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ZERO CYCLES AND PROJECTIVE MODULES

M. Pavaman Murthy *
(Dedicated to 77.5.Seshadrt on his 60th birthday)

Let A be a reduced affine k-algebra of dimension n over an algebraically closed field
k. Let F*Ky(A) denote the sub-group of K(A) generated by the images of all the residue
fields of all smooth maximal ideals of height n. For a module of finite projective dimension
M, let (M) denote the image of M in Ky(A). For a projective A-module P of rank n, we
define the nth Chern class of P to be: C,(P) = Y (—1)'(A*P*), where P* is the dual of
P. Suppose F"Kq(A) has no (n —1)! torsion, then our main result (Th. 3.8) is that P has
a free direct summand of rank one if and only if C,(P) = 0. When characteristic of % is
zero or A is normal and n > 3, it is known that F"Ky(A) is torsion-free ([Le|, [Sr]). Hence
our theorem is applicable in these cases. Also when A is regular, F"Ky(A) coincides with
CH™(X) the Chow group of zero cycles of SpecA and C,(P) coincides with the usual nth
Chern class as defined by Grothendieck (see [Fu]).

When n < 3 and 4 is regular, this result was proved in [MKM]. When n = 3 and the
characteristic of & 1s not equal to two, this result in [MKM] was extended to the singular
case by M. Levine. In this paper, we extend the results of [MKM] to all dimensions. With
the assumption stated above on torsion in F* Ny( A), we first show that (Cor. 3.4)if 1 C 4
is a local complete intersection of height n, then (A/I) is zero in Ko(A) if and only if [ 1s
a complete intersection. Cor. 3.4 together with a result of Mohan Kumar ([MK]}, Cor 1.9
here) at once gives Th. 3.8.

In §1, we give some preliminaries and generalize results in [MIK2]. These results are
crucially used in the rest of the paper. The basic ideas in §1 are all taken from [MK2].
In §2, we prove Th. 2.2, which strengthens a result of Boratynski [Bo] for local complete
intersections with trivial co-normal bundle. Th 2.2 is one of the crucial ingredients in the
proofs of the results in §3. As an amusing application of Th. 2.2, we give a new proof of a
theorem of Srinivas ([Sr]) about torsion in zero cycles for normal varieties (see Th. 2.11).
In §2, we also recall “Bertini’s theorem” for vector bundles and record a few consequences
tailored to suit our needs here. §3 contains the main results of this paper.

§4 and §5 deal with applications of results in §3 to “eflicient” generation of modules.
For example in §4, we show that finite A-modules are generated “efficiently” (in the sense
of [EE}) if and only if F*Ky(A) = 0. For a precise statement, see Th. 4.1 and Th. 4.4.
In §5, for a smooth affine variety X = SpecA and for a finite A-module M, we attach a
certain “Segre class” so(M) € CH™(X) (cf. [Fu]). The cycle class so(M) is the precise
obstruction for M to be generated “efficiently” (Cor 5.3).

* This work was partially supported by the NSF.
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The work in this paper began in 1985. The main results in this paper were announced
in [Mu]. We give here proofs and extensions of those results.

Qur thanks are due to N. Mohan Kumar ana n..G.Swan for useful discus.ions wiucu
improved our exposition of Th. 2.2. Thanks are also due to S. Bloch and V. Srinivas for
useful conversation on torsion in the Chow group of zero cycles. We profusely thank the
referee for critically going through the paper and making several useful comments which
improved the exposition considerably.

We fix some terminology and notation. Let A be a noetherian ring. We say that
I is a complete intersection if I is generated by a regular sequence. We say that [ is a
local complete intersection of height r if Iy is a complete intersection of height », for all
maximal ideals m containing I.

It is easy to see that if I is a local complete intersection of height r and I is generated
by r elements, then I is a complete intersection. For basic results on projective modules and
“classical” algebraic K-theory, we refer to [Ba]. For a scheme X, we denote by CH?(X),
the group of co-dimension p-cycles modulo rational equivalence, as defined in [Fu]. For

intersection theory used here, we refer to {Fuj.
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Let A be a commutative noetherian ring. We denote by Kjy(A), the Grothendieck group
of finitely generated A-modules. We also identify Ky(A) with the Grothendieck group of
the category of fuute A-mouules of finite projective dimension. Let the Krull dimension
of A be n ( dimA = n ). We denote by F"Kg(A), the sub-group of Ko(A) generated by
all (A/m) € Ko(A), where m is a maximal ideal of A such that Ay is a regular local ring
of dimension n. Here for a finite A-module M of finite projective dimension. (M) denotes
its image in Ky(A).

Lemma 1.1. Let A be a noetherian ring of dimension n. Let I C A be an ideal such that
dimA/I < n. Let : Ko(A) — Ko(A/I) be the natural map. Then n(F"Ky(A)) = 0.

Proof. Let S =1+ I. The map n factors as
Ko(A) 5 Ko(As) 25 Ko(A/T),

nso8 = 5, where 8 and ng are the natural maps. So it suffices to show that 8(F"Ky(A)) =
0. Let m be a maximal ideal in A such that An is a regular local ring of dimension .
We have §((A/m)) = ((A/m)s) € Ko(As). fm B I, then (4/m)s = 0. If m D I, consider
the maximal ideal m = m/Im in 4 = 4/Im. Since mAg is generated by n elements and
dimA < n, we see by [Fol, that ms is generated by n elements. Hence mg is a complete
mntersection and (A4/m)s = 0 in K¢(As).

Let M be a finite A-module and N a sub-module of M. Recall that N is r-fold basic
in M at ¢ € SpecA if dimyp)Im(N @ k(p) — M & k(p)) > r ( k{p) = residue field of Ayp).

Lemma 1.2. Let A be a commutative ring and M an A-module and N, a sub-module
of M. Let P be a projective A-module of rank n and p; € Spec4, 1 < ¢ < r. Let
f € Homa(P, M) be such that Imf + N is m,-fold basic in M at p;, 1 < i < r. Then
there exists a ¢ € Hom4(P, N) such that Im(f + g) is min(m;, n)-fold basic in M at the
p;, 1< <r.

Proof. We prove the lemma by induction on r, the case r = 0 being trivial. We may
assume that p, is minimal among the p;. By induction hypothesis there exists a ¢' €
Hom 4(P, N) such that Im(f + ¢') is min(m,,n)-fold basic in M at the p,, for ¢ < r.
Replacing f by f + ¢', we may assume that Imf is min(m,, n)-fold basic in M at the p,
for i <r. Let e1/1,...,ea/1 € Pp_be a base for P, with ¢; € P. Let dimggp y(Imf
k(p,) — M Q k(p,)) = [. We may assume that f(e;) @ 1,..., f(e1) ® 1 are linearly
independent in M ® k(p,). By hypothesis we choose ti41,. .., tminim, ,») € IV such that
fler)®1,..., fle} ® Lt @ 1, tingm, .0y © 1 are linearly independent in M & k(p,.).
We define b’ € Hom(Fp ,Np ) by putting k'(e;) = 0 for ¢+ < [ and ¢ > min(m,.n).
h'(e;) = t;, 1 +1 < 7 < min(m,,n). Without loss, we may assume that ' = /1.
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h, € Homa(P, N) (changing if necessary t;, suitably). Choose s € l_[:,_fll p; — by 1t 15 easy
to see that ¢ = sh; has the desired properties of the lemma.

Recall that a projective module P over a ring A is cancellative fPPA=P pA
implies tuat P & P, for uuy A-module P'. :

The following theorem, which will be frequently used in this paper is a generalization
of a result of Mohan Kumar [MK2].

Theorem 1.3 cf {MK2, Th.2]. Let A be a reduced commutative noetherian ring of di-
mension n > 2, and F C SpecA, a closed set of dimension < n — 1 with the following
property (*): For any ideal a C A with dimA/a < n ~1 and dimV{a) N F < n —2, all
projective Afa-modules of rank > n — 1 are cancellative. Let I, J be ideals in A such
that a) dimV(I)NF < n—2. b) J is a local complete intersection ideal of height n.
c)I+J =A. Supposeyw :Q — IJ, ¥ : P — J are surjections with P, Q projective
A-modules of rank n and (P)—(A"™) € F* KA. Then there exists a surjection ' : P! — I
with PO P~ A" & Q.

Proof. Tt is sufficient to show that there is a surjection a : A"®Q — IGP. For, then we take
P' = a~1(Ix0), ¢' = a | P'. By hypothesis c), the map 7: I&P — A, y(a,z) =a—uw(r)
is surjective. The projection I & P — P induces an isomorphism kery & ¥ ' (IJ) and =0
it suffices to find a surjection: A1 @ Q — ¥~ '(IJ). We have the following commutative

diagram:

0 0 0
7 T 1
0 —» K/n(L) — P/Q) A yIi=4jI — 0
(D) 1 T 1
0 - K = P 4 J -~ 0
T Tn T
0 — L s Q 4 IJ — 0

with exact horizontal and vertical rows, where K = kery, L = kery, the maps i —
P, L — Q@ are natural inclusions. The map 7 exists, since @ is projective.

