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Introduction

These lectures are in some sense a continuation of [V3]. We focus on studying
(“ohen-Macautayness and other algebraic properties of blow-up rings, such
as the Rees algebra R and the associated graded ring 7 of an ideal. [our
problems come to mind:

(1) Assuming that (7 is ('ohen-Macaulay. what are its various numerical
invariants. and what can be said about the Cohen-Macau! wness of R?

(2) When 1s the above assumpticn satisfied, .e., wien is (¢ Cohen-
Macanlay?

(3) What 1s the canonical module of (7, and when is (¥ Gorenstein?

Finally, since the answers to these questions tnvolve conditions on the
reduction number of the ideal:

(4) How can ideals be characterized that have the required reduction

number?

In section one, we address guestion (1), by computing the a-invariant and
the Castelnuovo-Mumford regularity of ¢. We also mention a remarkable
result by Lipman, saying that for any ideal in a regular local ring, R is
Cohen-Macaulay if and only if (¢ is Cohen-Macaulay. In section three, we
deal with question (2), by showing that (& is Cohen-Macaulay if the reduction
number of theideal 1s “small enough”™. There we intend to present a relatively
short and self-contained proof of a general theorem, that contains the known
resuits in this direction. Questions (3) and (4} are addressed in sections four
and five.- Among other things. we give a characterization in terms of the
Hilbert-Burch matrix. for when a perfect ideal of grade two has a Cohen-
Macaulay Rees algebra. Our main tool in sections three, four, and five is the
theorv of residual intersections. which we introduce briefly in section two.

Throughout the lectures. (K. m) will be a Noetherian local ring with
infinite residue field, and I will be a proper H-ideal. The Rees algebra
Rilt] = -t 5ol will usnally be denoted by R, and the associated graded ring
gri(R) = ool /1T by (0

Recall that the analytic spread (1) of [ is defined as the Krull dimen-
sion of the fiber ring R &g R/m = (¢ p B/m, or equivalently, as the min-
imal number of generators of a minimal reduction of I {(NR}). Here one
says that an ideal J is a reduction of [, if J C [ and o I™*t = JI" for
some r > 0. The smallest integer r for which this equality holds is denoted



by r;(I). Finally, a minimal reduction of I is a reduction that is minimal
with respect to inclusion, and the reduction number r({) of I is defined as
min{r;(/)|J a minimal reduction of I}.

Furthermore, w will stand for the canonical module of a ring (in case 1t
exists), and g will denote minimal number of generators. The ideal [ is said
to satisfy G, if p(I,) < dim R, for every p € V(I} with dim R, < s, and [
satisfies G (or Fy) if 1 is G, for every s ([AN]).



1 Properties of Ideals Whose Associated
Graded Ring is Cohen-Macaulay

In continuation of the previous lectures [V3], we are now going to investigate
what more can be said about an ideal if its associated graded ring G is
Cohen-Macaulay.

We begin by using ideas from [JK] to give different proofs of some results
that are essentially from [AHT]: We provide formulas for the a-invariant and
the regularity of GG, and study how the reduction number depends on the
choice of various minimal reductions. Notice that the a-invariant does not
only control the transfer of Cohen-Macaulayness from (& to R (as explained
in [V3]), but that it is an interesting invariant in its own right, carrying a
great deal of information about the canonical module of G. Furthermore,
the regularity bounds the growth of the shifts in a minimal free resolution of
(7, and in particular, controls the relation type of the ideal.

Let S be a homogeneous Noetherian ring of dimension d with 4 = Sy
local, let M be the irrelevant maximal ideal of S, and let N be any graded
S-ideal containing S,. Present S as an epimorphic image of a (standard
graded) polynomial ring B = A[T},...,T,], let F. be a homogeneous minimal
free B-resolution of S, and write F; = @, B(~j)% with §;; # 0. Further set
a;(N,S) = max{j|[HL(S)]; # 0}, and notice that —oo < a,(V, ) < oo,

The integer aq(M, S) is called the a-invariant of S, and is denoted by
a(5) ([GW]). Notice that by local duality, a(5) = — min{jl{ws}; # 0}, in
case the canonical module ws exists. The Castelnuoro-Mumford regularity
reg(S) of & is defined as max{a,(S4, S)+i|i > 0}. It turns out that reg(S) =
max{3;; — i|t > 0 and j arbitrary} ([EG], [O]).

The link between the reduction number of an ideal and the Castelnuovo-
Mumford regularity of its associated graded ring is provided by the following
result of Trung, which can be proved using induction on the analytic spread:

Proposition 1.1 ([Tr]) Let R be a Noctherian local ring with infinite
residue field, let I be an R-ideal with analytic spread £, let J be a minimal
reduction of I. and write G = gr;(R).

Then ag(G4,G)+ € < rj(]) < reg(G).

Proposition 1.1 gives a formula for ¢(() in terms of ri(1), once we can
relate a(G) to a;(G4,G). This is done in Proposition 1.3 (due to Johnston



and Katz), whose proof is based on a lemma by Brodmann (which was already
mentioned in the previous lectures [V3]):

Lemma 1.2 ([B]) Let R be a Noethertan ring, let z € R, let I be an
R-ideal, and let E be an R-module. Then there is a long eract sequence of
local cohomology,

0 — HY,(E) = HY(E) - H}(E;) -
.= Hiy(E) = Hi(E) = Hi(B:) = .. .

Now let S be a positively graded Noetherian ring with A = Sp local. For
p € Spec(A), write S, = 5 @4 A, and d(p) = dim5,, and let P be the
irrelevant maximal ideal of S,.

Proposition 1.3 {cf. [JK]) Let S be a positively graded Noetherian ring
of dimension d with A = 5, local, and let t be an integer.

(a) If Hp(S,) is concentrated in degrees < t for every p € Spec(A), then
H,(S) is concentrated in degrees < t for every homogeneous ideal N
containing S,.

I Hd{p) is concentrated in degrees <t for every p € Spec(A), then
Sp P ;
& (5) is concentrated in degrees < t for every homogencous ideal N
containing Sy.

Proof. Let m denote the maximal ideal of A.

(a): We induct on dim S/N, the assertion begin trivial if dim S/N = 0. So
let dimS/N > 0 and pick x € m such that dim §/(N,z) < dim S/N. Then
by induction hypothesis, Hiy ,(S) is concentrated in degrees < t. Further-
more, H}_{S;) is concentrated in degrees < ¢, by induction hypothesis, and
since local cohomology commutes with localization. Now a graded version of
Lemma 1.2 implies that Hy(S) is concentrated in degrees <t as well.

(b): Write { = Ny and induct on u(f). If uw(I) = 0, then HE(S) =

d(m)(S ), and we are done. If u(f) > 0, write [ = (I', z) with u(I") < u(I),
and set N’ = (I',S4). Now using the fact that local cohomology is compatible
with localization and that dim S; < d — 1, we deduce from the induction
hypothesis that H}f;‘; (S.) as well as H%,(S) are concentrated in degrees < t.



Thus again by Lemma 1.2, H(dN,‘r}(S) = H%(5) is concentrated in degrees
<i N

We are now ready to prove the first main result of this section:

Theorem 1.4 (compare to [AHT]) Let K be a Noethcrian local ring with
infinite residue field, let [ be an R-ideal with analytic spr-ad ¢ and reduction
number r, write A(1) = {p € V(I)It{l,) = dim R,}, le/ J be any minimal
reduction of I, and assume that G = gr;(R) s Cohen-M.caulay. Then:

(a) alG) = max{r(l,) - {(L)|p € A(])}
= max{r(l,) — {L,)|p € A(J),dimR, < £} U {r — ¢}
= max{r(L,) — éI,)lp € V(D).

(b) r < () <reg{G) <a(G)+¢
max{r(l,) — €(1,) + £|p € A(I}),dim R, < £} U {r}.

Il

Proof (cf. also [JK]). We wish to apply Proposition 1.3 to thering § = G.
Let M be the irrelevant maximal ideal of 5.

