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Preface

The theme of these notes is the duality between a Cohen—-Macaulay graded algebra
and its canonical module. This duality manifests itself in numerous homological and
combinatorial theorems.

The first three section represent what in my opinion should be the basic knowl-
edge of someone interested in the combinatorial aspects of commutative algebra. 1
have tried to indicate all the major ideas on which the theory is built.

In Section 4 the usual direction from commutative algebra to combinatorics is
reversed: a combinatorial identity leads to the identification of the canonical module
of the ring of invariants of a finite group.

In Section 5 we discuss the theory of normal semigroup rings. It emerges from an
intriguing interplay of combinatorial, topological, and algebraic aspects. Once we
have determined the canonical module, we can harvest plenty of combinatorial the-
orems about lattice points in rational polytopes, among them Ehrhart’s remarkable
reciprocity law.

Section 6 is much more elementary. We prove a reciprocity law for the number
of walks in a directed graph from the formula that relates the Hilbert series of a
module M, that of the ring, and the Poincaré series of M defined by a graded free
resolution.

The homological and combinatorial theory of commutative rings is the topic of
the book [1], Cohen—Macaulay rings by Jirgen Herzog and me (Cambridge Univer-
sity Press, 1993). There the reader will find a fully expanded version of the material
of Sections 1-5, and, among other things, a chapter on Stanley-Reisner rings.

There are almost no references to the original sources in the text. I have however
added a small bibliography of papers and books that deal with commutative algebra
and combinatorics.



1 Graded K-alsebras

Let K be a field, and R a finitely generated, positively graded K-algebra, i.e. R is
the direct sum

of K-vector spaces, and the multiplication on R satisfies the rule R;R; C R,4;; fur-
thermore R = K[z, .., z,] for suitable elements z,,...,x, € U;50 Ri. In particular
Ry = K, and R is a Noetherian ring. In order to have a compact terminology we
simply say that R is a graded K -algebra.

The elements of the i-th graded component R; are homogeneous of degree 7 or
t-forms, and similar conventions apply to the graded K-modules below. By m we
always denote the graded (or irrelevant) mazimal ideal:

m= @R‘
i=1

A typical example of a graded K-algebra is a polynomial ring S = K[X4,..., X,]:
in its standard grading a polynomial f is homogeneous if all the monomials occuring
in f have the same (total) degree, and a monomial X" --- X2 has degree a; +- - - ay,.
As a K-algebra, S is generated by the degree 1 elements X;. More generally, if a
graded K-algebra is generated by elements of degree 1, then we call it a homogeneous
K-algebra. (Some authors prefer the name standard K-aigebra.)

However, we are free to assign arbitrary positive degrees a; to the indeterminates
of S: then the degree of X7'--- X" is a;e; + - - - apeyn, and the ¢-forms are the K-
linear combinations of the monomials of degree :.

Suppose that the graded K-algebra R is generated by homogeneous elements
Z1,...,Z, of degrees ay,...,a,; then the assignment 7 : X; — x; makes R a residue
class K-algebra of S, and the natural epimorphism is compatible with the gradings:
the image of an i-form is an i-form, and R; = S;/(S; N Ker r).

In general, if the ideal a 1s generated by homogeneous elements, then the residue
class ring R/a is a graded K-algebra with (R/a); = R/(R; Na).

A graded R-module is an R-module that as a K-vector space is a direct sum

M= M.

1€Z

satisfying the rule B;M; C M,,;. (It would be more precise to say that a graded R-
module is an H-module together with such a decomposition.) Note that the elements

2



1. Graded K-algebras 3

of M may have negative degrees. If M is a Noetherian R-module, then M, = 0 for
1 € 0; if it i1s Artinian, then M; = 0 for 7 3> 0; in both cases one has dimg M; < __
for all :. Every element x of M has a unique representation as a sum z = ¥_; z; of
elements z; € M;, which are called the homogeneous components of z.

One can change the grading of M by a shift s € Z: one sets M(s); = Mi;,. In
other words, the degree j homogeneous elements of M have degree 7 — s in M(s).

A submodule U of M is graded if U = @,; UNM;. If U is a graded submodule, then
M /U is a graded module with homogeneous components M; /(U N M;). Obviously a
submodule U is graded if and only if contains the homogeneous components of each
of its elements. The annihilator of a graded module is a graded ideal.

A homomorphism ¢;: M — N of graded R-modules is called homogeneous if
e(M;) C N; for all ¢ € Z, and M and N are isomorphic as graded modules if
and only if there exists a homogeneous isomorphism @,: M — N. Though all
the modules M(s) are isomorphic as plain f-modules, they are in general non-
isomorphic as graded modules. The kernel, image, and cokernel of a homogeneous
homomorphism are graded inodules in a natural way. The graded modules form a
category whose morphisms are the homogeneous homomorphisms.

It is absolutely essential that the homomorphisms in complex of graded mod-
ules are homogeneous. The (co)homology modules of such a (co)chain complex are
graded so that one can use graded homological algebra.

Dimension and depth. A guiding principle in the theory of graded rings is that all
the local properties and invariants of a graded module should be determined by the
localizations with respect to graded prime ideals.

The basic lemma on which this principle rests is the following.

Lemma 1.1. Let R be a graded K -algebra.
(a) For every prime ideal p the ideal p* that is generated by the homogeneous elements
in p is a prime ideal.
(b) Let M be a graded R-module.
(i) If p € Supp M, then p* € Supp M.
(ii) If p € Ass M, then p is graded; furthermore p ts the annihilator of ¢ homo-
geneous element.

Proposition 1.2. Let R be a graded K-algebra. Then dim R = dim Ry,.

Let p be a minimal prime ideal of R. Then, by virtue of the lemma, p is graded,
and thus p € m. From the dimension theory of affine algebras it follows that
dim R/p = dim Ry /pfn. This implies the proposition.

There is no (standard) global notion of depth. Therefore we set

depth M = depth My,

for a finite graded R-module (we use finite as a short form of ‘finitely generated’).
Recall that the depth of a finite module over a local ring is the length of a maxi-
mal} M-sequence (also called a regular sequence on M) contained in m. That this
definition of depth is justified, will be seen at several occasions below.



4 Algebraic and combinatorial reciprocity laws

For the construction of sequences of elements with good properties the next
lemima is basic.

Lemma 1.3. Let R e a graded K -algebra and I an ideal generated by elements of
positive degree. Let p,,...,p, be prime ideals such that I ¢ p; fori=1,...,n.
(a)Then there exists a homogeneous element z € I, z g p, U---Up,.

{(b) If K is infinite and I is generated by m-forms, then = can be chosen as an
m-form.

We indicate the proof of (b) which implies (a) if K is infinite (we can always
replace I by an ideal with the same radical). It is very short: the K-vector space
I, is not the union of the finitely many proper subspaces I, N p,.

In the next proposition grade(I, M) denotes the length of a maximal M-sequence
contained in the ideal I. Suppose that M and 7 are graded. Then a sequence y
of homogeneous elements is a (maximal) M-sequence in 7 if and only if y is a
(maximal) My-sequence in Ir,. This follows from the fact that the associated prime
ideals of a graded module are graded, and therefore contained in m. That there exist
homogeneous M-sequences of length grade(f, M) is stated in the next proposition.

Proposition 1.4. (a) Let R be a graded K -algebra, and let I be an ideal in R
generated by homogeneous elements of positive degree. Set h = height ] and g =
grade(I, M) where M is a finite R-module. Then there exist sequences & = zy,...,Ty
and Yy = y1,...,Y, of homogeneous elements of I such that height(zy,...,z;) = ¢
fori=1,...,h and y is an M -sequence,

(L) If K is infinite and I is generated iy m-forms, then the x; and y; can be chosen
as m-forms.

It is enough to find z; and y; because we may use induction on n after having
replaced all objects by their reductions modulo z; or ;. But the choice of z, or y
only requires the avoidance of finitely many prime ideals none of which contains I.

Graded Noether normalization. The existence of Noether normalizations of affine
algebras is a fact of fundamental importance. If R is a graded K-algebra, then the
Noether normalization can be chosen to be graded. The construction of a graded
Noether normalization is equivalent to finding a homogeneous system of parameters.

Definition 1.5. A sequence of homogeneous elements x,,...,z, is called a homo-
geneous system of parameters if n = dim R and m = Rad(z1,...,z,).
Note that a sequence x,, ..., z, of homogeneous elements is a homogeneous sys-

tem of parameters for R if and only if zy,...,z, represents a system of parameters
for the localization Hy.

Theorem 1.8. Let K be a field and R a graded K -algebra. Set d = dim R.
(a) The following are equivalent for homogeneous elements z,...,T4:

(i) z1,...,24 i5 @ homogeneous system of parameters;

(i) R is an integral eztension of K{z,,...,z4];

(iii) R is a finite K[x1,...,z4]-module.
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(b) There exist homogeneous elements zy,...,zq4 satisfying one, and therefore all,
of the conditions ir. (a). Moreover, such elements are algebriically independent over
K.

(c) If R is a homogeneous K-algebra and K is infinite, then such x,,...,z4 can be
chosen to be of degree 1.

Part (a) is essentially a statement about affine algebras. The rest follows from
1.4.

