e, bt it cannot contain I, since b*, the image of bt in £ /IR = & does
not lic in any minimal prime of 4. This shows that (€ p is a localization of 4 polynomial ring R.[t],
and in this case (a, bt) has obviously height 2. We then have that a, bt is a regular sequence on the
B-module B(I) which has the property (S2). Asin the previous proof, if Wi is not isomorphic to
w, we may assume that cokemel ¢ is a module of finite length. If W) = W, since a is regular on
B(I)/bt - B(I), this implies that a is regular on W, /bW, = W, /bW,. But this is a contradiction
since W has depth 1. 0

Proof of Theorem 6.16. From (29), we have the exact sequence

0— Wat + Wit + - — Wit + Wat? + - — wy,, (33)
showing that W /W, embeds in the degree | component of w Y-

In order to apply Proposition 6.17, it will be enough to show that we is generated by elements
of degree ¢ > 2, or higher. For this purpose we use the acyclicity of the approximation complex
(32). Letv(I) = n = ¢ + g, so that the approximation complex of I provides a complex over &

0 H,®85(-¢q) — - — H®S(-1)— Hi®§ — & -0 (34)

In this complex, we may assume that § is actually a polynomial ring § = A[T7y, ..., T,,], where
Aisa Cohen-Macaulay ring of dimension d — g, by simply taking A = R modulo a regular sequence
of g elements contained in /. Since the canonical module of § iSwg = w4 ® S(—n), we can express

w:b as
wy = Ext‘g(b,wg).

Applying Homg(-,wg) 1o the complex (34), it is easy (o see that the module Exli’g{b,wg) is
contained in a short exact sequence of modules derived entirely from submodules of

EXIT.S-(HJ' @A S(—j),wS) = Ex[g(Hj ®a S(—j),wA ® S(Mn)) = EX[;(HJ',WA) ®a S(—n+ j),

all of which are generated by elements of degree at leastn — § > g > 2. a
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7 Depth and cohomology of Proj

Let A = Ag+ Ay + --- be a Noetherian ring and let F be a graded A-module., For a given ideal
p = po+ Ay, po C Ap of A we study briefly the relation between the local cohomology of F
with regards to p and to A, . From the point of view of Rees algebras, this is justified because the
vanishing of one cohomology refiects depth and the other reflects reduction number.

We begin by recatling a result of Brodmann [7, Lemma 3.9], and for its relative inaccessibility
we sketch a proof.

Lemma 7.1 Ler R be a commuiative Noetherian ring, I an ideal, ¢ € R and F an R-module.
There exists a natural exact sequence

0— H?I'?)(F) — H)(F)y — HY(F) - H(lltx)(F) SR
- Hip o (F) = HY(F) » Hi (F) — H{} L [(F) = -

Proof. Let E
0 F —FEy— Ej —» ---

1

be an injective resolution of F'. Each F; is a direct sum of injective modules of the form E( R/q), the
injective envelope of R/q for some prime q. As a consequence, there is direct sum decomposition

0 — L r(E;) — E; — (E;), — 0.
Thus for each ¢ > (3, we have the exact sequence
0 — T'1(Tzr(E:)) — T(E;) — T((Eie) — 0.
Since 'y - Ter = T(1 2y these exact sequences give rise to the short exact sequence of complexes
0 — Tir4)(E) — T(E) — T((E):s) — 0.

The assertion of the lemma is the iong exact cohomology sequence that results. a

Local reduction numbers

We now give a characterization of the Cohen—Macaulayness of a Rees algebra R{It] that involve
the reduction numbers of the localizations I,,. In fact, only finitely many come to play. We give the
theorem of [45] (see also [4], [67]).

Theorem 7.2 Let R be a Cohen—Macawlay local ring and let T be an ideal of positive height. The
following equivalence holds:

, Y is Cohen-Macaulay and for each prime ideal p
& is Cohen-Macaulay = { such that {(1,) = heightp, v(I,) < heightp.
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Proof. The point of the argument is to see how the assertions impact on the invariant a(:#1). To this
purpose, we are going to relate a(:#) to the cohomology of Proj 3.