(a): We first show that a(G) < max{r(l,) — £(I,)ip € A(I)}. Let t =
max{r({;) — ¢({,)|p € A(I)}. By Proposition 1.3 (b}, applied to N = M,
it suffices to show that Hé(ppj(Gp) is concentrated in degrees < t for ev-
ery p € Spec(A) = V{[I). However, if p & A([), then (G, ;) = {(1,) <
dim R, = d(p), and hence Héﬂff((;p) = 0. On the other hand, if p € A([),
then #(I,) = d{p), and hence by Proposition 1.1 and the very definition of
by ayp{Goen Gy) = agqpy(Gpy, Gy) < rldp) — £(I;) < t. This means that
Hé‘ppj(ﬁ'p) is concentrated in degrees < ¢,

Next, notice that the inequalities

max{r(L,) — HI)lp € AU} < max{r(L,) — €(1,)|p € A(I), dim R, < £}
U{r - ¢}
max{r(L,) - €(L,)lp € V(D))

[\
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are trivially satisfied.

Thus, it suffices to show that max{r(/,) — £(L,}|p € V(I}} < a(G). Since
the a-invariant cannot increase upon localizing R (which one can see, for
instance, by completing R and using local duality), we only need to check
that r — ¢ < a{(7). However, again using the local property of the e-invariant,
we conclude from Proposition 1.3 (a), that a:/{G, G} < a((), and therefore
reg(G) = max{a, (G4, G)+i]0 €7 <} <a(G)+ £ Now by Proposition 1.1,
r<a(G)+ ¢

(b): The first inequality is trivial, the second follows from Proposition
1.1, the third has just been proved above, and the last equality follows from
part {a). |

Remark 1.5 A different formuia for the e-invariant of ¢ has been shown
in {[SUV]: In addition to the assumptions of Theorem 1.4, write g =
grade I and suppose that [ satisfies G; then a(G) = max{—g,r - ¢}.

Combining Theorem 1.4 (a) or Remark 1.5 with {TI], one obtains the
results about the Rees algebra R = R[[t] that were already discussed in
the previous lectures ([V3]): Assume that 7 is not nilpotent. Then with
the assumptions of Theorem 1.4 (a), R is Cohen-Macaulay if and only if
r(1,) < €(I,) for every p € A(I) (or equivalently, for every p € V(I)); on the
other hand, under the assumptions of Remark 1.5, R is Clohen-Macaulay if
and only if ¢ > 0 and r < £.

Corollary 1.6 (compare to [AHT]} In addition to the assumptions of
Theorem 1.4, suppose that v(I,) < r — €+ £(I;) for every p € A(l) with
dim R, < ¢ (which holds, for instance, ifr 2 {—g and if r{1,) =0 for every
p€ A(l) with dim R, < {).

Then a(G) = r — f. reg(G) = r, and r;(I}) = v does not depend on the
chotce of J.

Proof. The assertions follow from Theorem 1.4. [ |

We now wish to investigate the regularity of the Rees algebra R = RIIt].

Proposition 1.7 Let R be a Noetherian local ring, and let I be a (proper)
R-ideal.
Then reg(R) = reg(G).



Proof. We Jook at the usual exact sequences from [H3],

(1.8) 0-Ry 2 R—R—0,

(1.9) 0—- R ()R G0

First notice that

. ; R fori=20

Thus by (1.8},
(1.10) [Hi, (Ry)]; = [Hi, (R)), fori>2orj #0.
On the other hand, (1.9) gives rise Lo an exact sequence
Hy, (Ry)(1) — Hi (R} — Hy (G) — HiF (R4 ) (1),
which, when combined with (1.10), yields
(L1 [y (R = [He (R, = [H (G)]; — U (R4,

_ provided that + 2 2 or j # —1. Also notice that Hi (G} = A (G).

Now write s = reg(R) and { = reg((7), and note that s > 0, ¢t > 0. By
(1.11), if £ > 2 then Hg;+((}) is concentrated in degrees < s — 7, and if 2 < 1
then Hp (() is concentrated in degrees < max{s —:,—1} = s — 1. Thus
reg((7) < s. On the other hand, again by (i.11}, if : > 2 then Hy (R) is
concentrated in degrees < ¢ —i, and if 1 < 1 then H,"Lr('R) is concentrated in
degrees < max{! —{, -1} =1 —i. Therefore reg(R)<¢. 1B

Recall that rt(J), the relation typeof I, is the largest degree occurring in a
homogeneous minimal generating set of the relation ideal (), when presenting
R as R[T\,...,T,]/Q. Results similar to the next one have been shown in
[AHT] (assuming that R is Cohen-Macaulay).

Corollary 1.12 With the assumptions of Corollary 1.6, reg{( R) = r and
rt(f)y <r+1.



We now turn to the aforementioned result by Lipman. A Noetherian
local ring (R, m) of dimension d is pseudo-rational if R is Cohen-Macaulay,
normal, and analytically unramified, and if for every proper birational map
f: X — Y = Spec(R) with closed fibre £ = f~!({m}), the natural map
6§ : Hi(R) — HE(X,Ox) is injective ([LT]) (one may assume X to be
normal). Note that by [LT], every regular local ring is pseudo-rational.

In addition to our standard notation from the introduction, let d =
dim R, A(I) = {p € V(I}|¢(1,) = dim R,}, and write X = Proj(R) for
the blow-up of Spec(R) along V(I), and E = Proj(R @ R/m) for its closed
fibre. For his proof, Lipman uses the following result:

Theorem 1.13 ([S]) If G is Cohen-Macaulay, then Hy(X, O%) =0 for
1 < d.
Theorem 1.14 ([L)) Let R be a Noetherian local ring, let I be an R-ideal

with ht [ > 0, and assume that R, is pseudo-rational for every p € A(I).
If G is Cohen-Macaulay, then R is Cohen-Macaulay.

Proof. By {T1] and the first equation in Theorem 1.4 (a), R is Cohen-
Macaulay if and only if R ®g R, is Cohen-Macaulay for every p € A(I).
Thus we may assume that R is pseudo-rational. By the normality of R, we
may then suppose that d = dim R > 2. Let M be the irrelevant maximal
ideal of R, and write V = X\ E, U = Spec(R)\{m}.

It suffices to prove that [Hi(R)]o = 0, which can be seen from the proof
of [TI], as modified in [V3]. Indeed, suppose [Hi(R)lo = 0, then by (1.8),
Hi (Ry).= Hy(R) for i < d, and hence (1.9) induces embeddings

it Hy(R)(1) = Hif(R)

for i < d. However, when disregarding the grading, o; ar iijective endomor-
phisms of Artinian modules, and therefore have to be bijective. Hence there
are homogeneous isomorphisms Hi,(R)(1) = H},(R), which force Hj(R)
to be zero for ¢ < d. This means that R is Cohen-Macaulay.

Since d > 2, one has HL(R) = &,H*'(X,0x(j)), which reduces us
to showing that H4"}(X,0x) = 0. But from Theorem 1.13 and from the
long exact sequence for sheaf cohomology with support, one obtains an exact
sequence '

0 = HEV(X, Ox) — HY(X,0x) — H7(V,Ov) 2 HE(X, Ox).

9



Thus it remains to prove that A is injective, Since d > 2, there is a commu-

tative diagram

Hi-Y U, Op) — HL(R)
i # of .
hY

H*H(V,0v)  —  HE(X,0:)

where ¢ is injective by the definition of pseudo-rationality, and g is surjective
because the fibers of the map V — {/ have dimension < d —1 ([LT, p. 103]).

Hence A is injective. [ |
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2 Residual Intersections

We are now going to review some basic facts about residual intersections.
This notion, essentially introduced by Artin and Nagata ([AN]), generalizes
the concept of linkage to the case where the two “linked” ideals do not nec-
essarily have the same height.

Definition 2.1 ([HU]) Let R be a local Cohen-Macaulay ring, let I be
an R-ideal of grade g, let K be a proper R-ideal, and let 5 > g be an integer.