Since J is a local complete intersection ideal of height and I + J = A, the maps
¢, % and the inclusion IJ — J induce isomorphisms when tensored with A/J. Hence
induces an isomorphism Q/JQ = P/JP, so that P = 7(Q)+ JP. Hence there isana € A
such that ¢ = 1(modJ) and aP C 7(Q). The surjection A shows that @ € [. Let a =
annihilator of K/n(L). Then a € a, so that a+J = 4 and J/aJ = Afa. Also the following
commutative diagram with exact rows:

0 — K — ¢-'(IJ) % 1J — 0

T Ta I
0 - L — Q 51 - 0
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shows that ¥~ 1(I1J)/9(Q) =~ K/q(L).

Suppose now that the following condition holds:

(**) The ideal a contains a non-zero- divisor and dimV(a) N F < n — 2.

Assuming (**) we have, dimA/a < n — 1. Since (P) — (4") € F"K,y(A), it follows
from Lemma 1.1 that F/aP is a stably free 4/a-module. Tensoring the exact sequence
0— K — P — J— 0with A/a, we get that P/aP ~ K/aK @ A/a. Hence K/aK is a
stably free A/a-module of rank n — 1. Now by assumption (**) and the hypothesis (*) of
Th. 1.3, it follows that K/aK ~ (A/a)"~!. Thus, we have a composite of surjective maps:

A" — KoK = K/n(L) = ™' (1T)/0(Q)

where the surjective map a is induced by the natural map K — K/ n(L). Let #: A"~! —
$~!(1J) be a lift of this last composite map. Then (8,7) : A" & Q — Y IT) is
surjective and we are done with the proof of Th. 1.3. Suppose the condition (**) is
not satisfied. We observe that 1 can in any case be replaced by n' = n + € for any
¢ € Hom4(Q, K). Hence it suffices to show that there is an € € Hom4(Q, K) such that if
o' = annihilator of K/n'(L), n' = 5 + ¢, then o contains a non-zero-divisor and dimV(a") N
F<n-2

To see this, we let py,...,p, be the minimal primes of 4 and ¢,,..., 9, generic points
of irreducible components of F of dimension n—1. Since by hypothesison I, dimV(I)NF <
n-2,it follows that T ¢ P;, 1 <i<s Let I Ty, 1 <i <k, I'gp, k+1< ) <r
Also, since n > 2, height J = n, we have that J ¢ p;, 1 <i<r, J¢ Py, 1 <<

By the diagram (D), we immediately see that if p € SpecA is such that p = p,, k+1 <
1<rorp= PBji, 1 <7 < s, we get the commutative diagram:

T T |
with rows exact so that Kp + Imnp = Py. Hence K + Imy is n-fold basic in P at such a p.
Similarly if p =p;, 1 <1 <k, Iy, = 0, we have the exact sequences

0 — Kp - P — A — 0

T T np 1

0 = Ly = @ — 0
Hence in this case K + Imn is n — 1-fold basic at p. There by Lemma 1.2, it follows
that there is an € € Homa(Q, ') such that if we set ' = 5 + ¢, then Imy' is n-fold basic
at p;, k+1 <: <r and n-fold at PB;, 1 <3 <s. Also, Imny' 1s n — 1-fold basic in P at
pi,» 1 <1 < k. It is easily seen that this implies that (K/n'(L))p, =0, 1 <17 < r and
(K/W’(L))‘D_,- =0, 1 £ <s. Thusif o' is the annihilator of K/n'(L) then o' ¢ p,, 1 < <
r,a ¢ P;, 1 <j < 5. Hence o contains a non-zero -divisor and dimV (a')NF < n —2.This

finishes the proof of Theorem 1.3.



Remark 1.4. In Theorem 1.3, if all projective A-modules of rank > n are cancellative,
then the projective module P' in Th. 1.3 is clearly unique up to isomorphism.

Remark 1.5. Let A be an affine ring over a ring k. In the following cases, all projective
A-modules of rank > n are cancellative.
a) k, an algebraically closed field, dimA = n ([Su])
b) k=1Z, dimA =n ((MKMR])
¢) k = R, dimA = n, the closure F of the set of R -rational points of SpecA has
dimension < n — 1. [OPS, Th. 3.2].

Thus we have:

Corollary 1.6. Let A be a reduced affine ring of dimension n over a ring k. Lec J be
a local complete intersection ideal of height n and I an ideal such that I +J = A. Let
WP —J o:Q— IJ be surjections, with P, Q projective A-modules of rank n and
(P) —(A™) € F*Ko(A). Then there exists a surjection P' — I with P'& P = Q& A" in
the following cases.

a) k is an algebraically closed field

b) k=2

c) k = R, the closure F of the set of R-rational points SpecA has dimension < n —1 and

the closure Z of the set of R-rational points of V(I) has dimension < n — 2.

Proof, The cases a), b) are immediate from Remark 1.5 and Th. 1.3, taking F in Th
1.3 to be the empty set. The case c) also follows from Remark 1.5 and Th 1.3 if we
take F=closure of R-rational points of SpecA. The hypothesis in ¢} above implies that
dimV(I)NF <n—-2.S Th1l3is applicable.

Corollarry 1.7 (cf [MK2, Th.2]). Let A be a reduced affine ring of dimensionn 2 2
over a noetherian ring k. Let J be a complete intersection ideal of height n and I an ideal
such that I+ J = A and IJ is generated by n elements. Then I is generated by n elements
ifa}k=2Zorb)an algebraically closed field or ¢} k = R, the closure of R-rational points
of SpecA have dimension < n — 1 and dimA/I <n -2

Proof. Immediate from Remark 1.4 and Cor. 1.6, if we take P = Q = A™.

Corollary 1.8 ([MK2]). Let A be a reduced affine algebra of dimension n > 2 over k.
where k = Z, an algebraically closed field or k = R and the closure of R-rational points
of SpecA has dimension < n — 1. Let I, J be local complete intersection ideals of height
n with [+ J = A. If any two of the ideals I, J and IJ are complete intersections then <o
is the third.

Proof. Follows easily from Cor. 1.7. For details see [MK2, Cor. 1]
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Corollary 1.9 (cf [MK2, Th.1]). Let A be a reduced affine ring of dimension n over a
ring k. Let J be a complete intersection ideal of height n. Let ¢ : Q — J be a surjection
with @ a projective .i-module Jf rank n. Then Q =~ Q' @ A, for some Q' in the follo.. .ng
cases.
k=127

ii) k is an algebraically closed field.
(iii) k = R and the closure Z of R-rational points of SpecA has dimension < n ~ 1.

Proof. We may assume n > 2. Now Cor. 1.9 is immediate from Cor. 1.6 if we take
P=A" I=A.



§2

Let A be a noetherian ring and I C A, a local complete intersection ideal of height r.
Assuming that I/I? is A/I-free, in this section, we show (Th. 2.2) that a certain thickening
J of I is a section of a projective A-module P of rank r with () - (A") = —(A4/I) in
Ko(A). In particular, all Cliern classes of P, except possibly the rth one are zero. Th.
2.2, is crucial for the rest of the paper.

For the convenience of the reader, we review a version (Th. 2.3) of Swan's Bertini’s
theorem for vector bundles [Swl, Th. 1.3 and Th. 1.4] tailored to fit the needs of this
paper. Th. 2.3 can easily be deduced from [Swl, Th. 1.3 and Th. 1.4]. We record a
few consequences of (2.3) which are freely used in the paper. As an amusing application
of Th. 2.2, we deduce (Th. 2.11) a result of Srinivas [Sr], which states that F*K(A) is
torsion free when A is an affine domain of dimension n > 3 over an algebraically closed
field, regular in codimension one.

Lemma2.1. Let R = Z{X,,... X, Y1,... .V, Z]/(C_ | XiYi+ Z(Z-1)) = Z{zy,... . 2r.
Y1s---,Yr,2). Forany fleld K, let Rie = K ® R. The natural map n: Ko(R) — Ko(Rg) is
an isomorphism and Ko(R) is free with base (R) and R/Iz, where Iz = Y.[_, a.R + =R.

Proof. It is well known ({Sw2, 17.2, 17.3]) that for any field K, Ky(Ry ) = Z ® Z with base
(Rk)and (Rg /Ik), where Iy = K®Iz. Also under the natural map 5 : K¢(R) — Ro(Rq)
we have, n(R/Iz) = (Rq/Iq) (since R is a regular ring, R/Iz has a class in /{o(R)). Thus
we have only to show that n is an 1somorphism. We have the localization exact sequence

> Ky(R/p) < Ko(R) -5 Ko(Rq) — 0
P

where p runs through all primes. Since, Ko(R/p) = Z & Z with base (R/p) and R/(Iz,p)
(note that R/p = Rr,). Since p is R-regular and R/Iz-regular, it follows that, the classes
defined by R/p and R/(Iz,p) in Ky(R) are zero. Hence 1 is an isomorphism.

Theorem 2.2. Let A be a noetherian ring and I C A be a local complete intersection
ideal of height r. Suppose I/I* is A/I -free with base fy,..., f,, fi € I, fi = class of f;
in I/I?. Let J = I{r—D' 4 Z::]l Afi. Then there exists a surjection P — J, with P a
projective A-module of rank r such that (P) — (A7) = —(A/I) € Ko(A).