Graded free resolutions. Let M be a graded R-module, generated by homogeneous
elements z;, ¢ € I. Then the direct sum Fy = @;c; R(—deg ;) is a free graded R-
module admitting a surjective homogeneous homomorphism ¢g: Fo — M: the map
which for each : maps a homogeneous basic element e; to z; extends to a unique
R-linear map wo: Fp — M. It is evidently surjective and homogeneous. The kernel
Up of pp 1s again a graded module to which we can apply the same construction,
obtaining a surjective homogeneous homomorphism ¢y : £y — Uy, and an infinite
iteration of this process leads to a graded free resolution

Foivoomms By 5 Frooy — o — Fy =5 Fy

of M. (In the language of homological algebra, the category of graded modules has

enough projective modules.)
Suppose that M is finite, and choose a minimal homogeneous system z;,...,z,,

of generators; ‘minimal’ just means that no proper subset ¢ »nerates M. The kernel
of the map g defined by z,,...,z, 1s again a finitely generated graded module
with a minimal homogeneous system y,...,y, of generators. Therefore we have a
presentation

Flﬂ)Fgﬂ’M—*O

in which all the entries of a matrix representing ¢, are in m: they are homogeneous
and cannot be non-zero elements of K; otherwise one of the z; would be a linear
combination of the others. This implies that M/mM = Fy/mF,. In particular the
number m and the degrees of the elements z,,..., 2, are uniquely determined (up
to a permutation): exactly dimg(M/mM); among the z; have degree 1.

Theorem 1.7. A finitely generated graded R-module M has a minimal graded free
resolution

P — @R3P — @ R(—j) — o — DR,

it is uniquely determined up to an isomorphism of complezes of graded R-modules.

In the summands @, R(—j)% we have collected all the summands R(—j) of F,
in other words, §;; is the number of degree j elements in a minimal homogeneous
system of generators of Kerg;_;. It follows by induction on ¢ that the modules
Ker;_; and the numbers j;; are uniquely determined by M.
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Definition 1.8. The module Ker;_; is the i-th graded syzygy module of M. The
numbers 3;; are called the .-tk graded Betti numbers of M. The numbers §; = 3. 8;;
are the Betti numbers of M.

The numerical information in a complex like F), is represented by the generating
function of the assignment (z,j) — 5,

Pp,(t,u) =Y Bit'u'.
i3

We call this power series in the variables ¢ and u the Poii.caré biseries of F,. If F,
is the minimal graded free resolution of M then we write Pp(t,u) for Pg, (t,u) and
call it the Poincaré biseries of M.

The entries of the matrices representing the maps ¢; (with respect to the decom-
positions F; = @; R(—j)") are homogenous elements of m. Therefore F, ® Ry is a
minimal free resolution of M. This argument shows that a graded module behaves
homologically like a module over a local ring.

The Auslander-Buchsbaum formula tells us that projdim My + depth My =
depth Ry, if projdim My, < oco. Since projdim M, = projdim M, we can write the

- Auslander-Buchsbaum formula as projdim M + depth M = depth R = n.

The fundamental theorem about free resolutions of graded modules is Hilbert’s

syzygy theorem.

Theorem 1.9. Let R = K[Xy,...,X,], and M a finite graded R-module. Then M

has a finite free resolution

0 _,@R(_j)ﬁm — .. —'@R(—j)'g‘” M —90
7 J

with p = projdim M = projdim My < n.

Below we will see that the combination of Noether normalization and Hilbert’s
syzygy theorem is a very powerfool tool.

Graded Cohen-Macaulay rings and modules. A Noetherian ring R is called Cohen-
Macaulay if all its localizations 2, are Cohen-Macaulay, i.e. they satisfy the condi-
tion dim R, = depth R,. If R is a graded K-algebra, then we need to test only a
single localization.

Proposition 1.10. Let R be a graded K -algebra, and suppose S is a graded Noether
normalization of R. Then the following are equivalent:

(a) B is Cohen-Macaulay;

(b) Ru is Cohen-Macaulay.

(¢) R is a free S-module;

Let & be the homogeneous system of parameters generating S. If Ry is Cohen—
Macaulay, then ¥ is a Ry-sequence. By the arguments given above 1.4, y is an
R-sequence, so that the Auslander-Buchsbaum formula implies projdimg R = 0.
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Now let p be a prime ideal in R. If R is free over S, then Rsn, is free over Ssnp.
‘Therefore Ssnp contains a regular Rsnp-sequence g of lengtli dim Sgnp = dim Ry, y
is also Ry-regular. It follows that R, is Cohen-Macaulay.

A finite module M over a Noetherian ring R is called a Cohen-Macaulay module
if dim M, = depth M, for all prime ideals p € Supp M. The previous proposition
holds similarly for Cohen-Macaulay modules if we replace R by R/(Ann M) in (c).
A Cohen—Macaulay module M is mazimal if dim M = dim R.

The grading of Hom and Ext. Let N be a graded R-module. In order to com-
pute the modules ExtR(M, N) we form the complex Homp(F., N) where F. is a
graded free resolution as above. The module Homg(R(—j), N) is graded in a natu-
ral way: Homg(R(—j), N) is a free graded R-module with a base element of degree
7, and therefore the direct sum of the K-vector spaces L, spanned by all those
f € Hompg(R(—7),N) for which f(e) € Niy;. Since Hom commutes with finite
direct sums, we see that Homp(F., N} is a complex of graded R-modules (with
homogeneous maps!).

Proposition 1.11. Let M and N be graded R-modules. Suppose that M is finite.
Then Extyr(M, N) is a graded R-module in a natural way.

For an arbitrary graded R-module M, the module Homg(M, N) need not carry a
grading. Therefore, in the category of graded R-modules, one replaces Homg(M, N)
by the graded Hom functor

"Homp(M, N) = 5 “Hom(M(—i), N),
i€Z

where *"Hom(M (1), N) is the K-vector space of homogeneous R-linear maps M —
N. 1t is easily seen that “Homp(M, N) is an R-submodule of Homg(M,N) in a
natural way.

The introduction of a graded tensor product is unnecessary: the tensor product
of graded modules M and N is always graded with (M ®r N)i = ¥, ;¢ Mi @k N;.
Therefore the modules Tor?(M, N) are also graded.

(raded injective resolutions. Since a graded R-modules has a graded free resolution,
it 1s projective in the category of all R-modules if and only if it is so in the category
of graded R-modules. The situation for ‘injective’ is slightly more complicated.
Nevertheless there exist enough injectives.

Theorem 1.12. Let M be a graded R-module. Then M has a resolution
O s JO— [ s ois 5 T ey

by graded R-modules I' that are injective objects in the category of graded R-modules.

Over a Noethertan ring the direct sum of injective modules is injective. If we
combine this fact with Zorn's lemma and the {defining) property of injective mod-
ules, namely to be direct summands in each of their overmodules, then we get that
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every injective module is the direct sum of indecomposable such modules, and more-
over one can ‘describe’ the indecomposable injective modules. All this carries ¢ .cr
to the graded category. We content ourselves with a very special case given in 1.14
below.

Graded K -duals. Let M be a graded R-module. We consider the graded K -dual
MY = @O Homg(M_;, K).

i€Z
A priori MV is just a graded K-vector space, but we can easily turn it into a graded
R-module: for a j-form z € R, and ¢ € Homg(M_;, K) we set ¢ = ¢ o ¥, where
¥, denotes multiplication by z. Then this operation is extended bilinearly over
R x M. It is not hard to check that ¥ defines a functor from the category of graded
R-modules into itself.
We list some important properties of the graded K-dual:

Prcposition 1.13. (a) The additive contravariant functor ¥ is exact;

(b) MYV = M for all graded R-modules M such that dimg M; < oo for all i; in
particular MVY = M for all Noetherian and Artinian graded R-modules;

(c) MY = *Homp(M, RY) for all graded R-modules M;

(d) if M is Noetherian (Artinian), then MY is Artinian (Noetherian).

Part (a) is obvious, and (b) is not much more than the reflexivity of finite-
dimensional K-vector spaces. For (b) one should note that MY is a vector subspace
of Homg (M, K). Therefore one obtain the isomorphism by restricting the natural
isomorphism Homp(M, Homg (R, K)) = Hom(M, K) to the appropriate subspaces.
Because of (a) and (c) the functor Hompg(_ RY) is exact on the category of graded
R-modules so that RY is an injective object in that category. Since it contains
K = (RY)o in a natural way and is an essential extension of K, it is the injective
hull of K, in fact, also in the category of all R-modules.

Theorem 1.14. The graded R-module RV is the (graded) injective hull of the R-
module K. Moreover every (graded) injective R-module M 1is the direct sum (RY)™
of m = dimg Homp(K, M) coptes of RY.

Proposition 1.13 and Theorem 1.14 show that the graded K-dual is the graded
analogue of what Matlis duality is for complete local rings.

Local cohomology. What has been said above shows that the theory of local rings
has a graded counterpart (which, in a sense, is even simpler). This analogy includes
local cohomology.

Definition 1.15. For a (graded) R-module we set
I'm(M)={ze M: m’z =0 for some 7}.

Note that I',(M) is a (graded) submodule of M. Moreover, if f: M — N is an
R-linear map, then f(Iw(M) C I'm(N), and therefore Iy, defines a covariant left
exact functor.
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Definition 1.16. The i-the local cohomology H; (_) is the i-th right derived functor
of Iy, i.e. if I" is u (graded) injective resolution of M, then Hi(M) is the i-th
cohomology of I'n(I*); especially I'y(M) = H3(M).

The preceding definitions make sense with and without the parentheses, and
moreover, if M is a graded R-module, then they yield the same result: it does not
matter whether local cohomology is computed from an injective resolution in the
category of graded R-modules or from one in the category of all R-modules, except
that in the first case we obtain a natural grading. This follows from part {a) of the
following proposition; cf. 1.11.

Proposition 1.17. (a) For any R-module M and all i > 0 one has

HL (M) = lim Extp(R/m", M).