(a) K is called an s-residual intersection of I if there exists an R-ideal
a C I, suchthat K =a: [ and ht K > s > u(a).

(b) K is called a geometric s-residual intersection of I, if K is an s-residual
intersection of [ and if in addition ht / + K > s.

Example 2.2 ([H5]) Let R be a local Cohen-Macaulay ring, le* n > s > 2,
let X be an n by n — 1 matrix of variables, let ¥ be the n —s by n —1 matrix
consisting of the last n — s rows of X, write S = R[X] (or R{X](x)), and
consider the S-ideals I = I,,_;(X) and K = [,,_,(Y). Then K is a geometric

s-residual intersection of 1.

Example 2.3 ([H5]) Let (R, m) be a local Cohen-Macaulay ring, let [
be an R-ideal satisfying G and sliding depth (cf. [V3}), let fi,... fn be
a generating sequence of I, let M be the unique graded maximal ideal of
the extended Rees algebra R[/f,t7'], and let K be the kernel of the R-
epimorphism from S = R[Ty,...To,Ulpn,,..1o0) to R[It,t71}y, mapping
T to fit and t~' to /. Then K is a geometric n-residual intersection of the
S-ideal (1,U).

Example 2.3 gives a first indication that residual intersections might play
a crucial role in studying blow-up algebras. The example is, on the other
hand, somewhat misleading, because the ideals we consider will usually not
satisfy G. In order to deal with this more general situation, we need the
notion of Artin-Nagata properties:

Definition 2.4 ([Ui]) Let R be a local Cohen-Macaulay ring, let I be an
R-ideal of grade g, and let s be an integer.

(a) We say that I satisfies AN if for every ¢ < ¢ < s and every geometric
i-residual intersection K of I, R/K is Cohen-Macaulay.
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(b) We say that [ satisfies AN, if for every ¢ < ¢ < s and every i-residual
intersection K of [, R/K is Cohen-Macaulay.

Theorem 2.5 ([HVV], cf. also [H5]) Let R be a local Cohen-Macaulay
ring, and let I be an R-ideal satisfying G, and sliding depth.
Then I satisfies AN,

The next resilt underlines the close connection batween residual inter-
sections and powers ol ideals, even if the condition (¢, dues not hold:

Theorem 2.6 {[Ul]) Let R be a local Gorenstein ring of dimension d, let
I be an R-ideal of grade g, let s be an integer, assume that I satisfies Gy and
that depth R/I? >d —g— j+ 1 whenever 1 < j<s—g+ 1. Then:

{a) I satisfies AN,.

(b) For every g < t < s and every i-residual intersection K = a : I of
I, wpyp = I=9+ /a9 where wpyp = "9 4 K/K in case K is a
geometric r-residual inlersection.

The above assumption that depth R/I? > d—g—j+1forl <j <
s — g + 1, is automatically satisfied if / is a strongly Cohen-Macaulay ideal
([V3]) satisfying G, as can be easily seen from the Approximation Complex
([V3]). On the other hand, recall that any perfect ideal of grade 2 and any
perfect Gorenstein ideal of grade 3 is licer (which means, in the linkage class
of a complete intersection) ([A], [G], [W]), and that in turn, any licci ideal
in a local Cohen-Macaulay ring is strongly Cohen-Macaulay ({H4]). Thus
Theorems 2.5 and 2.6 apply to such ideals {assuming that G, holds and that,
for the latter theorem, 1 is Gorenstein).



3 Conditions for the Cohen-Macaulayness of
Associated Graded Rings

So far, we were mainly working under the assumption that the associated
graded ring is already known to be Cohen-Macaulay. We are now going to
provide sufficient conditions, again in terms of the reduction number, that
would guarantee this assumption to hold.

Throughout, 12 will be a local Cohen-Macaulay ring of dimension d with
infinite residue field, / will be a proper R-ideal with grade g, minimal number
of generators n, analytic spread {, and reduction number 7, G and R will
denote the associated graded ring and the Rees algebra of /.

So far, it has been shown that (7 is Cohen-Macaulay under any of the
following assumptions:

o [ satisfies Gy, depth R/I > d—¢, £ < g+1,and r <1 ((HHI1], cf. also
V2.

e R is Gorenstein, I is a complete intersection locally in codimension
g+ 1, R/I is Cohen-Macaulay, f < g+ 2, and r <1 ((HH2]).

I satisfies (3¢ and sliding depth, and r <1 ([V2}).

I satisfies G, and AN, ,, depth RfI >2d—¢, g > 2,and r <1 ((U1]).

e R is Gorenstein, [ satisfies Gy, depth R/I > d — ¢, depth R/I7 >
d—g—j+lforl <j<i{—g-1l,andr <1 ((u1).

[ satisfies Gy, depth R/IF > d—g—j+1for1 <j <2, £{=g+1, and
r < 2 ([GN1]).

e 17 is Gorenstein, I is a complete intersection locally in codimension
g+ 1, R/I is Cohen-Macaulay, depth RiI*>d—-g—2,{=g+2,and
r <2 ([GN2]).

] satisfies (35 and is perfect of grade 2, £ =3, n < 4,and r <2 ([AH]).

]

] satisfies GG, and is perfect of grade 3, R/I is Gorenstein, £ = 4, n <3,
and r < 2 ([AHH]).
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o % is Gorenstein, / satisfies G, and is strongly Cohen-Macaulay, n <
f4+1,andr <¢é—g+1([SUV].

e R is Gorenstein, [ is a complete intersection locally in codimension
f — 1. depth R/T7V>d—g—j+1for1 <j<{—g+1, > g+2 and
r< g+ L{[T]

o 1 is Gorenstein, [ is a complete intersection locally in codimension
¢ — 1. depth /1D > d—g—j+1forl < j < ¢—g—1, depth
RiIF9>d—¢6 6> g+3 and r <€ g ([T]).

o [ satisfies (7, depth R/ > d—g—j+1for 1 <) <3, #=4g+2, and
r < 3 ({AHc], using an assumption that is slightly weaker than ().

The goal of this section 1s to give a self-contained proof of the following
theorem, which contains the above results as special cases:

Theorem 3.1 ([JU]) Let R be a local Cohen-Macaulay ring of dimension
d with infinite residue field, let I be an R-ideal of analytic spread € and
reduction numberr, let k > 1 be an integer withr < k, assume that I satisfies
Ge and ANy, locally in codimension £~ 1, that I satisfies AN, 00 4y, and
that depth R{I? > d — €+ k —j for1 < <k,

Then (7 1s Cohen-Macaulay.

We are now going to discuss the assumptions of Theorem 3.1.

The condition depth R/[V > d — ¢ + &k — j for | < 5 < k, gives a
linearly decreasing bound for the depths of the powers of T so that depth
/1% > d — ¢, where the latter inequality is necessary for G to be Cohen-
Macaulay (e.g. [EH]). Also notice that if ¢ = d, then it suffices to require
depth R/IY > d — ¢+ k— jfor 1 <j <Lk~ 1. Moreover, for any strongly
(Clohen-Macaulay ideal [ satisfying Gy, one has depth /12 > d—g— 7+ 1
for I <) < ¢ — g+ 1. Finally, the depth assumptions in Theorem 3.1
automatically imply that & <7 — g + 1, which can be seen by setting 7 = 1.

As to the Artin-Nagata properties, notice that these assumptions auto-
matically hold if { = ¢ + 2 and & = 3, or if I is AN,_,. On the other
hand, AN;_, is always satisfied if £ < g + 1, or if [ satisfies G; and sliding
depth (cf. Theorem 2.5), or if R is Gorenstein, [/ satisfies (;, and depth
R/I'>d-g—j+1for1<j<?¢—g—1{cf Theorem 2.6). In particular,

14



any reference to the Artin-Nagata property can be omitted in Theorem 3.1
if £ < g+1,orif Ris Gorenstein and k =¢— g+ 1.