Denote by N the irrelevant ideal of 8, N = 4, and let M = (m, N') be the maximal irrelevant
ideal of &Y. We argue by induction on dim R = d and on dim R/ that H§,(:¥) vanishes in non-
negative degrees if and only if H§ (&)} does so. If dim R/I = 0, [ is an m-primary ideal and
VN = M, and the functors T'ss and I'y are equivalent. Suppose then dim B/ > 0, and pick
z ¢ msuch that height { N, z) = height N + 1,

By LLemma 7.1, we have the exact sequence

2 (4 — H{dN,a:)(b) —— H§(&) — HE () -0,

where HE (&) = 0since dim R, < dim R = d, and Hy ' (&) is zero in non-negative degrees
by induction. If (N, z) is not M—primary, we teplace N by (N, z) and find an element y € m for
which height (N, z,y) = height ¥ 42,

IfJ = (ay,...,aq)is areductionof I, \/(aj,...,a}) = /N = &4, 50 that in computing the
local cohomology modules Hi, () we may use the idcal (af, . ..,aj). This means that as in the
assertion of the theorem, we may assume that £(/} = d.

We are now ready for the proof of the theorem. Again we may assume that the assertions
are valid on the punctured spectrum of R. Suppose & is Cohen-Macaulay but rn(I) > d. Let
J = (ay,...,aq), and denote by K the Koszul complex defined by the 1-forms aj, ..., a3 of &:

0— Kg=G(-d) — Ky_1 =G(-d + 1) —5 .. -— K| — Ko — 0.
Under these conditions a calculation of Trung ([73, Proposition 3.2]) establishes:

Proposition 7.3 Let (R, m) be a local ring dimension d and let I C R be an ideal. Suppose J is a
reduction of I generated by d elements. If r;(I) = r, then

ag(M M) +d<r <max{a;(H;, ) +i}i=0...d}.

This proposition implies that if » < d, then a(&1) < 0. The converse makes usc of the transfer
of the vanishing of cohomology sketched above (see [45]). a

8 Ideals with good reductions

Let R be a Cohen-Macaulay local ring, let I be an ideal and let J be a minimal reduction of 1. If
the reduction number 7 ;(I) is low—practically meaning I or 2—it is often to possible determine the
fundamental divisor of 7 from that of J. We examine two cases in this section, and a process under
which they arise.

We explore briefly a merging of the techniques of the approximation complexes-which tend
to work best for ideals without proper reductions—with the general method of minimat reductions.
Obviously it will require special ideais.
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Ideals with sliding depth

The template for ideals with sliding depth are the ideals in the linkage class of complete intersections.
A derivative source arises from minimal reductions (see [76], [82], [B3, Chapter 5] for more details).

Residual intersections

Wz first need to frame the notion of sliding depth in a natural setting. it will be the program of
residual intersection initiated by Artin and Nagata (see [5]) and carried out to full development by
Huneke and Ulrich in several works.

Definition 8.1 Let R be a Noetherian ring, I be an ideal and s be an integer s > height [.
{a} An s—residual intersection of T is an ideal J such that height J > s and J = a: I, for some

s—generated ideal o C 1.

(b) A geometric s—residual intersection is an s—residual intersection J of I such that height {(J +
Jy>s+ L

Remark 8.2 These definitions mean the following. Leta = (a1,...,a,) C I.J = a:I. Then J
is an s-residual intersection of [ if for all prime ideals p withdim B, < s — 1 we have [, = a,.
A geometric s—residual intersection requires that in addition for all p € V(I) withdim R, = s the
equality a, = I, also holds. The case where s = height I is the notion of linkage.

Remark 8.3 We will be particularly interested in residual intersections that arise in the following
fashion. Let I be an ideal of R of height g and let x = {z), ..., #,} be a sequence of elements of [
satisfying:

(1) height (x): I > s > g.
(2) For all primes p O I with height p < s, one has
@) (x)p = Ly
(ii) v»((x),} < height p.
These sequences have the following additional properties:
(a) height (x) = height I;
(b v((x),) < height p for all primes (x) C p.