(b) A short exact sequence 0 — M; — My; — M3 — 0 gives rise to a long
eract sequence

0 — In(My) — Tu(My) ~ Tu(Ms) — Hao(My) — -~
— HiT\(My) — Hi(My) — Hi(My) — -

(c) If M is a finite graded R-module, then the modules H: (M) are Artinian;

Since injective resolutions are very hard to grasp, it is difficult to nnderstand local-
cohomology if one has just its definition. Fortunately one can access it also from
another complex, which in some cases yields an effective computation; the most
notable case i1s Hochster’s determination of the local cohomology of the Stanley-
Reisner ring of a simplicial complex (see {1], Chapter 5}. We define the complex C*
by

C:0—C' 5 C'— ... (C"—0,

Ct= @  Repryoms

1< Qg < Ciekn
where the differentiation dt: C* — C**+! is given on the component

Ry oy, — R

T3 T4

to be the homomorphism (—=1)*"' nat: R, .., = (Re, .z )z, if {81, 0} = {51,

]
-

<y Jay---2Jt+1} and O otherwise.

Theorem 1.18. Let M be an R-module. Then H.L(M) = H'(M ®p C*) for all
i > 0.

One consequence of 1.18 is the behaviour of local cohomology under a change of
rings.



10 Algebraic and combinatorial reciprocity laws

Proposition 1.19. Let R and S be graded K -algebras with mazimal graded ideals m
and n. Suppose tl.ut ¢: R — S ts a homomorphism of graled K -algebras for which
Rad(@(m)S) = n. Then Hi (M) = Hi(M) (as graded modules over R) for all i and
all graded S-modules M.

The natural map of RB-modules
Exth(R/m*, M) = (Exth(R/m*, M)y = Extfqm(Rm/(mRm)",Mm)

is an isomorphism. Since the local cohomology of My as a module over the local
ring Ry is the direct limit of the Exty_(Rwm/(mRw)*, M), we see that in fact

H (M) = Hyp, (Ma)
so that one has an alternative approach to graded local cohomology: H Ru(Mn) is
a graded R-module in a natural way. At least one can use the isomorphism above in

order to reduce assertions about graded local cohomology to ‘local’ local cohomology,
for example Grothendieck’s vanishing theorem.

Theorem 1.20. Let M be a finite graded R-module of depth t and dimension d.
Then

(a) Hi(M) =0 fori <t andi > d,

(b) HL(M) #0 and HL(M) # 0.



2 Hilbert functions

Let R be a graded K-algebra as above, and M be a graded R-module. If all the
graded components M, are finite-dimensional vector spaces, then we can define the
Hilbert function and the Hilbert series of M; in particular this is possible if M is a
Noetherian or Artinian R-module:

Definition 2.1. Let M be a finite graded R-module. The numerical function
H{M,.): Z — Z with H{(M,n) = dimg M, for all n € Z is the Hilbert function
of M, and Hpy(t) = Yopnez H(M,n)t" is the Hilbert series of M.

In the following we shall occasionally have to assume that K is an infinite field.
This is never a problem. The Hilbert function of M ®x L as a graded module over
R ®x L coincides with that of M for all extension fields L of M. Furthermore the
homological properties of M are stable under such extensions; see [1].

Hilbert series and free resolutions. In our investigation of Hilbert functions we follow
Hilbert’s approach via free resolutions. (See (1] for a ‘modern’ treatment.)

Theorem 2.2. Let R be a graded K -algebra, and M be a finite graded R-module.
Then

HM(t) = HR(t) . PM(t, —1).
Suppose first that M has a finite free resolution

0 — @R(_J‘)ﬁn — e — @R(_J’)ﬁoa — M — 0.
2 J

The Hilbert series of @; R(—j)% is Hg(t) 3 ; Bijt? Hr(t), and so the formula follows
since the Hilbert series is additive on exact sequences.

For the applications we have in mind it is however important to note that the
theorem is equally valid if the minimal free resolution has infinite length. Then
one considers the vector spaces in each degree separately: this is possible since
in each degree there exist only finitely many non-zero terms. Namely, if we set
s; = min{j: fi; # 0}, then the ‘minimal shifts’ s; are strictly ascending.

Suppose that S is the polynomial ring K[X;, ..., X4] with a grading defined by
deg X; = a;. Then

1
(1 ._tal)...(l — tad)'

Hs(t) =

11
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This follows easily by induction on d: we have an exact sequence

X.
0—1‘5(—(1,1)”—:*5'—'}5"‘““—*0, S'=K[X1,...,Xd_1],
and the additivity of the Hilbert function implies (1 — t*1)Hg(t) = Hg(t).

Theorem 2.3. Let R be a graded K -algebra, and M # 0 a finite graded R-module
of dimension d. Then there erist positive integers ay,...,aq, and Q(t) € Z[t,t7"]

such that o)
t

= i

For the proof we choose a Noether normalization-S C R/(Ann M). Then M is

a finite S-module in a natural way, and S = K[Xy,...,Xy]. By Hilbert’s syzygy
theorem M has a graded free resolution

with Q1) > 0.

0 — PR(—j)P — - — P R(~j) — M — 0.
2 2
We choose Q(t) = Pum(t, 1) = T (—1) (X, Bi;t?). Since dim M = dim S, M has
positive rank over S, and @(1) = ranks M by the additivity of rank.

Generating functions of the type occuring in Theorem 2.3 appear frequently
in combinatorics, and one can describe their associated numerical functions very
precisely. A function P: Z — C is called a quasi-polynomial (of period g) if there
exist a positive integer ¢ and polynomials P;,¢ = 0,...,g—1, such that for alln € Z
one has P(n) = Pi(n) wheren =mg+i with0<:< g~ 1.

Theorem 2.4 (Serre). Let R be a graded K-algebra, and M # 0 q finite graded
R-module of dimension d. Then

(a) there ezists a uniquely determined quasi-polynomial Py with H(M,n) = Py(n)
for all n > 0; the minimal period of Py divides a; - - - ay;

(b) H(M,n) — Py(n) = 28 o(=1)' dimy Hi (M), for alln € Z;

(c) one has

deg Ha(t) = max{n: H(M,n) # Ppy(n)}
d

= max{n: Y (—1) dimg Hi (M), # 0}.

=0
(Here deg Ha(t) denotes the degree of the rational function Hpy(t).)

Part (a) and the first equation in (c) are exercises in rational generating functions;
1t is obviously sufficient to prove them for the function (1 — ¢1)71... (1 — ¢2«)72,
For (b}, note that the general behaviour of local cohomology under ring extensions
allows us to replace R again by a Noether normalization S of R/(Ann M). The
right hand side in (b) is additive on exact sequences as every Euler characteristic
formed from a series of derived functors. (The K-dimensions of the local cohomology
modules are finite: H: (M) is Artinian.) Therefore induction on projdim M reduces
the theorem to the case M = S which is then handled by induction on dim S: for
S = K the theorem is indeed true.
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Definition 2.5. (a) The quasi-polynomial Py is called the Hilbert quasi-polynomial

of M.
(b) The degree a(R) of the rational function Hg(t) is called the a-invariant of the

graded K-algebra R.

By Theorem 2.4, we have a(R) < 0 if and only ‘the equation Pr(n) = H(R,n)
holds for all n > 0. At least in the Cohen-Macaulay case the g-invariant has a
satisfactory homological interpretation:

Proposition 2.6. Let R be a graded Cohen—Macauvlay K -algebra of dimension d.
Then
a(R) = max{i: HA(R); #0}.

Homogeneous K-algebras. The exponents a; in the denominator of Hps(t) are the
degrees of the elements in a homogeneous system of parameters of R/(Ann M).
As pointed out above, we may freely assume that K is infinite; by 1.6 we can then
choose a system of parameters among the 1-forms, if R is a homogeneous K-algebra.

Theorem 2.7. Let R be a homogeneous K -algebra, and M a finite graded R-module
of dimension d. Then there ezists Qu(t) € Z{t,t7"] such that

Qu(t)
(1—1¢)d

In particular it follows that the Hilbert quasi-polynomial of M is a true poly-
nomial now, and therefore one uses the term Hilbert polynomial for modules over
homogeneous K-algebras.

Theorem 2.8. Let R be a homogeneous K-algebra, and M # 0 a finite graded
R-module of dimension d > 0. Then the Hilbert polynomial of M can be written

M
Pr(n) = i~-)———nd_1 + terms of lower degree.

(d— 1)

where e(M) > 0 is an integer, namely e(M) = Qu(1).

with  Qar(1) # 0.

Hp(t) =

That the degree of the Hilbert polynomial is d — 1, can be considered as a
staternent about generating functions; however, there is also a direct proof in terms
of commutative algebra. (See [1], 4.1.3.) That the leading term of the Hilbert
polynomial is a rational number with denominator (d — 1)! follows simply from the

fact that every integer valued polynomial is a Z-linear combination of the binomial

coeflicients ("‘:k) viewed as functions of n.

Definition 2.9. The number e(M) = Qs (1) is the multiplicity of M. (Note that
Qum(1) = dimg M if dim M = 0, and recall that, more generally, @ (1) is the rank
of M over a Noether normalization of R/(Ann M) generated by 1-forms.)

The numerator polynomial of Hps(t) is uniquely determined. This fact justifies
the following definition.
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Definition 2.10. We write Qu(t) = T hit', and call the sequence (h;)icz the
h-vector of M.

The concept of h-vector is a bridge between combinatorics and commutative
algebra. For example, if 4 is a simplicial complex, then the h-vector of A and the
h-vector of the Stanley-Reisner ring K[A] coincide. The next theorem indicates that
a ring-theoretic property can be combinatorially significant.