This discussion shows that the results from the beginning of the section
are indeed special cases of Theorem 3.1; it also gives the following application:

Corollary 3.2 Let R be a local Cohen-Macaulay ring with infintte residue
field, let T be a strongly Cohen-Macaulay R-ideal {e.g., an R-ideal in the
linkage class of a complete intersection, such as a perfect ideal of grade 2 or
a perfect Gorenstein ideal of grade 3) with grade ¢, analytic spread {, and
reduction number r, assume that I satisfies Gy and that r <{ — g+ 1.

Then G is Cohen-Macaulay.

Combining Theorem 3.1 and Corollary 3.2 with [JK] (or [SUV], [AHT])(cf.
[V3]}, one obtains:

Corollary 3.3 In addition to the assumptions of Theorem 3.1 or Corol-
lary 3.2, suppose that g > 2.
Then R is Cohen-Macaulay.

We now turn to the proof of Theorem 3.1. The statement of this theorem
was somewhat inspired by [T]; for its proof however, we are going to follow
[JUJ.

We first need to recall a technical result about residual intersections (gen-
eralizing [H5] and (HVV}).

Lemma 3.4 ([Ul]) Let R be a local Cohen-Macaulay ring with infinite

residue field, let a C I be (not necessarily distinct) R-ideals with p(a) < s <
ht a: 1, and assume that I satisfies G.

(a) There erists a generating sequence ay,...,as of a such that for every
0 < ¢ < s — 1 and every subset {vy,...,;} of {1,...,s},
ht (ay,\ ... a, ) I 21 and ht T+ (a,,..... a, ) : I =i+ 1.

(b) Assume that I satisfies AN_,. Then any sequence a1,...,a, as in (a)
forms an unconditioned d-sequence.

(c) Assume that I satisfies AN for some t, write a; = (a,...,a:),
K, =a;: I, and let “ = 7 denote images in R/K;. Then for 0 <
{ < min{s,?+1}:

15



(1) K, =a,:{aj41) anda; = INK;, if1 <5 1.
(i1) depth Rf/a; = d — 1.

11} K; is unmired of height 1.

(ii1)
(iv) auyp is reqular on 2, f 1 < s — 1
(v) ([JU}) [ satisfies Go_; and AN ,.

Lemmma 3.5 Let R be a local Cohen-Macaulay ring of dimension d with
infinite residue field, let a C [ be R-ideals with p(a) < . <hta: 1, lett and
k be integers, assume that I satisfies GGy and AN__, locally in codimension
s — 1, that I satisfies AN, and that depth R/’ > d — s + k — J whenever
1 <j < k. Leta; be the ideals as defined in Lemma 3.4 (a). Then

(a) depth R/a;l’ > min{d — i,d — s+ k — j} whenever 0 < ¢ < s
and max{0,1 —{ — 1} < j < k.

(b) [a; : {a;)] N 1! = a, /7! whencver 0 <1 <5~ 1 and max{l,i —t} <
15k

Proof. Let 0 < ¢ < s — 1. We first show that if (a) holds for ¢, then
so does (b). However, it suffices to check the equality in (b) locally at every
p € Ass{R/a;I'"'). Now by (a), dim R, < max{i,s—k+j—1} < s—1, since
: < s—1and j < k. But then [, = a,. On the other hand by Lemma 3.4
(b), ay,....a; from a d-sequence in R, and the assertion follows from ([H2]).

Thus 1t suffices to prove (a), which we are going to do by induction on
2. 0 <1 < s. The assertion being trivial for 1 = 0, we may assume that
0 <t <s-1, and that {a) and hence {b) hold for :. We need to verify (a)
for i + 1. But for j = 0 (which can only occur if ¢ + 1 < £ 4 1), our assertion
follows from Lemma 3.4 (c.ii). Thus we may suppose that j > 1. But then

by part (b) for 1.

a,[J ﬂaz‘+§1J = (i-,'+1[(_az[j : (CL{_}.[))Q [J] _ ai+1[(a,‘ . {ai+1))ﬂ [J]
= (L;+1a"1jil Cal'Na; 1.
Hence, writing a,4y = a; + (@41 ), we obtain an exact sequence

(36) — (IH_]IJt']j_l — Cl{[j D (1{.{.11”; — aH_l[j — 0.
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On the other hand, by part (b) for i =0, [0: (ai+1)] NP C [0 (@;41)] N
I’ = 0, and therefore a;y10,1°7! = a; 1’71, a;4 I & IV, Now (3.6) and part
(a) for ¢ yield the required depth estimate for R/a; 4, [7. |

Remark 3.7 ([Ul]) Let R be a local Cohen-Macaulay ring with infinite
restdue field, let I be an R-ideal with analytic spread ¢ satisfying G, and
AN, locally in codimension ¢ — 1, and let J be a minimal reduction of 1.

Then ht J : [ > ¢.

Proof. Since for every p € V(I) with dim R, < ¢ — 1, I, satisfies G,
and AN;_,, it follows that [, is of linear type ([Ul]), and hence, I, = J,.
(Alternatively, one could use Lemma 3.4 (b)). I

Lemma 3.8 Let R be a local Cohen-Macaulay ring of dimension d with
infinite residue field, let I be an R-ideal with grade g, analytic spread £ and
reduction number r, let k& be an integer withr < k, let t > { — k — 1 be an
integer, assume that | salisfies Gy and AN,_, locally in codimension £ — 1,
that I satisfies AN, and that depth R/I7 > d--{+k—j whenever 1 < j < k.
Let J be a minimal reduction of I withry([) = r, write G = gr (R), fora € I
let @’ denote the image of a in [G];, and fora = J, let a1,...,a; and a; be
as defined in Lemma 3.4 (a). Then:

(a) a;NJ? = a; "' whenever 0 <+ < ¥ —1and j > max{l,1—t}, ort=¢

and j > r+ 1.
(b) @),=..,d, form a G-reqular sequence, and [(a},....d}) ¢ (aly)]; =
[(a},....a})]; whenever g <@ < f—2 and j > max{l,i—t}, ori =£—1

and j > max{l,{—t—1,r—1}.

Proof. (a): I{ { = 7, our claim is clear since 7 > r + 1 and therefore
I = JI~" = a,/7"". Furthermore, if 1 < 7 < k, then the assertion follows
from Lemma 3.5 (b}. with s = £, Thus we may assume that 7 > &+ 1. In
this case, we are going to prove by decreasing induction on z, 0 < ¢ < £, that
a;,N{? = a;fi~'. Fori¢ = € thisis clear. Thuslet 0 <1 < {—1; we need to show
the equality a,NJ7 = a,/’~'. However, since i—f < k and since a;"/¥ = q;[¥"!
is already known for v = 1 and for max{l,7 — t} < v < k, we may suppose
that j > max{2,: —{ + 1} and that by induction on j, a; N [1~! = a,[7~%
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Furthermore, by induction on ¢, ;1 M [/ = a,417°~'. But then, using our
induction hypotheses and Lemma 3.5 (b}, we obtain

NP CcaNaunl =anan Pt =an|el " + a7
= ol M faNand’ " = P Fag (e (ai)YN P
= a7 b agaf(a (aggq)) N Imex{tizth g -t
C al" ' a(a;nEt
= o/ ya el = a0

(b): We may assume that ¢ > g — 1. Since ay,...,q, form an R-regular
sequence, part (a) and (VV] already imply that af, ...,/ form a G-regular
seguence.

So, let w € [{al,...,a}) : (al,,)];. Picking an element z € [’ with = +
DAY = u, we have a,y1r € a; + ["+2 and therefore by part (a), a2 €
o IS N (G,‘ + [_;+2) = + ;43 N [+ = a, + a,-HIj“ =a, + a¢+11j*’1. Thus
aip1(z — y) € a; for some y € I’*!, Since z —y + '+ = z + [P = u, we
may replace r be r — y to assume that a;;,2 € a;. But then by part (a)
and Lemma 3.5 (b), z € [a; : (ai)]N T = a; N [7 = a;I'"!, which implies
u € (alf,...,al). |

A more special version of Lemma 3.8 (b) has been proved in [T).