Proof. Since I/I? is generated by fi,..., fr, there exist ¢;,...,¢9, € A and h € [ such that
I=%T_Afi+Ahand h(h—1)+3 1, fig: = 0. Let Rbeasin Lemma2.land ¢ : R — A4
the ring homomorphism defined by ¢(z;) = fi, w(yi) =¢:, 1 <1 < r, and (z) = h. Let
P be a prime ideal containing I and p = ¢~ !(B). The ideal Iz (resp. I} is a local complete
intersection ideal of height r in R (resp. in A) and z,,...,z, (resp. fi,...,fr) generate
(Iz)p (resp. Iy). Further, since o(z;) = fi, it follows that Torf(R/Iz, A) = 0 for i > 0.
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Thus if (P)ogi<r is an R-projective resolution of R/Iz, then {4 ®r P)o<i<, is an A-
projective resolution of R/Iz @ A = A/I. Hence if Ko(p): Ko(R) — Ko(A) 1s the map
induced by ¢, then Ko(@)((R/Iz)) = (A/I). Let J' = I + 77} Ra;.

Claimn. There exists a surjection P' — J', with P' a projective k-module of rank r such

that (P') — (R") = —(R/Iz) in Ko(R).

Suppose that this claim has been established. Then we have a surjection P = A ©p
P' o A®rJ' = J and (P) - (47) = Ko(@)(P") — (R")) = Ko(¢)(~(R/Iz)) = —(4/]).

It remains to prove the existence of P' as in the claim above. By [Bo}, there exists a
surjection @ : P' — J', with P’ a projective k-module of rank r. So it suffices to show that
for any such surjection 8, (P') — (R") = —(R/Iz). The map # give rise to a surjection

r—1
fq : PE! — ']El =QeJ = Ig_l)! +ZRQ$£'

i=1

It results from the surjection fq that
Cr(Pfq) = cycle associated to R/.}’&2 = (r — 1)a.

where a = cycle class associated to R/Iq, in C H(SpecRq). Here, P(’Q denotes the dual of
Pgq and C,.(Pé) denotes the rth Chern class of P('_-2 with values in C H"(SpecRqg).
Write (Pg) = (RQ) + m(Rq/Iq). Then by Riemann-Roch ({Fu]),

Co(PY) = (1) 'm(r ~ 1)la.

Hence, (r - 1)la = C,-(péz) = (-1)'C(Pg) = (=1)2""Im(r — 1 la. Now it is well known
that [Sw2, 17.2, 17.3] CH"(SpecRq) ~ Z with base a. Hence we see that m = —1, s0 that
(Pq) = (Rg)—(Rq/Iq)- 1tis now immediate from Lemma 2.1 that (P')—(R"y = —(R/Iz).
This finishes the proof of Th. 2.2.

We now recall the following which can easily be deduced by adapting the proof of
Swan’s Bertini’s Theorem [Swl, Th 1.3 and Th 1.4

Let E be a locally free O x-module over a scheme X. Recall that a section s € ['(E) 1s
unimodular if Z(3) = @ where Z(s) denotes the zero-scheme of s defined by ideal Im(E >
0:).

(2.3) Bertini’s Theorem (cf [Swl, Th.1.3 and Th.1.4]). Let X be a geometrically
reduced scheme over an infinite field k with a locally closed embedding X «— P" =
Projk([Ty,...,Tn]. Let E be a locally free O x-module of rank r globally generated hy a
finite dimensional k-vector space V C I'(X, E). Let (s,a) € [(E(1)& Ox ) be unimodular.
where E(1) = E® Ox(1). Set

N
W = Zt,- @V = Im(T(Opn (1)) & (V) —= T(E(1)),

1=0



where t; € T(Ox(1)) is the restriction of T; to X. Let X, 1 < i < m be the irreducible
components of X. Then there exists a non-empty open set U C W such that for ally € U:
i) The zero-scheme Z(s + ay) is empty or is a geometrically reduced sub-scheme of X,
pure of codimension r. _
ii) If for some i, Z(s + ay) N X; # @, then all irreducible components of Z(s + ay) N X
have dimension dimX; — r.
ili) Z(s + ay) is smooth at all smooth points of X.

Corollary 2.4. Let A be a geometrically reduced affine ring of dimension n over an infinite
field k. Let J C A be an ideal such that the closed set F' = V(J) contains the singular locus
of Y = SpecA as well as all those irreducible components Y; of Y with dimY; < n. Let
I C A beanideal such that [ +J = A. Let fi € I, 1 <i < lsuciichat I =Y, Afi+ 1%,
i) Foranyl < k <1, thereexist g; € I?2. 1 < i < k such that if weset I' = Ele A( fit+ygi)
then
a)l'+J=A4A
b) SpecA/I' — V(I) is either empty or a smooth scheme pure of dimension n — k
ii) Suppose further SpecA/I is smooth and pure of dimension n — | and that I/I* is
A/I-free of rank . Then the ideal I' in i) is such that SpecA/I' is smooth and pure
of dimension n — k.

Proof. Since I+J = A, thereexist h; € IJ, 1 <:<landz € I? such that f; —h; € I* and
z—1 € J. Replacing f; by h; + z, we may assume that fi-1€J, 1 <: <1 Nowi) follows
if we apply (2.3) with X = SpecA-V(I*J), E=0%", V =3,  kaiej, s = (f1,.. .. fr) €
T(E), a = 1, where ¢, 1 < j < k is the standard basis for E and the a;’s generate the
ideal I2J. (Here, we embed SpecA as a closed set in Speck{X;,...,Xn] — PY, so that,
E =~ E(1))

ii) is an easy consequence of i) since fi + gi(modI?), 1 < i < k form a subset of a
basis of I/I? and SpecA/I is smooth, pure of dimension n — l.

Corollary 2.5. Let A be a geometrically reduced affine ring of dimension n over an
infinite field k. Let I C A be a product of distinct smooth maximal ideals of height n.
Let J C A be an ideal such that I + J = A. Then there exists fis..oy faor €1, such that
fi-1e€eJ,1<i1<n~-1eand SpecA/(fi,- -+, fn-1) Is a smooth complete intersection
curve (possibly reducible) over k.

Proof. Let J' C A be the ideal defining the closed set which is the union of non-smooth
g

locus of SpecA and all the irreducible components of SpecA of dimension less than . Then
I+J' = A . Replace J by J'J. Now Cor. 2.5. easily follows from Cor. 2.4, withl=n
and k=n— 1.

Corollary 2.6. Let A be as in Cor. 2.5. Let I C A be an ideal and fi,..., fn € I such
that I = 3.0, Afi + I*. Let S be an ideal in A such that dimA/S < n — 1. Then there
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exists g; € I*, 1 < i <nsuchthat ... , A(fi +9i)=1J, ST+ J = A and J is a product
of distinct smooth maximal ideals of height n.

Proof. We have I = Y., Afi + Ej;:l Ah;, where I? = Zi-:l Ah;. Since for every prime
ideal pe Y = V(5) - V(I), dimA/p < n — 1, it follows from general position results in
[EE] that there exist g; € E;‘=1 Ah;, such that if I' = Y0, A(fi + ¢i), then Iy = Iy = Ay,
for all p € Y. Thus replacing f; by f; + gi, we may assume that Y. Afi ¢ p, for all
p € V(8) — V(I). Apply now (2.3) with X = SpecA — V(I?S), E = 0%, V =} ktiej,
where ¢j, 1 < j < n is the standard basis E and the ¢; generate the ideal I 25 s =
(fir-ros fn) € T(E(1)), a = 1 (Here we embed X as a locally closed sub-scheme of some
affine space AY C PY, so that E(1) = E). Then by (2.3), there exist g; € I°S, 1 <i <n
such that dimZ N X; < dimX; — n < 0, where Z is the sub-scheme of SpecA defined by
I' = 3"  A(fi + ¢i) and X is any irreducible component of X. Furthermore Z N X is
geometrically reduced. Now it is easy to see that 3 ., A(fi +¢:)=1IJ, ST+ J = A and
J is a product of distinct smooth maximal ideals and the proof of Cor 2.6 is complete.
Let I C A be an ideal which is a local complete intersection ideal of height n. Since

I has a finite projective dimension, A/ has a class (4/I) in KA.

Corollary 2.7. Let A be a geometrically reduced affine ring of dimension n over an
infinite field k. Let I C A be a local complete intersection ideal of height n. Then
(A/I) € F"Ko(A).
Proof. Since dimA/I = 0 and I is locally generated by n elements, it follows that I/T 2
is generated by n elements, hence by Cor. 2.6, L = Y. Afi = IJ, (for some suitable
fir--.s fn), where J is a product of distinct smooth maximal ideals of height n and I+ J =
A. Further we may assume that fi,...,fn is a regular sequence. Hence 0 = (4/L) =
(A1) 4+ (A]J), i.e. (A/])=—(A)T) € FPKy(4).
Remark 2.8. Let A be a geometrically reduced affine ring of dimension n. over an infinite
field k and I an ideal such that I/I? is generated by n elements. Let ¢ be any ideal in A
such that dimA/Q < n. Then it is immediate from Cor. 2.6 that there exists an ideal J
such that

i) IJ is generated by n elements

i) J+QI=A

iii) J is a product of distinct smooth maximal ideals.
Corollary 2.9. Let A be a geometrically reduced affine ring of dimension n over an infinite
field. Let F C SpecA be a closed set such that dimF < n — 1 and F contains the non-
smooth locus of A as well as all the irreducible components of SpecA of dimension < 1.
Then F*Ky(A) is generated by the set of all (A/m), withm a maximal ideal in SpecA — F.
In fact for every z € FPKo(A), z = (A/I), where I = [[., mi, m; # mj, for i # j and m;
are maximal ideals in SpecA — F.
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Proof. Follows easily from Cor 2.6.
The following fact is well known.