Proposition 2.11. Assume that in addition to the assumptions of 2.8 the module
M is Cohen-Macaulay. Then the h-vector of M is non-negative.

Choose an M-regular 1-form z € R. Then we have an exact sequence
0 — M(=1) — M — M/zM — 0.

The additivity of the Hilbert series implies Hps/zar(t) = (1 — £)Has(t). Therefore
M and M/zM have the same h-vector, and by induction it is enough to proof the
assertion in the case in which dim = 0. In that case h; = H(M,z) = 0 for all z.

For M = R one can give much stronger bounds for the k-vector. If = is a ho-
mogeneous system of parameters of R, then R/(z) is a zero dimensional K-algebra
with the same A-vector as E. Therefore one can apply Macaulay’s theorem about
the Hilbert functions of zero dimensional homogeneous algebras (see [1], Section
4.2). For example, if the Stanley-Reisner ring of a simplicial complex A is Cohen-
Macaulay, then the h-vector of A satisfies the bounds provided by Macaulay’s the-
orem.

The reader may have noticed that 2.7, 2.8, and 2.11 do not really require R to
be homogeneous. What we precisely need is that R has a homogeneous system of
parameters consisting of 1-forms, at least after an extension of K to an infinite field.
This is equivalent to B/(R;) being a finite dimensional vector space, and we call
such graded algebras almost homogeneous.



3 Graded canonical modules

We introduce the graded canonical module of a graded Cohen-Macaulay K-algebra
as an object with distinguished numerical invariants.

Definition 3.1. Let R be a Cohen-Macaulay graded K-algebra of dimension d. A
finite graded R-module C is a graded canonical module of R if there exist homoge-
neous isomorphisms

0 for:#d,

K fori:=d.

Note that the condition Exth(K,C) =0 for ¢ =0,...,d — I implies that C is a
maximal Cohen-Macaulay R-module. The fact that Exth(K,C) =0 for all i > d
is a similarly strong condition; see [1], Section 3.1 for the the local version of the
next theorem. (It does not matter whether the invariants in 3.2 are measured in the
category of graded R-modules or in that of all R-modules.)

Theorem 3.2 (Bass). Let M be a finite graded R-module and { = depth R. Then
the following conditions are equivalent:

\a) M has finite injective dimenston as an R-module;

(b) injdimp M = depth R,

(c) Extihy(K, M) =0 for all i > t.

A graded K-algebra is necessarily Cohen-Macaulay if it has a non-zero finite
graded module of finite injective dimensiom. This fact, called Bass’ conjecture, was
proved by Peskine and Szpiro; that it similarly holds for all Noetherian local rings,
is due to Roberts. (For a proof in the equicharacteristic case see [1}, Chapter 9.)

As we will see, every Cohen-Macaulay graded K-algebra has a uniquely deter-
mined graded canonical module.

Exty(K,C) = {

Eristence and unigueness. In dimension 0 the situation is very simple.

Proposition 3.3. Suppose R is a graded K -algebra of dimenston 0. Then RY is the
unique graded canonical module of R.

The proposition follows readily from our observations about injective modules
in Section 1.

One method to show the existence and uniqueness of wr in general is the re-
duction of all steps to the special case in which the dimensions of ail the algebras
involved are equal to 0. This method is carried out in all details in [1], at least in
the local case (which, if one has it available, makes the extension to the graded case
very easy). The reduction to dimension 0 is by taking residue classes with respect
to homogeneous regular sequences, and it is based on the following lemma of Rees.

15
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Lemma 3.4. Let R be a graded K -algebra, and M and N graded R-modules; ifx € R
is a homogeneous element of degree a wiich is R- and M-regular and annihilates N,
then

Extgd' (N, M)(—a) = Extyy(N, M/zM)  for alli > 0.

Given modules C and C' over R that satisfy the conditions for being a graded
canonical module, we immediately conclude from this lemma that (C/£C)(3 deg z;)
and (C'/=C')(LT degz;) are canonical modules of Rf(x) if ® = z,...,24 is a
homogeneous R-sequence. In particular, if & is a maximal such sequence, then
(C/xzC)(3 deg z;) and (C'/2C')(T deg x,) are isomorphic R/(z)}-modules. The next
proposition shows that we can indeed lift this isomorphism to an isomorphism of C
and C’, thereby establishing the uniqueness of the canonical module.

Proposition 3.5. Let R be ¢ Cohen-Macaulay graded K-algebra of dimension d,
and C a graded canonical module of R

(a) If M is a graded mazimal Cohen-Macaulay R-module, then Homp(M, (') is a
mazrimal Cohen-Macaulay module, and for every R-sequence & we have a homoge-
neous tsomorphism

Hompg(M,C) ® R/(x) = Hompy)(M/eM,C/xC).

Furthermore Exth,(M,C) = 0 for all j > 0.

(b} More generally, if M is a Cohen-Maca.ay R-module of dimension t, then
Extp(M,C) =0 if and only of ) = d — ¢; Ext& (M, C) is also Cohen-Macaulay
of dimension t, and

Extf*(Ext*(M,C),C) = M.
Now that we know the canonical module is unique we denote it by
wWgR.

The proposition, whose proof is an exercise in exact sequences, implies in particular
that
HomR(WR,WR) = Homg (HornR(R,wR),wR) = R.

It also helps us in establishing the existence of the canonical module. Suppose first
that R = S = K[z,,...,z4] with deg X; = a;. As a first attempt we try S as its
own graded canonical module. Since S is a maximal Cohen-Macaulay S-module,
Rees’ lemma implies that K (3 a;) is the graded canonical module of K, and this is
obviously false. But we only need to correct the grading: S(— 3" a;) is the graded
canonical module of 5.

Now let It be an atbitrary Cohen-Macaulay graded K-algebra. We choose a
graded Noether normalization S C R, S = K[X\,..., X4|. As we have just seen, S
has a graded canonical module ws. Set C = Homg(R,ws). Then the proposition
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implies that C is a maximal Cohen-Macaulay S-module, and therefore it is such an
R-module (use the sequence & = zy,...,z4). Furthermore

(ClxC)(>_ deg z;) = Homg(z)(S/(x), R/zR)
= Homg (K, R/zR) = (R/zR)",

so that (' is indeed the graded canonical module of R (use Rees’ lemma).

Theorem 3.6. Let R be a Cohen-Macaulay graded K -algebra. Then R has a unique
graded canonical module wg.

In establishing this theorem we have used the fact that R contains a polynomial
K -algebra over which it is a finite graded module. One can also compute the ci.aon-
ical module from a representation as a residue class ring, or more generally from an
arbitrary representation of R as a module-finite extension.

Proposition 3.7. Let R and S be Cohen-Macaulay graded K -algebras, and suppose
that @: § — R is a homogeneous K -algebra homomorphism such that R is a finite
graded S-module with respect to p. Then wp = Exty(R,ws), where t = dim S —
dim R.

Using appropriate regular sequences, first in the kernel of ¢, and then in 5/ Ker ¢,
one reduces the proposition to the case dim R = dim § = 0. In this case it amounts
to the isomorphism RV = Homg(R,S5Y). We have stated in 1.13 that BV and
Homg( R, SY) are 1somorphic as S-modules, but this isomorphism is easily seen to
be compatible with the R-module structure.

Forgetting the grading, we may consider R as a Noetherian ring, and ask the
question whether a graded canonical module localizes to a canonical module of the
local ring R, for all p € Spec R. This is indeed the case.

Proposition 3.8. Let Let I be a Cohen-Macaulay graded K-algebra. Then (wg),
is a canonical module of Ry for all p € Spec R.

The easiest (though perhaps not the most systematic) way for proving the propo-
sition is to write R as a residue class ring of a polynomial ring S. Choose q € Spec R
to be the preimage of p in S. Then dimS; — dim R, = dim S — dim R, and so the
proposition follows from 3.5 and its local counterpart (and the fact that wg, = 5,,
since Sy is a regular local ring).

Gorenstein graded K -algebras. A Noetherian ring R is called Gorenstein if it is
Cohen-Macaulay and wgr, = R, for all prime ideals p.

Proposition 3.9. Let K be a Cohen-Macaulay graded K -algebra. Then the following
are equivalent:

(a) wr = R(a) for some integer a;

(b) R is Gorenstein;

(¢} Rm is Gorenstein.
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The implication (c) = (a) holds since a finite graded module M is free if and
only if My, is free. The rest is trivial. The number a is (a) is easily identifiable:
a = a(R), as will be seen below.

Graded local duality. The importance of the canonical module rests to a large extent
on its role as the dualizing module in Grothendieck’s local duality theorem.

Theorem 3.10. Let R be a Cohen—Macaulay graded K-algebra of dimension d.
Then

(a) wr = (HA(R))", and

(b) for all finite graded R-modules and all integers i there exist natural homogeneous
isomorphisms

(Hy ™ (M))" = Extiy(M,wn).

For the proof we refer to [1] where ‘local’ local duality is treated in detail. The
reader should check that the argument given there works in the category of graded
R-modules.

The Hilbert function of the canonical module. The duality between R and wp is also
expressed by the Hilbert function of wg.

Theorem 3.11. Let R be o d-dimensional Cohen—Macaulay graded K-algebra, M
a mazimal Cohen-Macaulay graded R-module, and M' = Homp(M,wg). Then

(a) HM'(t) = (—l)dHM(t_l), and

(b) f R is a domain and M is a Cohen-Macaulay graded R-mod-le with Hp(t) =
t'H,.(t) for some q, then M(q) = wg.