To formulate the next proposition, which provides a crucial step in the
proof of Theorem 3.1, we need to recall that for a graded module M = @, M;,
the truncated submodule &;5;M; is denoted by [M]s,.

Proposition 3.9 Let S be a homogeneous Noetherian ring of dimension
d with Sy local, write [ = S, let by,... by be linear forms in S, set b; =
(biy... by} for =1 <@ < { (where () = 0), J = by, and let g be an integer
wrth 0 < g < €. Further let H*(—) denote local cohomology with support in
the irrelevant marimal ideal of S.

Assume that I¥1 C J (ie., J is a reduction of I with rj(I) < k), that
[0: ¢ (Bix1)]3icg41 = [bi]sicgt1 for 0 < i < € — 1, that depth [S/bi]i—g41 =

d—i—1 forg—1 <i < {-1, and thatdepth [S/J]; > d—{ for {—g+]1 < 7 < k.
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Then S is a Cohen-Macaulay ring. Furthermore, socle(H?*(S)) is concen-
trated in degrees at least —g and at most max{—g,k — £}.

Proof. To simplify notation we factor out b, and assume g = 0 (no-

tice that by,...,b, form an S-regular sequence and that [S/b,_1]o = So =
[§/6_1]o). Now [b; : (bi11)}pis1 = [be)5is1 whenever 0 < ¢ < £—1, depth
(S/0,)iq1 = d — i — 1 whenever —1 <1 < €—1, and depth [S/J]; > d — ¢

whenever £ +1 < j < k.

For 0 < i < { consider the graded S-modules My = {S/bi]yit1 =
I+1/b. 0 and Ny = Iifb,_y I + b0t (where [7' = [® = §). Notice
that [N]ser1 = My and [Ny = [S/b;_1]i, which yields exact sequences

(3.10) 0 — My — Ny — [S/6i-1]i — 0.
On the other hand, if 0 <1 < { — 1, then Niy1y = M(;)/bip1 My, and since

[6; : (big1)]is1 = [bi]5ip1 it follows that 0 :ag,, (big1) = 0. Thus, in the range
0 <:<¥¢—1, we have the exact sequences

(3.11) 0 — M(=1) = My — Niyyy = 0.

Also notice that Ng) = S. Hence it suffices to prove by decreasing induc-
tion on 7, 0 < ¢ < ¢, that depthgy N;; > d — ¢, and that socle( H¥™(Ny)) is
concentrated in degrees at least i and at most max{i,k — £ + i}.

If i = ¢, then Ny = [S/be1]e d @fﬂ_{_l[S/J]j has depth at least d — ¢ as
an Sg-module, and hence as an S-module as well. Furthermore, HY(Ny)
is concentrated in degrees at least £ and at most max{¢,k} (see, e.g., {GH,
2.9]).

Solet 0 < 7 < #-1 and suppose that our assertions hold for :+1. Applying
H*(—) to the exact sequence (3.11), we obtain homogeneous embeddings

(3.12) HI (M) (~1) — H) (M)
in the range § < d — ¢ — 1, and an exact sequence

—r= -t T -1 bit1 —
(3.13) HT (M) = HP7 7 (Nyyyy) — HOTH(Mg)(=1) =5 HH (M).

Now, H’(Mg;) being Artinian (and hence zero in large degrees), (3.12)
implies that H?(M(;) =0 for j <d -1 L Therefore depthg M) > d — 2.
Thus by (3.13),

(3.14) socle( H ™ (M) = socle( H* ™™ (N(i41)))(1).
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On the other hand, depthg{S/b;_,]; = depthg [S/b;.1]); > d —i. Hence
(3-10) implies that depthgN;) > d — ¢ and that there is an exact sequence

0 — H¥7Y (M) = H ™ (Ny) — HEH([S/0-1]).

Now taking socles and using (3.14), we conclude from our induction hypoth-
esis that socle( H4™*(N(;)) is concentrated in degrees at least ¢ and at most
max{:. k—-{¢+7}. M

We are now ready to prove a special case of Theorem 3.1.

Proposition 3.15 Let R be a local Cohen-Macaulay ring of dimension d
with infinite restdue field, let I be an R-ideal with grade g, analytic spread
{, and reduction number r, assume that I satisfies Gy and AN, , locally in
codimension £ — 1, that depth R/I' >d —g—j+1 for1 < j <{—qg+1,
and that r < € — g+ 1.

Then G = gr;(R) is Cohen-Macaulay. Furthermore, we (in case it exists)
is generated in degrees min{g,¢ —r} and g.

Proof. Let J be a minimal reduction of I with r,;(7) = r, let ay,...,a¢
and a, be as defined in Lemma 3.8, and let a! denote the image of a; in [G];.
We wish to apply Proposition 3.9 with § =¢— g + 1 to the ring § = ¢ and
the linear forms &; = ai, 1 <:¢ < £ From Lemma 3.8 (b) for t = g — 1 we
already know that {b; : (biy1}]5img41 = [B]3iog41 for 0 <i < £ - 1. Thus it
suffices to verify that depth [S/b;)i_gs1 2 d—i—T1forg—1<:<£€-1, and
that depth [5/J)e.gi1 > d = £

Since [by : {(biy1)]pi—yr1 = (b5 ge1 for 0 < 4 < £ — i, there are exact
sequences
(3.16) 0 — [S/b.]; = [S/bi],410 = [S5/0ia] 00 — 0

whenever 0 < ¢ < ¢ — | and j > 1 —g¢+ 1. On the other hand by our
assumption, depth [5/bg], = depth [S]; > d—g —j lor j < £ —~g. Hence
using (3.16), we can see by induction on ¢ that depth [S/b]; 2 d- ¢ —
whenever 0 < : < f—ltandi1-~g+1<j<¥¢~—g. In particular, depth
(S/bicgq1 =2d —t—1Lfor 0 <i¢<{—1. As to [S/J]¢_y41, notice that this
module is [79+! [ J 69 4 [E-942 = [i-g4lf j[t=g 4 JPf-o41 = [i-g+l /[ J[t-9
which has the required depth by Lemma 3.5 (a).
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Now by Proposition 3.9, G is Cohen-Macaulay. Furthermore, if r =
¢ — g + 1, then the assertion concerning wg follows immediately, whereas if
r < ¢ — g, we have to repeat the above argument with & = ¢ —g. |

We will need the following special case of [HH1, 2.9], which we will prove
using an argument from [V2]:

Proposition 3.17 Le¢t B be a local Cohen-Macaulay ring of dimension
d, let I be an R-ideal with I? = ol for some a € I, ¢ ssume that I, = 0 for
cvery associated prime p of R containing I, and that « -pth R/I > d — 1.
Then G = gr;(R) is Cohen-Macaulay.

Proof. The R-homomorphism from the polynomial ring R[T'] to the Rees
algebra R = R[It]sending T to at, induces a homomorphism of R[T]-modules
@ : TR[T] — I R[It]. Now ¢ is surjective because /? = al, and ¢ is injective
because I, = 0 for every p € V(I) N Ass(R) and hence [0 : (a?)]N 1 =0 for
every 7 > 1. Thus [R[[t] = [R[T] has depth at least d + 1. Now a depth
chase using the two exact sequences

0= IR(~-1)=>R—-R—0,

6-+IR—-R—=G-0
shows that (G has depth at least d. [ |

We are now ready to complete the proof of Theorem 3.1. The main idea
is to deduice this theorem from Proposition 3.15, by factoring out a suitable
link of the ideal and thereby lowering the analytic deviation (this method
has been employed by other authors, e.g., [GN2] and [T}, or earlier, but in a
different context, [H1], [H5], [HVV]).