To prove (a), let p be a minimal prime of (x). Suppose I ¢ p; then ((x): 1), = (x),. It will
follow from (1) that height p > s > height 1.

To verify (b), if height p > s, the assertion is trivial; meanwhile, if height p < s, the proof of
(a) shows thatp D I and (2) applies.
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Definition 8.4 The ideal [ is said to be residually Cohen-Macaulay if for any sequence x C I with
the properties (1) and {2) of the previous remark, it holds that:

(a) R/((x):TI)is Cohen—Macaulay of dimension d — s;
(b) ((x): )N T =(x);
(c) height ({x}: I 4+ I) > height (x): I.

The next two statements spell out the significance of these rather technical definitions (see [34],
[83, Chapter 4]).

Theorem 8.5 Let R be a Cohen—-Macaulay local ring and I be an ideal. If I has sliding depth then
it is a residually Cohen—-Macaulay ideal.

Theorem 8.6 Le¢t R be a Cohen—Macaulay local ring and fet I be an ideal satisfying the condition
F1. The following conditions are equivalent:

(a) [ satisfies the sliding depth condition.

(b) [ is residually Cohen—-Macaulay.

(¢) I can be generated by a d-sequence {a1,. .., zn} such that
(3;,- . 'yzi-l-l)/(xla . .,ﬂ!,‘)
is Cohen—Macaulay module of dimensiond — 1, fori=0,...,n— 1.

Koszul homology of reductions

Theorem 8.7 Let R be a Cohen—-Macaulay local ring of dimension d, let I be an ideal, let J be a
reduction of I with v(J) = s < d, and assume that I satisfies F, locally in codimension < s — 1.

If I has sliding depth, then J has sliding depth, and in particular J is of linear type and R{Jt] is
Cohen—Macaulay.

Proof. We may assume that ¢ = height J < s < d. Furthernotice that I, = J, forall p € Spec(R)
withdim R, < s — L.

At this juncture, it is no restriction to assume that the residue field of R is infinite. Now let
ay,...,a, be a generating sequence of J, and forg < ¢ < s — 1 write L; = (ay,...,a;) and
K; = L;: J. Since J satisfies F), we may choose ay, ..., a, in such a way that J, = (L;), for all
p € Spec(R) withdim R, < i- [ and allp € V(J) withdim R; < i. Inother words, height K; > ¢
and heighi(J + K;) > ¢+ 1. We claim thatforg < ¢ < s — |, R/K; is Cohen-Macaulay of
dimensiond — ¢ and J N K; = L;. Once this is shown, the theorem will follow {rom Theorem 8.6.
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To prove the claim notice that since 1 < s—1, wehave I, = J, = (L;), forallp € Spec(R) with
dimR, <i—landallp € V(J) withdim R, < ¢. Thus height L,: I > 7 and height(] + (L;: I)) >
¢ + 1. However, v(I,) < dim R, forallp € V(I} withdim B, < i < s — |, and I is assumed to
have sliding depth. In this siteation, Theorem 8.5 implies that R/ L,: I is a Cohen-Macaulay ideal
of dimensiond — tand I N (L;: ) = L;.

Now it suffices to prove that L;: ] = K;. The inclusion L;: I C L;:J = K; being tnvial,
we only need to show the asserted equality at every associated prime p of L;: I. Since the latter
ideal is Cohen—-Macaulay of height i, we know that dim 2, = ¢ < s — . Thus I, = J,, and
(Li:T)p = (K.

Finally, that R[J¢] is Cohen-Macaulay follows from Theorem 6.13. g

Corollary 8.8 Letf [ and J be as in Theorem 8.7. Ler K be the Koszul complex on a minimal set of
generators of J. Then I annihilates H;(K) fori > 0.

Proof. Since I - H{(K) — H;(K), and this is a module of depth > d — s + 1, it suffices to check
the prime ideals p of codimension at most s — ¢ < s — 1. But in this range we have I, = J,. Q

Corollary 8.9 Let R be a Cvhen-Macaulay local ring of dimension d, with infinite residue field,
and let I be an ideal with sliding depth. If I is of linear type in codimension h then

(1) > inf{h + 1,p(I)}.