Iemma 2.10. Let A be 2 reduced affine ring of dimension n > 1 over a field k. Suppose
that
i) k is an algebraically closed field
ar

ii) k = R and the closure in SpecA of the set of R-rational points has dimension < n—1.
Then F™Ky(A) is divisible.

Proof.

i): It suffices to show that for any smooth maximal ideal m of A of height n and an
integer r, there is a z € F" Ky A such that rz = (A/m). By Cor. 2.5, there exists a complete
intersect.on ideal L of height n — 1 contained in m such that SpecA/L is a smooth curve.
Now we have a natural map n : F1Ko(A/L) — F"K¢(A) with (A/m) € Imy. Since & 15
algebraically closed F1Ky(A4/L) = PicA/L is a divisible group and this finishes 1).

ii): In view of i), it suffices to show that the natural map ¢ : FrEKo(C @r A) —
F"Ky(A) is surjective. But by hypothesis in i} and Cor 2.9, F"Ky(A)} 1s generated
by (A/m), m smooth maximal ideal of height n such that A/m = C. Clearly such an
(A/m) € Imé. So é is surjective.

Theorem 2.11 (cf [Sr]). Let A be a reduced affine algebra of dimension n 2 2 over an
algebraically closed field k. Suppose that n = 2, and A is integral and regular; or that
n > 3 and the singular locus of SpecA hz - dimension < n — 2. Then F"Ko(A) is a
torsion-free divisible group.

Proof. In view of Lemma 2.10, we have only to show that F™Ky(A4) is torsion-free. Also
the proof of the case n = 2 is contained in [BMS, Prop2.1]. So let us assume that n > 3.

Let z € F"Ky(A) be such that rz = 0, r > 0. By Cor. 2.9, choose I C A, an ideal
which is a product of distinct smooth maximal ideals of height n such that z = (A/L)
in Ko(A), Let fi,...,fn € [ be such that I; = Y [ Afi + I{. Then 0 =rz = (A/I),
where [ = Y0 Af +I7. Let J = S0 Af + 1070 = Y Af + 1107 By Th
2.2, there exists a surjection P — J, with P a projective A-module of rank n such that
(P) = (A™) = —(A/I) = 0. So by [Su], P &~ A™. That is, J is a complete intersection. Let
J =(g1,...,9n). Let § C A be the ideal defining the singular locus of A. Let A=A/S and
let @ denote the image of a € A. By hypothesis dimA < n — 2. Also (§1,...,dn) € A" is
unimodular. Hence by a standard stability theorem ([{Bal), there is an € € E,(A) such that
(§1y..-,Gn)E=(1,0,...,0). Lift €to e € E,(A) and replacing (g1,.--,9n) by (g1,... . gn)e,
we may assume ¢, — 1 € S and ¢; € S, for ¢ > 2. By the very construction of the ideal J.
G1,...,gn is (n — 1)-fold basic in I/I* at each maximal ideal containing . Hence we inay
assume (replacing if necessary g1 by g1 + h for some h € 37, Ag;) that the image of ¢
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in I, /I}? generates an A/I;-free direct summand of rank 1. We can similarly replace each
g2 <t <n-—1,by g; + hi, where h; € Z?:.‘H Ag;, 2 <t < n -1, and assume that the
images of g; in I1/I?, 1 <i{ < n — 1 generate A/I;-free summand of rank n — 1 in I, /I2.

Suppose now that n > 4. We now apply Ber: ai’s Theorem (2.3) with ¥ = Spec.! —
V(Sgi_, +5g2), E=0%% s=(g1,...,9n-2)y a =1, V = Z;‘,,‘ kaie;, where the g;
generate Sg2_, + Sg? and e, 1 < j € n — 2 is the standard basis for E. Then by (2.3),
there exists a y = (y1,...,yn—2) € A"~ 2 with y; € Sg2_, + S¢2 such that the zero-scheme
Z(s+y) = V(E::l? A(gi + ¥i)) N X is of dimension two and smooth. Replacing g; by
gi+¥i, 1 €i < n-2, we may assume V(gy,...,gn-2}NX is of dimension two and smooth.
Since g, -1 € §, it is immediate that V(g1,...,gn-2)NV(S¢Z_, +S¢2) =V(g1,....g.) =
V{I;). Since g¢1,...,¢n-2 generate a free direct summand of rank n — 2 it is clear that
SpecA/(g1,...gn—2) is of dimension two and smooth. Set B = A/(g1,...,gn—2). Since B
is a regular ring of dimension two, we have B = [[IZ, B x[[L, B}, B; are regular domains
of dimension 2 and B’ are regular of dimension < 1. Now F?Ko(B) = [].Z, F*Ko(B,).
Since J/(g1,...,9n—2) i3 a complete intersection of height 2, it follows that A/]; has a
class in FzKo(B)tor. Thus z € Im(F?Ky(B)ior — F'Ko(A)). But by [BMS, Prop 2.1] .
F?Ky(B)tor = [ F2Ro(B;)ior = 0. Hence z = 0.

(2.12) Open question. Let 4 be a reduced affine algebra of dimension n > 2 over an
algebraically closed fleld k. Is F"Ky(A) torsion-free?

Remark 2.13.

i) Let A be as in (2.12). Suppose further that A Is an integral domain, Then F"Ky(A)
is torsion-free if Chark = 0, If Chark = p > 0, then F"Ko(A)ior IS a p-primary group
(ILe)).

ii) Let A be a reduced affine R-algebra of dimension n > 2. Suppose that the closure of
R-rational points of SpecA has dimension < n — 1. Then F*"Ko(C @ A) torsion free
implies that F"Ky(A) is torsion-free.

Proof. F"Ko(C® A) is torsion-free = F" Ky(A)or 1s contained in ker( Ko(A) — Ro(COr
A)). Hence 2.F"*Ko(A)or =0 . But by Lemma 2.10, F"Kp(A) and therefore F™"Io(A)ior
is divisible. So F™Ky(A)war = 0.

For convenience, we collect the relevant known facts needed 1n the sequel about torsion
in F"Ky(A) in the following theorem.

Theorem 2.14 ([Le], {Sr]). Let A be an integral affine k-algebra of dimension n > 2.
Suppose k is algebraically closed or k = R and the closure of R-rational points of SpecA
is not dense in SpecA.
1} Suppose one of the following conditions hold:
a)n=2,
b) Chark =0,
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c¢) Chark =p > n,
d) n > 3 and A is regular in codimension one.

Then F™(Ko(A) has no (n — 1)! torsion.
ii) A is regular = the natural surjective map ¢ : CH"(SpecA) — F"Ky(A) is an iso-
morphism.
Proof
i) is contained in (2.11), (2.13).
ii): We have the map ¢ : F"Kp(A4) — C H™(SpecA) given by the nth-Chern class. Since
@ o and ¥ o ¢ are multiplication by (=1)"=1(n — 1)! and F"Kp(A) is divisible (by
Lemma 2.10) and torsion-free (by Th. 2.11), it follows that @, ¢ are isomorphisms.
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£3 Main results

Let A be a reduced affine ring of dimension n over an algebraically closed field k. Let I C A
a local complete intersection ideal of height n. Suppose 4 is normal or Characteristic & = 0
or Chark = p > n. In this section we show that I is a complete intersection if and only if
(A/I) = 0in Ko(A). Th. 3.3 together with Mohan Kumar’s result (cf Cor 1.9) gives one
of the main results of this paper that a projective A-module P of rank n has a free direct
summand of rank one if and only if the top Chern class of P vanishes.

Let A be a noetherian ring of dimension n and I C 4 ideal.

Definition 3.1. An ideal J C A is said to be residual to I if
i} IJ is generated by n elements

i) I+J=A4

iii) J is a local complete intersection of height n.

Remark 3.2. Let A be a geometrically reduced affine ring of dimension n over an infinite
field k. Let I C A be an ideal such that 1/I? is generated by n elements. By Remark 2.8,
therc exist ideals J C A, which are residual to I. Furthermore we can choose J to be a

product of smooth maximal ideals of height n.
The following theorem is crucial to subsequent results in the paper.

Theorem 3.3. Let A be a reduced affine ring of dimension n over a fleld k. Let I C A be
an ideal such that I/I? is generated by n elements. Suppose one of the following conditions
holds:
a) k is an algebraically closed field.
or
b} k = R and the closure in SpecA (resp. in SpecA/I) of R-rational points of Spec A
(resp. of SpecA/I) has dimension < n — 1 (resp. <n —2).
Then given any ideal J residual to I, there exists a surjection ¢ : P — I such that
i) 2= (P) - (A") € F"Ko(4)
ii) (n—1)z = (A/J).