The Proof of Theorem 3.1: Write ¢ = grade [/ and § = (1) =
¢ —g+1—k, and recall that § > 0. We are going to induct on ¢, the case
& = 0 being covered by Proposition 3.15. Thus we may assume that 6 > 1
and that the assertion holds for smaller values of 6. Now £ > g+ k > g+ 1.

We adopt the notation of Lemma 3.8. By that lemma, a, N [7 = a, [+~
for j > 1, and, equivalently, ¢}, ... a from a G-regular sequence. Thus we do
not change our assumptions and the conclusion if we factor out a,; to assume
that ¢ = 0 (thereby d and £ decrease by g, whereas k may be taken to remain
unchanged). Now £ > k > 1, and in particular, I satisfies G; and therefore

21



I, = 0 for every p € V(I) N Ass(R). Thus if ¢ = 1, then nur assertion follows
from Proposition 3.17.

Hence we may assume that £ > max{2, k}, in which case [ satisfies AN; .
Write K = 0 : [ and let 7 denote images in R = R/K. Now R is
(Cohen-Macaulay since [ satisfiles ANy, and by Lemma 3.4 (c) for instance,
INK =0. grade I > 1, [ still satisfies G, and AN,_, locally in codimension
£F—1.and [ is Ajvf,'_—max{'z,k}' Furthermore. dim R = diin B = d: and since
INA =0, we have #(/) = ¢£(/) = ¢ and thus & may be taken to remain
unchanged. Therefore §(/) = ¢ —grade I +1—k < €--1—k = §(]). Again,
as /MK =0, we have an exact sequence
(3.18) 0— K — gr(R) — gry(R) — 0,
where depth A = d since depth R = d. Now by {3.18), depth R/I >
min{depth K —1,depth B/I} > min{d-1.d—¢+k—-1} =d—-{+ k-1,
where the latter equality holds because £ > k. Furthermore, again by (3.18),
[V [ 2= [V for j > 2, and we conclude that depth BRI >d—E4 k-7
whenever j < k. Thus we may apply our induction hypothesis to conclude
that gry(R) is Cohen-Macaulay, and hence by (3.18), gr;(R) has the same
property. |

Having completed the proof of Theorem 3.1, we are now going to draw
further conciusions, mainly from Lemmas 3.5 (a) and 3.8 (b) (cf. [JU] for
most of this material). The next proposition says that it suffices to check
one of the assumptions of Theorem 3.1 locally in codimension ¢ {generalizing
results from [HH1], [HH2}, [V2], [U1], [SUV]).

Proposition 3.19 Lel K be a local Cohen-Macaulay ring of dimension
d with infinite residue field, let { be an R-ideal with grade g and analytic
spread €, let k> 1 be an inleger, and assume that I satisfies Ge and AN_,,
and that depth R/ 11 > d — £+ k — j whenever 1 < j < k. The following are
cquicalent:

(a) r(I,) <k for cvery p € V{I) with dim R, =€ < u(ly).
(b) (1) < k.

We are now going to investigate the degrees of the syzygies and the num-
ber of defining equations of the Rees algebra R and of the associated graded

ring G.
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Proposition 3.20 If in addition to the assumptions of Theorem 3.1, I
satisfies AN;_,, then
reg(R) = reg(G) =r.

In particular, rt(1) < r + 1, and r (1) = r for every minimal reduction J of

I

Proof. By [Tr, 3.3], in conjunction with Lemma 3.8 (b), reg(G) < r.
Now the rest follows from Propositions 1.1 and 1.7. |

When studying the defining equations of R and (, it suffices to consider
the ideals 4 and B of the symmetric algebras S(7} and S(//7?) that fit into
the natural exact sequences

(3.21) 0—-A4-—-51)—-R-—-0,
and
(3.22) 0—B—S(U/I*)—G—0.

Proposition 3.23 Let R be a local Gorenstein ring with infinite restdue
field, let I be an R-ideal with grade g, analytic spread £, minimal number of
generators n, and reduction number r, assume that 1 satisfies Gy, that the
Koszul homology modules H,; (1) are Cohen-Macaulay whenever 0 < j < €—g,
and that r < { — g+ 1. Further let J = (ay,...,a¢) be a minimal reduction
of I, let B = R[T\,..., T be a polynomial ring, and consider S(I) and R as
B-modules via the R-algebra homomorphisms mapping T, to a; € I = [S()]y
and to 0, respectively.

Then A@p R = [S(I/J)]5e-g42 and BRp R = [S(I/J + I*)]56-g42- In

n—g+1) forms of

particular, the ideals A and B are minimally generated by (n-e-l

degree £ — g -+ 2.

Proof. We first show that A @p R = [S({/J)]5-g42-

From cur assumption on the Koszul homology modules we know that [
satisfies AN;_, (Theorem 2.6 (a)), and that the graded pieces {M]; of the
M-complex are acyclic for 0 < 7 < £ — g ([V3]). By the acyclicity of these
complexes, S;(I) = I’ ([HSV, the proof of 4.6]) and depth R/I? > d—g—j+1
in the range 1 < j < ¢—g+ 1. Thus [A]; = 0 whenever j <{—g¢+ 1, and
furthermore by Proposition 3.20, Lemma 3.8 applies to the ideal J.

23



After changing the generators of ay,...,a; of J if needed, we conclude
from that lemma that in G, [(af,...,a!): (a',)]>e-g1 = [(a},... N | P
whenever 0 < ¢ < ¢ — 1. Thus in R, {(ait,...,at) : (@ig1t)]3e—gy1 =
[(alt,...,ait)}}gkgﬂ whenever 0 < 7 < ¢ — 1, as can bhe seen from [AH,
the proof of 6.5]. Now let H. denote Koszul homology with values in R.

Using the long exact sequence
Hl(alt. . ,(l,‘f) — f]’[((llt, N ,a,HL) -+
Holail, ... ait)(—1) "5 Hylayt,. .., a;t)

and induction on ¢, one sees that [Hy(ayt, . .. ait)]se-ge2 = 0 whenever 0 < ¢ <
¢ (cf. also [AH, 4.4]). In particular, [Torf (R, R)lst—gsz =
[Hl(alt, v ,G,gt)]zf_g+2 = 0.

On the other hand. we had seen that [A], = 0 whenever j < ¢ — g + 1.
Thus applying — @ R to {3.21) yields an exact sequence

O—*A@BRMS(I/J)——*'R@BRﬂU.

Since [R ®p B/Bilrr_ge2 = 0, we  conclude  that
[A®5 Rlse-g42 = [S(1/J)]50-g42, and therefore 4 ®p B = [S(T/J)]>e—gr2-
To prove the remaining assertions of the proposition, notice that upon
applying — ®p R/I to the latter isomorphism, one obtains a commutative
diagram
Aog R/ = [S(1/J + 12}]21?7.74#2

£ N -
Bzg R

where o is surjective. Thus ¥ is an isomorphism as well. Finally, notice that
both S(1)-modules [S{//J)]5s 440 and [S([/J + I?)]5,_,,5 are minimally

ri—g+1

n—i’-!) homogeneous elements of degree ¢ — ¢ 4 2. u

generated by (

24



4 Gorenstein Property and Canonical

Module

The relationship between the Gorenstein property of the Rees algebra R and
of the associated graded ring (' is well understood:

Theorem 4.1 ([1]) Let R be a local Gorenstein ring and let I be an R-ideal
with grade [ > 2.
Then R is Gorenstein if and only if G is Gorenstein and a(G) = —2.

Combining this result with Theorem 1.4 (a), one obtains (cf. also [AHT}):

Theorem 4.2 Let R be a local Gorenstein ring and let I be an R-ideal
with grade [ > 2.

Then R is Gorenstein if ana only if G is Gorenstein, r(I,) = ¢(I,) -2 for
somep € V(I), and r(1,) < €(1;)—2 for everyp € V(I) with dim R, = #(1,).