Ideals of reduction number one

An immediate consequence is:

Corollary 8.10 Let R, I and J be as above, and assume that depth R/I > dim R — s. Then
I - R[Jt] is a maximal Cohen-Macauwlay module. If the reduction number v ;(I) = 1 then gry(R)
is Cohen—Macaulay.

We make some observations about what is required for the equation » ;(I') = 1 to hold.

Theorem 8.11 Let I and J be ideals as in Theorem 8.7, and suppose every associated prime ideal
of I has codimension at most s. If for each prime ideal p of codimension s the equality Ip2 = (JI),
holds then I* = J1I.

Proof. It will be enough to show that the associated pnme ideals of JI have codimension at most
s. From the proofs of Corollaries 8.8 and 8.10 we use the exact sequence

0 — Hi(J) — (R/DY — J/JI =0,
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which will be combined with the sequence
0> J/JI — R/JI — R/J — 0.

Since depth H\(J) > d - s+ L, it follows from the first sequence and the condition that dim R, < s
for every associated prime p of 1, that any prime in Ass(J/JI') has codimension at most s. The claim

now follows from the second sequence, since the associated prime ideals of R/J have codimension
at most s.

Alternatively, we can argue as follows to show the vanishing of the Sally module $;(I): In
the exact sequence (2), as in Proposition 3.2, I - R[Jt] being a maximal Cohen-Macaulay module
(and therefore an unmixed ideal of codimension one} implies that 5 (1) cither vanishes or has Krull
dimension d. By induction ondim R we may assume that I? = JI holds on the punctured spectrum
of the local ring { B, m). This means that S;(I) is annihilated by some power of m so that the
dimension of §;(1)is at most »(J) = s < d, which is a contradiction unless r y(I) = 1. 0

These methods come in full fruition in the following ((821]):
Theorem 8.12 Let R be a Cohen—Macaulay local ring and let I and J be ideals as in Theorem 8.7.
Suppose that depth R/I > dim R — s. If I has codimension at least two and 73(I) = 1 inen R[It]
is a Cohen—-Macaulay algebra.
Fund» aental divisor
Let I be an ideal with sliding depth that satisfies F;. The canonical module
wp = Cit + Cot* + -+
has the property that (7} ~ w. This implies that in the representation of
By =wit+Wat? +---,
we also have Wy >~ w. Indeed, from the sequence (14), we have the exact sequence
O wp — L—rwy,

we have since I annihilates &, I - Wy C €}, which means that W C C}, and therefore W| ~ w.
Suppose now that N is anideal I ¢ N and N* = I - N. From the

0— N-R[It] — R[It] - U -0,

0 - wg(ry) — WN Ry — WU,

from which we obtain that €y = D, the first component of the canonical module of N - R[It],
since Dy is conducted into C by an ideal of height at least two, On the other hand, we have
N - R[It] = N - R[Nt], by the hypothesis on the reduction number.

39



References

(1]

(2]

(3]

(4]

(51

6]

(7]

(8]

(9]

(10]
[11]

[12]

{13]

[14]

I. M. Aberbach and S. Huckaba, Reduction number bounds on analytic deviation two ideals
and the Cohen~Macaulayness of associated graded rings, Preprint, 1994.

I. M. Aberbach, S. Huckaba and C. Huneke, Reduction numbers, Rees algebras, and Pfaffian
ideals, J. Pure and Applied Algebra, to appear.

I. M. Aberbach and C. Huneke, An improved Briangon-Skoda theorem with applications to
the Cohen-Macaulayness of Rees algebras, Math. Ann., to appear.

I. M. Aberbach, C. Huneke and N. V. Trung, Reduction numbers, Briangon-Skoda theorems
and depth of Rees algebras, Compositio Math., to appear.

M. Artin and M. Nagata, Residual intersections in Cohen—-Macaulay rings, J. Math. Kyoto
Univ, 12 (1972), 307-323.

L. Avramov and J. Herzog. The Koszul algebra of a codimension 2 embedding, Math. Z. 175
(1980, 249-280.

M. Brodmann, Einige Ergebnisse der lokalen Kohomologie Theorie und ihre Anwendung,
QOsnabriicker Schriften zur Mathematik, Reihe M, Heft 5, (1983).