Proof. First observe that if I is a local complete intersection of height n and J is residual
to I, then IJ is generated by a regular sequence of length n. Hence (4/J) = —(A/I) in
Ky(A) and ii) becomes (n — 1)1z = —(A/I).

Suppose that the theorem is true for J. Let ¢’ : P’ — J be a surjection with /', a
projective A-module of rank n such that ' = (P} — (A") € F"I(A) and (n — 1)l2' =
—(A/J). Since IJ is generated by n elements, there is a surjection A" — I.J. So by Cor
1.6 a) and c), we get a surjection P — [ with P ¢ P' = A*" . Hence

2= (P) — (A") = (A") — (P') = —2' € F"K,y(A).
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Moreover (n — 1)!z = —(n — 1)1z = (A/J). Thus we may replace I by J and assume that
I is a local complete intersection of height n. In the case when k is algebraically closed,
using Remark 3.2, we may again replace I by an ideal which is residual to I and which
is a product of smooth maximal idcals of height n. In the case k = R, let S be an ideal
defining the closure of R-rational points of SpecA. By hypothesis, dimA/S < n. So by
Remarks 2.8 and 3.2, there exists an ideal J' such that

i) J' is residual to [

ii) J' is a product of distinct smooth maximal ideals.

Since J' + § = A, it follows that if m is a prime ideal containing J ', then A/m =~ C.
Thus in the case k = R, we may replace I by J' and assume that [ is a product of distinct
smooth maximal ideals m; with 4/m; = C.

By Cor. 2.5, there exist fi1,...,fa-1 € such that € = SpecA/(f1,....fn-1) 15 2
smooth complete intersection curve. Further in the case k = R, (taking J = § in Cor.
2.5) we may assume that C' has no R-rational points. In any case, PicC is a divisible
group. Let A = A/(fi,..., fa=1), I = I/(fi,...,fa—1), etc. Then I is an invertible
ideal in A and so by the divisibility of PicA, I-1 ~ J»=1' for some invertible ideal
J ¢ A. Without loss, we may assume that J+ I = A and that J is a product of
distinet maximal ideals of A. Hence, IJ("~V! = Af,, where fn is a non-zero divisor in
A. Let n: A — A be the canonical map and fn € I such that n(fa) = fn and let
J = 5~Y(J). We also have n~!(I}) = [ and p~H(J-DY = TR Af + Jvm DY Hence
E?zl Af;=1I-J', where J' = Z::ll Afi + J(»=1}  Also J is a local complete intersection
ideal of height n and the images of f;, 1<i¢<n—1in J/J? form a part of the base for
J/J?. Furthermore, J' is residual to I. Hence it suffices to prove the Theorem for J'. Now
by Th 2.2, there exists a projective A-module P of rank n and a surjective P — J' such
that z = (P) — (A") = —(A/J). Now (A/J) € F"KoA by Cor. 2.7. It is easy to see that
(n— 1)1z = —(n — 1){4/J) = —(A/J"). This proves the Theorem for J' and completes
the Proof of Th. 3.3.

Corollary 3.4. Let A be a reduced affine algebra of dimension n over a field k. Suppose
that the following conditions hold:
a) F*Ko(A) has no (n — 1)! torsion (ie. (n—1)}l-x =0, z € FrEo(A) = 2 =0).
b) k is algebraically closed or k = R and the closure of R-rational points in SpecA has
dimension <n —1
Let I C A be a local complete intersection ideal of height n. Then I is a complete
intersection if and only if A/I =0 in Ko(A).

Proof. For n < 1, Cor. 3.4 is trivial. So, we may assume n > 2. Since height I = n, the
hypothesis b in Cor 3.4 implies that the hypotheses of Th. 3.3 are satisfied for the ideal
I. Hence there exists a surjection P — I, with P a projective A-module of rank n and
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z=(P)-(A") € F*Ky(A) and (n — 1)z = —(A/I) = 0. Since F"Ky(A) has no (n - 1)!
torsion, we have z = 0. Hence {P) = (A") in K{y(A). So by Suslin’s Cancellation theorem
[Su], P is free. Hence I is generated by n elements.

Let A be a geometrically reduccd affine k-algebra, ¢->r an infinite field k. Let dimen-
sion A = n. Let P be a projective A-module of rank n and P* = Homa(P, A).

Definition (3.5). The nth Chern class Co(P) of P is: Co(P) = Y0 o(—=1)(A'P*) €
Ko(A).

Remark (3.6).

i) Let A and P be as above. Let (the surjective map) s : P* — I be a "section” of P,
such that I is a local complete intersection ideal of height n. (By (2.3), there always
exist an s such that s(P*) = I is a product of distinct smooth maximal ideals.) Then
the Koszul Complex associated to s givas a projective resolution of A/I. Hence by
(2.7}

Cu(P) =) (-1)'(A'P*) = (A/]) € F"Ky(A).

ii) When A is regular and k is an algebraically closed field C H"(SpecA) 5 FPRo{A) is
an isomorphism (Th 2.14 (ii)) and our definition of Cr(P) coincides with the usual
nth Chern class with values in CH"*(SpecA) (cf {Fuj)

iii) Let P be a projective A-module of rank n with A as in i}.

Then Cr(P*) = (—1)*Cn(P).

Proof. We have A*P =~ Hom 4(A"*P,A"P) ~ A" 7*P* @ A"P.

Hence Co(P*) = S2(—1V(A'P) = Y (~1)'A" " P*Q@A"P = (- 1)*(A"P)-Cu(P), where the

"dot’ in the last expression denotes the multiplication in Ko(A). Now if () is any projective

A-module of rank r, then (Q) - z = rz, for z € F"Ky(A). Hence Co(P*) = (=1)"Cn(F).
Let A and P be as in Remark (3.6) i). If P &~ P’ @ A, then it is easy to see that

Cn(P) = 0. The following is the converse.

Theorem 3.7. Let A be a reduced affine k-algebra of dimension n, where k is an alge-
braically closed field or k = R and the set of R-rational points in SpecA has dimension

< n—1. Suppose F*Ky(A) has no (n — 1)!-torsion. Let P be a projective A-modulc of
rank n. Then C,(P) =0« P = P'® A for some P'.

Proof. We have only to show that C,(P) = 0 implies that P has a free direct summand
of rank one. Let (the surjective map) s : P* — I be a generic section of P, so that I is a
product of distinct smooth maximal ideals. Now 0 = Cn(P) = (A/I) € F"Ko(A). Hence
by Cor. 3.4, I is a complete intersection. Hence by Cor. (1.9) P* and therefore P has a
free direct summand of rank 1.

We also give the following version of Th. (3.7}, which follows at once from Th. (2.11).
Th. (2.13) and Th. (3.7).
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Theorem 3.8. Let A be a reduced affine k-algebra of dimension n over a field k. Suppose
one of the following conditions hold.
1) k is algebraically closed and the dimension of the singular locus of SpecA is < n —2
2) k is algebraically closed, A is an integral dowu.ain aud Chark=p2>n
3) k = R, A is an integral domain and the R-rational points of SpecA is not dense In
SpecA.
Let P be a projective A-module of rank n. Then Co(P) =0 P = P' @& A for some
P.

Corollary 3.9. Let A be a reduced affine k-algebra of dimension n over a field k. Suppose
k is algebraically closed or k = R and the closure of R-rational points of SpecA has
dimension < n — 1 . Then following two conditions are equivalent

1) F*Kg(A) =0

ii) Every projective A-module of rank > n has a free direct summand of rank one.

Proof. Immediate from Th. {3.7).
Examples 3.10

i) Let X = SpecA be a smooth integral affine scheme of dimension n , which is bira-
tionally uni-ruled — i.e the quotient field K of A4 is contained in L(t), where L is a
function field over k of trancendence degree n — 1. Then F"Ko(A) = 0. This can be
seen as follows:

Let V be a smooth affine variety of dimension n — 1 with function field L. Since L(t) 1s
a finite extension of K, it follows that there are affine open sets V' and U "of V x Al
and X respectively, and a finite surjective map f : V! = U ', Every closed point of V'
lies on a rational curve. Hence by Luroth’s theorem, it follows that every closed point
of U’ lies on a closed rational curve of X. Thus the class of any point of U'is zero in
CH™X) = F"Ky(A). Hence by Cor.2.9, we have F"K(A) = 0.

i) A = Rlzo,...,za]/(Tieoz?) or Rizo,...,za)/(E oz} +1). Then SpecA has at
most one R-rational point. Further F™Ko(A) = 0. Hence projective A-modules of
rank > n have uni-modular elements. This is easily seen as follows:

In view of Remark 2.13(ii), we may replace R by C and thus it suffices to show that
FrKo(C@r A) = 0. In the case when A = Rlzo, - ] /(Ch,t 4+ 1), Spec(CBr A) 1s
a smooth affine quadric and hence is a rational variety. So, F™ Ko(C®r A) =0, by 3.10(1}.
Suppose now that A = Rlzg, -+, 2n]/(1g z7), then Spec(C @r A) is the affine cone of
a smooth projective quadric. Hence every smooth point of Spec(C ®r A) lies on a smooth
affine quadric not passing through the singular point. Thusif mis a smooth maximal ideal
of C ®r A and p is the ideal of a smooth affine quadric passing through m, then m O p.
Further, since the quadric defined by p does not pass through the singular point, we have
the natural map Ko((C ®r A)/p) — Ko(C ®r A). Further F" 7' Ko({(C @r A)/p) =0.by
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3.10(i). Thus the class of (C ®gr A)/m is zero iu Ko((C ®r A)/p) and hence afortiori zero
in Ko(C ®r A). Hence F"Ky(C ®gr A) = 0.
We next discuss some applications of Th. 3.7. We first apply Cor. 1.6. and Th. 3.3

Lo prove:

Theorem 3.11. Let A be a reduced affine algebra of dimension n over an algebraically
closed field. Suppose F*Ky(A) has no (n — 1)! torsion. Let P be a projective A-module
of rank n. Then there exists projective A-module P' of rank n — 1 such that (P) =
(P' @ A) + L2 Cu(P) in Ko(A).