In the light of Theorems 4.1 and 4.2 we may restrict our attention to
the Gorenstein property of the associated graded ring G. One can expect
that this property corresponds to the reduction number of the ideal being
“very small”. As a first illustration of this theme, we mention the following
observation:

Proposition 4.3 ([SUV]) Let R be a Noetherian local ring with infinite
residue class field, let I be an R-ideal with analytic spread € and reduction
number r, and assume that I, 1s a complete intersection of grade ¢ > 0 for
some minimal prime p of I.

If G is Gorenstein, then a((¢) = —g, R is Cohen-Macaulay, andr < £—g.

Proof. In the light of [T]] (cf. also [V3]) and Theorem 1.4 (a), we only
need to prove that a((’} = —g.

To do so, we may assume that R is complete. Let wg stand for the
canonical module of . By assumption, wg = G(a), where a = a(G) (cf.
[HIO]). Note that wg & R, = wegr,, because (G is equidimensional. Thus
waer, = (G® R,)(a). But on the other hand, G® R, is a (standard graded)
polynomial ring in g variables, and hence wggr, = (G @ R;)(—g). Therefore
a=-g. M

Results of this type become considerably more subtle, if one allows the
complete intersection locus of [ to be empty:
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Theorem 4.4 ([HHR]) Let (R,m) be a regular local ring of dimension
d > 2 with infintte residue field, and let I be an m-primary ideal with reduc-

tion number r.
If G is Gorenstein, then r < d — 2.

Proof. Adopt the notation of Lemma 3.8 and notice that a},..., e} form
a (J-regular sequence.

Since grade Gy > 0, we have that /7 :m C IV : [ = [/~ for j > 0. Thus
I-mcJcli4+Jforj>>0, whereas T : m ¢ I = [+ J. Therefore
k= max{j|/? : m ¢ ' +J} is a well-defined positive integer. We claim
that G/{a},...,a’) has a nontrivial socle element in degree & — 1. So let
r e (I* - m)\(I* + J}. Then r € [*""\{(7* + J), and hence z gives rise to
a nonzero clement z’ of degree k — 1 in G/(a},...,ay). To see that 2’ is
in the socle of the latter ring, notice that mz € I* since z € I* : m, and
that fz ¢ I**' . m ¢ I**!' + J by the maximality of &, which gives Iz C
MU g Tk = [F  J151([VV]). Thus 2’ is in the socle of G/(a,. .. ay).

Since 2’ is nontrivial and has degree k — 1, and since (i’ is Gorenstein, we
conclude that the socle of G/(a},...,a}) is concentrated in degree k¥ — 1, or
equivalently, that r = & — 1.

Finally, one invokes a result by J. Lipman, saying that It :m C J since
R is regular and d > 2. But then £ < d — 1, and hencer < d — 2. [ |

We now turn to the case of ideals that are generically complete intersec-
tions. We are going to provide conditions (a necessary one and a sufficient
one) for G to be Gorenstein, generalizing results from [HSV2], [GNZ2], [GN3],
[SUVI, [T], [HHR].

The following theorem says that in the presence of a Gorenstein associated
graded ring, one can improve the bound on the reduction number given in
Proposition 1.3, if (and only if} sufficiently many powers of the ideal have

E)

“good” depth:

Theorem 4.5 ([JU]) Let R be a local Gorenstewn ring of dimension d
with infinite residue field, let [ be an R-ideal with grade ¢, analytic spread £,
and reduction number r, assume that I satisfies Gy, that I s unmized and
generically o complete intersection, and that G is Gorenstein. Let § < k<
{ — ¢ be an integer. The following are equivalent:

(a) depth R/[?>d—g—j+1forl1<j<l—g—k
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(b) r < k and I satisfies AN;_,_,.

With the next two results we are going to prove a converse of Theorem 4.3,
to the effect that the above conditions (a) and (b) imply the Gorensteinness
of G (under some additional assumptions).

Proposition 4.6 ([JU]) Let R be a local Cohen-Macaulay rirg of dimen-
sion d with infinite residue field and canonical module w, let I be an R-ideal
with grade g, analytic spread ¢, and reduction number r, assume that I sat-
isfies G and AN;_, locally in codimension £ — 1, that I satisfies AN, that
depth R/I’ >d—g—j+1 for1<j<{—g, and thatr < {—g.

Then wg = gri{w)(—g)-

Proof. Theorem 3.1 already shows that & is Cohen-Macaulay. But then
by [HSV2, 2.4], our assertion is equivalent to saying that w; is generated in
degree g, which we may check after reducing modulo a G-regular sequence
in R. Now since (¢ is Cohen-Macaulay, there is a sequence z;,...,2q-¢ in
R which is regular on R and (; furthermore, factoring out these elements
does not change our assumptions (as for the Artin-Nagata property, see [Ul,
1.13])). But after doing so, d = ¢, hence depth R/’ > d —g —j +1 for
1 < j <¢—g+ 1. In this case our assertion follows from Proposition 3.15.

Theorem 4.7 ([JU}) Let B be a local Gorenstein ring of dimension d
with infinite residue field, let I be an R-ideal with grade g. analytic spread
¢, and reduction number v, let k, 0 < k < £ — g, be an inleger with r < k,
assume that I satisfies G¢ and AN, , locally in codimension ¢ — 1, that |
satisfies AN, . 0,4y, that depth RID>d—{0+4+k—j+1forl <3<k,
and that depth R/I? >d —g—j+ 1 for1 <3<t -g—k.

Then (G s Gorenstein.

Proof. Adopt the notation of Lemma 3.8, write K; = a,: [ for 0 <z < £,
and K_; = 0. OQur assumptions together with Theorem 2.6 (b), Lemma 3.4
(c.iii, iv), and Lemma 3.8 (a) imply that there are natural isomorphisms

{4.8) WRIK. .41 = TwWRi(K ) for g—1 <1<l —-k—-2,

and that

(4.9) R/{Ki,ai+1) is Gorenstein locally in
' codimension one for 1 < min{f{ — k —1,£ — 3}.

27



We now replace the assumption of R being Gorenstein by the weaker
condition that fZ is Cohen-Macaulay and that (4.8) and (4.9) hold. With
this new assumption, we are going to show that wg = gr;(wgr)(—g). We use
increasing induction on 6 = (1) ={—g—k > 0,thecases 6 =0and § = f—g
being covered by Proposition 4.6.

Solet 0 < & < £ —g. As in the proof of Theorem 3.1, we replace R
by Rf(ar,...,a,) = B/(K;.1,a,). thus reducing to the case ¢ = 0. Write
w = wg, N =01 and let * " denote images in # = R/K. Since
¢ — g >k > 0. ve may use the property Ajvt’_—max{f,k}’ 4.8}, and (4.9), to
conclude that R is Cohen-Macaulay with wg = fw and that R is Gorenstein
locally in codimension one. Furthermore, by the same arguments as in the
proof of Theorem 3.1, all our assumptions are preserved as we pass from [
and R to [ and R (including (4.8) and (4.9), whereas R need no longer be
Gorenstein), depth B/ = d—1 = dim R/I, and §(1) < é([). Thus Theorem
3.1 and our induction hypothesis imply that gry( R) is Cohen-Macaulay with
canonical module gry(wp){—1), where grpwp)(—1) = gr {Iw)(-1).

Furthermore, by Theorem 3.1, & = gr;( R) is Cohen-Macaulay, and from
(3.18) we have an exact sequence

(4.10) 0 — K — gr,(R) — gry(R) — 0

of maximal Cohen-Macaulay G-modules. Here Homg(K,wg) =
Homp(K,w) =2 w @p B/, where the last isomorphism follows from the fact
that B = R/K and wp = Jw. Since the canonical module of gry(R) is
gr;(Jw)(=1), we may now dualize (4.10) into we; to obtain an exact sequence

(4.11) 0 —gr;ifw){—1) > wg 2w@p /T -0

of graded maximal Cohen-Macaulay G-modules.
On the other hand. there is the natural exact exact

{1.12) 0 = gr(f){—1) = gr(w) +w@g R/ — 0.
When comparing (4.11) and (4.12), we obtain a commutative diagram of

homogeneous maps.
0 — gr,({w)-1) — gryw) — wHp R/ —=0
(4-13) “ # L # L w2

0 — gr{lwf-1) — wg — w®rR/T — 10
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where ¢, is induced by @1, and ¢ lifts the identity. Such a lifting exists,
because Exti(w @r R/, wg) = 0.