W. Bruns, The canonical module of a determinantal ring, in Commutative Algebra: Durham
1981 (R. Sharp, Ed.), London Math. Soc., Lecture Note Series 72, Cambridge University Press,
1982, 109-120.

W. Bruns and J. Herzog, Cohen—Macaulay Rings, Cambridge University Press, 1993,
A, Corso and C. Polini, Links of prime ideals and their Rees algebras, submitied.

A. Corso, C. Polini and W. V. Vasconcelos, Links of prime ideals, Math. Proc. Camb. Phil.
Soc.. to appear.

R. C. Cowsik, Symbolic powers and number of defining equations, in Algebra and its Appli-
cations, Lecture Notes in Pure & Applied Mathematics 91, Marcel Dekker, New York, 1984,
13-14.

R. C. Cowsik and M. V. Nori, On the fibers of blowing up, J. Indian Math. Soc. 40 (1976),
217-222.

D. Eisenbud and C. Huncke, Cohen—-Macaulay Rees algebras and their specializations, J. Al-
gebra 81 (1983), 202-224.

40



(15]

M. Fiorentini, On relative regular sequences, J. Algebra 18 (1971), 384-389.

{16} P. Gimenez, M. Morales and A. Simis, The analytic spread of toric ideals of codimension 2,

[17]

[18]

{19]

[20]
(21]

[22]

(23]

(24

[25]

[26]

147]

(28]

[29]

in Preparation.

S. Goto and S. Huckaba, On graded rings associated to analytic deviation one ideals, American
J. Math., to appear.

S. Goto and Y. Nakamura, On the Gorensteinness of graded rings associated to ideals of ana-
Iytic deviation one, Contemporary Mathematics 159 (1994), .

S. Goto and Y. Shimoda, On the Rees algebras of Cohen—Macaulay local rings, Lecture Notes
in Pure & Applied Mathematics 68, Marcel Dekker, New York, 1979, 201-231.

S. Goto and K, Watanabe, On graded rings [, J. Math, Soc. Japan 30 (1978), 179-213.

H. Grauert and O. Riemenschneider, Verschwindungssitze fiir analytische Kohomologiegrup-
pen auf komplexen Riumen, Inventiones Math. 11 (1970), 263-292,

U. Grothe, M. Herrmann and U. Orbanz, Graded rings associated to equimultiple ideals, Math.
Z. 186 (1984), 531-556.

A. Grothendieck, Local Cohomoalogy, (Notes by R. Hartshorne) Lecture Notes in Mathematics
41, Springer—Verlag, Berlin—Heidelberg—New York, 1967.

A. Guerrnieri, On the depth of the associated graded ring, Proceedings Amer. Math. Soc. , to
appear.

M. Hermann, S, lkeda and U, Orbanz, Equimultiplicity and Blowing-up, Springer—Verlag,
Berlin, 1988.

M. Hermmann, C, Huneke and J. Ribbe, On reduction exponents of ideals with Gorenstein
formrings, Preprint, 1993.

M. Herrmanm, J. Ribbe and S. Zarzuela, On the Gorenstein property of Rees and form rings of
powers of ideals, Trans. Amer. Math. Soc. 342 (1994), 631-643.

J. Herzog, A. Simis and W. V. Vasconcelos, Koszul homology and blowing—up rings, in Com-
mutative Algebra, Proceedings: Trento 1981 (S. Greco and G. Valla, Eds.), Lecture Notes in
Pure and Applied Math. 84, Marcel Dekker, New York, 1983, 79-169.

J. Herzog, A. Simis and W. V. Vasconcelos, On the arithmetic and homology of algebras of
linear type, Trans, Amer. Math. Soc. 283 (1984}, 661-683.