For part (a) we use a Noether normalization S to simplify the situation:
Homp(M,wr) = Hompg (M, Homg(R,ws)) 2 Homg (M,S(a(S)),

and since M is free S-module, it suffices to consider M = S(b) for some b € Z. Then
everything boils down to the identity 1/(1 —¢t~') = —t/(1 — ¢).

Replacing M by M(q) we may assume that ¢ = 0 in (b). Note that (a) implies
the equation Hps(t) = Hg(t). Let = be a non-zero degree 1 element of M’. Then
the map R — M’, r — rz, is injective since a maximal Cohen-Macaulay R-module
is torsionfree and every ron-zero element of R is R-regular. The equality of Hilbert
series then yields Rz = M’. Since M = M", we have M = R' & wpy.

Corollary 3.12 (Stanley). With the notation and hypothesis of 3.11 suppose that R
has the Hilbert series Hp(t) = 30_, hit'/ Hfﬂ(l — t%).
(a) Then H,,(t) = (—1)Hg(t™!), equivalently,
tZaJ—a :_ h,_,’ti
HwR(t) = d =0 a
Hj:l(l —t J)
(b) If R is Gorenstein, then Hg(t) = (—1)*(P Hp(t1).
(c) Suppose R is a domain, and Hp(t) = (—1)%YHR(t™') for some integer q. Then
R is Gorenstein. '
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The corollary implies in particular that

a(R) = —min{i: (wgr); # 0};

this equation follows also from local duality and 2.4. [

If R is almost homogeneous, then the equation Hp(t) = (—1)%*(R) Hp(t~1) just
says that the h-vector of R is a palindrome, and if the h-vector of an almost homo-
geneous Cohen-Macaulay integral domain is palindromic, then R is Gorenstein!

As an application of 2.11 one obtains an equality for the h-vector of an almost
homogeneous Cohen-Macaulay domain.

Theorem 3.13 (Stanley). Let R be an almost homogeneous Cohen-Macaulay K -
algebra with h-vector (ho,...,h,), s = a(R) + dim R. Suppose that R is an integral
domain. Then

3 3
Zh;SZhs_{ forall 7=0,...,s.

Set & = a(R). We choose a non-zero element z € (wg)..). Then, by the same
argument as above, we have an exact sequence

0 — B~ wp(—-a) — N —0.

From standard arguments on depth it follows that N is a Cohen-Macaulay R-module
of dimension dim £ — 1. According to 2.11 it has a non-negative h-vector. This h-
vector can be computed from those of B and w, and its non-negativity implies the
inequalities claimed.



4 Invariants of finite groups

In the invariant theory of finite groups ring theory and combinatorics are inextricably
connected. Let K be a field of characteristic 0, and G C GL,(K) a finite linear
group. The group (G operates on the polynomial ring R = K[X,,...,X,] in a
natural way: we can identify each indeterminate with an element of the canonical
basis of K™, and then, for every ¢ € (G consider the automorphism of R induced by
the substitution X; — g¢(X,); we simply denote this automorphism by g. The set

R ={s€ R: g(s) = s for all g € G}

of G-invariants is a K-subalgebra of B. Evidently a polynomial s is invariant if
and only if its homogeneous components are invaraiant; therefore R“ is a graded
subalgebra of K.

The group G operates linearly on each vector space K,,. By Maschke’s theorem,
R, is a direct sum of irreducible representations of . It follows that R itself is
the direct sum of such representations. There are only finitely many isomorphism
classes cf irreducible representations {2y, ..., {2, of G where we let (2 is the trivial
representation on K (i.e. g{z) = z for all z € K). For each j we form the vector
subspace N, by taking the sum of all irreducible representations in G that belong
to the isomorphism class §2;; in particular Ny = R®.

Let V be an irreducible representation, and s an invariant. Then g(sv) =
g(s)g(v) = sg(v) for all v € V and g € G. Thus sV and V are isomorphic rep-
resentations of GG. It follows that sN; C N; for all s € R and all j, in other words
each N; is an R%-submodule of R.

The next observation is that R is an integral extension of R. In fact each
element s of R is a zero of the monic polynomial

[1(Y - g(s)) € RE[Y].

geqG

Theorem 4.1. (a} R® is a graded Cohen—-Macaulay K-algebra, and R is a finite
RE-module.

(b) As an RS -module R splits into the direct sum RE=N@aN,@-- D N,.

(¢) Each N; is a mazimal Cohen-Macaulay R®-module (provided N; # 0).

Part (b) has been shown above. For the proof of (a) let us first notice that Ris a
finitely generated RC-algebra; being integral over R, it is a module-finite extension
of RY. Next observe that for each ideal a € R® one has R NaR = a because of (b).

20
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Thus R% is a Noetherian ring, and therefore a finitely generated K-algebra. We
choose a homogeneous system of parameters in R; it is also a homogeneous system
of parameters of R, therefore an R-sequence, and finally an N;-sequence since N, is a
direct R°-module summand of R for each 1. In particular RS is a Cohen-Macaulay
ring.

The Hilbert series of the N; are given by a classical formula of Molien. There-
fore one calls them Molien series. We restrict ourselves to those N; for which the
corresponding irreducible representation has K-dimension 1. This means, for each
r & N; one has

9(z) = xilg)z
where x; : G — K is a group homomorphism. We write RX for N,, and denote its
Molien series by M, (t). Typical examples are the powers det* of the determinant
map, i.e. x(g) = (det g)* for some u € Z.
Let us define the linear operator pX on R by

pX(r) =1GI™ 3 x(g) " g(r).

9€G

It is easy to check that pX(R) = RX and pX{(r) = r for r € RX. The operator pX is a
K-endomorphism of the graded K-vector space R. Let p} denote its restriction to
R;; then pf = (pX)?, and therefore

dim RBY = dimImp} = Trp}¥ = |G|™* Y x(g)™" Trg|..
g€eC

Here Tr denotes the trace, and we use its linearity. Combining the formulas yields

Mylt) = 1617 3 (o)™ i(Trgm.)t‘l

(All this remains correct for irreducible representations of dimension w > 1 if we
replace the factor |G|™! by w|{G|~! and denote the character of the representation by
X; in order to check that p* has the desired properties one needs some elementary
facts about group representations.)

Theorem 4.2 (Molien’s formula). Let K be a field of characteristic 0, V a finite
dimensional K -vector space, G a finite subgroup of GL(V), and x: G — K* a group
homomorphism. Then the Molien series of RX is given by

(9)7"

M) = 1617 2 iy

qeG

We need to show that
1 [» o]

—_— = T t'
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for each ¢ € (. In fact, this equation holds for an arbitrary element ¢ € GL(V).
In order to prove it we may extend K to an algebraically closed field. Then, for
a suitable basis X7,...,.., of V, g is given by an upper triangular matrix whose
diagonal entries are the eigenvalues Aq,..., A, of ¢ (as an element of GL{V)).

The monomials of total degree 7 in X;,..., X, form a basis of the vector space
R;. If these monomials are ordered lexicographically, then g|g, is again represented
by an upper diagonal matrix whose diagonal entry corresponding to the monomial

X = X X2 js A% = A1+ A%n, Therefore

Trg|Ri = Z ’\av

|al=i

and the expansion of the product of the geometric series 1/(1 — A;t), j =1,...,n
gives us

3

oC . o0 . ki3 1
D (Trglr)e =30 30 2%t = [] 7=
2

1=0 i=0 |a|=1 =1

1

Using that A7',..., A;! are the eigenvalues of g~!, we finally get

e 1 s AJ-_I det ¢! 1
Il 1 — A\t 11 A=t det(gmt —tid)  det(id —gt)’

We use Molien’s formula in order to determine the canonical module of R%,
Theorem 4.3 (Watanabe). Let K be a field of characterisiic 0, V a K -vector space
of dimension n, R = S(V), and G « finite subgroup of GL(V).

(a) Then R (—n) is the canonical module of RC.
(b) In particular R® is Gorenstein if G C SL(V).

Set S = R® and x = det™!. It was observed above that N is a maximal Cohen—
Macaulay S-module. Furthermore

det g 1

M 1) = -1 - S -]
«(t) =14 g%c:; det(id —1g) G| QEZG det{g—1 — tid)
_ - 1 1 (="
= 1¢] gez% det(g —tid) €] % det(id —t~1g)

= (=)™ Mg(t™).

As the Molien series are Hilbert series, we may apply 3.11 to conclude that N(—n)
is the canonical module of S. This proves (a).

If G C SL(V), then, by (a), S is isomorphic to the canonical module of §. As a
canonical module is canonical, § is Gorenstein.

The use of combinatorial methods in the investigation of rings of invariants of
finite groups is by no means limited to the preceding theorem. For further results, for
example the Shepard—Todd-Chevalley—Serre theorem on the invariants of reflection
groups or a partial converse to part (b) of 4.3 we refer the reader to [1], Chapter 6.



5 Normal semigroup rings

Let D C R" be a convex cone, i.e. a subset closed under the formation of linear
cornbinations with non-negative coefficients. The elements z € C = DN Z" form a
semigroup with respect to addition, and therefore

K[C)= K[X® - X™: (21,...,2,) € C] C K[X{',..., X¥"]

is a well-defined K-algebra. In the following we write X* for X*1 ... X*". [n general
K[C] is not a finitely generated K-algebra, and one cannot say much about it.
However, suppose that the cone D is a finitely generated rational cone, i.e. there
exist ¢i,...,¢n € Q" such that D is the set of non-negative linear combinations of
€1,...,¢m. Then K{C] looks much more promising.

Theorem 5.1. Suppose that D is a finitely generated rational cone. Thez K[C] is
a finitely generated K -algebra and a normal integral domain. One has dim K[C] =
dim D = rank C.