Remark 3.12. Since F"Ky(A) is divisible and Cp(P) € F"Ky(A), the hypothesis that
F"Ky(A) has no (n—1)! torsion implies that C,,(P) is uniquely divisible by (n—1)!. Hence
the expression above makes sense.

Proof of (3.11). Choose a generic section s € P* so that we have a surjectivemap s : P — I,
with I, a product of distinct smooth maximal ideals. By Th. 3.3, there exists a projecti\(
A-module @ of rank n and a surjective f : Q@ — [ such that (@) = (A") — —ﬁ-)—, (A/T).
Since (A/I) = C,(P*) = (~1)"C,(P), we have (@) = A™ + ((nl)l C.(P). By applying
Cor. (1.6) (with “I = A” in Cor. 1.6) , we see that there exists a projective A-module I
of rank n and a surjection Py — A4, where (P) + (A™) = (Q) + (Pl). Let Py = P' ¢ A
Writing (Q) in terms of Cy(P), we have (P) = (P' & A) + L(TIL Cn(P).

Let X = SpecA be a smooth affine variety of dimension n over an algebraically closed
field. Let C': Ko(A) = Ko(X) = 1+ 3_7_o CHP(X) denote the total Chern class map.

et 1+Z:=0 CH?P(X) — 1-}-2" ¥ C.IP(X)bethe map m(1+c1+ - +eno1tcn) =
1+e1 4+ +cn-1 (note that 1+ Ep= CHP(X) is not a group under multiplication). We
also denote by FPKy(A) = sub-group of Ky(A) generated by classes of modules M with
Codim suppM > p.

Corollary 3.13. Let X = SpecA be a smooth affine variety of dimension n over an
algebraically closed field. Given ¢, € CHP(X) 1<p<n-1, there exists a projective A-
module P of rankn—1 with C(P) = 14+ 37" ¢; ifand only if 1 + Y1, ¢i € T(C(Ko(A4)))

Proof. We only have to show that if for some z € K¢(4), C(z) =1 —l— Yoi, ci, then there
is a projective A-module P of rank n — 1 such that C(P) =1+ Y[ 1 €. We may assuie
that z = (P') — (A"), with P’ a projective A-module of rank n. Then by Th. 3 11, there
exists a projective A-module P of rank n — 1 such that P' = (P § A) + ((n Ty Cn- Now

C(P) = C(P')C(((;—L%-,cn) By Riemann-Roch [Fu], C ((-_l-%ﬁ n) =1 —cp. Hence

n—1}
C(P)=C(P)1-ca)=14) e
=1
We recover the following result proved in [MKM]|:
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Corollary 3.14. Let X = SpecA be a smooth 3-fold over an algebraically closed field.
i) Given ¢; € CH'(X), 1 <i < 3, there exists a projective A-module P of rank 3 with
CiP)=¢; 11 <3
ii) Given ¢; € CHY(X), + = 1,2, there exists a yrojective A- module P ¢ rank 2 w.th
Ci(P)=c¢i, 1 =1,2.

Proof. In view of Cor. 3.13, it suffices to prove i) or equivalently, we have to show that
the total Chern class map C : Ko(4) — 1+ E;=1 CH?(X) is surjective.

Since C induces maps F*Ko(A)/FF1 Ko(A) S CHi(X) which are isomorphisms for
1 € i < 3 (by Riemann Roch [Fu] and the fact that F®Ko(A4) is a torsion free divisible
group [cf Remark 3.6 (ii)]). Hence C : F1Ko(A) = 1+ Zn_ C HP(X) is an isomorphism.
This finishes the proof of Cor. 3.14.

Let X = SpecA be a smooth affine variety of dimension n over an algebraically closed
field. For z € Ko(A), let C(z) denote its total Chern class. Recall that pth Segre class
sp(2) and the total Segre class s(z) [Fu, §3. 2] are defined by the equation C(z)7! =s(z) =
3. 8p(2), s0(2) =1, sp(z) € CHP(X). Let P be a projective A- module of rank ». It is
well known that (cf {Ba] or [Fo|) P is always generated by r + n elements. We have the
following:

Corollary 3.15. Let X = SpecA be a smooth affine variety of dimension n and P a
projective A-module of rank r. Then P is generated by r + n — 1 elements if and only if
sn(P)=0.

Proof. Since P is generated by r + n elements and stably free modules of rank > n are free
over A, it follows that P is generated by r+n—1 elements if and only if there is a surjection
f : A®TT — P such that kerf contains an unimodular element. Now C{kerf) = s(P). Now
Cor. 3.15. follows from Th. 3.8.

Since for L € PicA, sn(L) = (-1)"C(L)", we have

Corollary 3.16. With A as in Cor.1.5, L € PicA is generated by n elements if and only
if C (L) =0.

Remark. When n = 3 and A is regular, (3.15) and (3.16) were proved in [MKM].

Corollary 3.17. Let X C A} be a closed smooth sub-variety of dimension d over an
algebraically closed field. Let I(X) denote the prime ideal of X in k[Ty,...,Ty]. Then
I(X) is generated by n — 1 elements if and only if Cy(Qx/x) = 0.

Proof. By [BMS, Th. 1.11], I{X) is generated by n — 1 elements if and only if  x/¢ has
a free direct summand of rank one. Hence Corollary 3.17 is immediate from Th. 3.8.

Let X be a smooth affine variety of dimension n > 1 over an algebraically closed
field k. Suppose X is birationally uni-ruled or k = F, and n > 2, then it is known that
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CH™(X) = 0 (when X is birationally uni-ruled, this is an easy exercise. When & = F,
and n > 2, see MKMR, Th. 3.6]. Now Cor. 3.17. immediately gives

Corollary 3.18. Let X _ A} be a smooth affine variety of dimension d. Let I{X) be the
prime ideal of X in k[Ty,...,T,). Suppose d > 1 and X is biratioually uni-ruled or d > 2
and k = F,. Then I(X) is generated by n — 1 elements.
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§4 Efficient generation of modules.

Here, we further explore applications of results in §3. Let A be a reduced affine k-algebra
of dimension n over an algebraically closed field k. Let M be a finite A-module. For the
rest of the paper we try to stick to the following notation.
For p € SpecA, let up(M) denote the number of elements in a minimal set of generators
for Mp. Set
v(p, M) = pp(M) + dimA/p, p € SpecA

n(M) = sup{v(p, M) | p € supp(M)}
§(M) = sup{v(p, M) | p € supp(M), dimA/p < n}

By [Fo], M is generated by n(M) elements. It is easy to see that in general M is not
generated by §(M) elements. When 4 is a polynomial ring, by [MK1] or [Sal], M is
generated by 6( M) elements.

In this section we give an analogue of Th. 3.3 for arbitrary finite A-modules (Th.
4.1). We then characterize affine k-algebras A for which finite A-modules are generated by
§(M) elements (Th. 4.4). For example an equivalent condition is F"Ko(A) =0. When A
is regular and n = 3, this is a result in [MKM].

Theorem 4.1. Let A be a reduced affine k-algebra of dimension n over an algebraically
closed field k. Let M be a finite A-module. Then there exists a surjection P — M, with
P a projective A-module of rank §(M) such that (P) — (ASM)y e FPKo(A).

Following the method of [MK1] and [Sa), we reduce the Th. 4.1 to the case when
M = I is an ideal not contained in any minimal prime and then appeal to Th. 3.3.

Unless otherwise stated, A will denote a reduced affine k-algebra of dimension n over
an algebraically closed field k.

Lemma 4.2. Let 0 =()_, p;, where p; are the minimal primes of A. Let I} = r]ﬁ:l Pis
I = ﬂ}'__-;+1 p;, 1 <1< r. Letn;: A— A/I; denote the natural surjection, i = 1,2. Then
the natural map

(Ko(m), Ko(n2)) : Ko(A) — Ko(A/L) x Ko(A/I2)

induces a surjection ¢ : FPKo(A) — F"Ko(A/I) x F*Ko(A/L). In particular, the
natural map F"Ky(A) — F*Ko(A/I,) is surjective.