We will be done once we have shown that ¢, is an isomorphism, or
equivalently, that ¢, is an epimorphism. However, since depth w @ R/I =
depth R = dim R, and since R is Gorenstein locally in codimension one, it
follows that the natural map B — Endg(w ® R/I} is surjective. Thus @,
is multiplication by some element z € R. If z is a unit, then we are done.
Otherwise choose a minimal prime p of the R-ideal (I, z). Now dim R, <1,
hence #(1,) < 1 < { and therefore 6(1,) < 6(I). Thus, again, by induction
hypothesis, we®r R, = gr;(w)®r Ry, which implies that ¢, @ R, arises from
multiplication by some y € R,. We need to conclude that y is a unit. How-
ever, multiplication by y induces an automorphism on gr;(Iw)(—1} ®r Ry,
as can be seen from (4.13), and gr {({w)(~1)®gr R, # 0 because K C p. This
forces y to be a unit in f,. u

Although the associated graded ring cannot be Gorenstein if the reduction
number is too large, one might still be able to compute its canonical module:

Theorem 4.14 ([U2]) Let R be a local Gorenstein ring of dimension d
with infinite residue field, let I be an R-ideal with grade g > 2, analytic
spread £, and reduction number r, assume that I satisfies (e, that depth
R/If>d-—g—j+1 whenever 1 < j <f—g+1, and thatr < f—g+ 1.
Further let J be @ minimal reduction of I, write K = J : I, R = R[], T =
R[It, 171, and G = gri(R). Then:

(a) wr = ((1,6)973, Kt9 )R = @7 Rt* & @5y /oM K1
(b) wr = (1972 Kt9"NT = @iy A ® Dingr [t K g

(C) weo = (R/[\’ ED ®i20 [IIX’/[£+1[\’)(—9 + l).
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5 A Criterion for the Expected Reduction
Number

So far we have seen that a great deal can be satd about blow-up algebras,
if the reduction number of the ideal is at most ¢ — ¢ + 1. In the present
section now we intend to provide a “concrete” characterization (in the sense
of [V1, 3.1.3] or [AH. 8.2]}, for when an ideal has this erpected reduction
number £ — g + 1. The criterion we have in mind should be stated in terms
of the syzygies of the ideal, i.e., in terms of the linear relations on the Rees
algebra, whereas a priori, the reduction number only corresponds to relations
of higher degrees. The results in this section are from [U2].

Definition 5.1 Let A be a Noetherian local ring, let [ be an R-ideal, and
let 5 be a positive integer. For a generating sequence f,..., f, of I, let X be
an n by n matrix of indeterminates, and write [a1,...,a,] = [f1,..., fa]X.

We say that [ is s-balancedif for somen > s and some generating sequence
fiooooyfnof 1, {ai, ... a:,)R(X) : TR(X) gives the same R(X)-ideal for

every choice of the subset {7y,...7,} C {1,...,n}.
Remark 5.2 The above definition does not depend on the choice of n or

of fi,...,fa-

We are now ready to state the main result of this section:

Theorem 5.3 Let B be a local Gorenstein ring of dimension d with infi-
nite residue field, let 1 be an R-ideal of grade ¢ > 0, and let 5 be a positive
integer. Assume fthat I salisfies G5 and that depth RfI7 > d —g—j +1
whenever | < j < s —g+ 1. The following are equivalent:

{a) 1 is s-balanced.
(by »(Iy < £(1)— g+ 1 and €(1) < s.
(c) Either r(I) =0 and p(1) < s, or else, vr(I) = €(I) - g+ 1 and I = s.

The implication (c) = (a) in the above theorem can be easily deduced

from Theorem 4.14 (c), which says that J : I = K = annp([wg]s_1) gives the
same ideal for every minimal reduction J of I. The proof of the implication

{a) = (b) however, is more involved.
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Notice that if an ideal satisfies one of the equivalert assumptions in Theo-
rem 5.3, then its associated graded ring is Cohen-Macaulay, and Propositions
3.20, 3.23 and Theorem 4.14 apply. One can think of various instances where
the condition of being s-balanced takes a more concrete form:

Corollary 5.4 Let R be a local Gorenstein ring of dimension d with
infinite residue field, let [ be an R-ideal of grade ¢ > 0, let n = pu(I),
assume that I satisfies G,y and that depth R/I? > d — g — j + 1 whenever
1 < g<n—gqg. The following are equivalent:

(a) For some malriz @ with n rows presenting I, I (@) is generated by the
entries of the last row of .

by r(l)=¢I)~g+1andb(f)=n—1.

If Iis a perfect ideal with ¢ = 2, #() = 3, and pu(]) =4, orif I is a
perfect Gorenstein ideal with ¢ = 3, #(/) = 4, and () = 5, then Corollary
5.4 would also follow from [V1], [AH}, [AHHR]. The case of arbitrary strongly
Cohen-Macaulay ideals was later treated in [SUV].

Results similar to our next one have been first considered in [CPV] for
equimultiple ideals (cf. also [CP]).

Corollary 5.5 Let R be a local Gorenstein ring of dimension d with
infinite residue field, let I be an K-ideal of grade g > 0, and let s be an integer.
Assume that I satisfies G, but not G,yy, and thot depth R/I? > d—g—j+1
whenever 1 < j <s—g+ 1.

[f there exists a prime ideal K of height at least s such that KI C
(fioo.. JC I thenr(I)= €I} —g+ 1 and {(I) = s.

A typical case where the above corollary might apply is when s = d and
IV is the maximal ideal of K.

Corollary 5.6 Let R be a local Gorenstein ring with infinite restdue field,
let | be a perfect R-ideal of grade two, let s be a positive integer, and assume
that I satisfies G;. The following are equivalent:

(a) For somen byn —1 matriz @ presenting I, I._,(p) is generated by the
minors of the n — s by n — 1 matriz consisting of the last n — s rows of

@.
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(b) r(I} < €(I) < s.

(¢) R{It] is Cohen-Macaulay and (1) < s.

Proof. (a} & (b): Oue can see, using Fxample 2.2 and a deformation
argument, that {a) holds if and only if [ is s-balainced. Now the asserted
equivalence follows from Theorem 5.3.

(b) = {c): One uses Corollary 3.3.

(c} = (b): Since R[It] is Cohen-Macaulay, r(I) < (1) ([JK], [SUV], or
{AHTY). [ ]

Corollary 5.7 Let I be a local Gorenstein ring with infinite residue
field, let I be a perfect R-ideal of grade two with ¢ = {(1), and assume that [
satisfies Gy, The following are equivalent:

(a) Forsomen byn— 1 matriz o presenting I, I,_,(©) is geperated by the
meximal nunors of the n — € by n — 1 matriz consisting of the last n —¥¢
rows of ©.

(b) (1) < .
(¢) R[It] is Cohen-Macaulay.

Notice that if [ satishes one of the equivalent conditions of Corollary
5.7, then-by part (a} of that coroltary, the £-th Fitting 1deal of [, Fitt,{}),
is either R or else a perfect ideal of grade { with p{Fitt,(/)) = (“({,1_)]"1)
Likewise, in the next corollary, Fitt,{]) is necessarily a complete intersection
of grade £.

Corollary 5.8 Let R be a local Gorenstein ring with infinite residue
field, let 1 he a perfeet R-ideal of grade three with R} Gorenstein, set n =
pl D), € =001, and assume thal K salisfies (. The following are cquivalent:

(a) £ =n—1 and for some allernating n by n matrix o presenting I, Ii{p)
15 generated by the entries of the last row of .

(b) (I} =¢—2.
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