41



[30]

[31]

[32]

(33)

[34]

[35]

[36]

(371

(38]
[39]

(401

(41]

(42}
[43]
[44]
[45]

J. Herzog, A. Simis and W. V. Vasconcelos, Approximation complexes of blowing—up rings,
J. Algebra 74 (1982), 466—493.

J. Herzog, A. Simis and W. V. Vasconcelos, Approximation complexes of blowing-up rings.II,
J. Algebra 82 (1983), 53-83.

J. Herzog, A. Simis and W. V. Vasconcelos, On the canonical module of the Rees algebra and
the associated graded ring of an ideal, J. Algebra 105 (1987), 285-302.

}. Herzog and W. V, Vasconcelos, On the divisor class group of Rees algebras, J. Algebra 93
(1985), 182-188.

J. Herzog, W. V. Vasconcelos and R. Villarreal, Ideals with sliding depth, Nagoya Math. J. 99
(1985), 159-172.

S. Huckaba and C. Huneke, Powers of ideals having small analytic deviation, American J.
Math. 114 (1992), 367-403.

S. Huckaba and C. Huneke, Rees algebras of ideals having small analytic deviation, Trans.
Amer, Math. Soc. 339 (1993}, 373-402.

S. Huckaba and T. Marley, Depth formulas for certain graded rings associated to an ideal,
Nagoya Math. J. 133 (1994}, 57-69.

C. Huneke, On the associated graded ring of an ideal, lllinois J. Math. 26 (1982), 121-137.

C. Huneke, On the symmetric and Rees algebras of an ideal generated by a d—sequence, J.
Algebra 62 (1980), 268-275.

C. Huneke, Linkage and Koszul homology of ideals, American J. Math. 104 (1982), 1043
1062.

C. Huneke, Strongly Cohen-Macaulay schemes and residual intersections, Trans. Amer. Math.
Soc. 277 (1983), 739-763.

C. Huneke, Determinantal ideals of linear type, Arch. Math. 47 (1986), 324-329.
C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), 293-318.
C. Huneke and B. Ulrich, Residual intersections, J. reine angew. Math, 390 (1988), 1-20.

B. Johnston and D. Katz, Castelnuovo regularity and graded rings associated to an ideal, Proc.
Amer. Math. Soc., to appear.

42



[46]

[47]

[48]
[49]
(50]

[51]
(52]

153]

[54]
[55]

(56]

(57]

(58]

159}

[60]

(61]

[62]

B. V. Kotsev, Determinantal ideals of linear type of a generic symmetric matrix, J. Algebra
139 (1991), 488504,

A. Kustin, M. Miller and B. Ulrich, Generating a residual intersection, J. Algebra 146 (1992),
335-384,

J. Lipman, Cohen-Macaulayness in graded algebras, Preprint, 1993,
A. Micali, Sur les algébres universalles, Annales Inst. Fourier 14 (1964), 33-88.

A. Micali. P. Salmon and P. Samuel, Integrité et factorialité des algébres symétriques, Atas do
IV Coldquio Brasileiro de Matematica, SBM, (1965}, 61-76.

G. Moctezuma, The fundamental divisor of a Rees algebra, in Preparation.
S. Morey, Equations of Recs algebras of ideals of codimension two and three, in Preparation.

S. Morey, S. Noh and W. V. Vasconcelos, Symbolic powers, Serre conditions and Cohen—
Macaulay Rees algebras, in Preparation,

M.P. Murthy. A note on factorial rings, Arch. Math. 15 (1964), 418—420.

M. Narita, A note on the coefficients of Hilbert characteristic functions in semi—regular local
rings, Math. Proc. Camb. Phil. Soc. 59 (1963), ~ "9-275.

S. Noh and W. V. Vasconcelos, The Sz—closure of a Rees algebra, Results in Mathematics 23
(1993), 149-162.

D. G, Northecott, A note on the coefficients of the abstract Hilbert function, J. London Math.
Soc. 35 (1960), 209-214.

D. G. Northcott and D. Rees, Reductions of ideals in local rings, Math. Proc. Camb. Phil. Soc.
50 (1954), 145-158.

A. Ooishi, ¢-genera and sectional genera of commutative rings, Hiroshima Math. J. 17 (1987),
361-372,

M. Vaz Pinto, Hilbert functions and Sally modules, in Preparation.

J. B. Sancho de Salas. Blowing-up morphisms with Cohen—Macaulay associated graded rings,
Géométrie Algébrique et Applications [, Géométrie et calcul algébrigue, Deuxiéme conférence
intemationale de la Rabida, Travaux en cours no. 22, Hermann, Paris, 1987, 201-209.