Proof. First, we show that Ko(n: ) (F*Ko(A4)) C F*Ko(A/L). Sayi=1. Let m C A bea
maximal ideal such that Am is regular of dimension n. If m 2 I, then Tor;(A/m, A/I)) =0,
for i > 0. Let (P;), 0 < i < n be a projective resolution of A/m. Then Ko(m)((A/m)) =
S(=1){(P) =0, (Pi = A/l @ Pi). f m D I, then I; Am = 0. So, TorM(A/m, A/L) =
Tor}(A/m, A/))m = 0 for i > 1. Hence Ko(m )((4/m)) = (A/m).
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Thus (n1,n2) induces a map ¢ : F"Ky(4A) —» F"Ko(A/I,) x FrKy(A/L;). We now
show that ¢ is surjective. Since dimA/(I;+ 1) < n, by Cor. 2.9, F"Ko(A/IT) is generated
by all (A/m), where m is a maximal ideal of A such that (A/I) ) is regular of dimension
nand m 3 I. We, then have Am = (A/I)m and ((A4/m)) = ((4/m),0) € F*Ko(a/1;) x
F"Ko{A/I;). This shows that F*Ky(A/I;)x0 isin Imy. Similarly 0 xFrKy(A/L) € Imp
and ¢ is surjective.

Lemma 4.3. With the notation as in Theorem 4.1, let N C M be a sub-module and
I C A ideal such that IN = 0. Let P be a projective A-module of rank §(M) and
f € Hom4(P, M), such that M = f(P) + N. Suppose that n(M/IM) < §(M) and P/IP
is AfI-free. Then thereis a g € Homa(P,N) such that f+g: P — M is surjective.

Proof. Let “bar” denote going modulo I. Let e;,...,es be a base for P (6 = 6(M)) and
fle))=# €M, 1 <i<§. Thus we have, Zf=1 AT, + N =M.

Since, by hypothesis, § > n(M), by a standard stability argument of Eisenbud-Evans
([EE] or see the proof of Proposition 1 and Corollary 1 in (MK1]), there exist 7; € N, 1 <
i < &, such that M = 0 A(z, + 7).

Let § : P — N be defined by i(e;) = ;. Lift Ggtog: P — N, Let f' = f+g. We have

M = f'(P)+ IM. Hence there is an a € I such that (1 4+ a)M C f'(P). Since aN = 0, we
have N C f'(P). Now M = f'(P)+ N implies that f'(P) = M. This finishes the proof of
Lemma 4.3.
Proof of Theorem 4.1. We first make few preliminary remarks. If (M) < (M), then
by Foster’s theorem [Fo], M is generated bv §( M) elements. So we may take P = A% M)
Hence we have only to consider the case when n(M) > §(M). We may also assume that
M#0.

Thus there is a minimal prime p such that dimA/p = n and n(M) = pp(M) +n >
6(M), pp(M) > 0. Let P be a prime ideal of height one containing p. Then §(M) >
pp(M) +(n—1) > pp(M) + (n ~ 1) = n(M) — 1. Thus (M) = n(M) -1 > n. Hence
from now on, we assume that n(M) > §(M) > n and §(M) = »(M) - 1.

Lemmas 4.2 and 4.3 allow us to adapt the method of proof of Theorem 1 in [MK1] to
reduce the theorem to the case when M is anideal in A. Let § = A-Uiz 00 {1y ope} =
set of all minimal primes p such that dimA/p = n. Let Z(M) = ker(M — Ms). We have
2(4) = (V_y by Z(AIM C Z(M) and Z(M/Z(M)) = 0.

Step I. Th. 4.1 is valid for the A-module M/Z(M) = Th. 4.1 is valid for M.

Proof. Let 6(M) = 6. Then 6(M/Z(M)) < § and so by assumption there is a projective
A-module P of rank é and a surjection f : P — M/Z(M) such that (P)—(A4%) € F*Ry(A).
Lift f to f: P — M. We have, M = f(P) + Z(M).

There is an s € § such that s- Z(M) = 0. Let A = A/As. Then dimA < n. Put
I = As and let “bar” denote going modulo /. By Lemma 1.1, P is stably free. Since rank
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P > n, by Suslin’s Cancellation theorem, P = A%. Also, n(M) < §(M). Hence by Lemma
4.3, (f + g): P = M is surjective for some g € Hom(P, Z(M)).

Step IL. It is sufficient to prove Th. 4.1 for A such that dimA/p = n for all minimal
primes y and for M such that the up(M) are equal for all minimal primes p

Let d = max{up(M) | p minimal prime of with dimA/p = n}. By our assumptions in
the beginning of the proof of Th. 4.1, we have n(M) =d+n and (M) =d+n—1. Let J
be the intersection of those minimal primes such that pp(M) = d, and dim A/p = n. Let J
be the intersection of those minimal primes p such that either dimA/p < n or dimA/p =n
and up(M) < d. We have 0 = I N J. By the hypothesis of Step I, Th. 4.1 is valid
for the ring A/I and the A/I-module M/IM. Since anyway é{M) > §(M/IM), there is
a projective A/I-module P’ of rank §(M) and a surjective map P' — M/IM such that
(P') = (A/T)™) € FrKo(A/D).

Now by Lemma 4.2, the natural map F*Ko(A4) — F"Ko(A/I}) x F"Ko(A/J) is sur-
jective. Also, (M) > n implies that the cancellation for projective modules holds for rank
> 6(M) for rings A, A/I and A/J. Hence it follows that there is a projective A-module P
of rank (M) such that A/I@ P =P', A/J®Pis A/ J-free and (P)— AYM)y € FrEo(A).
Let f denote the composite of surjective maps f:P— P — M/IM. Lift ftof:P— M.
We then have M = f(P) + IM. Further J- (IM) =0, p(M/JM) < §(M) and P/JP is
Al J-free.

Hence by Lemma 4.3, it follows that there is a ¢ € Hom(P, IM) such that (f +¢) :
P — M is surjective. This finishes the proof of Step IL

Step III. It is sufficient to prove Th. 4.1 for ideals in A which are not contained in any
minimal prime of B.

Proof. By previous steps we may assume A is equi-dimensional and pp(M) = d > 1 for all
minimal primes p. Also, we may assume Z(M) = 0. Thus if d = 1, one easily sees that M
is isomorphic to an ideal in A not contained in any minimal prime of p (for details see the
Proof of Step 4 on page 229 of [MK1]). If d > 2, by standard stability arguments, there 1s
an z € M such that

i) pp(M/Az) = pp(M)—1=d —1 for all minimal primes p of 4

i) z is basic at all primes of height <1

Hi) 6(M/Az) = 6(M) - 1.
(For details see Proof of “Step 4”, p. 228-229 of [MK1}) Thus by induction on d we are
reduced to the case when M =~ I, where I is an ideal in A4, not containing any minimal
prime of A.
Conclusion of the Proof of Th. 4.1 Now A is equidimensional , M = I and [ is not contained
in any minimal prime of p. Also (I) = 1+ n and 6() = n. Since n(I/I?) < 6(I) = n it
follows that I/I? is generated by n elements. Now Theorem 4.1 follows from Th. 3.3.
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Theorem 4.4. Let A be a reduced affine k-algebra of dimension n over an algebraically
closed field k. The follnwing conditions are equivalent:
1) Every finite A-module M is generated by

(M) = sup{up(M) + dimA/p | p € supp(M), dimA/p < n}

elements.
2) Every local complete intersection ideal is generated by n elements.
3) Every local complete intersection ideal of height n Is a complete intersection.
4) Every smooth maximal ideal is a complete intersection.
5) FrKo(A) =0

6) Every projective A-module of rank n has a free direct summand of rank one.

Proof. 1) = 2) : Let I C A be a local complete intersection ideal of height r. Then
(I =n.

2)= 3) = 4) = 5) : trivial

5) = 6) : Immediate from Th. 3.7.

6) = 5) : Let m be a smooth maximal ideal of height n. By Th. 3.3 there is a surjection
P = m with P a projective A-module of rank n. So Cn(P*) = (A/m) in Ko(A), " =
Hom(P, A). Now P* has a free direct summand of rank one implies Cx(P*) = 0. So
F"Kog(A) =0.

5) = 1) : Let M be a finite A-module. By Th. 4.1, there exists a surjection P — M with
P a projective A-module of rank §(M) such that (P) — (A%M}) € F*Ky(A) = 0. Now if
(M) = §(M), then M is generated by §( M) elements. So we may assume (M) > 6(M).
As we have seen in the preliminary remarks in the beginning of the proof of Th. 4.1
n(M) > 6(M) = §(M) > n. Hence (P) = (4°M)) in Ko(A) = P ~ A¥M) by Suslin’s
Cancellation Theorem. Hence M is generated by §( M) elements and the Proof of Th. 4.4
is complete.
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§5 Generators for modules and Segre classes

Let X = SpecA be a smooth affine n-dimensional variety over an algebraically closed
field k. Let M be a finite A-module. We attach to M, a certain zero-cycle so(M) in
F"Ky(A) = CH™(X) and show that so(M) = 0 if and only if M is generated by 6(M)
elements. The invariant sg(M) is essentially the zero dimensional “Segre class” of M
(taking values in the Chow ring of X) defined in [Fu, Example 4.17}

Let I,J be arbitrary ideals in A such that I + J = A. Using the invariant so{), we
show that if any two of the ideals I, J and IJ are generated by n elements, then so is
the third. This generalizes a result of [MK2] (see Cor.1.8). In this section we freely use
intersection theory for singular schemes as developed in [Fu]. We have closely followed the
notation in [Ful.