T he rank of a semigroup €' C Z" is the rank of the subgroup generated by C.
That K[C] is finitcly generated is essentially Gordan’s lemma; it says that C is a
finitely generated semigroup if D is a finitely generated rational cone. In order to see
that K[C] is normal, one uses a desription of D that is equivalent to being finitely
generated: D is the intersection of finitely many vector half-spaces:

D= Hl.'", HY ={veV:{a,v) >0}

=

1=1

here {_,.) is the scalar product. If D is rational, then the a, can be chosen in
Q", and vive versa: a cone is rational and finitely generated if and only if it is the
intersection of finitely many rational vector half-spaces HI. Let C; = HY nZ"
Then it is not hard to see that

C;=2Z"'aN

as a semigroup. Thus K[C;] = KX, ..., X%, X" is a normal ring, and K|C],
the intersection of the K[C\], is also normal.

When € C Z" is an arbitrary finitely generated semigroup, then K[C] is called
an affine semigroup ring. It turns out that the rings K[C] introduced above, are
exactly the normal ones among all affine semigroup rings. That explains the title
we have given to this section of our notes.

23
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Faces and prime ideals. From now on it is tacitly understood that all the cones D
being considered are finitely generated and rational. By C we always denote the
semigroup D N Z".

A combinatorial object accompanying 1) is its face lattice F(D): the faces of D
are the intersections

DNH)N---NH, j=0...,m

where H? denotes the hyperplane {v € R": {(a;,v) = 0} bordering H;". The faces
are partially ordered by inclusion; with this partial order they form a lattice. The
maximal face is D itself, the minimal face is HY N --- N HY,.
Let A be the affine subspace of R" generated by a face F' of D. Then the interior
of D with respect to the subspace topology on A is called the relative interior of F;
we denote it by
relint F.

To each face F' of D we associate an ideal of K[C] by setting
PBAY=(X*:2¢ CNF).

Given an ideal a of K[C], we say that a is C-graded if a is generated by the monomials
X7# contained in a.

Theorem 5.2. (a) For all prime ideals p of K[C] the ideal generated by the .mono-
mials in a is a C-graded prime ideal.

(b) The assignment F — PB(F) is a bijection between the set of non-empty faces of
D and the set of C-graded prime ideals of K[C].

We refer to [1] for the proof. The reader should note that {a) is the C-graded
variant of 1.1(a).

We want to apply the theory of graded rings as developed in Sections 1, 2, and
3 to K|C]; this makes only sense if the grading on K[C] is compatible with the
semigroup structure of C.

Definition 5.3. A decomposition
K[C]= P K[C):
1i€N
of the K-vector space K[(C] is an admissible grading if K[C) is a graded K-algebra

with respect to this decomposition, and furthermore each component K{C]; has a
basis consisting of finitely many monornials X~*.

It is not hard to see which K[C] can be endowed with an admissible grading.

Proposition 5.4. The following are equivalent:

(a) if 2€ C and —z € C, then 2 = 0;

(b) {0} is the minimal face of D (i.e. D has an apex);

(c) there exists an embedding C — N™ of semigroups for some m > 0;
(d) K[C} has an admissible grading.
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It is clear that we may replace C' by D in (a). If the conditions of 5.4 are satisfied,
then C or D are called positive. Positive cones have cross-sections T.

Proposition 5.5. Let D be a positive cone.

(a) Then for each x € R™ with —z ¢ D there exists an affine hyperplane A such that
z€Aand T =AND is a bounded set generating the cone .

(b) Such T is a convex polytope, and its faces (including §) correspond bijectively to
the faces of D.

In conjunction with 5.2 the previous proposition shows that the set of C-graded
prime ideals of K[C] has the same combinatorial structure as the face lattice of a
polytope T

Cell complezes. A (finite regular) cell complez 1s a non-empty topological space X
together with a finite set I" of subsets of X such that the following conditions are
satisfied:

(1) X = UCEF €5

(i1} the subsets e € I" are pairwise disjoint;

(iii) for each e € I', € # @ there exists a homeomorphism from a closed i-dimensional
ball B' = {z € R': ||z{| € 1} onto the closure ¢ of ¢ which maps the open ball
Ul = {z € R': ||z]| < 1} onto ¢;

(ivide .

By the invariance of dimension the number 7 in (iii) is uniquely determined by e,
and e is called an open i-cell; B is a (—1)-cell. By I'* we denote the set of the i-cells
in I'. The dimension of I'" is given by dim I" = max{:: I'" # @}. It is finite since I’
is finite. One sets || = X.

A cell €' is a face of the cell e # e if ¢’ C €, and a subset X' of [" is a subcomplex
if for each e € J. all the faces of e are contained in X

The classical examples of cell complexes are convex polytopes P together with
their decomposition P = Usex(pyrelint f. For them the following property, which
follows from (i)-(iv), is an elementary theorem:

(v)if e € I and € € I'""? is a face of ¢, then there exist exactly two cells e,
ez € I"~1 such that e; is a face of e and ¢’ is a face of e;.

Let us say that € is an incidence function on I' if the following conditions are
satisfied:

(a) to each pair (e,e’) such that e € I and e’ € I"*"! for some i > 0, € assigns a
nummber e(e, e’) € {0, £1};

(b) e(e, ') # 0 <= €' is a face of ¢;

(c) e(e,®) = 1 for all O-cells ¢;

(d)ifeec I'" and ¢ € "% is a face of e, then

E(B, 61)5(61, 6’) + E(ea 62)6(62: 6’) =0

where e; and e, are those (2 — 1)-cells such that e; is a face of e and ¢’ is a face of
e; (see (v) above).



26 Algebraic and combinatorial reciprocity laws

Lemma 5.6. Let I" be a cell complez. Then there ezists an incidence function on I'.

Tor a proof see [22] where the incidence numbers (e, ¢’} appear as topological
data determined by orientations of the cells. Figure 5.1 indicates two incidence
functions on the solid rectangle and how they are induced by orientations.

+ — + —
SR N I
¥ +
+ + - +l 4+ +
—_ + + —_
Figure 5.1

Let I' be a cell complex of dimension d — 1, and ¢ an incidence function on I
We define the augmented oriented chain compler of I' to be the complex

C(I): 0 — Cyy i»cd_g«-—-—»---—»co i)C_l — 0

where _
Ci= P Ze and e)= Y elee)e foreel™,
ecI™ e}
: =0,...,d—1. That 8* = 0 follows from the definition of an incidence function and

property (v) of cell complexes. (The notation q (I') 1s justified since the dependence
of €(I') on ¢ is inessential.) For simplicity of notation we set H;(I") = H;(C(I")).

The fundamental importance of C(I") in algebraic topology relies on the fact that
it computes reduced singular homology:

Theorem 5.7. Let I' be a cell complez. Then Hy(I') = Hy({I'|) for all i > 0 (and
H_,(I')=0).
We use 5.7 via the following corollary:

Corollary 5.8. Let I' be a cell complex such that |I'| is homeomorphic to a closed
ball B*. Then H{(I') =0 for allz > —1.

Local cohomology. From now on D is a positive cone. By d we denote the rank of
C. Recall that d equals the Krull dimension of B = K[C].

We choose an admissible grading on K[C]. Independently of this choice, the
ideal m in R = K[C] generated by the elements X°, ¢ € C \ {0}, is the irrelevant
maximal ideal. We want to construct a complex ‘computing’ H, (M) that resembles
the combinatorial structure of I? as closely as possible.

Fix a cross-section T of D, and let F = F(T) be its face lattice, which we
consider as a caell complex. We denot. a face of D and its intersection with T by
corresponding capital and small letters. Let F' be a face of D. Then we set

Rp = R{XZ: 2€CNF}3
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that is, we form the ring of fractions of R whose denominators are the monomials

in {X?: z € CNF}. In particular, Rp = K[ZC) is the algebra generated by all
monomials X?* where z belongs to the group ZC generated by C. Let

L'= & Rr, t=0,...,d,
fe].‘t—l

and define §: L*~! — L' by specifying its component

0 if F' ¢ F,
e(f, finat if F' C F;

here € 1s an incidence function on F. It is clear that

Jp g Rpe— Rp to be {

L':O—»LoibLl—r---—demliLd—rO

is a complex. In the special case D = R}, K[C] = K[X],..., X,] we have seen it
already: it is (up to the choice of the incidence function) the complex C* of local
cohomology. That L~ is exactly what we want, is shown by the next theorem.

Theorem 5.9. For every K[C)-module M, and all 7 > 0,
Hy(M)= H (L' ® M).

The first step in proving the theorem is the verification of the equation H°(L°®
M) = H2(M). This amounts to the fact that the ideal generated by the monomials
X* contained in the 1-faces of D (i.e. the ex*remal rays of I}) generate an m-primary
ideal. This is true because their exponents z generate the cone D.

Now let 0 — M; — M; — M; — 0 be an exact sequence of K[C}-modules.
Since all the summands of L® are flat K[C]-modules, this yields an exact sequence

0—>L'®M1—-+L'®M2‘—*L.®M3—PO.
Therefore we have a long exact sequence
s H(L QM) » H(L® M) - H(L" QM) —» HY (L@ M) — - -

Finally we must show that H*(L* @ M) = 0 for all i if M is an injective K[C]-
module. It suffices to consider the indecomposable modules E{R/p) where p 1s
a prime ideal of B = K[Cl. (Each injective K[C]-module is the direct sum of
indecomposables, and each indecomposable injective module is the injective hull of
a residue class ring R/p.) Let G be the face of D such that P(G) is the C-graded
prime ideal generated by all the monomials in p. Let G = F(g) denote the face
lattice of the face ¢ = G N T of a cross-section T of D. The crucial point of the
proof is that

L* ® E(R/p) = Homz (C(G)(-1), E(R/p)).