J. D. Sally, Cohen—Macaulay local rings of maximal embedding dimension, J. Algebra 56
(1979}, 168-183,

43



[63]

[64]

{65}

[66]

[67]

[63]

[69]

[70]

[71]

172]

[73}

[74]

[75]

[76]

J. D. Sally, Tangent cones at Gorenstein singularities, Compositio Math. 40 (1980), 167-175.

J. D. Sally, Hilbert coefficients and reduction number 2, J. Alg. Geo. and Sing. 1 (1992),
325-333,

J. D. Sally. Ideals whose Hilbert function and Hilbert polynomial agree at n = i, J. Algebra
157 (1993), 534547,

G. Scheja and U. Storch, Uber differentietle Abhiingigkeit bei Idealen analytischer Algebren,
Math. Z. 114 (1970, 101-112.

A. Simis, B. Ulrich and W. V. Vasconcelos, Cohen-Macaulay Rees algebras and degrecs of
polynomial relations, Preprint, 1993,

A. Simis and W. V. Vasconcelos, The Krull dimension and integrality of symmetric algebras,
Manuscripta Math, 61 (1958), 63-78.

A. Simis and W. V. Vasconcelos, The syzygies of the conormal module, American J. Math,
103 (1981), 203-224,

A. Simis, W. V. Vasconcelos and R. Villarreal, On the ideal theory of graphs, 1. Algebra, 10
appear.

Z. Tang, Rees rings and associated graded rings of ideals having higher analytic deviation, J.
Pure & Applied Algebra, to appear.

N. V. Trung, Reduction exponent and degree bound for the defining equations of graded rings,
Proc. Amer. Math, Soc. 101 {1987), 229-236,

N. V. Trung, Reduction numbers, a-invariants and Rees algebras of ideals having small analytic
deviation, in Commutative Algebra, Proceedings, Trieste 1992 (G. Valla, V.T. Ngo and A.
Simis, Eds.), World Scientific, Singapore, (1994), to appear.

N. V. Trung and §. Ikeda, When is the Rees algebra Cohen-Macaulay?, Comm. Algebra 17
(1989), 2893-2922.

B. Ulrich. Remarks on residual intersections, in Free Resolutions in Commutative Algebra
and Algebraic Geometry, Proceedings, Sundance 1990 (D. Eisenbud and C. Huneke, Eds.),
Research Notes in Mathematics 2, Jones and Bartlett Publishers, Boston—London, 1992, 133—
138.

B. Ulrich, Artin-Nagara properties and reductions of ideals, Contemporary Mathematics 159
(1994), 373400,



(77]

(78]

[79]
(80]

(81

[82]

[83]

(84]

B. Ulrich and W. V. Vasconcelos, The equations of Rees algebras of ideals with linear presen-
tation, Math. Z. 214 (1993), 79-92.

P. Valabrega and G. Valla, Form rings and regular sequences, Nagoya Math. J. 72 (1978),
91-101.

G. Valla, Certain graded algebras are always Cohen—Macaulay, J. Algebra42 (1976), 537-548.

G. Valla, On the symmetric and Rees algebras of an ideal, Manuscripta Math. 30 (1980), 239—
255.

W. V. Vasconcelos, On the equations of Rees algebras, J. reine angew. Math. 418 (1991), 189-
218.

W. V. Vasconcelos, Hilbert functions, analytic spread and Koszul humology, Contemporary
Mathematics 159 (1994), 401-422.

W. V. Vasconcelos, Arithmetic of Blowup Algebras, London Math. Soc., Lecture Note Series
195, Cambridge University Press, 1994,

R. Villarreal, Cohen—Macaulay graphs, Manuscripta Math. 66 (1990), 277-293,