Let A be a regular domain which is an affine k-algebra of dimension n over an alge-
braically closed field k. Let X = SpecA. Let M be a finite A-module. Let S(M) denote
the symmetric algebra of M. The following lemma is easy and we omit the proof.

Lemma 5.1.
i) dimS(M) = sup{pp(M) + dimA/p | p € SpecA}. In particular if suppM = SpecA,
then dimS(M) = n(M) (see §4 for the definition of n(M)).
ii) Let P(M) = ProjS(M). Then dimP(M) = sup{pp(M) + dimA/p ~ 1 |p € suppM}.
In particular if supp(M) = SpecA, then dimP(M) =n(M) - 1.

’ With the notation as above, suppose that n(M) > §( M) (here 6(M) 1s as in §4). Then

as in §4, we have n(M) =r +n, §(M) =r +n —1, where r =rank of M = dimx K ®4 M,

where K is the field of fractions of A. Further since (M) > 6(M) = suppM = SpecA,

we have r > 0, Thus by Lemma 5.1, we see that n(M) > §(M) = dimP(M) = §(M).
Since X = SpecA is smooth, we identify

F"Ko(A) = CHM(X).

Recall that C H"(X) is a torsion-free divisible group. Let = : P{(M) — X be the structural
morphism.

Theorem 5.2. Let X = SpecA be regular of dimension n. Let M be a finite A-module.
Put n(M) = and §( M) = 6. Then either
i) n=6 and M is generated by 6 elements.
. or
ii) § = —1, dimP(M) = § and there exists a projective A-module P of rank ¢ and a
surjection P — M such that (P) — (A%) € F"Ky(A).
Further P is unique up to isomorphism and

(9} (P)=(4%) = =5y (cr(Opan(1)° NP(M)) € CHT(X) = F" Kol 4)

)
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Proof. In view of Theorem 4.1, we need only to show the uniqueness of P and the formula
(*). Now let P be any projective A-module of rank § such that there is a surjective
map f : P — M and (P) — (A°) = 2 € F"Ko(A). To simplify notation, for a finite A-
module N, we shall also write ¥ .or the coherent sheaf N associated to N. Thus T N),
for example would mean the sheaf 7*(N) on P(M). With this convention, we have the
surjection 7*(f) : x*(P) — n*(M). Now composing n*(f) with the canonical surjection
(M) — Op(ar)(1), we get a surjection *(P) = Op(ar)(1). Hence we have a surjection

7 (P)~1) — Op(an)

Hence es(7*(P)(—1)) N [P(M)) = 0.This gives,

]
Y (=1¥es-i(*(P)) N er(Opan (1)) N [P(M)] = 0

i=0
Applying 7. and using the projection formula we get
6 . .
D (=1 es—i PYN mo(cr(Opan(1)') N P(M)) = 0
1=0
Since (P) — (A%) = z € F*Ky(4) = CH™(X), we have Co(P) =1, Ci(P) =10, i < n and
Cn(P) = (-1)""}(n —1)!z. Hence we have,
(=1)°mer(Op(any(1))° A P(M)) + (=1)P " Cu( P)mulcr(Opary (1)) N [P(M)]) = 0
We claim that
Cu(PYra(e1(Op(an(1)°=" N [P(M)]) = Cu(P)

Put a = (c1(Opany(1)) " N[P(M)]) = z¢ + 21 + ... + 25, 7; € CH{(P(M)).

Then Cp(P) - 7u(a) = Cn(P) - mu{x0). Suppose m,(zo)} = m - [X]. To compute m, we
can pass to an open set U of X and assume that M is free of rank r. Replacing X by U,
we have, P(M) =X x P™! and § =r 4+ n — 1. In this case &« = X x ¢ where t € P"~! is
a point. Now it is clear that m = 1.

Hence, Cp(P)my(a) = Co(P). Thus we have,
Ca(P) = (-1)" 7 (c1(Opany(1))’ N [P(M))).
Since (P) — (A%) = z € F*K,(A), by the Riemann-Roch Theorem,
Ca(P) = (~1)""(n— 1)z
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. Hence

()"

U 0u(P) = S (1) e @pan (D) 1 IPOO)

(n—1)!

Z =

= —( ! 1)'1r,..(c1((’);)(1\4)(1))“i N [P(M)])

Since 6 > n and P was any projective A-module of rank § surjecting onto M with the
property (P) — (A%) € F™K,(A), the above calculation together with [Su] establishes the
uniqueness of P up to isomorphism.

For a finite A-module M, we define class of zero cycle so(M) in CH™(X) as follows:

so(M) =0, if n(M)=5(M)

so(M) = ma(cx(Opaan(1) AP, if n(M) > 6(M)
(here 6 = 6(M))

Corollary 5.3. Let A and M be as in Th. 5.2. Then M is generated by 6(M) elements
if and only if so(M) = 0.

In case M = I is an ideal in A, it is more convenient to describe so(f) in a slightly
different way. Observe that either n(I) < %(I) or n(I}) > 6(I) and in the later case
n(I) =n+1and §(I) = n. Let 7 : X — X be the blow up of the ideal I. Let P be a
projective A-module of rank n and f : P — I a surjection with z = (P)—(A") € F"Ko(A).

This gives rise to a surjection 7*(P) — IO = O (1), where O5(1) = Ox(—E), E =
exceptional divisor.

Thus we get a surjection

T (P)}-1) — Oy

As in Th. 5.2, ca(7(P)(=1)) = 0, ie. 37 o(=1)enmi(7*(P)) N (c1(Ox (1)) N [X]).
Applying 7., using the projection formula and noting that C;(P) =0, 0 <1 < n, we get

(—1)"m(c1 (O£ (1)) N [X]) 4+ Ca(P) = 0

ie. Cul(P) = (=1)*m, (e (O (1)" N [X])

As before, since (P) — (A“) = z € F*Ky(A), we have C,(P) = (-1)""(n — 1}=.
-1)"- 1

Hence z = a-nr Cn(P) = == 1),1r*(c1((9x(1) N [X)).
Asin Th. 5.2, the above calculations and Th. 3.3, give
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Theorem 5.4. Let A be a regular integral affine k-algebra of dimension n over an alge-
braically closed field k. Let I C A be an ideal such that I/I* is generated by n elements.
Then there exists a projective A-module P of rank n and a surjection P — I such that
z = (P)~(A") € F"Kq(A). Further P with these properties is unique up to isomorphism

and (P) — (A") = rrimime(a:(Ox(1))" N [X)).
For an ideal I C A, define
so(I) = mu(er(Ox(1)" N [X]) € CH(X).
Corollary 5.5. Suppose I/I? is generated by n elements. Then I is generated by n

elements if and only if so(I) = 0.

Lemma 5.8. Let A be as in Theorem 5.4. Let Iy, I, be ideals in A such that Iy +[; = A.
Then So(I]Iz) = SU(II) + SO(I‘Z).

Proof. Let m; : X; — X be the blow up of the ideal I;, 1 =1,2 and let 7 : X — X be the
blow up of the ideal I = I I;. We have the commutative diagram

23 NP1

X
|

X2 [ Xy
|
|/ m
X

Let Li = Og, (1), i = 1,2. Then Og(1) = pi(L1) ® p3(L2). Further since
V(L) V(I;) = B, we see easily (using for example [Fu,2.5]) that

(pi(L ) na(py(LY N[X] =0, for 4,5 >0
Hence (O (1))* NIX] = e1(p}(L1)" N[X]+e(5(L2))* N[X]. So, ma(ea(Ox(1)" NIX])
= mupr(@(Pi(L1)" N [X]) + m2upra(ea(p3(L2)" N [X])
= (e (L1)" N [X1]) + mau(e1(L2)" O [X2])

= Sg(Il) + 30(.[2)

Theorem 5.7. Let A be a regular integral affine algebra of dimension n over an alge-
braically closed field. Let Iy, I be ideals in A such that I + I, = A. Suppose any two of
the ideals I, I and I = I, I, are generated by n elements then so is the third.

Proof. Since I/I? ~ I)/I} & I/}, it is easy to see that if any two of the modules
I,/I?, I/I? and I/I? are generated by n elements then so is the third. Now the theoremn
is immediate from Cor. 5.5 and Lemma 5.6.
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Remark 5.8.
i) Lyubeznik [Ly] has 1sed Cor. 5.5 to show that any positive dimensional sub-variety
of X is set -theoretically generated by n elements. -
ii) If A is not regular, we do not know if the projective module P in Th. 5.2 and Th. 5.4
is unique up to isomorphism.
iii) We do not know if Th. 5.7 is valid if we drop the assumption that A is regular or that
the ground field is algebraically closed.
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