(As for graded modules, —1 denotes a shift.) Since g i1s a convex polytope, it is
homeomorphic to a closed ball. So C(G) is an exact complex. Since C(G) is a
complex of free Z modules, exactness is preserved in Homg(C(G)(—1), E(R/p)).
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Cohen-Macaulay property and canonical module. The modules L' appearing in the
complex L* are direct sums ‘
L'= @ (L.,

z€EM

(L;)z being spanned by the copies of the monomial of X* appearing in the direct
summands {r. The maps of L* respect this decomposition, and in order to compute
its cohomology we analyze each components (L°),. Given z € Z", the crucial point
is to determine those faces F' of D for which (Rr), # 0. As we shall see, this is the
case if and only if the face F is not ‘visible’ from z.

Let P be a polyhedron in a R-vector space V. Let z, y € V. We say that y is
visible from 2 if y # « and the line segment [z, y] does not contain a point y’ € P,
y' # y. A subset § C V is visible if each v € S is visible.

Proposition 5.10. Let P be a polytope in R® with face lattice F, and z € R™ a
point outside P. Set S = {F € F: F visible from z}. Then § is a subcomplex of
F; its underlying space S = pes I is the set of points y € P which are visible from
z, and is homeomorphic to a closed ball.

Just look at a polytope if you don’t believe the proposition. Figure 5.2 illustrates
the following lemma. Let C = N? C R? and F be the positive X-axis, (G the positive
Y-axis. Then K[Clr = K[X,Y, X7, and (K[C]Fr), # 0 for z ¢ C exactly when
z is in the second quadrant (including the negative X-axis). Thus (K[C]r), # 0 if
and only if F' is not visible from z. Similar arguments work for the faces {0}, G,
and C.

G

T T 7 17T

1 1 & 1 1 1 1 * 4 1 .|

LI L

Figure 5.2

Lemma 5.11. (Rp), # 0 (and therefore (Rr). = K) if and only if F' is not visible

from z.

Now we can describe the cohomology of L°. In order to have a compact notation,
we set relint C = C' Nrelint D, and relint(—C) = Z™ N relint(— D). Then, with a
self-explaining notation, relint(—C) = ~ relint C.
Theorem 5.12. (a) If z € relint(—C), then (L"), is isomorphic to 0 — K — 0 with
K in homological degree d. Consequently H'(L*), = 0 for 1 # d, and H¥(L"), =
K = (L"),
(b) Suppose that z ¢ relint(—C). Let T be a cross-section of D with face lattice F,
and S = {FNT: FCF(D) visible from 2z} . Then
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(i) (L*): = Homg ((C(F) [E(S))(-1), K),
(1) H(F)=H(8) =0 for all i,
(iii) (H*(L*)), = 0 for all 5.

Part (a) is easy to see: for z € relint(—C') one has z € Rp if and only if F' = D.
(With some justification, one can call relint D the voyeur space relative to D: from
every point of it one can see every point of D \ relint D.) The rest requires a careful
discussion based on 5.10 and 5.11.

The previous theorem allows us not only to show that normal semigroup rings
are Cohen—-Macaulay, but also to determine their canonical modules.

Theorem 5.13. (a) (Hochster) R = K[C] is ¢ Cohen-Macaulay ring, and
(b) (Danilov, Stanley) the ideal I generated by the monomials X with ¢ € relint C
is the graded canonical module of K[C] (with respect to any admissible grading).

In fact, we have H.,(R) = 0 for : = 0,...,d — 1 by 5.9 and 5.12. Therefore
depth R = d by 1.20, and it follows that R is Cohen-Macaulay.

For (b) one first shows that /Y is isomorphic as an R-module to K[ZC]/U where

the submodule(!) U is the K-vector subspace spanned by all the monomials X?*,
2z € ZC, z ¢ relint(—C). Thus IV = HZ/R), and Jocal duality implies 7 = wg.

Corollary 5.14. K[C} is Gorenstein if and only if there ezists ¢ € relint C with
relintC' =c+ C.

One must only check that [ is a principal ideal if and only if it is generated by
a monomial.

Combinatorial applications. One of the most beautiful combinatorial applications
of commutative algebra is the study of the Ehrhart function of a convex polytope.
The Ehrhart function counts the lattice points in a polytope and all its multiples,
i.e. its images under the maps ¢ — mz, M € N.

Let P C R™ be a polytope of dimension d. Since P is bounded, we may Adefine
its Ehrhart function by

E(P,m):I{ZEZ":iGPH, meN, m>0, and E(FP0)=1.
m

and its Fhrhart series by

Ep(t) = > E(P,m)t™.
meEN

It is clear that E(P,m) = |{z € Z": z € mP}| where mP = {mp: p € P}. Similarly
as above we set

EY(P,m)=|{z€Z": Ze relint P}| form >0, E*(P,0)=0,
m



30 Algebraic and combinatorial rebiprocz'ty laws

and
Ef(t)= 3 EY(P,m)™
mEN

Note that E*(P,m) = |{z € Z": z € relint mP}| for m > 0.

We define the cone D C R**! by D =R, {(p,1): p€ P}. Then C = DNZ "t is
a subsemigroup of Z"*'. Therefore one may consider the k-algebra k[C]. Suppose
P is a rational polytope, i.e. the convex hull of fintely many points with rational
coordinates. Then D is a finitely generated rational cone, and K{C] is a normal
semigroup ring. Let us fix a grading on k[C] by assigning to ¢ = (c1,...,Ca41)
the degree cy41. For this grading the Hilbert functions of %] and of the ideal J
generated by the monomials X°¢, z € relint C, are given by

H(k[C],m) = E(P,m) and H(I,m)= EY(P,m).

The grading under consideration is admissible for £{C], and therefore we may
apply our previous results. Part (b) of the following theorem is Ehrhart’s remarkable
reciprocity law for rational polytopes.

Theorem 5.15 (Ehrhart). Let P C R” be a d-dimensional rational polytope, d > 0.
Then

(a) Ep(t) is a rational function, and there exists a quasi-polynomial ¢ with E(P,m) =
qg(m) for all m > 0;

(b) Ef(t) = (=1)* Ep(t7"), equivalently

EX(P,m) = (=1)E(P,—m)  forall m>1

where E(P, —m) = q(—m) is the natural extension of E(P,.).

(a) Since Ep(t) is the Hilbert series of a positively graded Noetherian k-algebra,
it is a rational function. According to 2.4 we must show for the second statement
in (a) that Ep(t) has negative degree, or, equivalently, that the a-invariant of k[C]
is negative. By 5.13 the ring k[C] is Cohen-Macaulay, and its graded canonical
module is generated by the elements X¢, ¢ € relint C. These have positive degrees
under the grading of k[{C1], and hence a(k[C]) < 0.

(b) By what has just been said, Ef(¢) is the Hilbert series of the canonical
module of k[C]. Furthermore, dim k[C] = d + 1. Thus the first equation is a special
case of 3.12. The second equation results from 3>, -, E(P,—m){™ = —Ep(t71).
(The reader may prove this identity as an exercise.)

The quasi-polynomial ¢ in 5.15 is called the Ehrhart quasi-polynomial of P.

Suppose that P 1s even an integral polytope, that is, a polytope whose vertex set
V is contained in Z". Then, in addition to £{C], we may also consider its subalgebra

E[V] = k[ XUV v e V],

Obviously k{V] is a homogeneous k-algebra. Let ¢ € C; then there exist g, € Q, such
that ¢ = 3", ey quv. If we multiply this equation by a suitable common denominator e
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and interpret the result in terms of monomials, then we see that (X°)¢ € k[V}. Thus
k[C] is integral over k{V]. Since it is also a finitely generated k{V]-algebra, it is even
a finite k{V]-module. Thus K[C] is almost homogeneous. In particular the Ehrhart
quasi-polynomial of P is a polynomial and therefore called the Ehrhart polynomial
Furthermore k[C] has a well defined A-vector, which one calls the h-vector of P,
and a well-defined muitiplicity. The multiplicity of K[C] is an elementary geometric
invariant of P.

Theorem 5.16. Let P C R" be an n-dimensional integral polytope, and let k[C] the
normal semigroup ring constructed above. Then

e(k[C]) = n! vol P.

Elementary arguments of measure theory show that the volume of P is

wl P = Lim 2™
mM— oo mn

Being the Hilbert polynomial of a (n + 1)-dimensional k[V]-module, E(P,m) has
degree n. Thus its leading coefficient is given by vol P. On the other hand, it is also
given by e(k[C])/n!.

The restriction tc n-dimensional polytopes P C R"™ is only for simplicity; see
[30], Section 4.6, for the general case. Using the fact that the volume of P is the
leading coefficient of its Ehrhart polynomial one can derive classical formulas for
vol P. For example,

vol P = %(E(P,l)—l—E"’(P,I)w?) for n = 2, and
vol P = é(E(P,Q) —3B(P,1)— E*(P,1)+3) forn =3.

For the polytope P of figure 5.3 we obtain the following numerical data:

Figure 5.3

E(P,1) =16, E*(P,1)=10, E(P,n)=12n>+3n+1 vol(P)=12.

The h-vector of an integral polytope P is subject to the following restraints.
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Theorem 5.17. Let P be an integral polytope. Then

(a) h; >0 for alli; h; =0 for 1 <0 and 1 > d;

(b) (Stanley) 0o hi < Slohsi for all j =0,...,s where s = max{i: h; # 0};
(c) (Hibi) 34, hi <M hiforallj=0,...,d.

i=d—j

Part (a) follows from the facts that K[C}]; = 0 for : < 0 and that the a-invanant
of K[C] is negative. The inequality in (b) is an immediate consequence of 3.13. For
(c) one uses that, according to 5.13 and with its notation, there is an exact sequence
0 — wp — R — R/I — 0; then one applies 2.11 to R/I.



6 Walks in directed graphs

In this section we want to investigate generating functions defined by the walks
in a directed graph. The material below is much more elementary than that of
the preceding sections since we will only use the relationship between the Poincaré
biseries of a module, its Hilbert series and that of the underlying K-algebra R.

Let us first remark that the commutativity of R is not crucial for the validity of
the equation

(*) Hy(t) = Hrl(t) - Pu(t, —1).

This is crucial for us since there is no reasonable way to work in a commutative
setting below. (The only exception is that of a directed graph representing a partial
order on its set of vertices: then we may choose R as the Stanley-Reisner ring of
the corresponding simplicial complex.)

A directed graph (7 on the vertex set V is a subset of V x V'; we always assume V
is finite. We want to study the numerical function counting the walks (vy, va,.. ., v,)
in G, i.e. such sequences satisfying the condition (v;,v,41) € G. We call n the degree
of the walk, and denote the number of degree n walks in G by x.{(7); by convention,
xo{G) = 1. The generating function of x,(G) is

He(t) = i xn(G)E".

Figure 6.1 shows a graph and its complementary graph G = (V x V) \ G. We have

Figure 6.1

He(t) = 1+ 4t +T¢2 + 1583 + 30t + - - - and Hg(t) = 1 +4¢ + 91 + 233 4+ 59¢* + - - -
so that He(t)Hg(—t) = 1+ terms of degree > 5. It would be an incredible accident,
if this equation were not a special case of a general theorem. Indeed, it 1s.

33
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Theorem 6.1 (Carlitz-Scoville-Vaughan). He(t)Hg(—t) = 1, where G = (V x V)\
GG is the graph complementary to G.

We prove 6.1 in a refined version. For a subset W of V let x,(G, W) the number
of degree n walks in G starting in W = V\ W, and x,.(G, W) the number of degree
n walks in G starting in W (with the same convention for n = 0 as above). We
introduce the corresponding generating functions

Hy(t) = i xa(G,W)t", and Hw(t) = i xa(G, W)t".

n=0 n=0

Theorem 6.2 (Gessel). With the notation just introduced, Hy (1) = Hw(—t)Hg(t),
equivalently

n

xn(G, W) = Z(‘l)iXi(G’, W) xn-i{G) for all n e N.

=0

We want to derive 6.2 as a special instance of (). Let us first note that (x)
simplifies considerably if the free resolution is linear, i.e. it has the form

F.. .- —>R(—i)ﬁ‘ —>R\—(i—1))ﬁ‘"1 —_— e "—>R‘G°;

Then Pr, (t,—1) = 32, B:i(—t)'.

One almost immediately associates sequences of vertices with sequences of in-
determinates. However, since we cannot permute the ver.ices in a walk, we are
forced to work with non-commuting indeterminates. This makes the algebra more
cumbersome — we must strictly distinguish between ‘left’ and ‘right’, but simplifies
the combinatorics tremendously.

So, let K{G) be the residue class algebra of the free K-algebra K{(V) on V
modulo the two-sided ideal a generated by the products vv’ for which (v,v') ¢ G (for
simplicity we identify a vertex and its corresponding variable), and set A = K{G).
It is clear that Hg(t) is the Hilbert series of A: the monomials (in non-commuting
variables) which form a K-basis of A are presented by the walks in G. Now we
choose I as the right ideal generated by the elements w € W. The monomials
whose leftmost factor belongs to W form a K-basis of I, and so the residue classes
of those monomials whose leftmost factor is outside W form a K -basis of the right
A-module A/I. Thus Hy ({) is the Hilbert series of A/I.

We start the free resolution of A/I with the natural choice Fy = A. Next let
Fy = A™) be a free right A-module with basis e,, w € W. Then the assignment
ew — w induces a homomorphism ¢y: Iy — Fp with Imp; = I. Note that | =
Puew wA. Thus Keryp, = Dyew ew Annw. Obviously Annw is the right ideal
senerated by those v € V for which wv € a, equivalently, for which (w,v) € G.

Applying the same argument to each of Annw in place of I and iterating the pro-
cedure, we obtain a linear free resolution of A/ in which the basis of F; corresponds
bijectively to the walks vy,...,v; in G that start from a vertex v; € W.
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Corollary 6.3. The following are equivalent:

((Ja) K has finite projective dimension .ver K{G);
(()6) G contains no cycles;

(()e) Hz(t)™! is a polynomial.

A proof by linear algebra. We would like to present another proof of 6.2 which uses
the transfer mairiz T of the graph G (over the real numbers R). In order to define T
we enumerate the vertices vy,...,v,, € V. Then T;; = 1 if (vi,v;}) € G, and T}; = 0
otherwise. Let T be the transfer matrix of G; then E = T + T is the matrix with all
entries equal to 1. For a subset W C V we define its indicator ey as the row vector
whose ¢-th component is 1 if v; € W, and 0 otherwise. It follows immediately by
induction that for n > 1 the number of degree n walks starting from a vertex in a
subset X C V and ending in a vertex belonging to ¥ C V is

(exT™ ' ey)

where {_,_.) denotes the standard scalar product in R™. In particular, the j-th
component of exT""! is the number of degree n walks starting in a vertex v € X
and ending in v;. The generating function I{;(t) above can be written

Hg(t) =1+ Z(ean_1,6v>tn.
n=]1
Furthermore, if we set A(y) = (y,ev), 7(y) = yT', e(y) = yE£, and 7(y) = (e — 7)(y),
then the equation for y,(G, W) in 3.1 reads

Mr" Hew)) = M7 (e V))
+Z LIAE ™ ew A" (ev)) + (=1)"AF (ew))-

The following lemma will show that one has an even stronger equation.

Lemma 6.4. Let M be a left module over some ring R, 7: M — M an endo-
morphism, e € M, and A: M — R an arbitrary map. We definee: M — M by
e(z) = AMz)e. Then

(r—e)"(y) = 7"(¥) — L M(r — )" ()7 (e)

forallz € M and n € N.

One goes by induction on n. For the induction step one writes (7 — £)"*(y) =
(r —€)((r — €)*(y)), applies the induction hypothesis, and uses the definition of .

We apply the lemma to the maps introduced above. Note that indeed e(z) =
A(z)ey. Since A is now linear, we obtain from the lemmz vith y = ew = ev —ew
that

n

(—=1)"" (ew) = "(ev — ew) — S (—1)" A7 ew) ) T (ew).

=1
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Solving for 7*(ew ) yields
™(ew) = (—1) ntlz 7" Z “+1'i)t(1_'"_"(ew))7i_1(ev) + 7"(ev).

The j-th component of 7"(ey) 1s the number X,({T.|)-1(G, W) of degree n + 1 walks in
(G which start in W and end in the vertex v;. If we modify the remaining notation
accordingly, then we get a vectorial refinement of the second equation in 6.2 (we
have replaced n by n — 1 and ¢ by n - i}:

Theorem 6.5. With the notation introduced,

X(G, W) = ()G WIEL(G) + () XPC W) for n21.

To obtain 6.2, simply sum the equations in 6.5 over j. The question arises
whether one can prove 6.5 homologically. This is indeed possible, and the homolog-
tcal approach explains the structure of the formula very well.

Let A = K{G). We observed in the proof of 6.2 that the maps in the free resolu-
tion F. of A/I are composed of homomorphisms A — A, 1 — w, of right A-modules.
But such a homomorphism is left multiplication by w, and left multiplication maps
a left ideal into itself. This observation is the starting point for a decomposition of
F. that yields the formula in 6.5.

Let AU = Av,; be the left ideal of A generated by v;. Then one has a decom-
position A = K & P, AWY) of K-vector spaces. Writing the free A-modules F; in
F. as a direct sum of copies of A, namely F; = A% with 8; = x;{(G, W), one may
similarly decompose F; as

Fi= K5 o EB(AU)).G
=1

Furthermore, for i > 1 we split the direct summand K? into the direct sum

é Kx(.'j)(GvW)

i=1

where for each j we have collected the subspaces eX with base elements e of F;
corresponding to those direct summands A on which the map to a component of
_1 is left multiplication by v;. Finally we set FO = EXEw) g (AUNA for 4 > 1,
and F = A4),
These decompositions are compatible with the grading of F, and furthermore

they even split F., into a direct sum of complexes, since F(” is mapped into F("’)
the maps A — A which occur in F. are left multiplications by an element w € V
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or 0. Taking both decompositions simultanecusly we obtain an acyclic complex of
£ -vector spaces

0= (F), = (Fl_)p — . — (F), — (K,

for each n > 1. Its Euler characteristic is the right hand side of the formula in 6.5
and the degree n piece of its homology is the vector space generated by all degree n
monomials in A/f which end in v;.

Remarks. The material of this section has been taken from Bruns-Herzog-Vetter [2],
which furthermore contains some extensions of 6.2. Kobayashi [21] used a similar
approach towards proving combinatorial identities. Froberg [6] showed that the
residue class algebras of a free algebra witi respect to certain classes of homogeneous
relations of degree 2 are Koszul algebras (i.e. K has a linear resolution). In the case
W =V the resolution in the proof of 6.2 is a (very simple) special case of Fréberg’s
construction, which gives the base elements in a free resolution as monomials in
‘complementary’ vartables modulo ‘complementary’ relations.
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